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1 Introduction

Stereo correspondence has traditionally been, and continues to be, one of the most heavily inves-

tigated topics in computer vision. However, it is sometimes hard to gauge progress in the field,

as most researchers only report qualitative results on the performance of their algorithms. Fur-

thermore, a survey of stereo methods is long overdue, with the last exhaustive surveys dating back

about a decade (Barnard and Fischler 1982, Dhond and Aggarwal 1989, Brown 1992). This paper

provides an update on the state of the art in the field, with particular emphasis on stereo methods

that (1) operate on two frames under known camera geometry, and (2) produce a densedisparity

map, i.e., a disparity estimate at each pixel.

Our goals are two-fold:

1. to provide a taxonomy of existing stereo algorithms that allows the dissection and comparison

of individual algorithm components design decisions, and

2. to provide a test bed for the quantitative evaluation of stereo algorithms. Towards this end,

we are placing sample implementations of correspondence algorithms along with test data

and results on the Web at www.middlebury.edu/stereo.

We emphasize calibrated two-frame methods in order to focus our analysis on the essential compo-

nents of stereo correspondence. However, it would be relatively straightforward to generalize our

approach to include many multi-frame methods, in particular multiple-baseline stereo (Okutomi

and Kanade 1993) and its plane-sweep generalizations (Collins 1996, Szeliski and Golland 1999).

The requirement of dense output is motivated by modern applications of stereo such as view

synthesis and image-based rendering, which require disparity estimates in all image regions, even

those that are occluded or without texture. Thus, sparse and feature-based stereo methods are outside

the scope of this paper, unless they are followed by a surface-fitting step, e.g., using triangulation,

splines, or seed-and-grow methods.

We begin this paper with a review of the goals and scope of this study, which include the need

for a coherent taxonomy and a well though-out evaluation methodology. We also review disparity

spacerepresentations, which play a central role in this paper.

In Section 3, we present our taxonomy of dense two-frame correspondence algorithms. Section 4

discusses our current test bed implementation in terms of the major algorithm components, their

interactions, and the parameters controlling their behavior. Section 5 describes our evaluation

methodology, including the methods we used for acquiring calibrated data sets with known ground

truth. We present our experiments and results in Section 6 and conclude with a discussion of planned

future work.
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2 Motivation and scope

Compiling a complete survey of existing stereo methods, even restricted to dense two-frame meth-

ods, would be a formidable task, as a large number of new methods are published every year. It is

also arguable whether such a survey would be of much value to other stereo researchers, besides

being an obvious catch-all reference. Simply enumerating different approaches is unlikely to yield

new insights.

Clearly, a comparative evaluation is necessary to assess the performance of both established

and new algorithms and to gauge the progress of the field. The publication of a similar study by

Barron et al. (1994) has had a dramatic effect on the development of optical flow algorithms. Not

only is the performance of commonly used algorithm better understood by researchers, but novel

publications have to improve in some way on the performance of previously published techniques

(Otte and Nagel 1994). A more recent study by Mitiche and Bouthemy (1996) reviews a large

number of methods for image flow computation and isolates central problems, but does not provide

any experimental results.

In stereo correspondence, two previous comparative papers have focused on the performance of

sparse feature matchers (Hsieh et al.1992, Bolles et al.1993). Two recent papers (Szeliski 1999,

Mulligan et al. 2001) have developed new criteria for evaluating the performance of dense stereo

matchers for image-based rendering and tele-presence applications. Our work is a continuation

of the investigations begun by Szeliski and Zabih (1999), which compared the performance of

several popular algorithms, but did not provide a detailed taxonomy or as complete a coverage of

algorithms. A preliminary version of this paper appears in the CVPR 2001 Workshop on Stereo

and Multi-Baseline Vision (Scharstein et al.2001).

An evaluation of competing algorithms has limited value if each method is treated as a “black

box” and only final results are compared. More insights can be gained by examining the individual

components of various algorithms. For example, suppose a method based on global energy mini-

mization outperforms other methods. Is the reason a better energy function, or a better minimization

technique? Could the technique be improved by substituting different matching costs?

In this paper we attempt to answer such questions by providing a taxonomy of stereo algorithms.

The taxonomy is designed to identify the individual components and design decisions that go into a

published algorithm. We hope that the taxonomy will also serve to structure the field, and to guide

researchers in the development of new and better algorithms.
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2.1 Computational theory

Any vision algorithm, explicitly or implicitly, makes assumptions about the physical world and the

image formation process. In other words, it has an underlying computational theory (Marr and

Poggio 1979, Marr 1982). For example, how does the algorithm measure the evidence that points

in the two images match, i.e., that they are projections of the same scene point? One common

assumption is that of Lambertian surfaces, i.e., surfaces whose appearance does not vary with

viewpoint. Some algorithms also model specific kinds of camera noise, or differences in gain or

bias.

Equally important are assumptions about the world or scene geometry, and the visual appearance

of objects. Starting from the fact that the physical world consists of piecewise-smooth surfaces,

algorithms have built-in smoothness assumptions (often implicit) without which the correspondence

problem would be underconstrained and ill-posed. Our taxonomy of stereo algorithms, presented in

Section 3, examines both matching assumptions and smoothness assumptions in order to categorize

existing stereo methods.

Finally, most algorithms make assumptions about camera calibration and epipolar geometry.

This is arguably the best-understood part of stereo vision; we therefore assume in this paper that

we are given a pair of rectified images as input. Recent references on stereo camera calibration

and rectification include (Zhang 1998, Loop and Zhang 1999, Zhang 2000, Hartley and Zisserman

2000, Faugeras and Luong 2001).

2.2 Representation

A critical issue in understanding an algorithm is the representation used internally and output

externally by the algorithm. Most stereo correspondence methods compute a univalued disparity

function d(x, y) with respect to a reference image, which could be one of the input images, or a

“cyclopian” view in between some of the images.

Other approaches, in particular multi-view stereo methods, use multi-valued (Szeliski and Gol-

land 1999), voxel-based (Seitz and Dyer 1999, Kutulakos and Seitz 2000, De Bonet and Viola 1999,

Culbertson et al.1999, Broadhurst et al.2001), or layer-based (Wang and Adelson 1993, Baker et

al. 1998) representations. Still other approaches use full 3D models such as deformable models

(Terzopoulos and Fleischer 1988, Terzopoulos and Metaxas 1991), triangulated meshes (Fua and

Leclerc 1995), or level-set methods (Faugeras and Keriven 1998).

Since our goal is to compare a large number of methods within one common framework, we

have chosen to focus on techniques that produce a univalued disparity mapd(x, y) as their output.
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Central to such methods is the concept of a disparity space(x, y, d). The term disparitywas first

introduced in the human vision literature to describe the difference in location of corresponding

features seen by the left and right eyes (Marr 1982). (Horizontal disparity is the most commonly

studied phenomenon, but vertical disparity is possible if the eyes are verged.)

In computer vision, disparity is often treated as synonymous with inverse depth (Bolles et al.

1987, Okutomi and Kanade 1993). More recently, several researchers have defined disparity as a

three-dimensional projective transformation (collineation or homography) of 3-D space (X, Y, Z).
The enumeration of all possible matches in such a generalized disparity space can be easily achieved

with a plane sweepalgorithm (Collins 1996, Szeliski and Golland 1999), which for every disparity

d projects all images onto a common plane using a perspective projection (homography). (Note

that this is different from the meaning of plane sweep in computational geometry.)

In general, we favor the more generalized interpretation of disparity, since it allows the adaptation

of the search space to the geometry of the input cameras (Szeliski and Golland 1999, Saito and

Kanade 1999); we plan to use it in future extensions of this work to multiple images. (Note that

plane sweeps can also be generalized to other sweep surfaces such as cylinders (Shum and Szeliski

1999).)

In this study, however, since all our images are taken on a linear path with the optical axis

perpendicular to the camera displacement, the classical inverse-depth interpretation will suffice

(Okutomi and Kanade 1993). The (x, y) coordinates of the disparity space are taken to be coincident

with the pixel coordinates of a reference imagechosen from our input data set. The correspondence

between a pixel (x, y) in reference image r and a pixel (x′, y′) in matching image m is then given

by

x′ = x + s d(x, y), y′ = y, (1)

where s = ±1 is a sign chosen so that disparities are always positive. Note that since our images

are numbered from leftmost to rightmost, the pixels move from right to left.

Once the disparity space has been specified, we can introduce the concept of a disparity space

imageor DSI (Yang et al.1993, Bobick and Intille 1999). In general, a DSI is any image or function

defined over a continuous or discretized version of disparity space (x, y, d). In practice, the DSI

usually represents the confidence or log likelihood (i.e., cost) of a particular match implied by

d(x, y).
The goal of a stereo correspondence algorithm is then to produce a univalued function in disparity

space d(x, y) that best describes the shape of the surfaces in the scene. This can be viewed as finding

a surface embedded in the disparity space image that has some optimality property, such as lowest

cost and best (piecewise) smoothness (Yang et al.1993). Figure 1 shows examples of slices through
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Figure 1: Slices through a typical disparity space image (DSI): (a) original color image; (b) ground truth

depth map; (c–e) three(x, y) slices ford = 10, 16, 21; (e) an (x, d) slice fory = 151 (the dashed line in

Figure (b)). Different dark (matching) regions are visible in Figures (c–e), e.g., the bookshelves, table and

cans, and head statue, while three different disparity levels can be seen as horizontal lines in the(x, d) slice

(Figure (f)). Note the dark bands in the various DSIs, which indicate regions that match at this disparity.

(Smaller dark regions are often the result of textureless regions.)

a typical DSI. More figures of this kind can be found in (Bobick and Intille 1999).

3 A taxonomy of stereo algorithms

In order to support an informed comparison of stereo matching algorithms, we develop in this

section a taxonomy and categorization scheme for such algorithms. We present a set of algorithmic

“building blocks” from which a large set of existing algorithms can easily be constructed. Our

taxonomy is based on the observation that stereo algorithms generally perform (subsets of) the

following four steps (Scharstein and Szeliski 1998, Scharstein 1999):

1. matching cost computation;

2. cost (support) aggregation;

3. disparity computation / optimization; and

4. disparity refinement.

The actual sequence of steps taken depends on the specific algorithm.

For example, local (window-based) algorithms, where the disparity computation at a given

point depends only on intensity values within a finite window, usually make implicit smoothness

5



assumptions by aggregating support. Some of these algorithms can cleanly be broken down into

steps 1, 2, 3. For example, the traditional sum-of-squared-differences (SSD) algorithm can be

described as:

1. the matching cost is the squared difference of intensity values at a given disparity;

2. aggregation is done by summing matching cost over square windows with constant disparity;

3. disparities are computed by selecting the minimal (winning) aggregated value at each pixel.

Some local algorithms, however, combine steps 1 and 2 and use a matching cost that is based

on a support region, e.g. normalized cross-correlation (Hannah 1974, Bolles et al. 1993) and the

rank transform (Zabih and Woodfill 1994). (This can also be viewed as a preprocessing step; see

Section 3.1.)

On the other hand, global algorithms make explicit smoothness assumptions and then solve an

optimization problem. Such algorithms typically do not perform an aggregation step, but rather seek

a disparity assignment (step 3) that minimizes a global cost function that combines data (step 1) and

smoothness terms. The main distinction between these algorithms is the minimization procedure

used, e.g., simulated annealing (Marroquin et al. 1987, Barnard 1989), probabilistic (mean-field)

diffusion (Scharstein and Szeliski 1998), or graph cuts (Boykov et al.1999).

In between these two broad classes are certain iterative algorithms that do not explicitly state

a global function that is to be minimized, but whose behavior mimics closely that of iterative

optimization algorithms (Marr and Poggio 1976, Scharstein and Szeliski 1998, Zitnick and Kanade

2000). Hierarchical (coarse-to-fine) algorithms resemble such iterative algorithms, but typically

operate on an image pyramid, where results from coarser levels are used to constrain a more local

search at finer levels (Witkin et al.1987, Quam 1984, Bergen et al.1992).

3.1 Matching cost computation

The most common pixel-based matching costs include squared intensity differences(SD) (Hannah

1974, Anandan 1989, Matthies et al.1989, Simoncelli et al.1991), and absolute intensity differences

(AD) (Kanade 1994). In the video processing community, these matching criteria are referred to as

the mean-squared error(MSE) and mean absolute difference(MAD) measures; the term displaced

frame differenceis also often used (Tekalp 1995).

More recently, robust measures, including truncated quadratics and contaminated Gaussians

have been proposed (Black and Anandan 1993, Black and Rangarajan 1996, Scharstein and Szeliski

1998). These measures are useful because they limit the influence of mismatches during aggregation.
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Other traditional matching costs include normalized cross-correlation (Hannah 1974, Ryan et al.

1980, Bolles et al.1993), which behaves similar to sum-of-squared-differences (SSD), and binary

matching costs (i.e., match / no match) (Marr and Poggio 1976), based on binary features such as

edges (Baker 1980, Grimson 1985, Canny 1986) or the sign of the Laplacian (Nishihara 1984).

Binary matching costs are not commonly used in dense stereo methods, however.

Some costs are insensitive to differences in camera gain or bias, for example gradient-based

measures (Seitz 1989, Scharstein 1994), and non-parametric measures, such as rank and census

transforms (Zabih and Woodfill 1994). Of course, it is also possible to correct for different camera

characteristics by performing a preprocessing step for bias-gain or histogram equalization (Gennert

1988, Cox et al.1995). Other matching criteria include phase and filter-bank responses (Marr and

Poggio 1979, Kass 1988, Jenkin et al.1991, Jones and Malik 1992). Finally, Birchfield and Tomasi

have proposed a matching cost that is insensitive to image sampling (Birchfield and Tomasi 1998b).

Rather than just comparing pixel values shifted by integral amounts (which may miss a valid match),

they compare each pixel in the reference image against a linearly interpolated function of the other

image.

The matching cost values over all pixels and all disparities form the initial disparity space image

C0(x, y, d). While our study is currently restricted to two-frame methods, the initial DSI can easily

incorporate information from more than two images by simply summing up the cost values for each

matching image m, since the DSI is associated with a fixed reference image r (Equation (1)). This

is the idea behind multiple-baseline SSSD and SSAD methods (Okutomi and Kanade 1993, Kang

et al. 1995, Nakamura et al. 1996). As mentioned in Section 2.2, this idea can be generalized to

arbitrary camera configurations using a plane sweep algorithm (Collins 1996, Szeliski and Golland

1999).

3.2 Aggregation of cost

Local and window-based methods aggregate the matching cost by summing or averaging over a

support regionin the DSI C(x, y, d). A support region can be either two-dimensional at a fixed

disparity (favoring fronto-parallel surfaces), or three-dimensional in x-y-d space (supporting slanted

surfaces). Two-dimensional evidence aggregation has been implemented using square windows or

Gaussian convolution (traditional), multiple windows anchored at different points, i.e., shiftable

windows (Arnold 1983, Bobick and Intille 1999), windows with adaptive sizes (Okutomi and

Kanade 1992, Kanade and Okutomi 1994, Veksler 2001, Kang et al. 2001), and windows based

on connected components of constant disparity (Boykov et al. 1998). Three-dimensional support
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functions that have been proposed include limited disparity difference (Grimson 1985), limited

disparity gradient (Pollard et al.1985), and Prazdny’s coherence principle (Prazdny 1985).

Aggregation with a fixed support region can be performed using 2D or 3D convolution,

C(x, y, d) = w(x, y, d) ∗ C0(x, y, d), (2)

or, in the case of rectangular windows, using efficient (moving average) box-filters. Shiftable

windows can also be implemented efficiently using a separable sliding min-filter (Section 4.2). A

different method of aggregation is iterative diffusion, i.e., an aggregation (or averaging) operation

that is implemented by repeatedly adding to each pixel’s cost the weighted values of its neighboring

pixels’ costs (Szeliski and Hinton 1985, Shah 1993, Scharstein and Szeliski 1998).

3.3 Disparity computation and optimization

Local methods. In local methods, the emphasis is on the matching cost computation and on the

cost aggregation steps. Computing the final disparities is trivial: simply choose at each pixel the

disparity associated with the minimum cost value. Thus, these methods perform a local “winner-

take-all” (WTA) optimization at each pixel. A limitation of this approach (and many other corre-

spondence algorithms) is that uniqueness of matches is only enforced for one image (the reference

image), while points in the other image might get matched to multiple points.

Global optimization. In contrast, global methods perform almost all of their work during the

disparity computation phase, and often skip the aggregation step. Many global methods are formu-

lated in an energy-minimization framework (Terzopoulos 1986). The objective is to find a disparity

function d that minimizes a global energy,

E(d) = Edata(d) + λEsmooth(d). (3)

The data term, Edata(d), measures how well the disparity function d agrees with the input image

pair. Using the disparity space formulation,

Edata(d) =
∑
(x,y)

C(x, y, d(x, y)), (4)

where C is the (initial or aggregated) matching cost DSI.

The smoothness term Esmooth(d) encodes the smoothness assumptions made by the algorithm.

To make the optimization computationally tractable, the smoothness term is often restricted to only
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measuring the differences between neighboring pixels’ disparities,

Esmooth(d) =
∑
(x,y)

ρ(d(x, y) − d(x+1, y)) +

ρ(d(x, y) − d(x, y+1)), (5)

where ρ is some monotonically increasing function of disparity difference. (An alternative to

smoothness functionals is to use a lower-dimensional representation such as splines (Szeliski and

Coughlan 1997).)

In regularization-based vision (Poggio et al. 1985), ρ is a quadratic function, which makes

d smooth everywhere, and may lead to poor results at object boundaries. Energy functions that

do not have this problem are called discontinuity-preserving, and are based on robust ρ functions

(Terzopoulos 1986, Black and Rangarajan 1996, Scharstein and Szeliski 1998). Geman and Ge-

man’s seminal paper (Geman and Geman 1984) gave a Bayesian interpretation of these kinds of

energy functions (Szeliski 1989) and proposed a discontinuity-preserving energy function based on

Markov Random Fields (MRFs) and additional line processes. Black and Rangarajan (1996) show

how line processes can be often be subsumed by a robust regularization framework.

The terms in Esmoothcan also be made to depend on the intensity differences, e.g.,

ρd(d(x, y) − d(x+1, y)) · ρI(‖I(x, y) − I(x+1, y)‖), (6)

where ρI is some monotonically decreasingfunction of intensity differences that lowers smoothness

costs at high intensity gradients. This idea (Gamble and Poggio 1987, Fua 1993, Bobick and Intille

1999, Boykov et al. 1999) encourages disparity discontinuities to coincide with intensity/color

edges, and appears to account for some of the good performance of global optimization approaches.

Once the global energy has been defined, a variety of algorithms can be used to find a (local) min-

imum. Traditional approaches associated with regularization and Markov Random Fields include

continuation (Blake and Zisserman 1987), simulated annealing (Geman and Geman 1984, Marro-

quin et al. 1987, Barnard 1989), highest confidence first (Chou and Brown 1990), and mean-field

annealing (Geiger and Girosi 1991).

More recently, max-flowand graph-cutmethods have been proposed to solve a special class

of global optimization problems (Roy and Cox 1998, Ishikawa and Geiger 1998, Boykov et al.

1999, Veksler 1999, Kolmogorov and Zabih 2001). Such methods are more efficient than simulated

annealing, and have produced good results.

Dynamic programming. A different class of global optimization algorithms are those based on

dynamic programming. While the 2D-optimization of Equation (3) can be shown to be NP-hard
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Figure 2: Stereo matching using dynamic programming. For each pair of corresponding scanlines, a minimiz-

ing path through the matrix of all pairwise matching costs is selected. Lowercase letters (a–k) symbolize the

intensities along each scanline. Uppercase letters represent the selected path through the matrix. Matches

are indicated byM, while partially occluded points (which have a fixed cost) are indicated byL and R,

corresponding to points only visible in the left and right image, respectively. Usually, only a limited disparity

range is considered, which is 0–4 in the figure (indicated by the non-shaded squares). Note that this diagram

shows an “unskewed”x-d slice through the DSI.

for common classes of smoothness functions (Veksler 1999), dynamic programming can find the

global minimum for independent scanlines in polynomial time. Dynamic programming was first

used for stereo vision in sparse, edge-based methods (Baker and Binford 1981, Ohta and Kanade

1985). More recent approaches have focused on the dense (intensity-based) scanline optimization

problem (Belhumeur and Mumford 1992, Belhumeur 1996, Geiger et al. 1992, Cox et al. 1996,

Bobick and Intille 1999, Birchfield and Tomasi 1998a). These approaches work by computing the

minimum-cost path through the matrix of all pairwise matching costs between two corresponding

scanlines. Partial occlusion is handled explicitly by assigning a group of pixels in one image to a

single pixel in the other image. Figure 2 shows one such example.

Problems with dynamic programming stereo include the selection of the right cost for occluded

pixels and the difficulty of enforcing inter-scanline consistency, although several methods propose

ways of addressing the latter (Ohta and Kanade 1985, Belhumeur 1996, Cox et al. 1996, Bobick

and Intille 1999, Birchfield and Tomasi 1998a). Another problem is that the dynamic programming

approach requires enforcing the monotonicityor ordering constraint(Yuille and Poggio 1984). This

constraint requires that the relative ordering of pixels on a scanline remain the same between the

two views, which may not be the case in scenes containing narrow foreground objects.

10



Cooperative algorithms. Finally, cooperativealgorithms, inspired by computational models of

human stereo vision, were among the earliest methods proposed for disparity computation (Dev

1974, Marr and Poggio 1976, Marroquin 1983, Szeliski and Hinton 1985). Such algorithms iter-

atively perform local computations, but use nonlinear operations that result in an overall behavior

similar to global optimization algorithms. In fact, for some of these algorithms, it is possible to

explicitly state a global function that is being minimized (Scharstein and Szeliski 1998). Recently, a

promising variant of Marr and Poggio’s original cooperative algorithm has been developed (Zitnick

and Kanade 2000).

3.4 Refinement of disparities

Most stereo correspondence algorithms compute a set of disparity estimates in some discretized

space, e.g., for integer disparities (exceptions include continuous optimization techniques such as

optic flow (Bergen et al.1992) or splines (Szeliski and Coughlan 1997)). For applications such as

robot navigation or people tracking, these may be perfectly adequate. However for image-based

rendering, such quantized maps lead to very unappealing view synthesis results (the scene appears

to be made up of many thin shearing layers). To remedy this situation, many algorithms apply

a sub-pixel refinement stage after the initial discrete correspondence stage. (An alternative is to

simply start with more discrete disparity levels.)

Sub-pixel disparity estimates can be computed in a variety of ways, including iterative gradient

descent and fitting a curve to the matching costs at discrete disparity levels (Ryan et al. 1980,

Lucas and Kanade 1981, Tian and Huhns 1986, Matthies et al.1989, Kanade and Okutomi 1994).

This provides an easy way to increase the resolution of a stereo algorithm with little additional

computation. However, to work well, the intensities being matched must vary smoothly, and the

regions over which these estimates are computed must be on the same (correct) surface.

Recently, some questions have been raised about the advisability of fitting correlation curves to

integer-sampled matching costs (Shimizu and Okutomi 2001). This situation may even be worse

when sampling-insensitive dissimilarity measures are used (Birchfield and Tomasi 1998b). We

investigate this issue in Section 6.4 below.

Besides sub-pixel computations, there are of course other ways of post-processing the computed

disparities. Occluded areas can be detected using cross-checking (comparing left-to-right and right-

to-left disparity maps) (Cochran and Medioni 1992, Fua 1993). A median filter can be applied to

“clean up” spurious mismatches, and holes due to occlusion can be filled by surface fitting or

by distributing neighboring disparity estimates (Birchfield and Tomasi 1998a, Scharstein 1999).
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In our implementation we are not performing such clean-up steps since we want to measure the

performance of the raw algorithm components.

3.5 Other methods

Not all dense two-frame stereo correspondence algorithms can be described in terms of our basic

taxonomy and representations. Here we briefly mention some additional algorithms and represen-

tations that are not covered by our framework.

The algorithms described in this paper first enumerate all possible matches at all possible dispar-

ities, then select the best set of matches in some way. This is a useful approach when a large amount

of ambiguity may exist in the computed disparities. An alternative approach is to use methods

inspired by classic (infinitesimal) optic flow computation. Here, images are successively warped

and motion estimates incrementally updated until a satisfactory registration is achieved. These

techniques are most often implemented within a coarse-to-fine hierarchical refinement framework

(Quam 1984, Bergen et al.1992, Barron et al.1994, Szeliski and Coughlan 1997).

A univalued representation of the disparity map is also not essential. Multi-valued represen-

tations, which can represent several depth values along each line of sight, have been extensively

studied recently, especially for large multi-view data set. Many of these techniques use a voxel-based

representation to encode the reconstructed colors and spatial occupancies or opacities (Szeliski and

Golland 1999, Seitz and Dyer 1999, Kutulakos and Seitz 2000, De Bonet and Viola 1999, Culbert-

son et al. 1999, Broadhurst et al. 2001). Another way to represent a scene with more complexity

is to use multiple layers, each of which can be represented by a plane plus residual parallax (Baker

et al.1998, Birchfield and Tomasi 1999, Tao et al.2001). Finally, deformable surfaces of various

kinds have also been used to perform 3D shape reconstruction from multiple images (Terzopoulos

and Fleischer 1988, Terzopoulos and Metaxas 1991, Fua and Leclerc 1995, Faugeras and Keriven

1998).

3.6 Summary of methods

Table 1 gives a summary of some representative stereo matching algorithms and their corresponding

taxonomy, i.e., the matching cost, aggregation, and optimization techniques used by each. The

methods are grouped to contrast different matching costs (top), aggregation methods (middle),

and optimization techniques (third section), while the last section lists some papers outside the

framework. As can be seen from this table, quite a large subset of the possible algorithm design

space has been explored over the years, albeit not very systematically.
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Method Matching cost Aggregation Optimization

SSD (traditional) squared difference square window WTA
Hannah (1974) cross-correlation (square window) WTA
Nishihara (1984) binarized filters square window WTA
Kass (1988) filter banks -none- WTA
Fleet et al. (1991) phase -none- phase-matching
Jones and Malik (1992) filter banks -none- WTA
Kanade (1994) absolute difference square window WTA
Scharstein (1994) gradient-based Gaussian WTA
Zabih and Woodfill (1994) rank transform (square window) WTA
Cox et al. (1995) histogram eq. -none- DP
Frohlinghaus and Buhmann (1996) wavelet phase -none- phase-matching
Birchfield and Tomasi (1998b) shifted abs. diff -none- DP
Marr and Poggio (1976) binary images iterative aggregation WTA
Prazdny (1985) binary images 3D aggregation WTA
Szeliski and Hinton (1985) binary images iterative 3D aggregation WTA
Okutomi and Kanade (1992) squared difference adaptive window WTA
Yang et al. (1993) cross-correlation non-linear filtering hier. WTA
Shah (1993) squared difference non-linear diffusion regularization
Boykov et al. (1998) thresh. abs. diff. connected-component WTA
Scharstein and Szeliski (1998) robust sq. diff. iterative 3D aggregation mean-field
Zitnick and Kanade (2000) squared difference iterative aggregation WTA
Veksler (2001) abs. diff - avg. adaptive window WTA
Quam (1984) cross-correlation -none- hier. warp
Barnard (1989) squared difference -none- SA
Geiger et al. (1992) squared difference shiftable window DP
Belhumeur (1996) squared difference -none- DP
Cox et al. (1996) squared difference -none- DP
Ishikawa and Geiger (1998) squared difference -none- graph cut
Roy and Cox (1998) squared difference -none- graph cut
Bobick and Intille (1999) absolute difference shiftable window DP
Boykov et al. (1999) squared difference -none- graph cut
Kolmogorov and Zabih (2001) squared difference -none- graph cut
Birchfield and Tomasi (1999) shifted abs. diff. -none- GC + planes
Tao et al. (2001) squared difference (color segmentation) WTA + regions

Table 1: Summary taxonomy of several dense two-frame stereo correspondence methods. The methods
are grouped to contrast different matching costs (top), aggregation methods (middle), and optimization
techniques (third section). The last section lists some papers outside our framework. Key to abbreviations:
hier. – hierarchical (coarse-to-fine), WTA – winner-take-all, DP – dynamic programming, SA – simulated
annealing, GC – graph cut.
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4 Implementation

We have developed a stand-alone, portable C++ implementation of several stereo algorithms. The

implementation is closely tied to the taxonomy presented in Section 3, and currently includes

window-based algorithms, diffusion algorithms, as well as global optimization methods using dy-

namic programming, simulated annealing, and graph cuts. While many published methods include

special features and post-processing steps to improve the results, we have chosen to implement the

basic versions of such algorithms, in order to assess their respective merits most directly.

The implementation is modular, and can easily be extended to include other algorithms or their

components. We plan to add several other algorithms in the near future, and we hope that other

authors will contribute their methods to our framework as well. Once a new algorithm has been

integrated, it can easily be compared with other algorithms using our evaluation module, which

can measure disparity error and reprojection error (Section 5.1). The implementation contains a

sophisticated mechanism for specifying parameter values that supports recursive script files for

exhaustive performance comparisons on multiple data sets.

We provide a high-level description of our code using the same division into four parts as in

our taxonomy. Within our code, these four sections are (optionally) executed in sequence, and the

performance/quality evaluator is then invoked. A list of the most important algorithm parameters

is given in Table 2.

4.1 Matching cost computation

The simplest possible matching cost is the squared or absolute difference in color / intensity between

corresponding pixels (match fn). To approximate the effect of a robust matching score (Black and

Rangarajan 1996, Scharstein and Szeliski 1998), we truncate the matching score to a maximal value

match max. When color images are being compared, we sum the squared or absolute intensity

difference in each channel before applying the clipping. If fractional disparity evaluation is being

performed (disp step < 1), each scanline is first interpolated up using either a linear or cubic in-

terpolation filter (match interp) (Matthies et al.1989). We also optionally apply Birchfield and

Tomasi’s sampling insensitive interval-based matching criterion (match interval) (Birchfield

and Tomasi 1998b), i.e., we take the minimum of the pixel matching score and the score at ±1
2 -step

displacements, or 0 if there is a sign change in either interval. We apply this criterion separately to

each color channel, which is not physically plausible (the sub-pixel shift must be consistent across

channels), but is easier to implement.
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Name Typical values Description

disp min 0 smallest disparity

disp max 15 largest disparity

disp step 0.5 disparity step size

match fn SD, AD matching function

match interp Linear, Cubic interpolation function

match max 20 maximum difference for truncated SAD/SSD

match interval false 1/2 disparity match (Birchfield and Tomasi 1998b)

aggr fn Box, Binomial aggregation function

aggr window size 9 size of window

aggr minfilter 9 spatial min-filter (shiftable window)

aggr iter 1 number of aggregation iterations

diff lambda 0.15 parameter λ for regular and membrane diffusion

diff beta 0.5 parameter β for membrane diffusion

diff scale cost 0.01 scale of cost values (needed for Bayesian diffusion)

diff mu 0.5 parameter µ for Bayesian diffusion

diff sigmaP 0.4 parameter σP for robust prior of Bayesian diffusion

diff epsP 0.01 parameter εP for robust prior of Bayesian diffusion

opt fn WTA, DP, SA, GC optimization function

opt smoothness 1.0 weight of smoothness term (λ)

opt grad thresh 8.0 threshold for magnitude of intensity gradient

opt grad penalty 2.0 smoothness penalty factor if gradient is too small

opt occlusion cost 20 cost for occluded pixels in DP algorithm

opt sa var Gibbs, Metropolis simulated annealing update rule

opt sa start T 10.0 starting temperature

opt sa end T 0.01 ending temperature

opt sa schedule Linear annealing schedule

refine subpix true fit sub-pixel value to local correlation

eval bad thresh 1.0 acceptable disparity error

eval textureless width 3 box filter width applied to ‖∇xI‖2

eval textureless threshold 4.0 threshold applied to filtered ‖∇xI‖2

eval disp gap 2.0 disparity jump threshold

eval discont width 9 width of discontinuity region

eval partial shuffle 0.2 analysis interval for prediction error

Table 2: The most important stereo algorithm parameters of our implementation.
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Figure 3: Shiftable window. The effect of trying all3 × 3 shifted windows around the black pixel is the same

as taking the minimum matching score across allcentered (non-shifted) windows in the same neighborhood.

(Only 3 of the neighboring shifted windows are shown here for clarity.)

4.2 Aggregation

The aggregation section of our test bed implements some commonly used aggregation methods

(aggr fn):

• Box filter: use a separable moving average filter (add one right/bottom value, subtract one

left/top). This implementation trick makes such window-based aggregation insensitive to

window size in terms of computation time, and accounts for the fast performance seen in

real-time matchers (Kanade et al.1996, Kimura et al.1999).

• Binomial filter: use a separable FIR (finite impulse response) filter. We use the coefficients
1/16{1, 4, 6, 4, 1}, the same ones used in Burt and Adelson’s (1983) Laplacian pyramid.

Other convolution kernels could also be added later, as could recursive (bi-directional) IIR filtering,

which is a very efficient way to obtain large window sizes (Deriche 1990). The width of the box or

convolution kernel is controlled by aggr window size.

To simulate the effect of shiftable windows (Arnold 1983, Bobick and Intille 1999, Tao et al.

2001), we can follow this aggregation step with a separable square min-filter. The width of this

filter is controlled by the parameter aggr minfilter. The cascaded effect of a box-filter and an

equal-sized min-filter is the same as evaluating a complete set of shifted windows, since the value

of a shifted window is the same as that of a centered window at some neighboring pixel (Figure 3).

This step adds very little additional computation, since a moving 1-D min-filter can be computed

efficiently by only recomputing the min when a minimum value leaves the window. The value of

aggr minfilter can be less than that of aggr window size, which simulates the effect of

a partially shifted window. (The converse doesn’t make much sense, since the window then no

longer includes the reference pixel.)
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We have also implemented all of the diffusion methods developed in (Scharstein and Szeliski

1998) except for local stopping, i.e., regular diffusion, the membrane model, and Bayesian (mean-

field) diffusion. While this last algorithm can also be considered an optimization method, we

include it in the aggregation module since it resembles other iterative aggregation algorithms closely.

The maximum number of aggregation iterations is controlled by aggr iter. Other parameters

controlling the diffusion algorithms are listed in Table 2.

4.3 Optimization

Once we have computed the (optionally aggregated) costs, we need to determine which discrete set

of disparities best represents the scene surface. The algorithm used to determine this is controlled

by opt fn, and can be one of:

• winner-take-all (WTA);

• dynamic programming (DP);

• scanline optimization (SO);

• simulated annealing (SA);

• graph cut (GC).

The winner-take-all method simply picks the lowest (aggregated) matching cost as the selected

disparity at each pixel. The other methods require (in addition to the matching cost) the definition

of a smoothness cost. Prior to invoking one of the optimization algorithms, we set up tables

containing the values of ρd in Equation (6) and precompute the spatially varying weights ρI(x, y).
These tables are controlled by the parameters opt smoothness, which controls the overall scale

of the smoothness term (i.e., λ in Equation (3)), and the parameters opt grad thresh and

opt grad penalty, which control the gradient-dependent smoothness costs. We currently use

the smoothness terms defined by Veksler (1999):

ρI(∆I) =



opt grad penalty if ∆I < opt grad thresh

1 if ∆I ≥ opt grad thresh
(7)

Thus, the smoothness cost is multiplied by opt grad penalty for low intensity gradient to

encourage disparity jumps to coincide with intensity edges. All of the optimization algorithms

minimize the same objective function, enabling a more meaningful comparison of their performance.
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Our first global optimization technique, DP, is a dynamic programming method similar to the

one proposed by Bobick and Intille (1999). The algorithm works by computing the minimum-cost

path through each x-d slice in the DSI (see Figure 2). Every point in this slice can be in one of three

states: M (match), L (left-visible only), or R (right-visible only). Assuming the ordering constraint

is being enforced, a valid path can take at most three directions at a point, each associated with a

deterministic state change. Using dynamic programming, the minimum cost of all paths to a point

can be accumulated efficiently. Points in state M are simply charged the matching cost at this point

in the DSI. Points in states L and R are charged a fixed occlusion cost(opt occlusion cost).

The DP stereo algorithm is fairly sensitive to this parameter (see Section 6). Bobick and Intille

address this problem by precomputing ground control points(GCPs) that are then used to constrain

the paths through the DSI slice. GCPs are high-confidence matches that are computed using SAD

and shiftable windows. At this point we are not using GCPs in our implementation since we are

interested in comparing the basic version of different algorithms. However, GCPs are potentially

useful in other algorithms as well, and we plan to add them to our implementation in the future.

Our second global optimization technique, scanline optimization(SO), is a simple (and, to

our knowledge, novel) approach designed to assess different smoothness terms. Like the previous

method, it operates on individual x-d DSI slices and optimizes one scanline at a time. However,

the method is asymmetric and does not utilize visibility or ordering constraints. Instead, a d value

is assigned at each point x such that the overall cost along the scanline is minimized. (Note that

without a smoothness term, this would be equivalent to a winner-take-all optimization.) The global

minimum can again be computed using dynamic programming; however, unlike in traditional

(symmetric) DP algorithms, the ordering constraint does not need to be enforced, and no occlusion

cost parameter is necessary. Thus, the SO algorithm solves the same optimization problem as the

graph-cut algorithm described below, except that vertical smoothness terms are ignored.

Both DP and SO algorithms suffer from the well-known difficulty of enforcing inter-scanline

consistency, resulting in horizontal “streaks” in the computed disparity map. Bobick and Intille’s

approach to this problem is to detect edges in the DSI slice, and to lower the occlusion cost for

paths along those edges. This has the effect of aligning depth discontinuities with intensity edges.

In our implementation, we achieve the same goal by using an intensity-dependent smoothness cost

(Equation (6)), which, in our DP algorithm, is charged at all L-M and R-M state transitions.

Our implementation of simulated annealing supports both the Metropolis variant (where down-

hill steps are always taken, and uphill steps are sometimes taken), and the Gibbs Sampler, which

chooses among several possible states according to the full marginal distribution (Geman and Ge-

man 1984). In the latter case, we can either select one new state (disparity) to flip to at random, or
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evaluate all possible disparities at a given pixel. Our current annealing schedule is linear, although

we plan to add a logarithmic annealing schedule in the future.

Our final global optimization method, GC, implements the α-β swap move algorithm described

in (Boykov et al.1999, Veksler 1999). (We plan to implement the α-expansion in the future.) We

randomize the α-β pairings at each (inner) iteration, and stop the algorithm when no further (local)

energy improvements are possible.

4.4 Refinement

The sub-pixel refinement of disparities is controlled by the boolean variable refine subpix.

When this is enabled, the three aggregated matching cost values around the winning disparity are

examined to compute the sub-pixel disparity estimate. (Note that if the initial DSI was formed with

fractional disparity steps, these are really sub-sub-pixel values. A more appropriate name might be

floating point disparityvalues.) A parabola is fit to these three values (the three ending values are

used if the winning disparity is either disp min or disp max). If the curvature is positive and

the minimum of the parabola is within a half-step of the winning disparity (and within the search

limits), this value is used as the final disparity estimate.

In future work, we would like to investigate whether initial or aggregated matching scores

should be used, or whether some other approach, such as Lucas-Kanade, might yield higher-quality

estimates (Tian and Huhns 1986).

5 Evaluation methodology

In this section, we describe the quality metrics we use for evaluating the performance of stereo

correspondence algorithms, and the techniques we used for acquiring our image data sets and

ground truth estimates.

5.1 Quality metrics

To evaluate the performance of a stereo algorithm or the effects of varying some of its parameters,

we need a quantitative way to estimate the quality of the computed correspondences. Two general

approaches to this are to compute error statistics with respect to some ground truth data (Barron et

al. 1994) and to evaluate the synthetic images obtained by warping the reference or unseen images

by the computed disparity map (Szeliski 1999).
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(a) (b) (c) (d)

Figure 4: Segmented region maps: (a) original image, (b) true depth map, (c) textureless regions, (d) occluded

regions (black), and depth discontinuities (gray).

In the current version of our software, we compute the following two quality measures based

on known ground truth data:

1. RMS (root-mean-squared) error (measured in disparity units) between the computed depth

map dC(x, y) and the ground truth map dT (x, y), i.e.,

R =


 1

N

∑
(x,y)

|dC(x, y) − dT (x, y)|2



1
2

, (8)

where N is the total number of pixels.

2. Percentage of bad matching pixels,

B =
1
N

∑
(x,y)

(|dC(x, y) − dT (x, y)| > δd), (9)

where δd (eval bad thresh) is a disparity error tolerance. In our current set of experi-

ments, we use δd = 1.0, since this coincides with some previously published studies (Szeliski

and Zabih 1999, Zitnick and Kanade 2000, Kolmogorov and Zabih 2001).

In addition to computing these statistics over the whole image, we also focus on three different

kinds of regions. These regions are computed by pre-processing the reference image and ground

truth disparity map to yield the following three binary segmentations (Figure 4):

• textureless regions T : regions where the squared horizontal intensity gradient averaged over

a square window of a given size (eval textureless width) is below a given threshold

(eval textureless threshold);

• occluded regions O: regions that are occluded in the matching image, i.e., where the forward-

mapped disparity lands at a location with a larger (nearer) disparity; and

20



Name Symbol Description

rms error all R RMS disparity error

rms error nonocc RO " (no occlusions)

rms error occ RO " (at occlusions)

rms error textured RT " (textured)

rms error textureless RT " (textureless)

rms error discont RD " (near discontinuities)

bad pixels all B bad pixel percentage

bad pixels nonocc BO " (no occlusions)

bad pixels occ BO " (at occlusions)

bad pixels textured BT " (textured)

bad pixels textureless BT " (textureless)

bad pixels discont BD " (near discontinuities)

predict err near P− view extr. error (near)

predict err middle P 1/2
view extr. error (mid)

predict err match P1 view extr. error (match)

predict err far P+ view extr. error (far)

Table 3: Error (quality) statistics computed by our evaluator. See the notes in the text regarding the treatment

of occluded regions.

• depth discontinuity regions D: pixels whose neighboring disparities differ by more than

eval disp gap, dilated by a window of width eval discont width.

These regions were selected to support the analysis of matching results in typical problem areas.

The statistics described above are computed for each of the three regions and their complements,

e.g.,

BT =
1

NT

∑
(x,y)∈T

(|dc(x, y) − dt(x, y)| < δd),

and so on for RT , BT , . . . , RD.

Table 3 gives a complete list of the statistics we collect. Note that for the textureless, textured,

and depth discontinuity statistics, we exclude pixels that are in occluded regions, on the assumption

that algorithms generally do not produce meaningful results in such occluded regions.

The second major approach to gauging the quality of reconstruction algorithms is to use the

color images and disparity maps to predict the appearance of other views (Szeliski 1999). Here

again there are two major flavors possible:
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Figure 5: Series of forward-warped reference images. The reference image is the middle one, the matching

image is the second from the right. Pixels that are invisible (gaps) are shown in light magenta.

Figure 6: Series of inverse-warped original images. The reference image is the middle one, the matching

image is the second from the right. Pixels that are invisible are shown in light magenta. Viewing this sequence

(available on our Web site) as an animation loop is a good way to check for correct rectification and other

misalignments.

1. Forward warp the reference image by the computed disparity map to a new unseen view (or

to the matching view), and compare it against this new image (Figure 5) to obtain a forward

prediction error.

2. Inverse warp a new view by the computed disparity map to generate a stabilizedimage, and

compare it against the reference image (Figure 6) to obtain an inverse prediction error.

There are pros and cons to either approach.

The forward warping algorithm has to deal with tearing problems: if a single-pixel splat is used,

gaps can arise even between adjacent pixels with similar disparities. One possible solution would

be to use a two-pass renderer (Shade et al.1998). Instead, we render each pair of neighboring pixel

as an interpolated color line in the destination image (i.e., we use Gouraud shading). If neighboring

pixels differ by more that a disparity of eval disp gap, the segment is replaced by single pixel

spats at both ends, which results in a visible tear (light magenta regions in Figure 5).

For inverse warping, the problem of gaps does not occur. Instead, we get “ghosted” regions

when pixels in the reference image are not actually visible in the source We eliminate such pixels

by checking for visibility (occlusions) first, and then drawing these pixels in a special color (light

magenta in Figure 6). We have found that looking at the inverse warped sequence, based on
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the ground-truth disparities, is a very good way to determine if the original sequence is properly

calibrated and rectified.

In computing the prediction error, we need to decide how to treat gaps. Currently, we ignore

pixels flagged as gaps in computing the statistics, and report the percentage of such missing pixels.

We can also optionally compensate for small misregistrations (Szeliski 1999). To do this, we convert

each pixel in the original and predicted image to an interval, by blending the pixel’s value with some

fraction eval partial shuffle of its neighboring pixels min and max values. This idea is

a generalization of the sampling-insensitive dissimilarity measure (Birchfield and Tomasi 1998b)

and the shuffle transformation of (Kutulakos 2000). The reported difference is then the (signed)

distance between the two computed intervals. (A more systematic investigation of these issues

should be performed in the future.)

5.2 Test data

To quantitatively evaluate our correspondence algorithms, we require data sets that either have a

ground truth disparity map, or a set of additional views that can be used for prediction error test (or

preferably both).

We have begun to collect such a database of images, building upon the methodology introduced

in (Szeliski and Zabih 1999). Each image sequence consists of 9 images, taken at regular intervals

with a camera mounted on a horizontal translation stage, with the camera pointing perpendicularly

to the direction of motion. We use a digital high-resolution camera (Canon G1) set in manual

exposure and focus mode, and rectify the images using tracked feature points. We then downsample

the original 2048 × 1536 images to 512 × 384 using a high-quality 8-tap filter, and finally crop the

images to normalize the motion of background objects to a few pixels per frame.

All of the sequences we have captured are made up of piecewise planar objects (typically posters

or paintings, some with cut-out edges). Before downsampling the images, we hand-label each image

into its piecewise planar components (Figure 7). We then use a direct alignment technique on each

planar region (Baker et al. 1998) to estimate the affine motion of each patch. The horizontal

component of these motions is then used to compute the ground truth disparity. In future work we

plan to extend our acquisition methodology to handle scenes with quadric surfaces (e.g., cylinders,

cones, and spheres).

Of the six image sequences we acquired, all of which are available on our web page, we have

selected two (“Sawtooth” and “Venus”) for the experimental study in this paper. We also use the

University of Tsukuba “head and lamp” data set (Nakamura et al. 1996), a 5 × 5 array of images
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Sawtooth

Venus

Tsukuba Map

Figure 7: Stereo images with ground truth used in this study. The Sawtooth and Venus images are two of our

new 9-frame stereo sequences of planar objects. The figure shows the reference image, the planar region

labeling, and the ground-truth disparities. We also use the familiar Tsukuba “head and lamp” data set, and

the monochromatic Map image pair.

24



together with hand-labeled integer ground-truth disparities for the center image. Finally, we use

the monochromatic “Map” data set first introduced by Szeliski and Zabih (1999), which was taken

with a Point Grey Research trinocular stereo camera, and whose ground-truth disparity map was

computed using the piecewise planar technique described above. Figure 7 shows the reference

image and the ground-truth disparities for each of these four sequences.

In the future, we hope to add further data sets to our collection of “standard” test images, in

particular other sequences from the University of Tsukuba, and the GRASP Laboratory’s “Buffalo

Bill” data set with registered laser range finder ground (Mulligan et al. 2001). There may also

be suitable images among the CMU Computer Vision Home Page data sets. Unfortunately, we

cannot use data sets for which only a sparse set of feature matches has been computed (Bolles et al.

1993, Hsieh et al.1992). Synthetic images have been used extensively for qualitative evaluations

of stereo methods, but they are often restricted to simple geometries and textures (e.g., random-dot

stereograms). Furthermore, issues arrising with real cameras are seldomly modeled, e.g., aliasing,

slight misalignment, noise, lens aberrations, and fluctuations in gain and bias. Consequently,

results on synthetic images usually do not extrapolate to images taken with real cameras. We

have experimented with the University of Bonn’s synthetic “Corridor” data set (Frohlinghaus and

Buhmann 1996), but have found that the clean, noise-free images are unrealistically easy to solve,

while the noise-contaminated versions are too difficult due to the complete lack of texture in much

of the scene. There is a clear need for synthetic, photo-realistic test imagery that properly models

real-world imperfections, while providing accurate ground truth.

6 Experiments and results

Our experiments are designed to evaluate the individual building blocks of stereo algorithms. In

this section, we report a subset of our results. We start by examining the four main algorithm com-

ponents identified in Section 3 (matching cost, aggregation, optimization, and sub-pixel fitting),

and then perform an overall comparison of different algorithms. We use the Map, Tsukuba, Saw-

tooth, and Venus data sets throughout this section, and report results on subsets of these images.

The complete set of results (all experiments run on all data sets) is available on our web site at

www.middlebury.edu/stereo.

Using the evaluation measures presented in Section 5.1, we focus on common problem areas for

stereo algorithms. Of the 12 ground-truth statistics we collect (Table 3), we have chosen three as

the most important subset. First, as a measure of overall performance, we use BO, the percentage

of bad pixels in non-occluded areas. We exclude the occluded regions since none of the algorithms
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in this study explicitly model occlusions (with the exception of DP), and all perform quite poorly

in these regions. The other two important measures are BT and BD, the percentage of bad pixels

in textureless areas, and in areas near depth discontinuities. These measures provide important

information about the performance of algorithms in two critical problem areas. The parameter

names for these three measures are bad pixels nonocc, bad pixels textureless, and

bad pixels discont, and they appear in most of the plots below. We prefer the percentage of

bad pixels over RMS disparity errors since they give a good indication of the overall performance

of an algorithm. For example, an algorithm is performing reasonably well if BO < 10%. The RMS

error figure, on the other hand, is contaminated by the (potentially large) disparity errors in those

poorly matched 10% of the image. RMS errors become important once the percentage of bad pixels

drops to a few percent and the quality of a sub-pixel fit needs to be evaluated (see Section 6.4).

Note that the algorithms always take exactly two images as input, even when more are available.

For example, with our 9-frame sequences, we use the third and seventh frame as input pair. (The

other frames are used to measure the prediction error.)

6.1 Matching cost

We start by comparing different matching costs, including absolute differences (AD), squared

differences (SD), truncated versions of both, and Birchfield and Tomasi’s (1998b) measure (BT).

An interesting issue when trying to assess a single algorithm component is how to fix the

parameters that control the other components. We usually choose good values based on experiments

that assess the other algorithm components. (The inherent boot-strapping problem disappears after

a few rounds of experiments.) Since the best settings for many parameters vary depending on the

input image pair, we often have to compromise and select a value that works reasonably well for

several images.

Experiment 1: In this experiment we compare the matching costs AD, SD, AD+BT, and SD+BT

using a local algorithm. We aggregate with a 9×9 window, followed by winner-take-all optimization

(i.e., we use the standard SAD and SSD algorithms). We do not compute sub-pixel estimates.

Truncation values used are 1, 2, 5, 10, 20, 50, and ∞ (no truncation); these values are squared when

truncating SD.

Results: Figure 8 shows plots of the three evaluation measures BO, BT , and BD for each of the four

matching costs as a function of truncation values, for the Sawtooth, Tsukuba, and Venus images.

Overall, there is little difference between AD and SD. Truncation matters mostly for points near
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Figure 8: Experiment 1. Performance of different matching costs aggregated with a9 × 9 window as a

function of truncation valuesmatch max for three different image pairs. Intermediate truncation values

(5–20) yield the best results. Birchield-Tomasi (BT) helps when truncation values are low.
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discontinuities. The reason is that for windows containing mixed populations (both foreground

and background points), truncating the matching cost limits the influence of wrong matches. Good

truncation values range from 5 to 50, typically around 20. Once the truncation values drop below

the noise level (e.g., 2 and 1), the errors become very large. Using Birchfield/Tomasi (BT) helps for

these small truncation values, but yields little improvement for good truncation values. The results

are consistent across all data sets; however, the best truncation value varies. We have also tried a

window size of 21, with similar results.

Conclusion: Truncation can help for AD and SD, but the best truncation value depends on the

images’ signal-to-noise-ratio (SNR), since truncation should happen right above the noise level

present (see also the discussion in (Scharstein and Szeliski 1998)).

Experiment 2: This experiment is identical to the previous one, except that we also use a 9 × 9
min-filter (in effect, we aggregate with shiftable windows).

Results: Figure 9 shows the plots for this experiment, again for Sawtooth, Tsukuba, and Venus

images. As before, there are negligible differences between AD and SD. Now, however, the non-

truncated versions perform consistently the best. In particular, for points near discontinuities we get

the lowest errors overall, but also the total errors are comparable to the best settings of truncation

in Experiment 1. BT helps bring down larger errors, but as before, does not significantly decrease

the best (non-truncated) errors. We again also tried a window size of 21 with similar results.

Conclusion: The problem of selecting the best truncation value can be avoided by instead using a

shiftable window (min-filter). This is an interesting result, as both robust matching costs (trunctated

functions) and shiftable windows have been proposed to deal with outliers in windows that straddle

object boundaries. The above experiments suggest that avoidingoutliers by shifting the window is

preferable to limiting their influence using truncated cost functions.

Experiment 3: We now assess how matching costs affect global algorithms, using dynamic pro-

gramming (DP), scanline optimization (SO), and graph cuts (GC) as optimization techniques. A

problem with global techniques that minimize a weighted sum of data and smoothness terms (Equa-

tion (3)) is that the range of matching cost values affects the optimal value for λ, i.e., the relative

weight of the smoothness term. For example, squared differences require much higher values for λ

than absolute differences. Similarly, truncated difference functions result in lower matching costs

and require lower values for λ. Thus, in trying to isolate the effect of the matching costs, we are

faced with the problem of how to choose λ. The cleanest solution to this dilemma would perhaps be

to find a (different) optimal λ independently for each matching cost under consideration, and then
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Figure 9: Experiment 2. Performance of different matching costs aggregated with a9 × 9 shiftable window

(min-filter) as a function of truncation valuesmatch max for three different image pairs. Large truncation

values (no truncation) work best when using shiftable windows.
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Figure 10: Experiment 3. Performance of different matching costs for global algorithms as a function of

truncation valuesmatch max for three different image pairs. Intermediate truncation values (∼ 20) can

sometimes improve the performance.
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to report which matching cost gives the overall best results. The optimal λ, however, would not

only differ across matching costs, but also across different images. Since in a practical matcher we

need to choose a constant λ, we have done the same in this experiment. We use λ = 20 (guided by

the results discussed in Section 6.3 below), and restrict the matching costs to absolute differences

(AD), truncated by varying amounts. For the DP algorithm we use a fixed occlusion cost of 20.

Results: Figure 10 shows plots of the bad pixel percentages BO, BT , and BD as a function of

truncation values for Sawtooth, Tsukuba, and Venus images. Each plot has six curves, correspond-

ing to DP, DP+BT, SO, SO+BT, GC, GC+BT. It can be seen that the truncation value affects the

performance. As with the local algorithms, if the truncation value is too small (in the noise range),

the errors get very large. Intermediate truncation values of 50–5, depending on algorithm and image

pair, however, can sometimes improve the performance. The effect of Birchfield/Tomasi is mixed;

as with the local algorithms in Experiments 1 and 2, it limits the errors if the truncation values are

too small. It can be seen that BT is most beneficial for the SO algorithm, however, this is due to the

fact that SO really requires a higher value of λ to work well (see Experiment 5), in which case the

positive effect of BT is less pronounced.

Conclusion: Using robust (truncated) matching costs can slighlty improve the performance of

global algorithms. The best truncation value, however, varies with each image pair. Setting this

parameter automatically based on an estimate of the image SNR may be possible and is a topic

for further research. Birchfield and Tomasi’s matching measure can improve results slightly. In-

tuitively, truncation should not be necessary for global algorithms that operate on unaggregated

matching costs, since the problem of outliers in a window does not exist. An important problem for

global algorithms, however, is to find the correct balance between data and smoothness terms (see

Experiment 5 below). Truncation can be useful in this context since it limits the range of possible

cost values.

6.2 Aggregation

We now turn to comparing different aggregation methods used by local methods. While global

methods typically operate on raw (unaggregated) costs, aggregation can be useful for those methods

as well, for example to provide starting values for iterative algorithms, or a set of high-confidence

matches or ground control points(GCPs) (Bobick and Intille 1999) used to restrict the search of

dynamic-programming methods.

In this section we examine aggregation with square windows, shiftable windows (min-filter),

binomial filters, regular diffusion, and membrane diffusion (Scharstein and Szeliski 1998). We delay
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discussing Bayesian diffusion, which combines aggregation and optimization, until Section 6.5.

Experiment 4: In this experiment we use (non-truncated) absolute differences as matching cost,

and perform a winner-take-all optimization after the aggregation step (no sub-pixel estimation). We

compare the following aggregation methods:

1. square windows with window sizes 3, 5, 7, . . . , 29;

2. shiftable square windows (min-filter) with window sizes 3, 5, 7, . . . 29;

3. iterated binomial (1-4-6-4-1) filter, for 2, 4, 6, ..., 28 iterations;

4. regular diffusion (Scharstein and Szeliski 1998) for 10, 20, 30, . . . , 150 iterations;

5. membrane diffusion (Scharstein and Szeliski 1998) for 150 iterations and β = 0.9, 0.8. 0.7,

. . . , 0.0.

Note that for each method we are varying the parameter that controls the spatial extent of the

aggregation (i.e., the equivalent of window size). In particular, for the binomial filter and regular

diffusion, this amounts to changing the number of iterations. The membrane model, however,

converges after sufficiently many iterations, and the spatial extent of the aggregation is controlled

by the parameter β, the weight of the original cost values in the diffusion equation (Scharstein and

Szeliski 1998).

Results: Figure 11 shows plots of BO, BT , and BD as a function of spatial extent of aggregation

for Sawtooth, Tsukuba, and Venus images. Each plot has five curves, corresponding to the five

aggregation methods listed above. The most striking feature of these curves is the opposite trends

of errors in textureless areas (BT ) and at points near discontinuities (BD). Not surprisingly, more

aggregation (larger window sizes or higher number of iterations) clearly helps to recover textureless

areas (note especially the Venus images, which contain large untextured regions). At the same time,

too much aggregation causes errors near object boundaries (depth discontinuities). The overall

error in non-occluded regions, BO, exhibits a mixture of both trends. Depending on the image, the

best performance is usually achieved at an intermediate amount of aggregation. Among the five

aggregation methods, shiftable windows clearly perform best, most notably in discontinuity regions,

but also overall. The other four methods (square windows, binomial filter, regular diffusion, and

membrane model) perform very similarly, except for differences in the shape of the curves, which

are due to our (somewhat arbitrary) definition of spatial extent for each method. Note however that

even for shiftable windows, the optimal window size for recovering discontinuities is small, while
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Figure 11: Experiment 4. Performance of different aggregation methods as a function of spatial extent

(window size, number of iterations, and diffusionβ). Larger window extents do worse dear discontinuities,

but better in textureless areas, which tend to dominate the overall statistics. Near discontinuities, shiftable

windows have the best performance.
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much larger windows are necessary in untextured regions.

Discussion: This experiment exposes some of the fundamental limitations of local methods. While

large windows are needed to avoid wrong matches in regions with little texture, window-based

stereo methods perform poorly near object boundaries (i.e., depth discontinuities). The reason is

that such methods implicitly assume that all points within a window have similar disparities. If a

window straddles a depth boundary, some points in the window match at the foreground disparity,

while others match at the background disparity. The (aggregated) cost function at a point near a

depth discontinuity is thus bimodal in the d direction, and stronger of the two modes will be selected

as the winning disparity. Which one of the two modes will win? This depends on the amount of

(horizontal) texture present in the two regions.

Consider first a purely horizontal depth discontinuity (top edge of the foreground square in Fig-

ure 12). Whichever of the two regions has more horizontal texture will create a stronger mode, and

the computed disparities will thus “bleed” into the less-textured region. For non-horizontal depth

boundaries, however, the most prominent horizontal texture is usually the object boundary itself,

since different objects typically have different colors and intensities. Since the object boundary

is at the foreground disparity, a strong preference for the foreground disparity at points near the

boundary is created, even if the background is textured. This is the explanation for the well-known

“foreground fattening” effect exhibited by window-based algorithms (right edge of the foreground

in Figure 12—the left edge is an occluded area, which can’t be recovered in any case).

Adaptive window methods have been developed to combat this problem. The simplest variant,

shiftable windows (min-filters) can be effective as is shown in the above experiment. Shiftable

windows can recover object boundaries quite accurately if both foreground and background regions

are textured, and as long as the window fits as a whole within the foreground object. The size of

the min-filter should be chosen to match the window size. As is the case with all local methods,

however, shiftable windows fail in textureless areas.

Conclusion: Local algorithms that aggregate support can perform well, especially in textured (even

slanted) regions. Shiftable windows perform best, in particular near depth discontinuities. Large

amounts of aggregation are necessary in textureless regions.

6.3 Optimization

In this section we compare the four global optimization techniques we implemented: dynamic

programming (DP), scanline optimization (SO), graph cuts (GC), and simulated annealing (SA).
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True disparities SAD SAD+MF

Input image SAD error SAD+MF error

Figure 12: Illustration of the “foreground fattening” effect, using the Map image pair and a21 × 21 SAD

algorithm, with and without a min-filter. The error maps encode the signed disparity error, using gray for 0,

light for positive errors, and dark for negative errors. Note that without the min-filter (middle column) the

foreground region grows across the vertical depth discontinuity towards the right. With the min-filter (right

column), the object boundaries are recovered fairly well.

Experiment 5: In this experiment we investigate the role of opt smoothness, the smoothness

weight λ in Equation (3). We compare the performance of DP, SO, GC, and SA for λ = 5, 10,

20, 50, 100, 200, 500, and 1000. We use unaggregated absolute differences as the matching cost

(squared differences would require much higher values for λ), and no sub-pixel estimation. The

number of iterations for simulated annealing (SA) is 500.

Results: Figure 13 shows plots of BO, BT , and BD as a function of λ for Map, Tsukuba, and Venus

images. (To show more varied results, we use the Map images in this experiment.) Since DP has

an extra parameter, the occlusion cost, we include three runs, for opt occlusion cost = 20,

50, and 80. Using as before BO (bad pixels nonocc) as our measure of overall performance,

it can be seen that the graph-cut method (GC) consistently performs best, while the other three (DP,

SO, and SA) perform slightly worse with no clear ranking among them. GC also performs best

in textureless areas and near discontinuities. The best performance for each algorithm, however,

requires different values for λ depending on the image pair. For example, the Map images, which
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Figure 13: Experiment 5. Performance of global optimization techniques as a function of the smoothness

weightλ (opt smoothness) for Map, Tsukuba, and Venus images. Note that each image pair requires a

different value ofλ for optimal performance.
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are well textured and only contain two planar regions, require high values (around 500), while the

Tsukuba images, which contain many objects at different depths, require smaller values (20–200,

also depending on the algorithm). The occlusion cost parameter for the DP algorithm, while not

changing the performance dramatically, also affects the optimal value for λ. Although GC is the

clear winner here, it is also the slowest algorithm: DP and SO, which operate on each scanline

independently, typically run in less than 2 seconds, while GC and SA require 10–30 minutes.

Conclusion: The graph-cut method consistently outperforms the other optimization methods, al-

though at the cost of much higher running times. GC is clearly superior to simulated annealing,

which is consistent with other published results (Boykov et al. 1999, Szeliski and Zabih 1999).

When comparing GC and scanline methods (DP and SO), however, it should be noted that the latter

solve a different (easier) optimization problem, since vertical smoothness terms are ignored. While

this enables the use of highly-efficient dynamic programming techniques, it negatively affects the

performance, as exhibited in the characteristic “streaking” in the disparity maps (see Figures 18

and 19 below). Several authors have proposed methods for increasing inter-scanline consistency in

dynamic-programming approaches, e.g., (Belhumeur 1996, Cox et al.1996, Birchfield and Tomasi

1998a). We plan to investigate this area in future work.

Experiment 6: We now focus on the graph-cut optimization method to see whether the results

can be improved. We try both Birchfield/Tomasi matching costs and a smoothness cost that depends

on the intensity gradients

Results: Figure 14 shows the usual set of performance measures BO, BT , and BD for four different

experiments for Map, Tsukuba, Sawtooth, and Venus images. We use a smoothness weight of

λ = 20, except for the Map images, where λ = 50. The matching cost are (non-truncated) absolute

differences. The parameters for the gradient-dependent smoothness costs are opt grad thresh

= 8 (same in all experiments), and opt grad penalty = 1, 2, or 4 (denoted p1, p2, and p4 in

the plots). Recall that the smoothness cost is multiplied by opt grad penalty if the intensity

gradient is below opt grad thresh to encourage disparity jumps to coincide with intensity

edges. Each plot in Figure 14 shows 4 runs: p1, p1+BT, p2+BT, and p4+BT. In the first run, the

penalty is 1, i.e., the gradient dependency is turned off. This gives the same results as in Experiment

5. In the second run, we add Birchfield/Tomasi, still without a penalty. We then add a penalty of

2 and 4 in the last two runs. It can be seen that the low-gradient penalty clearly helps recovering

the discontinuities, and also in the other regions. Which of the two penalties works better depends

on the image pair. Birchfield/Tomasi also yields a slight improvement. We have also tried other

values for the threshold, with mixed results. In future work we plan to replace the simple gradient

37



Map

0%

2%

4%

6%

8%

10%

12%

14%

p1 p1,BT p2,BT p4,BT

bad_pixels_nonocc
bad_pixels_textureless
bad_pixels_discont

Tsukuba

0%

2%

4%

6%

8%

10%

12%

14%

p1 p1,BT p2,BT p4,BT

bad_pixels_nonocc
bad_pixels_textureless
bad_pixels_discont

Sawtooth

0%

2%

4%

6%

8%

10%

12%

14%

p1 p1,BT p2,BT p4,BT

bad_pixels_nonocc
bad_pixels_textureless
bad_pixels_discont

Venus

0%

2%

4%

6%

8%

10%

12%

14%

p1 p1,BT p2,BT p4,BT

bad_pixels_nonocc
bad_pixels_textureless
bad_pixels_discont

Figure 14: Experiment 6. Performance of the graph-cut optimization technique with different gradient-

dependent smoothness penalties (p1, p2, p4) and with and without Birchfield/Tomasi (BT).

threshold with an edge detector, which should improve edge localization. The issue of selecting the

right penalty factor is closely related to selecting the right value for λ, since it affects the overall

relation between data term and smoothness term. This also deserves more investigation.

Conclusion: Both Birchfield/Tomasi’s matching cost and using a gradient-based smoothness costs

improves the performance of the graph-cut algorithm. Choosing the right parameters (threshold

and penalty) remains difficult and image-specific.

We have performed these experiments for scanline-based optimization methods (DP and SO) as

well, with similar results. Gradient-based penalties usually increase performance, in particular for

the SO method. Birchfield/Tomasi always seems to increase overall performance, but it sometimes

decreases performance in textureless areas. As before, the algorithms are highly sensitive to the

weight of the smoothness term λ and the penalty factor.

6.4 Sub-pixel estimation

Experiment 7: To evaluate the performance of the sub-pixel refinement stage, and also to evaluate

the influence of the matching criteria and disparity sampling, we cropped a small planar region from
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disp. refine Birchf./ preproc. RMS disp. disp. disp.
step subpix Tomasi blur disp. error map error histogram

(a) ground truth 0

(b) 1 no no no 0.296

(c) 1 yes no no 0.088

(d) 1 yes yes no 0.082

(e) 1 yes no yes 0.135

(f) 1
2 yes no no 0.051

(g) 1
4 no no no 0.087

(h) 1
4 yes no no 0.046

Figure 15: RMS disparity errors for cropped image sequence (planar region of newspaper). The reference
image is shown in row (a) in the “disp. error” column. The columns indicate the disparity step, the sub-pixel
refinement option, Birchfield/Tomasi’s sampling-insensitive matching option, the optional initial blur, and
the RMS disparity error from ground truth. The first image column shows the computed disparity map, the
second shows the signed disparity error, and the last column shows a histogram of computed disparities.
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Figure 16: Plots of RMS disparity error and inverse prediction errors as a function ofdisp step and

match interval. The even data points are with sampling-insensitive matchingmatch interval

turned on. The second set of plots in each figure is withpreproc blur enabled (1 blur iteration).

one of our image sequences (Figure 15a, second column of images). The image itself is a page of

newsprint mounted on cardboard, with high-frequency text and a few low-frequency white and dark

regions. (These textureless regions were excluded from the statistics we gathered). The disparities

in this region are in the order of 0.8–3.8 pixels, and are slanted both vertically and horizontally.

Results: We first run a simple 9 × 9 SSD window (Figure 15b). One can clearly see the discrete

disparity levels computed. The disparity error map (second column of images) shows the staircase

error, and the histogram of disparities (third column) also shows the discretization. If we apply the

sub-pixel parabolic fit to refine the disparities, the disparity map becomes smoother (note the drop

in RMS error in Figure 15c), but still shows some soft staircasing, which is visible in the disparity

error map and histogram as well. These results agree with those reported by Shimizu and Okutomi

(2001).

In Figure 15d, we investigate whether using the Birchfield-Tomasi sampling-invariant measure

(Birchfield and Tomasi 1998b) improves or degrades this behavior. For integral sampling, their

idea does help slightly, as can be seen by the reduced RMS value and the smoother histogram

in Figure 15d. In all other instances, it leads to poorer performance (see Figure 16a, where the

sampling-invariant results are the even data points).

In Figure 15e, we investigate whether lightly blurring the input images with a (1/4, 1/2, 1/4)
kernel helps sub-pixel refinement, because the first order Taylor series expansion of the imaging

function becomes more valid. Blurring does indeed slightly reduce the staircasing effect (compare

Figure 15e to Figure 15c), but the overall (RMS) performance degrades, probably because of loss

of high-frequency detail.
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We also tried 1/2 and 1/4 pixel disparity sampling at the initial matching stages, with and without

later sub-pixel refinement. Sub-pixel refinement always helps to reduce the RMS disparity error,

although it has negligible effect on the inverse prediction error (Figure 16b). From these prediction

error plots, and also from visual inspection of the inverse warped (stabilized) image sequence, it

appears that using sub-pixel refinement after anyoriginal matching scheme is sufficient to reduce

the prediction error (and the appearance of “jitter” or “shearing”) to negligible levels. This is despite

the fact that the theoretical justification for sub-pixel refinement is based on a quadratic fit to an

adequately sampled quadratic energy function. At the moment, for global methods, we rely on the

per-pixel costs that go into the optimization to do the sub-pixel disparity estimation. Alternative

approaches, such as using local plane fits (Baker et al. 1998, Birchfield and Tomasi 1999, Tao et

al. 2001) could also be used to get sub-pixel precision.

Conclusions: To eliminate “staircasing” in the computed disparity map, and to also eliminate the

appearance of “shearing” in reprojected sequences, it is necessary to initially evaluate the matches

at a fractional disparity (1/2 pixel steps appear to be adequate). This should be followed by finding

the minima of local quadratic fits applied to the computed matching costs.

6.5 Overall comparison

We close our experimental investigation with an overall comparison of the following algorithms:

1. SSD (21 × 21 shiftable window SSD),

2. DP (dynamic programming),

3. SO (scanline optimization),

4. GC (graph-cut optimization), and

5. Bay (Bayesian diffusion).

We chose shiftable window SSD as best-performing representative of all local (aggregation-based)

algorithms. We are not including simulated annealing here, since GC solves the same optimization

problem better and more efficiently. For each algorithm, we have chosen fixed parameters that

yield reasonably good performance over a variety of input images (see Table 4). We do not perform

sub-pixel estimation in this comparison.

We have selected four image pairs for this comparison: Map, Sawtooth, Tsukuba, and Venus.

We hope that this set of stereo images with ground truth will form the basis of a standard set of test

images used to compare performance in the stereo vision community.
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SSD DP SO GC Bay

Matching cost

match fn SD AD AD AD AD

Truncation no no no no no

Birchfield / Tomasi no yes yes yes no

Aggregation

aggr window size 21 — — — —

aggr minfilter 21 — — — —

aggr iter 1 — — — 1000

diff mu — — — — 0.5

diff sigmaP — — — — 0.4

diff epsP — — — — 0.01

diff scale cost — — — — 0.01

Optimization

opt fn WTA DP SO GC Bayesian

opt smoothness (λ) — 20 50 20 —

opt occlusion cost — 20 — — —

opt grad thresh — 8 8 8 —

opt grad penalty — 4 2 2 —

Table 4: Parameters for the five algorithms compared in this section.

Figure 17 and Table 5 summarize the results for the five selected methods on these images. As

before, we report BO (bad pixels nonocc) as a measure of overall performance, as well as

BT (bad pixels textureless), and BD (bad pixels discont). The disparity maps for

Tsukuba and Venus images are shown in Figures 18 and 19. The full set of performance measures

and disparity maps are available on our web site at www.middlebury.edu/stereo.

The graph-cut method is the clear winner in this comparison. It consistently performs best,

not only overall, but also in textureless and discontinuity regions. The one exception is the Map

image pair, where the Bayesian diffusion method performs best in all measures. It should be noted,

however, that the Map images require slightly different parameter settings for optimal performance,

while in the above experiment parameters are held constant across all images. Interestingly, the

(shiftable windows) SSD algorithms does very well, usually competing for second rank with the

Bayesian diffusion method. DP and SO perform the worst with few exceptions. An examination of

the disparity maps (Figures 18 and 19) reveals that the individual methods make quite different errors.
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Figure 17: Comparative performance of the five selected algorithms on four different image pairs.

Map Tsukuba Sawtooth Venus

BO BT BD BO BT BD BO BT BD BO BT BD
SSD 0.58 0.00 9.15 5.26 3.86 24.65 2.17 0.74 13.84 3.67 6.89 12.56

DP 4.79 6.25 14.61 4.42 3.41 14.46 5.17 3.42 15.17 8.79 12.24 20.35

SO 5.58 17.14 9.96 4.94 6.50 11.94 4.47 2.76 13.19 9.41 14.39 18.11

GC 0.29 0.00 4.23 1.96 1.06 9.41 1.77 0.36 7.90 1.48 2.24 6.74

Bay 0.18 0.00 2.39 6.49 11.62 12.29 1.84 0.86 10.72 3.87 7.36 17.72

Table 5: Comparative performance of the five selected algorithms on four image pairs, using the three

performance measuresBO (bad pixels nonocc), BT (bad pixels textureless), and BD
(bad pixels discont).
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True disparities SSD

DP SO

GC Bayesian diffusion

Figure 18: Best results on Tsukuba images.
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True disparities SSD

DP SO

GC Bayesian diffusion

Figure 19: Best results on Venus images.
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Map Tsukuba Sawtooth Venus

fixed best fixed best fixed best fixed best

SSD 0.58 0.20 5.26 5.26 2.17 1.78 3.67 2.96

DP 4.79 1.50 4.42 4.42 5.17 4.02 8.79 8.24

SO 5.58 1.58 4.94 4.33 4.47 3.63 9.41 8.36

GC 0.29 0.09 1.96 1.96 1.77 0.92 1.48 1.35

Bay 0.18 0.18 6.49 6.49 1.84 1.84 3.87 3.66

Table 6: Overall performanceBO (bad pixels nonocc), both for fixed parameters across all images,

and best parameters for each image. Note that significant performance gains are possible if parameters are

allowed to vary for each image.

In particular, the disparity maps produced by SSD are much less impressive than the quantitative

results, especially on the Tsukuba images. The large window size (21×21) required for the method

to work well in textureless areas results in significant loss of detail. Bayesian diffusion behaves

similarly to the local SSD method; both make errors in large untextured areas and tend to blur the

outlines of objects more than the other methods, but Bayesian diffusion is much better at preserving

detail (for example the handle of the lamp in the Tsukuba images). The disparity maps created by

the scanline-based algorithms (DP and SO) are promising and show a lot of detail, but the larger

quantitative errors are clearly a result of the “streaking” due to the lack of inter-scanline consistency.

GC performs best, but there is still room for further improvement.

To demonstrate the importance of the parameter settings, Table 6 compares the overall results

(BO) for the fixed parameters listed in Table 4 with the “best” results when parameters are allowed

to vary for each image. Note that we did not perform a true optimization over all parameters values,

but rather simply chose the overall best results among the entire set of experiments we performed.

It can be seen that for some of the images the performance can be improved substantially with

different parameters. In particular the Map image pair can virtually be “solved” using GC, Bay, or

SSD, since the images depict a simple geometry and are well textured. More challenging data sets

with many occlusions and textureless regions may be useful in future extensions of this study.

Finally, we take a brief look at the efficiency of the different methods. Table 7 lists the image

sizes and number of disparity levels for each image pair, and running times for each of the five

algorithms. Clearly, the local and scanline-based methods (SSD, DP, and SO) are quite fast, while

GC and Bayesian diffusion are several orders of magnitude slower. Some speed-up could be gained

by decreasing the number of iterations for those methods, but they remain inherently slower than
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Map Tsukuba Sawtooth Venus

width × height 284 × 216 384 × 288 434 × 380 434 × 383

disparity levels 30 16 20 20

Running times:

SSD 0.8 s 1.1 s 1.5 s 1.7 s

DP 0.8 s 1.0 s 1.8 s 1.9 s

SO 1.3 s 1.1 s 2.2 s 2.3 s

GC 480 s 662 s 735 s 829 s

Bay 1236 s 1055 s 2049 s 2047 s

Table 7: Image sizes and disparity levels of the four image pairs, and running times of the five selected

algorithms.

the former three methods. If efficiency is an issue, it thus seems that a shiftable-window method

would be a good choice. Further research is needed to fully exploit the potential of scanline methods

without sacrificing their efficiency.

In summary, the graph-cut method is the clear winner of this experimental study. Potential

avenues of further improvement include a better gradient-dependent smoothness cost, automatic

setting of parameters, and the proper computation of sub-pixel disparity estimates for non-local

methods.

7 Conclusion

In this paper, we have proposed a taxonomy for dense two-frame stereo correspondence algorithms.

We use this taxonomy to highlight the most important features of existing stereo algorithms and

to study important algorithmic components in isolation. We have implemented a suite of stereo

matching algorithm components and constructed a test harness that can be used to combine these,

to vary the algorithm parameters in a controlled way, and to test the performance of these algorithm

on interesting data sets. We have also produced some new calibrated multi-view stereo data sets

with hand-labeled ground truth. We have performed an extensive experimental investigation in

order to assess the impact of the different algorithmic components. The experiments reported here

have demonstrated the limitations of local methods, and have assessed the value of different global

techniques and their sensitivity to key parameters.

There are many other open questions we would like to address. How important is it to devise
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the right cost function in global optimization algorithms vs. how important is it to find a global

minimum? What kind of adaptive/shiftable windows work best? Also, is prediction error a useful

metric for gauging the quality of stereo algorithms? We would also like to try other existing data

sets, and to produce some labeled data sets that are not all piecewise planar.

By publishing this study along with our sample code and data sets on the Web, we hope that other

stereo researchers will run their algorithms on our data and report their comparative results. We

are planning to maintain an on-line version of Table 5 that lists the overall results of the currently

best-performing algorithms. We also hope that some researchers will take the time to add their

algorithms to our framework for others to use and to build upon. Ideally, some set of data and

testing methodology will become an accepted standard in the stereo correspondence community,

so that new algorithms will have to pass a “litmus test” to demonstrate that they improve on the

state of the art.

Once this study has been completed, we plan to move on to study multi-frame stereo matching

with arbitrary camera geometry. There are many technical solutions possible to this problem,

including voxel representations, layered representations, and multi-view representations. This more

general version of the correspondence problem should also prove to be more useful for image-based

rendering applications.

By building on the framework and methodology developed in this paper, we will hopefully

reach a deeper understanding of the complex behavior of stereo correspondence algorithms.
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