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Abstract

Where am I and what am I seeing? This is a classical

vision problem and this paper presents a solution based

on efficient use of a combination of 2D and 3D features.

Given a model of a scene, the objective is to find the rel-

ative camera location of a new input image. Unlike tradi-

tional hypothesize-and-test methods that try to estimate the

unknown camera position based on 3D model features only,

or alternatively, based on 2D model features only, we show

that using a mixture of such features, that is, a hybrid cor-

respondence set, may improve performance.

We use minimal cases of structure-from-motion for hy-

pothesis generation in a RANSAC engine. For this purpose,

several new and useful minimal cases are derived for cali-

brated, semi-calibrated and uncalibrated settings. Based on

algebraic geometry methods, we show how these minimal

hybrid cases can be solved efficiently. The whole approach

has been validated on both synthetic and real data, and we

demonstrate improvements compared to previous work.

1. Introduction

Localization refers to the ability of automatically infer-

ring the pose and the position of an observer relative a

model [2]. We propose to solve the problem using an image-

based approach. The model or the map of the environment

can be anything from a single room in a building to a com-

plete city. In general, one image will be used as a query im-

age, but in principle several images can be used as input. No

prior knowledge of the observer’s position is assumed and

therefore the problem is often referred to as global local-

ization whereas local versions assume an approximate posi-

tion. The mapping of the environment can be regarded as an

off-line process since it is generally done once and for all.

Such a mapping can be done using standard Structure from

Motion (SfM) algorithms [7, 10], or by some other means.

In this paper, we demonstrate how a mixture of 2D and

3D features can be used simultaneously for localization. If

one were to rely solely on 3D matches, one is restricting the

set of possible correspondences to relatively few correspon-

dences and a relatively rich 3D model would be required in

order to be successful. On the other hand, using only 2D

features requires relatively many correct correspondences

to generate a single hypothesis. In addition, with existing

methods such as the seven point algorithm of two views [7],

one is limited to picking all the 2D correspondences from

one single image in the model. Again, one is restricting the

set of correspondences to a relatively small subset. Further,

the absolute scale cannot be recovered solely from 2D cor-

respondences of one query image and one model image.

Using hybrid correspondence sets for generating hy-

potheses gives a number of advantages. We can make use

of all possible correspondences simultaneously, even from

different 2D model images. Compared to approaches us-

ing only 2D correspondences, the scale relative to the 3D

map can be recovered and, more importantly, the number of

correspondences is smaller which is a good property when

using RANSAC. One can argue that in most cases, tradi-

tional methods would work fine. However, we demonstrate

that hybrid correspondence sets are indeed useful and there

is simply no reason why this information should not be used

as it leads to improvements.

The three main contributions of this paper are:

1. We demonstrate how hybrid feature correspondences can

be used for improved image-based localization.

2. A complete list of minimal hybrid cases is given and for

each case, we also give the number of possible solutions

possible.

3. Algorithms for efficiently computing the solutions of the

minimal cases are given. Further, the behavior and stability

on synthetic data is evaluated for some cases.

1.1. Related Work

Localization and scene recognition are key components

of any autonomous system. In robotics, (global) localiza-

tion is also known as the kidnapped robot problem. Suc-

cessful solutions have generally been achieved with laser,

sonar or stereo vision range sensors and built maps for con-

trolled robots moving in 2D, e.g., [12]. Another example



is the Deutches Museum Bonn tour-guide robot RHINO [3]

where laser sensors are used. Another competing technique

(at least, for some applications) is GPS. However, the accu-

racy is typically only in the order of 10-20 meters and no

direction information is obtained.

Image-based localization using special landmarks is a

common approach, e.g., [1], but this severely limits the flex-

ibility and the applicability of the method. Similar to our

approach, distinctive visual features were utilized in [14] to

overcome this limitation. They also showed that RANSAC

is an effective way of generating hypotheses. However, only

3D model features were used and this requires a rich 3D

model to work well.

For large-scale models, an image search technique is re-

quired to speed up the process. This can be seen as a pre-

processing step which produces a small number of hypo-

thetical part-models that need further verification. Possible

such pre-processing schemes are developed in [13].

The wealth of research in the SfM field is, of course, re-

lated to the present work, in particular, the work concerned

with RANSAC [17] and wide baseline matching [18, 11].

The same approach as proposed in this paper can be used

to solve the wide baseline matching problem to build up 3D

models.

Understanding of the geometry and the number of solu-

tions of minimal structure and motion problems has a long

history. For the uncalibrated case, the minimal problem of

seven points in two views (which has three solutions) was

studied and solved already in 1855, cf. [4]. The correspond-

ing calibrated case was in principle solved in 1913 [8]. The

study of minimal cases has got increased attention with its

use in RANSAC algorithms to solve both for geometry and

correspondence in numerous applications [7].

2. Problem Formulation

To solve the localization problem we are interested in

solving the following problem:

Problem 1 Under the assumption that for a query image,

there are m potential correspondences to image points in

views with known absolute orientation and n potential cor-

respondences to scene points with known 3D coordinates,

find the largest subset of the correspondences that admits a

solutions to the absolute orientation problem within a spec-

ified accuracy.

The method that we will use to solve the localization

problem is based on hypothesize-and-test with RANSAC

[6] and local invariant features [9]. This involves solving

minimal structure and motion problem with hybrid corre-

spondence sets.

3. Minimal Hybrid Correspondence Sets

The classical absolute orientation problem (also known

as camera resectioning) for calibrated cameras for three

known points can be posed as finding the matrix P = [ R t ],
such that λiui = PUi, i = 1, 2, 3. Here R is a 3×3 rotation

matrix and t is a 3-elements translation vector. Thus, the

camera matrix encodes six degrees of freedom of unknown

parameters. Each point gives two constrains and therefore

three points form a minimal case. In general there are four

possible solutions [7].

We will study the absolute orientation problem both for

calibrated cameras as above, for the case of unknown fo-

cal length and for the uncalibrated camera case. Further-

more we will consider both known 3D-2D correspondences

(Ui, ui) as above and 2D-2D correspondences (vi, ui) with

features vi in other views. Here we will assume that the

camera matrices of the other views are known, so that a

2D-2D correspondence can be thought of as a 3D-2D corre-

spondence where the unknown 3D point Ui lies on a line ex-

pressed in Plücker coordinates. In this paper the (m,n) case

denotes the case of m 2D-2D correspondences and n 3D-2D

correspondences. Notice that each 2D-2D correspondence

imposes one constraint and each 2D-3D correspondence im-

poses two constraints.

Calibrated Cameras For calibrated cameras there are six

degrees of freedom, three for orientation and three for po-

sition. One way of parameterizing the camera matrix is to

use a quaternions vector (a, b, c, d) for rotation, i.e.

P=





a2+b2−c2−d2 2bc − 2ad 2ac + 2bd x
2ad + 2bc a2−b2+c2−d2 2cd − 2ab y
2bd − 2ac 2ab + 2cd a2−b2−c2+d2 z



 .

(1)

Potential minimal cases are:

The (0,3) case. This is the well known resection prob-

lem, cf. [7] with up to four solutions in front of the camera.

The (2,2) case. This is solved in this paper. The algo-

rithms works equally well if the 2D-2D correspondences

are to the same or to different cameras. There are up to 16

solutions.

The (4,1) case. This is solved in this paper. The case

of all four 2D-2D correspondences coming from the same

model image can be solved by first projecting the 3D point

in the known camera and then using the five point algorithm

to solve for relative orientation (hence up to 10 solutions)

and then fixing scale with the final 2D-3D correspondence.

The (6,0) case. This cannot be solved for absolute ori-

entation if all points are from the same model view. How-

ever, if the correspondences come from different views, it

is similar to the relative orientation problem for generalized

cameras, cf. [16], which has up to 64 solutions.



Unknown Focal Length For calibrated cameras with un-

known focal length there are seven degrees of freedom,

three for orientation, three for position and one for the focal

length. One way of parameterizing the camera matrix is as

P=





a2+b2−c2−d2 2bc− 2ad 2ac + 2bd x
2ad + 2bc a2−b2+c2−d2 2cd − 2ab y

2f(bd− ac) 2f(ab + cd) f(a2−b2−c2+d2) fz



 .

(2)

Potential minimal cases are

The (1,3) case. This case is solved in this paper. There

are 36 solutions.

The (3,2) case. This is solved in this paper. There are 40

solutions.

The (5,1) case. This is solved in this paper. For the

case of the 5 2D-2D correspondences coming from the same

model view, it can be solved using the six point algorithm

to solve for relative orientation and focal length [15] and

then fixing scale with the final 3D correspondence. There

are then up to 15 solutions.

The (7,0) case. This cannot be solved for absolute ori-

entation if all points are to the same view. However for the

case of correspondence to different view it is an open prob-

lem.

Uncalibrated Cameras For the uncalibrated camera case

there are 11 degrees of freedom. Each 2D-2D correspon-

dence gives one constraint and each 2D-3D correspondence

gives two constraints. Potential minimal cases are

The (1,5) case. This can be solved by hand-calculations

as follows. Using the five 3D-2D correspondences, the cam-

era matrix can be determined up to a one-parameter family

P = P1+νP2, where P1 and P2 are given 3×4 matrices and

ν is an unknown scalar. The remaining 2D correspondence

can be parameterized as a point on a line U = C + µD for

some unknown parameter µ. The projection equation gives

λu = PU = (P1 + νP2)(U1 + µU2). Using resultants, it

follows easily that there are two solutions for the unknowns

λ, ν, µ.

The (3,4) case. There are eight solutions, unless all four

2D-2D correspondences are from the same model view, in

which the standard seven-point-two-view algorithm can be

used. There are then up to three solutions.

The (1+2k,5-k) case with k = 2, 3, 4. These cannot be

solved for absolute orientation if all points originate from

one model view. However, for the case of correspondences

from different model views, there are 2(1+2k) solutions.

The solutions procedure is analogous to the (1,5) case above

and can be obtained using resultants.

Summary We conclude this section by summarizing all

the minimal cases for hybrid 2D and 3D feature correspon-

dences, see Table 1. We state an upper bound on the number

of physically realizable solutions. In general, as we shall see

later in Section 5, the number of plausible solutions is much

smaller. In the next section, we give the remaining justifi-

cations to these claims and this will also lead to efficient

algorithms for computing the solutions.

2D-2D 2D-3D number of camera

corresp. corresp. solutions setting

0 3 4 calibrated

2 2 16 calibrated

4 1 32 or 10∗ calibrated

6 0 64 calibrated

1 3 36 unknown focal

3 2 40 unknown focal

5 1 112 or 15∗ unknown focal

7 0 ? unknown focal

1 5 2 uncalibrated

3 4 8 or 3∗ uncalibrated

1 + 2k 5 − k 21+2k uncalibrated
Table 1. Minimal hybrid cases for structure from motion. The

number of solutions indicates an upper bound of the number of

physically realizable solutions. The solution numbers marked with

asterisk ”∗” correspond to cases where all 2D-2D correspondences

originate from a single (model) view, whereas for other cases, it

is implicitly assumed that the correspondence set covers multi-

ple views. Note that one case is still an open problem (marked

with ”?”).

4. Solving Minimal Cases with Algebraic Ge-

ometry

Minimal structure and motion problems typically boil

down to solving a system of polynomial equations in a num-

ber of unknowns. For a problem instance the structure of

the problems is quite fixed. Thus the number of solutions to

a structure and motion problem, typically depends only on

the type of problem at hand.

There are several techniques for determining the number

of solutions for a class of polynomial equations systems.

The theory of mixed volumes [5] can be used to prove the

number of solutions for a set of polynomial equations as-

suming general coefficients of the polynomial. The soft-

ware package phc [19] is useful both for calculating mixed

volume and for finding solutions with homotopy methods.

Another method is to calculate the so called Gröbner basis.

For problems that are not synthetic (where the coefficients

are represented as floating point approximations) finding

the Gröbner base is error prone, since it can be difficult to

establish if a certain coefficient is zero in the reduction. One

technique here is to synthesize examples with integer coeffi-

cients and then projecting the equations from R[x] to Zp[x]
Once the number of solutions and the structure of the

Gröbner basis is known, the procedure of obtaining a



Gröbner basis for the ideal I and a basis for the quotient

space C[x]/I can be obtained using numerical linear alge-

bra. For problems with say less than 50 solutions, this pro-

cedure often has reasonable numerical stability. The solu-

tion process is briefly as follows. Given a set of polynomi-

als (p1, . . . , pn) that have been obtained from the problem.

Multiply each polynomial by a set of monomials. This set

is obtained from the analysis above. This gives a larger set

of polynomials. Represent these polynomials as a matrix

product between the coefficient matrix C and a monomial

vector m. By row reduction high order monomials can be

expressed in terms of lower order monomials. If the set of

product monomials is chosen large enough it is possible to

express all polynomials in terms of a fixed number d of basis

monomials. These form a basis for C[x]/I . By expressing

the linear mapping C[x]/I ∋ p(x) 7→ xp(x) ∈ C[x]/I in

this basis an action matrix M is obtained. The eigenvectors

of MT gives the solutions to the polynomial equations. For

further details, see [5].

4.1. Calibrated Cameras

A calibrated camera can be parameterized using quater-

nions as shown in (1) Assume that we have two correspon-

dences between image points and scene points

u1 ∼ PU1, u2 ∼ PU2.

Since there is a freedom in choosing coordinate systems

both in the scene and in the images, these can be trans-

formed into

U1 =









0
0
0
1









, u1 =





0
0
1



 , U2 =









1
0
0
1









, u2 =





1
0
u



 .

This gives us the following constraints

x = 0, y = 0, ad = −bc,
z = u(a2 + b2 − c2 − d2) − 2bd + 2ac.

As the overall scale of the camera matrix is irrelevant, one

can set a = 1 and eliminate d according to d = −bc. This

makes it possible to parameterize the camera matrix as

P=





(1+b2)(1−c2) 4bc 2c(1−b2) 0
0 (1−b2)(1+c2) −2b(1+c2) 0

−2c(1+b2) 2b(1−c2) (1−b2)(1−c2) z



 .

By putting a = 1 two things happen. First the scale of

the camera matrix is fixed, hence the left-hand 3 × 3 sub-

matrix in (1) will only be a rotation matrix up to scale. This

will not have any further impact on the problem since the

measurement equations are homogeneous. The second con-

sequence is that solutions with a = 0 will not be included.

Since a ∈ R the probability for this is zero, but there might

be problems if a is close to zero. However, as the synthetic

experiments will show this is no serious problem.

Assume now that we have two correspondences between

image points and points that have been seen in only one

other model image. This gives two points on the viewing

line Ci and Di associated to a point vi in the query image.

If the line is represented with Plücker coordinates [7] and

the camera is converted to the correspondent Plücker cam-

era the constraints above converts to a single equation. It

is further on easy to see that every nonzero element in the

Plücker camera has a common factor of 1+b2. After remov-

ing the common factor, the constraint polynomials (p1, p2)
are of order 2 in b and order 4 in c.

The dimension of the quotient space C[b, c]/I is 16 with

I = (p1, p2) which can be checked with computer alge-

bra [19]. By multiplying the polynomials with (1, b, c, bc)
we obtain 8 constraints in 24 monomials. It is then possible

to express 8 of the monomials in terms of the remaining 16
monomials

(bc4, b3c2, c4, bc3, b2c2, b3c, c3, bc2, b2c, b3, c2, bc, b2, c, b, 1)

which then form a basis for the quotient space C[b, c]/I .

From this it is straightforward to construct the 16 × 16 ac-

tion matrix M for the linear mapping C[b, c]/I ∋ p(c) 7→
cp(c) ∈ C[b, c]/I . From the eigenvalue decomposition of

the matrix M the 16 (some possibly complex) solutions are

obtained. Similar calculations give that there are 32 solu-

tions for the (4,1) case.

4.2. Unknown Focal Length

For the case of unknown focal length we have one addi-

tional unknown. Thus we need one extra constraint. There

are several interesting minimal cases: (1,3), (3,2) and (5,1).

However for the last case (assuming that all the five points

were in correspondence with the same view) one could

solve the relative orientation problem using the six point

algorithm [15] and then fix the scale using the known 3D

correspondence.

Using (2) as parameterization for the camera matrix and

assuming that two of the 3D point correspondences are with

U1 =









0
0
0
1









, U2 =









1
0
0
1









, u1 =





1
0
1





it is possible to eliminate y = 0 and x = zf = g(b, c, d, f).
We fix the scale by setting a = 1. For both the (1, 3) case

and the (3, 2) case we get polynomial constraints in the five

remaining unknowns (b, c, d, z, f). Calculations with com-

puter algebra [19] suggests that there are 36 solutions for

the (1, 3) case, 40 solutions to the (3, 2) case and 112 in the

(5, 1) case.
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Figure 1. Statistics from the evaluation of the solver for the (2,2)

case for calibrated cameras. The solver was run on 10.000 ran-

domly generated cases. Left: Histogram over the error in matrix

norm between the estimated camera P
′ and the true camera P .

The error is plotted on a logarithmic scale. Right: Histogram over

the number of real valued solutions yielding positive depths.

5. Validation on Synthetic Data

The purpose of this section is to evaluate the stability of

the algorithm for solving the (2, 2) case introduced in Sec-

tion 4. To this end we use synthetically generated data in

the form of randomly generated cameras and points. This

allows us to measure the typical errors and the typical num-

ber of plausible solutions, over a large range of cases.

The point features are drawn uniformly from the cube

±500 units from the origin in each direction. The cameras

(two known and one unknown) are generated at approxi-

mately 1000 units from the origin pointing roughly in the

direction of the center of the point cloud.

The algorithm has been run on 10.000 randomly gener-

ated cases as described above. To evaluate the accuracy of

the solution we take the minimal error (over the plausible

solutions) of the standard matrix 2-norm ‖P ′ − P‖ of the

difference between the estimated camera P ′ and the true

camera P . The cameras were normalized by setting the last

element to one. The result is illustrated in Figure 1. As

can be seen, the error typically stays as low as 10−15 to

10−10, but occasionally much larger errors occur. However,

since the solver is used as a subroutine in a RANSAC en-

gine, which relies on solving a large number of different

instances, these very rare cases with poor accuracy are not

a serious problem.

As shown in Section 4 the (2,2) calibrated case in gen-

eral has 16 solutions. Since obviously only one of these

solutions is the correct one it is interesting to investigate

how many plausible solutions are typically obtained. With

plausible solutions we mean real valued camera matrices

which yield positive depths for all four problem points. In

Figure 1 a histogram which shows the typical number of

plausible solutions is given. As can be seen the most com-

mon situation is one to four plausible solutions. In one of

the 10.000 cases, the algorithm was unable to find a real

solution with positive depths for all points. This is proba-

Figure 2. Examples of experiment images. The left scene is called

office and the right scene is called pump.

bly due to numerical problems when the points and/or cam-

eras are unfortunately positioned (two or more real solu-

tions irrespective of the sign of the depths were found in all

cases). In three of the cases seven solutions were found and

in one case eight plausible solutions were found. The aver-

age number of plausible solutions was 2.6 and the average

number of real solutions was 6.4. In some of the cases all

16 solutions were real.

6. Application: Localization

The localization algorithm based on hybrid feature cor-

respondences was tested on two data sets, one with images

of offices and one set taken of a steel pump. Examples of the

data sets can be seen in Figure 2. The sizes of the office and

pump images are 1600 × 1200 and 2048 × 1360, respec-

tively. In the following, the data sets are referred to as office

and pump. The images used to test the localization perfor-

mance have not been included when building the 3D model.

For the office images, the test and model images were shot

on separate days resulting in considerable differences.

6.1. Building the model

For the two data sets, the first step is to build a model

of the 3D structure and to find the camera locations. The

models consist of the location of the cameras used when

building the model and points in the images that are local-

ized with maximally stable extremal regions (MSER) [11].

SIFT descriptors [9] are also associated with all these ar-

eas. To do these calculations binaries from Oxford1 were

used with default parameter settings. The model also in-

cludes information about which points that correspond be-

tween images, and thus become potential 3D matches and

which points that are just located in one image and hence

become 2D correspondence candidates.

Office The office images were taken with a calibrated

stereo rig. The cameras’ inner parameters were calculated

with a camera calibration toolbox available on the web2.

1http://www.robots.ox.ac.uk/∼vgg/research/affine/index.html
2http://www.vision.caltech.edu/bouguetj/calib doc



With the aid of this toolbox the distortion of the images was

also calculated and all images were rectified. The stereo

setup made it possible to compute epipolar geometry be-

tween the images pairwise. This was used to get a 3D struc-

ture between the two first images in the sequence. The next

step was to add a new image from another stereo pair. This

was done by first establishing correspondences between the

new image and the calculated 3D points. Then with the

three point solver and RANSAC, a first localization was es-

timated. After that bundle adjustment was applied for a lo-

cal optimization of the location. The next step, again, was

to use the known stereo data to triangulate new 3D points.

This procedure was repeated until the model was finished.

In the model for one office, the number of 2D points is typ-

ically ten times the number of 3D points.

Pump The pump scene had a known camera calibration

and the location of the cameras was also given. In this se-

quence, two images were chosen to build the model with

and the remaining images were used for testing. The known

motion served as ground truth for the localization experi-

ment (see result section). Because of the characteristics of

these images (many specularities due to steel), it is diffi-

cult to get stable descriptors between images which makes

it hard to find correct correspondences. As a result, there are

not so many 3D correspondences to use for the further lo-

calization. In fact, from our automatic matching algorithm,

there are only six 3D points and two of these are actually

false. However, the number of 2D points is 493 and 802,

respectively, in the two images.

6.2. Localization Method

The same localization scheme has been used for both im-

age sets. As a comparison, the three point solver has also

been used similar to the approach in [14]. The first step is to

establish correspondences between the query image and the

model. This is done by first locating the best matching cor-

respondences to points that are located in 3D by exhaustive

search. The 50 best matches are then stored. After that the

50 best matches to correspondences in the model images

are calculated and stored. The 2-norm is used to measure

the distances between two sift descriptors after they have

been normalized according to [9].

When the 50 best 2D and 3D correspondences are fixed

(or fewer if there not that many model points), the corre-

spondence set is used in a RANSAC engine with 500 itera-

tions. When one localization step is applied the next thing

in the pipe is to decide which of the points that are inliers.

This is done for the 3D points by measuring the reprojection

error and if this is less then 10 pixels, the point is assumed

to be an inlier. In the case of 2D, the point is first triangu-

lated. After that, again, the reprojection error is measured

but in this case the threshold is set to one pixel.

(a) (b)

Figure 3. Reprojected points from the estimated localization. Im-

age (a) shows the points projected when the camera is placed ac-

cording to the (2,2) solver and (c) when the camera is located as

the three point solver proposed.

The camera location with the greatest number of inliers

is then chosen. To improve the result further bundle adjust-

ment is applied to the inlier data to get higher precision of

the localization.

To compare the results, the three point solver for 3D-

2D correspondences is applied [14]. The methodology used

is the same as for the (2,2) solver. The localization step

is executed and then the inliers are counted. Also in this

algorithm we have chosen to iterate this 500 times. And as

before when this is finished we make a bundle adjustment

to improve the result.

6.3. Results

Office In most of the cases, the result of the localization

is very similar, independent of which method used. This is

occurs especially when the model includes many correctly

located 3D points. A typical example of that is shown in

Figure 3. In those images it is hard to see the differences

between the two results when the three point solver and the

(2,2) solver are used.

In some cases the proposed algorithm makes a better job

than the three point solver. An example of that can be seen

in Figure 4. In part (b) of that figure, the black crosses rep-

resent the reprojections of the 3D points in the model when

the three point solver is used. If those are compared with

the reprojections in one of the model images in Figure 4a

the incorrect placement is obvious. The red triangles, the

reprojection with the (2,2) solver, in Figure 4b however are

close to the correct places, so in this case the (2,2) solver ob-

tains a superior result compared to the state of the art, three

point solver. In the model built for this example, many miss-

matches were created during the making of the 3D model

and even more occurred in the matching of the model im-

age, so there were not that many correct matches to use.

One reason for the high number of incorrect matches was

that the blackboard the day the model images were taken

was filled, but when the test images were taken the black-

board was clean.



(a) (b)

Figure 4. Reprojected points from the estimated localization. Im-

age (a) shows the points projected down in one of the model im-

ages, and hence, is a correct image to compare with. The red

triangles in image (b) is the points projected when the camera is

placed according to the (2,2) solver. These are close to correctly

placed whereas the black crosses, placed according to the three

point solver, are incorrectly located.

Out of 28 query images tested, there were 22 (79%)

correctly localized with the (2,2) solver and there were 21

(75%) correctly classified with the three point solver. The

reason for localization failure was mainly due to insufficient

number of potential matches or a great number of incor-

rect located 3D points in the model. This shows that the

(2,2) solver gives a slightly improved result already on its

own and in combination with the three point solver, it is ex-

pected to further improve the accuracy of the localization.

Pump In the pump sequence, there are not that many sta-

ble points in the images to build the 3D model from and

hence it can be useful to use hybrid features. When the

model was built with the two model images only four 3D

points were correctly determined. Additionally, two points

are false matches and are thus incorrectly placed in the 3D

space.

In the localization step, the matching phase makes ad-

ditional miss-matches and then only two correct matches

remains. This makes it impossible to use the three point

solver, but two points is still enough to use the (2,2) solver.

In Figure 5, the camera location and some scene points are

plotted. To the left, the unknown camera is placed accord-

ing to the (2,2) solver and to the right the unknown camera

is placed as the three point solver proposes. The (2,2) solver

places the camera correctly, as can be seen as the two close

placed cameras, whereas the three point solver is not even

close, as can be seen in the right part of Figure 5. In Fig-

ure 6 two of the model points are reprojected to one of the

images. If the same points are reprojected according to how

the (2,2) solver places the camera the result is as shown in

Figure 7a. As can be seen, the reprojection is correct. The

difference gets obvious if the result is compared to the three

point solver. The result from the reprojection of the same

points according to that algorithm is shown in Figure 7b.
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Figure 5. The estimated camera positions and the model cameras

position in the pump scene. In the left image the result of the

(2,2) solver and the ground truth is showed. The two close placed

arrows are the localization with the (2,2) solver and the ground

truth. In the right image the three point solver is used, in that

image it is obvious that the result is not even close to the ground

truth.

12

Figure 6. Model points reprojected down in one of the model im-

ages. These points are correctly placed and can thus be used to

visually judge the results of the localizations illustrated in Figure 7

There, both points are reprojected to almost the same loca-

tion and hence one of them is incorrectly placed.

As for the office images, 25 possible query images were

tested. There were 12 (48%) correctly localized with the

(2,2) solver and there were only 3 (12%) correctly classified

with the 3-point solver. The reason for localization failure

was mainly, in this sequence, due to insufficient number of

potential matches. This shows that the (2,2) solver gives a

considerably improved result in a setup like this.

7. Conclusions

In this paper we have shown new ways to use both 2D

and 3D correspondences to solve the localization problem.

Several minimal configurations have been classified and the

number of solutions has been derived.

In the case of calibrated cameras with two 2D and two
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Figure 7. Reprojected points from the estimated localization. Im-

age (a) shows the points projected when the camera is placed ac-

cording to the (2,2) solver. These results are hard to distinguish

from the correct places in Figure 6. In (b) the camera is located

as the three point solver proposed. If this result is compared with

Figure 6 it is obvious that the estimated location of the camera is

incorrect.

3D correspondences experiments have been preformed. The

synthetic experiments show that by using Gröbner basis

methods, the calculations can be done numerical stable and

it is known from before that they can be done fast. It is

also shown that the number of feasible solutions in average

is less than three even if the polynomial equations to solve

give 16 solutions, in some cases all real.

In the experiments on real data it is shown that in some

cases the three point solver, which is state of the art, is not

capable of establishing a correct localization when the (2,2)

solver is. This especially occurs when the model includes

few correct 3D points or when the number of incorrectly

placed 3D points is high. In most cases both algorithms

give a similar result.

The logical way to extend the work of this paper is to test

the remaining cases with semi calibrated (unknown focal

length) and uncalibrated cameras. Another line of future

work is to investigate how the proposed methods would be

able to improve a complete structure and motion system.
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