
A Quasi-Minimal Model for Paper-Like Surfaces

Mathieu Perriollat Adrien Bartoli

LASMEA – CNRS / UBP LASMEA – CNRS / UBP

Clermont-Ferrand, France Clermont-Ferrand, France

Mathieu.Perriollat@gmail.com Adrien.Bartoli@gmail.com

Abstract

Smoothly bent paper-like surfaces are developable. They

are however difficult to minimally parameterize since the

number of meaningful parameters is intrinsically dependent

on the actual deformation. Previous generative models are

either incomplete, i.e. limited to subsets of developable sur-

faces, or depend on huge parameter sets.

We propose a generative model governed by a quasi-

minimal set of intuitive parameters, namely rules and an-

gles. More precisely, a flat mesh is bent along guiding rules,

while a number of extra rules controls the level of smooth-

ness. The generated surface is guaranteed to be devel-

opable. A fully automatic multi-camera threedimensional

reconstruction algorithm, including model-based bundle-

adjustment, demonstrates our model on real images.

1. Introduction

The behaviour of the real world depends on numerous

physical phenomena. This makes general-purpose com-

puter vision a tricky task and motivates the need for prior

models of the observed structures, e.g. [1, 4, 8, 10]. For

instance, a 3D morphable face model makes it possible to

recover camera pose from a single face image [1].

This paper focuses on paper-like surfaces. More pre-

cisely, we consider paper as an unstretchable surface with

everywhere vanishing Gaussian curvature. This holds if

smooth deformations only occur. This is mathematically

modeled by developable surfaces, a subset of ruled surfaces.

Broadly speaking, there are two modeling approaches. The

first one is to describe a continuous surface by partial dif-

ferential equations, parametric or implicit functions. The

second one describes a mesh representing the surface with

as few parameters as possible. The number of which must

thus adapt to the actual surface. We follow the second ap-

proach.

One of the properties of paper-like surfaces is inextensi-

bility. This is a nonlinear constraint which is not obvious to

apply to meshes, as figure 1 illustrates. For instance, Salz-

mann et al. [10] use constant length edges to generate train-

ing meshes from which a generating basis is learnt using

Principal Component Analysis. The nonlinear constraints

are re-injected as a penalty in the eventual fitting cost func-

tion. The main drawback of this approach is that the model

does not guarantee that the generated surface is developable.
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Figure 1. Inextensibility and approximation: a one dimensional

example. Curve C represents an inextensible object, A and B are

two points lying on it. The linear approximation of arc (AB) is

the straight segment AB. When C bows, although the arc length

(AB) remains constant, the length of segment AB changes. A con-

stant length edge model is thus not a valid parameterization for

inextensible surfaces.

We propose a model generating a 3D mesh satisfying

the above mentioned properties, namely inextensibility and

vanishing Gaussian curvature at any point on the mesh. The

model is based on bending a flat surface around rules to-

gether with an interpolation process leading to a smooth

surface mesh. The number of parameters lies very close

to the minimal one because only the global shape is param-

eterized. A continuous smooth surface is then interpolated.

This model is suitable for image fitting applications. We

describe an algorithm to recover the deformations and rigid

pose of a paper-like object from multiple views. It does not

guarantee to find this minimal set, but it estimates a set of

few physical parameters explaining the images.

Previous work. Developable surfaces are usually chosen

as a basic modeling tool. Most of the work uses a con-

tinuous representation of the surface [3, 4, 7, 9]. They are

thus not well adapted for fast image fitting, except [4] which

initializes the model parameters with a discrete system of

rules. [11] constructs developable surfaces by partitioning

a surface and curving each piece along a generalized cone

defined by its apex and a cross-section spline. This param-
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eterization is limited to piecewise generalized cones.

[6] simulates bending and creasing of virtual paper by

applying external forces on the surface. This model has a

lot of parameters since external forces are defined for each

vertex of the mesh. A method for undistorting paper is pro-

posed in [8]. The generated surface is not developable due

to a relaxation process that does not preserve inextensibility.

Roadmap. We present our model in §2 and its reconstruc-

tion from multiple images in §3. Experimental results on

image sequences are reported in §4. Finally, §5 gives our

conclusions and discusses future work.

2. A Quasi-Minimal Model

2.1. Principle

Developable surfaces. Since developable surfaces form a

subset of ruled surfaces, they can be defined as constrained

ruled surfaces. Their continuous mathematical formulation

is given in e.g. [11] by:

{

X(t,v) = α(t)+ vβ(t) , t ∈ I v ∈ R β(t) 6= 0

det(α′(t),β(t),β′(t)) = 0.

(1)

The first equation defines a ruled surface using a differ-

entiable space curve α(t), namely the directrix and a vector

field β(t). The ruled surface is actually generated by the line

pencil (α(t),β(t)). The second equation enforces vanishing

Gaussian curvature, making the ruled surface a developable

one.

Most of the previous work on developable surfaces ex-

hibits functions that satisfy this system. For example [3]

uses a tensor product B-Spline representation, [7] uses

‘cone spline surfaces’ and [9] combines dual representation

with NURBS surfaces.

Rule-based generation. We propose an intuitive method

to build developable surfaces inspired by the observation of

real paper sheets. The main idea is to use a discrete set of

rules instead of a continuous formulation. This leads to a

piecewise planar surface. The constraint on curvature in (1)

turns into a formulation in terms of bending angles. The

rules are chosen such that they do not intersect each other,

which corresponds to the modeling of smooth deformations.

Generating a surface mesh using our model has three

main steps, provided the planar boundary shape. First we

extract from the parameter set the position of the guiding

rules on the flat shape and their bending angle. Second, we

add extra rules by interpolating the positions and the angles

of the guiding rules. The number of extra rules controls the

smoothness of the generated surface. Third, the flat mesh

is bent along the rules. Figure 2 illustrates this generating

process. It is guaranteed to be admissible in the sense that

the surface underlying the generated mesh is developable.

Figure 3 shows the generated surface when the number of

rules increases.

Flat mesh Bent mesh
Figure 2. Surface mesh generation. (left) Flat mesh with guiding

rules (thick and pink) and extra rules (thin and green). (right) Mesh

folded along the guiding and extra rules.

Balancing model complexity and surface smoothness.

It is obvious that the density of rules is related to the

smoothness of the surface: the higher the number of rules,

the smoother the surface. It is also linked to the model com-

plexity: the higher the number of rules, the more complex

the model. These two observations lead us to consider a

huge number of rules to generate a smooth and accurate

surface. To avoid an overly large number of parameters, we

propose to control a subset of the rules and to interpolate the

other ones. They are respectively called guiding and extra

rules. This has the advantage to generate a smooth surface

with a small set of parameters. The aspect of the final sur-

face depends on both the guiding rules and the interpolation

process. Figure 3 illustrates the effect of the proportion be-

tween the guiding and extra rules. The surface generated

by 6 guiding rules and 12 extra rules is an interesting trade-

off: there are enough parameters to capture all deformations

since the smoothness given by the extra rules significantly

decreases the error, and adding guiding rules does not really

improve the accuracy.

Reference surface
9 guiding rules
No extra rule
Residual error = 4.38 %

6 guiding rules
12 extra rules
Residual error = 5.79 %

6 guiding rules
No extra rule
Residual error = 14.45 %

3 guiding rules
6 extra rules
Residual error = 11.84 %

3 guiding rules
No extra rule
Residual error = 18.15 %

Figure 3. Surface generation behaviour. The reference mesh is

estimated by our model with a varying number of parameters. The

residual error represents the mean distance to the reference mesh,

it is given as a percentage of the meshgrid step.



Internal consistency constraints. A rule is valid if it

does not intersect other rules on the surface and, in the case

of a non convex boundary, if the segment joining the two

intersections is entirely on the mesh, see figure 4 for an ex-

ample.



Figure 6. Bent shape with rules. The thick lines are the guiding

rules. The thin lines are the extra rules. The dashed red lines are

the region limits. The red dots are the region extremities.

SURFACE GENERATION PROCESS

1. Define the shape boundary on the flat mesh

2. Gather the rules into regions

3. Interpolate the rule positions and their angles

4. Resample the interpolating functions to get the extra rules

5. Fold the flat mesh

Table 2. Overview of the surface generation process.

3. A Multiple View Fitting Algorithm

Our goal is to fit the model to multiple images. We as-

sume that a 3D point set and camera pose have been re-

constructed from image point features by some means. We

use the reprojection error as an optimization criterion. As is

usual for dealing with such a nonlinear criterion, we com-

pute a suboptimal initialization that we iteratively refine.

3.1. Initialization

We begin by reconstructing a surface interpolating the

given 3D points. A rule detection process is then used to

infer our model parameters.

Step 1: Interpolating surface fitting. Details about how

the 3D points are reconstructed are given in §4. The inter-

polating surface is represented by a 2D to 1D Thin-Plate

Spline function [2], mapping some planar parameterization

of the surface to point height. We use the mean plane.

Defining a regular grid on this plane thus allows us to in-

fer a dense set of points on the 3D surface. Figure 7 (top

right) and figure 8 (top left) show an example.

Step 2: Model initialization by rule detection. The

model is initialized from the 3D surface. The side length

is chosen as the size of the 3D mesh.

Guiding rules must be defined on the surface. This set of

n rules must represent the surface as accurately as possible.

In [3] an algorithm is proposed to find a rule on a given

surface. It tries rules with varying direction and passing

through several points on the surface . We use it to detect

rules along the sites visible on figure 7 (bottom left).
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Figure 7. Rules detection process. (top left) Feature points. (top

right) Reconstructed 3D points and the interpolating surface. (bot-

tom left) Points where rules are detected on the interpolated sur-

face. (bottom right) Initial detected rules (circles) and automati-

cally detected guiding rules (red squares).

The rules are described by the arc length of their inter-

section points with the mesh boundary. The two arc lengths

defining a rule can be interpreted as a point in R
2, as shown

in figure 7 (bottom right). The groups of rules in this figure

represent the bending regions of the surface. The guiding

rules are chosen in the groups. We fix the number of guid-

ing rules by hand, but a model selection approach could be

used to determine it automatically from the set of detected

rules.

This gives the n guiding rules. The bending angle vector

θ is obtained from the 3D surface by assuming planarity

between consecutive rules. The initial suboptimal model

we obtain is shown on figure 8 (top right).

3.2. Refinement

The reprojection error describes how well the model fits

the actual data, namely the image feature points. We thus

introduce latent variables representing the position of each

point onto the modeled mesh with two parameters. Let L be

the number of images and Ni the number of points in image

i, the reprojection error is:

e =
L

∑
i=1

Ni

∑
j=1

(m j,i −Π(C j,M(S,xi,yi)))
2
. (2)

In this equation, mi, j is the j-th feature point in image

i, Π(C,M) projects the 3D point M in the camera C and

M(S,xi,yi) is a twodimensional parameterization of the

points lying on the surface, with S the surface parameters.

The points on the surface are initialized by computing each

(xi,yi) such that their individual reprojection error is mini-

mized, using the initial surface model.



To minimize the reprojection error, the following param-

eters are tuned: the surface parameters (the number of guid-

ing and extra rules is fixed), see table 1, the pose of the

surface (rotation and translation) and the 3D point parame-

ters.

The Levenberg-Marquardt algorithm [5] is used to mini-

mize the reprojection error. Upon convergence, the solution

is the Maximum Likelihood Estimate under the assumption

of an additive i.i.d. Gaussian noise on the image feature

points.

Figure 8. Paper fitting with eight guiding rules. (top left) Inter-

polated surface. (top right) Initial model. (bottom left) Refined

model overlaid with the guiding rules. (bottom right) Estimated

model.

4. Experimental Results

We demonstrate the representational power of our fit-

ting algorithm on several sets of images. For five of them,

we show results. Some threedimensional representation of

the sequence are represented on figures 9 and 14. The 3D

point cloud is generated by triangulating point correspon-

dences between several views. These correspondences are

obtained while recovering camera calibration and pose us-

ing Structure-from-Motion [5]. Points off the object of in-

terest are removed by hand. Figure 7 (top) shows an exam-

ple of such a reconstruction.

The paper dataset. The following results have been ob-

tained from five views. We used a model with eight guiding

rules and sixteen extra rules. Figures 8 and 10 show the re-

projection of the 3D surfaces into the first image of the se-

quence and the reprojection error distribution for the paper

sequence for the three main steps of our algorithm: recon-

struction with Structure-from-Motion, initialization and re-

finement. Although the former one has the lowest reprojec-

tion error, the associated surface is not satisfying, since it is

Figure 9. (left) Paper sequence. (right) Book sequence.

not regular enough and does not fit the actual boundary. The

initialization makes the model more regular, but is not accu-

rate enough to fit the boundary of the paper, so that impor-

tant reprojection errors are introduced. Eventually, the re-

fined model is visually acceptable and its reprojection error

is very close to the unconstrained set of points obtained by

Structure-from-Motion. It means that our model accurately

fits the image points, while being governed by a much lower

number of parameters than the initial set of independent 3D

points. The reprojection error significantly decreases thanks

to the refinement step, which validates its relevance. Com-

paring these errors in the object space leads to the same

conclusions: the average distance between the triangulated

points and the predicted points before (respectively after)

the refinement step is 0.16 cm (respectively 0.06 cm), the

paper size being estimated to 25 cm by 21 cm. To make the

model converge to the actual paper, we manually selected

the four corners in one of the five views.
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Figure 10. Reprojection errors distribution for the images shown

in figure 8. (left) 3D point cloud. (middle) Initial model. (right)

Refined model.

Since we have a 3D model of the paper sheet and its re-

projection into the images, it is possible to overlay some

pictures or to change the texture map. We use the augmen-

tation process described in table 3 to change the whole tex-

ture map of the paper and to synthetically generate a view

of the paper with the new texture. The results are shown on

figure 11.

The book dataset. The second dataset is an image pair

of a book. We estimate the page surface with two guiding



AUGMENTING IMAGES

1. Run the proposed algorithm to fit the model to images

2. Choose illumination model and light sources

3. For each image, automatically do

(a) Transfer the new texture map

(b) Apply lighting changes

Table 3. Overview of the augmentation process.

Figure 11. (left) Changing the whole texture map of the paper.

(right) Synthetically generated view of the paper with new texture.

rules and eight extra rules. Figure 12 shows the reprojection

of the estimated surface and the 3D mesh. The reprojection

of the computed model is fine: the reprojection error of the

3D points is 0.26 pixels and the one for the refined model is

0.69 pixels, taking the triangulated points as groung truth,

the final error in object space is 0.06 cm for a page size of 18

cm by 13 cm. It means that we accurately recover the page

shape with a surface governed by only nine parameters.

Figure 12. Reconstruction of a book’s page. (left) Reprojection

onto the images. (right) Estimated model.

One application of the algorithm in the case of a written

page is shown on figure 13: our surface estimate is used to

unwarp the page’s texture and to get a rectified image of the

text.

The map dataset. The third example is a sequence of a

wavely folded map shown on figure 14. Although all parts

of the paper are seen in several images, the whole paper is

never entirely seen in a single image. The fitting algorithm

naturally deals with this kind of occlusion because the ini-

tialization is based on the reconstruction of 3D points, and

the 3D points cloud is dense enough since all parts of the pa-

per are visible in several views. The missing points do not

Figure 13. Unwarping. (left) The original page. (right) The recti-

fied page.

perturb convergence because the bundle adjustment mini-

mizes the distance between the actual image points and the

reprojection of the 3D points. Since for each images, the set

of visible feature points is known, only the corresponding

3D points are projected to compute the residual error. The

reprojection of the model onto one of the original images

is shown on figure 15. Since the 3D model of the surface

and the position of the cameras are known it is possible to

compute an occlusion map for each images. This is useful

to unwarp the texture map from each image and to combine

them to get the whole texture map. Some partial texture

maps and the whole one are shown in figure 15. The re-

projection error of the model is 0.45 pixels, very close to

the error of the initial triangulation (0.31 pixels), in object

space the refined model error is 0.07 cm for a sheet size of

28 cm by 19 cm.

Figure 14. Reconstructed paper and cameras for the map dataset.

The poster dataset. The former examples deal with small

paper sheets where the developable constraints are always

satisfied. A poster is a more challenging object because sin-

gularities may appear on the surface due to its larger size.

The input data are two images of the poster obtained from

a calibrated stereo system, see figure 16. The surface of the

poster is smooth enough, enabling our model to capture the

deformations: the RMS error of the triangulated 3D points

is 0.35 pixels and the one for our model is 0.65 pixels.



Figure 15. Results for the map dataset. (top left) Reprojection

onto one of the original images. (bottom left) Partial texture maps.

(right) Unwarped texture map.

Figure 16. Poster mesh reconstruction. (left) Estimated Model.

(right) Reprojection onto the first image.

The rug dataset. For this last example, the model is used

to estimate a surface whose physical behavior does not sat-

isfy the developable constraints except under special as-

sumption, for example a suspended piece of fabric or in this

case an hanged rug. Even though the results are slightly less

accurate, the global shape is well-fitted. The difference be-

tween the errors of the triangulated points and the model is

representative of the lack of accuracy : 0.34 pixels for the

original points against 1.36 pixels for the model. This is

mainly visible along the boundary of the rug on figure 17.

Figure 17. Rug mesh reconstruction. (left) Reprojection onto the

first image. (right) Estimated Model.

5. Conclusion and Future Work

This paper describes a quasi-minimal model for paper-

like objects and its estimation from multiple images. Al-

though there are few parameters, the generated surface is

a good approximation to smoothly deformed paper-like ob-

jects. This is demonstrated on real image datasets thanks to

a fitting algorithm which initializes the model and refines

it in a bundle adjustment manner. Both a surface and its

boundary curve are inferred from images.

There are many possibilities for further research. The

proposed model could be embedded in a monocular track-

ing framework or used to generate sample meshes for a sur-

face learning model. The fitting algorithm should be com-

pared to other surface models and estimation methods, in

terms of computation and accuracy performances.
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