
A Database and Evaluation Methodology

for Optical Flow

Simon Baker, Daniel Scharstein, J.P. Lewis,
Stefan Roth, Michael J. Black, and Richard Szeliski

December 2009
Technical Report

MSR-TR-2009-179

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

Abstract

The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to
significant advances in performance. The challenges for optical flow algorithms today go
beyond the datasets and evaluation methods proposed in that paper. Instead, they center
on problems associated with complex natural scenes, including nonrigid motion, real sen-
sor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation
methods for the next generation of optical flow algorithms. To that end, we contribute four
types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid
motion where the ground-truth flow is determined by tracking hidden fluorescent texture,
(2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error,
and (4) modified stereo sequences of static scenes. In addition to the average angular error
used by Barron et al., we compute the absolute flow endpoint error, measures for frame in-
terpolation error, improved statistics, and results at motion discontinuities and in textureless
regions. In October 2007, we published the performance of several well-known methods on
a preliminary version of our data to establish the current state of the art. We also made
the data freely available on the web at http://vision.middlebury.edu/flow/. Subsequently a
number of researchers have uploaded their results to our website and published papers using
the data. A significant improvement in performance has already been achieved. In this paper
we analyze the results obtained to date and draw a large number of conclusions from them.

i

1 Introduction

As a subfield of computer vision matures, datasets for quantitatively evaluating algorithms
are essential to ensure continued progress. Many areas of computer vision, such as stereo [63],
face recognition [28, 55, 68], and object recognition [23, 24], have challenging datasets to
track the progress made by leading algorithms and to stimulate new ideas. Optical flow
was actually one of the first areas to have such a benchmark, introduced by Barron et al.
in 1994 [7]. The field benefited greatly from this study which led to rapid and measurable
progress. To continue the rapid progress, new and more challenging datasets are needed to
push the limits of current technology, reveal where current algorithms fail, and evaluate the
next generation of optical flow algorithms. Such an evaluation dataset for optical flow should
ideally consist of complex real scenes with all the artifacts of real sensors (noise, motion blur,
etc.). They should also contain substantial motion discontinuities and nonrigid motion. Of
course, the image data should be paired with dense, subpixel-accurate, ground-truth flow
fields.

The presence of nonrigid or independent motion makes collecting a ground-truth dataset
for optical flow far harder than for stereo, say, where structured light [63] or range scanning
[66] can be used to obtain ground truth. Our solution is to collect four different datasets,
each satisfying a different subset of the desirable properties above. The combination of
these datasets provides a basis for a thorough evaluation of current optical flow algorithms.
Moreover, the relative performance of algorithms on the different datatypes may stimulate
further research. In particular, we collected the following four types of data:

• Real Imagery of Nonrigidly Moving Scenes: Dense ground-truth flow is obtained
using hidden fluorescent texture painted on the scene. We slowly move the scene, at
each point capturing separate test images (in visible light) and ground-truth images
(in UV light). Note that a related technique is being used commercially for motion
capture [48] and Tappen et al. [73] recently used certain wavelengths to hide ground
truth in intrinsic images. Another form of hidden markers was also used in [58] to
provide a sparse ground-truth alignment (or flow) of face images. Finally, Liu et al.
recently proposed a method to obtain ground-truth using human annotation [42].

• Realistic Synthetic Imagery: We address the limitations of simple synthetic se-
quences such as Yosemite [7] by rendering more complex scenes with larger motion
ranges, more realistic texture, independent motion, and with more complex occlusions.

• Imagery for Frame Interpolation: Intermediate frames are withheld and used
as ground truth. In a wide class of applications such as video re-timing, novel-view
generation, and motion-compensated compression, what is important is not how well
the flow matches the ground-truth motion, but how well intermediate frames can be
predicted using the flow [72].

• Real Stereo Imagery of Rigid Scenes: Dense ground truth is captured using
structured light [64]. The data is then adapted to be more appropriate for optical flow

1

by cropping to make the disparity range roughly symmetric.

We collected enough data to be able to split our collection into a training set (12 datasets)
and a final evaluation set (12 datasets). The training set includes the ground truth and is
meant to be used for debugging, parameter estimation, and possibly even learning [41, 70].
The ground truth for the final evaluation set is not publicly available (with the exception
of the Yosemite sequence, which is included in the test set to allow some comparison with
algorithms published prior to the release of our data).

We also extend the set of performance measures and the evaluation methodology of [7]
to focus attention on current algorithmic problems:

• Error Metrics: We report both average angular error [7] and flow endpoint error
(pixel distance) [53]. For image interpolation, we compute the residual RMS error
between the interpolated image and the ground-truth image. We also report a gradient-
normalized RMS error [72].

• Statistics: In addition to computing averages and standard deviations as in [7], we
also compute robustness measures [63] and percentile-based accuracy measures [66].

• Region Masks: Following [63], we compute the error measures and their statistics
over certain masked regions of research interest. In particular, we compute the statistics
near motion discontinuities and in textureless regions.

In October 2007 we published the performance of several well-known algorithms on a
preliminary version of our data to establish the current state of the art [6]. We also made the
data freely available on the web at http://vision.middlebury.edu/flow/. Subsequently a large
number of researchers have uploaded their results to our website and published papers using
the data. A significant improvement in performance has already been achieved. In this paper
we present both results obtained by the classic algorithms, as well as results obtained since
publication of our preliminary data. In addition to summarizing the overall conclusions of
the currently uploaded results, we also examine how the results vary: (1) across the metrics,
statistics, and region masks, (2) across the various datatypes and datasets, (3) from flow
estimation to interpolation, and (4) depending on the components of the algorithms.

The remainder of this paper is organized as follows. We begin in Section 2 with a survey
of existing optical flow algorithms, benchmark databases, and evaluations. In Section 3 we
describe the design and collection of our database, and briefly discuss the pros and cons of
each dataset. In Section 4 we describe the evaluation metrics. In Section 5 we present the
experimental results and discuss the major conclusions that can be drawn from them.

2 Related Work

Optical flow estimation is an extensive field. A fully comprehensive survey is beyond the
scope of this paper. In this related work section, our goals are: (1) to present a taxonomy

2

of the main components in the majority of existing optical flow algorithms, and (2) to focus
primarily on recent work and place the contributions of this work in the context of our
taxonomy. Note that our taxonomy is similar to those of Stiller and Konrad [69] for optical
flow and Scharstein and Szeliski [63] for stereo. For more extensive coverage of older work,
the reader is referred to previous surveys such as those by Aggarwal and Nandhakumar [2],
Barron et al. [7], Otte and Nagel [53], Mitiche and Bouthemy [47], and Stiller and Konrad [69].

We first define what we mean by optical flow. Following Horn’s [32] taxonomy, the motion
field is the 2D projection of the 3D motion of surfaces in the world, whereas the optical flow
is the apparent motion of the brightness patterns in the image. These two motions are not
always the same and, in practice, the goal of 2D motion estimation is application dependent.
In frame interpolation, it is preferable to estimate apparent motion so that, for example,
specular highlights move in a realistic way. On the other hand, in applications where the
motion is used to interpret or reconstruct the 3D world, the motion field is what is desired.

In this paper, we consider both motion field estimation and apparent motion estimation,
referring to them collectively as optical flow. The ground truth for most of our datasets is
the true motion field, and hence this is how we define and evaluate optical flow accuracy. For
our interpolation datasets, the ground truth consists of images captured at an intermediate
time instant. For this data, our definition of optical flow is really the apparent motion.

We do, however, restrict attention to optical flow algorithms that estimate a separate
2D motion vector for each pixel in one frame of a sequence or video containing two or more
frames. We exclude transparency which requires multiple motions per pixel. We also exclude
more global representations of the motion such as parametric motion estimates [9].

Most existing optical flow algorithms pose the problem as the optimization of a global
energy function that is the weighted sum of two terms:

EGlobal = EData + λEPrior. (1)

The first term EData is the Data Term, which measures how consistent the optical flow is with
the input images. We consider the choice of the data term in Section 2.1. The second term
EPrior is the Prior Term, which favors certain flow fields over others (for example EPrior often
favors smoothly varying flow fields). We consider the choice of the prior term in Section 2.2.
The optical flow is then computed by optimizing the global energy EGlobal. We consider the
choice of the optimization algorithm in Sections 2.3 and 2.4. In Section 2.5 we consider a
number of miscellaneous issues. Finally, in Section 2.6 we survey previous databases and
evaluations.

2.1 Data Term

2.1.1 Brightness Constancy

The basis of the data term used by most algorithms is Brightness Constancy, the assumption
that when a pixel flows from one image to another, its intensity or color does not change.
This assumption combines a number of assumptions about the reflectance properties of the

3

scene (e.g., that it is Lambertian), the illumination in the scene (e.g., that it is uniform [76])
and about the image formation process in the camera (e.g., that there is no vignetting).
If I(x, y, t) is the intensity of a pixel (x, y) at time t and the flow is (u(x, y, t), v(x, y, t)),
Brightness Constancy can be written as:

I(x, y, t) = I(x+ u, y + v, t+ 1). (2)

Linearizing Equation (2) by applying a Taylor expansion to the right hand side yields:

I(x, y, t) = I(x, y, t) + u
∂I

∂x
+ v

∂I

∂y
+ 1

∂I

∂t
, (3)

which simplifies to the Optical Flow Constraint equation:

u
∂I

∂x
+ v

∂I

∂y
+
∂I

∂t
= 0. (4)

Both Brightness Constancy and the Optical Flow Constraint equation provide just one con-
straint on the two unknowns at each pixel. This is the origin of the Aperture Problem and
the reason that optical flow is ill-posed and must be regularized with a prior term (see
Section 2.2).

The data term EData can be based on either Brightness Constancy in Equation (2) or
on the Optical Flow Constraint in Equation (4). In either case, the equation is turned into
an error per pixel, the set of which is then aggregated over the image in some manner (see
Section 2.1.2). If Brightness Constancy is used, it is generally converted to the Optical
Flow Constraint during the derivation of most continuous optimization algorithms (see Sec-
tion 2.3), which often involves the use of a Taylor expansion to linearize the energies. The
two constraints are therefore essentially equivalent in practical algorithms [54].

An alternative to the assumption of “constancy” is that the signals (images) at times t and
t+ 1 are highly correlated [17,57]. Various correlation constraints can be used for computing
dense flow including normalized cross correlation and Laplacian correlation [18,26].

2.1.2 Choice of the Penalty Function

Equations (2) and (4) both provide one error per pixel, which leads to the question of how
these errors are aggregated over the image. A baseline approach is to use an L2 norm as in
the Horn and Schunck algorithm [33]:

EData =
∑
x,y

[
u
∂I

∂x
+ v

∂I

∂y
+
∂I

∂t

]2
. (5)

If Equation (5) is interpreted probabilistically, the use of the L2 norm means that the errors
in the Optical Flow Constraint are assumed to be Gaussian and IID. This assumption is
rarely true in practice, particularly near occlusion boundaries where pixels at time t may
not be visible at time t + 1. In [11], Black and Anandan present an algorithm that can use

4

an arbitrary robust penalty function, illustrating their approach with the specific choice of
a Lorentzian penalty function. A common choice by a number of recent algorithms [54, 80]
is the L1 norm, which is sometimes approximated with the differentiable version:

‖x‖1 ≈
√
‖x‖22 + ε2 (6)

where ‖ · ‖1 denotes the L1 norm, ‖ · ‖2 denotes the L2 norm, and ε is a small positive
constant. A variety of other penalty functions have been used.

2.1.3 Photometrically Invariant Features

Instead of using the raw intensity or color values in the images, it is also possible to use
features computed from those images. In fact, some of the earliest optical flow algorithms
used filtered images to reduce the effects of shadows [3,18]. One recently popular choice (for
example used in [54] among others) is to augment or replace Equation (2) with a similar
term based on the gradient of the image:

∇I(x, y, t) = ∇I(x+ u, y + v, t+ 1). (7)

Empirically the gradient is often more robust to (approximately additive) illumination changes
than the raw intensities. Note, however, that Equation (7) makes the additional assumption
that the flow is locally translational; e.g., local scale changes, rotations, etc, can violate
Equation (7) even when Equation (2) holds. Zimmer et al. [84] combine Brightness Con-
stancy with Gradient Constancy and perform a careful normalization of the resulting data
term. It is also possible to use more complicated features than the gradient. For example a
Field-of-Experts formulation was used in [70] and SIFT features were used in [43].

2.1.4 Modeling Illumination, Blur, and Other Appearance Changes

The motivation for using features is to increase robustness to illumination and other appear-
ance changes. Another approach is to estimate the change explicitly. For example, suppose
g(x, y) denotes a multiplicative scale factor and b(x, y) an additive term that together model
the illumination change between I(x, y, t) and I(x, y, t+ 1). Brightness Constancy in Equa-
tion (2) can be generalized to:

g(x, y)I(x, y, t) = I(x+ u, y + v, t+ 1) + b(x, y). (8)

Note that putting g(x, y) on the left hand side is preferable to putting it on the right hand
side as it can make optimization easier [65]. Equation (8) is even more under-constrained
than Equation (2), with four unknowns per pixel rather than two. It can, however, be solved
by putting an appropriate prior on the two components of the illumination change model
g(x, y) and b(x, y) [51, 65]. Explicit illumination modeling can be generalized in several
ways, for example to model the changes physically over a longer time interval [30] or to
model blur [65].

5

2.2 Prior Term

The data term alone is ill-posed with fewer constraints than unknowns. It is therefore
necessary to add a prior to favor one possible solution over another. Generally speaking,
while most priors are smoothness priors, a wide variety of choices are possible.

2.2.1 First Order

Arguably the simplest prior is to favor small first-order derivatives (gradients) of the flow
field. If we use an L2 norm, then we might, for example, define:

EPrior =
∑
x,y

(∂u
∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
 . (9)

The combination of Equations (5) and (9) defines the energy used by Horn and Schunck [33].
Given more than two frames in the video, it is also possible to add temporal smoothness
terms ∂u

∂t
and ∂v

∂t
to Equation (9) [10, 49, 54]. Note, however, that the temporal terms need

to be weighted differently from the spatial ones.

2.2.2 Choice of the Penalty Function

As for the data term in Section 2.1.2, under a probabilistic interpretation, the use of an
L2 norm assumes that the gradients of the flow field are Gaussian and IID. Again, this
assumption is violated in practice and so a wide variety of other penalty functions have been
used. The Black and Anandan algorithm [11] also uses a first-order prior, but can use an
arbitrary robust penalty function on the prior term rather than the L2 norm in Equation (9).
While Black and Anandan [11] use the same Lorentzian penalty function for both the data
and spatial term, there is no need for them to be the same. The L1 norm is also a popular
choice of penalty function [54, 80]. When the L1 norm is used to penalize the gradients of
the flow field, the formulation falls in the class of Total Variation (TV) methods.

There are two common ways such robust penalty functions are used. One approach is
to apply the penalty function separately to each derivative and then to sum up the results.
The other approach is to first sum up the squares (or absolute values) of the gradients and
then apply a single robust penalty function. Some algorithms use the first approach [11],
while others use the second [16,54,80].

Note that some penalty (log probability) functions have probabilistic interpretations re-
lated to the distribution of flow derivatives [61].

2.2.3 Spatial Weighting

One popular refinement for the prior term is one that weights the penalty function with a
spatially varying function. One particular example is to vary the weight depending on the

6

gradient of the image:

EPrior =
∑
x,y

w(∇I)

(∂u
∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2
 . (10)

Equation (10) could be used to reduce the weight of the prior at edges (high |∇I|) because
there is a greater likelihood of a flow discontinuity at an intensity edge than inside a smooth
region. The weight can also be a function of an over-segmentation of the image, rather than
the gradient, for example down-weighting the prior between different segments [65].

2.2.4 Anisotropic Smoothness

In Equation (10) the weighting function is isotropic, treating all directions equally. A variety
of approaches weight the smoothness prior anisotropically. For example, Nagel and Enkel-
mann [50] and Werlberger et al. [82] weight the direction along the image gradient less than
the direction orthogonal to it, and Sun et al. [70] learn a Steerable Random field to define
the weighting. Zimmer et al. [84] perform a similar anisotropic weighting, but the directions
are defined by the data constraint rather than the image gradient.

2.2.5 Higher-Order Priors

The first-order priors in Section 2.2.1 can be replaced with priors that encourage the second-
order derivatives (∂

2u
∂x2 , ∂2u

∂y2
, ∂2u

∂x∂y
, ∂2v

∂x2 , ∂2v
∂y2

, ∂2v
∂x∂y

) to be small [4, 75].

A related approach is to use an affine prior [35, 36, 52, 65]. One approach is to over-
parameterize the flow [52]. Instead of solving for two flow vectors (u(x, y, t), v(x, y, t)) at
each pixel, the algorithm in [52] solves for 6 affine parameters ai(x, y, t), i = 1, . . . 6 where
the flow is given by:

u(x, y, t) = a1(x, y, t) +
x− x0
x0

a3(x, y, t) +
y − y0
y0

a5(x, y, t) (11)

v(x, y, t) = a2(x, y, t) +
x− x0
x0

a4(x, y, t) +
y − y0
y0

a6(x, y, t) (12)

where (x0, y0) is the middle of the image. Equations (11) and (12) are then substituted
into any of the data terms above. Ju et al. formulate the prior so that neighboring affine
parameters should be similar [36]. As above, a robust penalty may be used and, further,
may vary depending on the affine parameter (for example weighting a1 and a2 differently
from a3 . . . a6).

2.2.6 Rigidity Priors

A number of authors have explored rigidity or fundamental matrix priors which, in the
absence of other evidence, favor flows that are parallel to epipolar lines. These constraints
have both been strictly enforced [1, 29,52] and added as a soft prior [78,79].

7

2.3 Continuous Optimization Algorithms

The two most commonly used continuous optimization techniques in optical flow are: (1) gra-
dient descent algorithms (Section 2.3.1) and (2) extremal or variational approaches (Sec-
tion 2.3.2). In Section 2.3.3 we describe a small number of other approaches.

2.3.1 Gradient Descent Algorithms

Let f be a vector resulting from concatenating the horizontal and vertical components of
the flow at every pixel. The goal is then to optimize EGlobal with respect to f . The simplest
gradient descent algorithm is steepest descent [5], which takes steps in the direction of the
negative gradient −∂EGlobal

∂f
. An important question with steepest descent is how big the

step size should be. One approach is to adjust the step size iteratively, increasing it if the
algorithm makes a step that reduces the energy and decreasing it if the algorithm tries to
makes a step that increases the error. Another approach used in [11] is to set the step size
to be:

− w 1

T

∂EGlobal

∂f
. (13)

In this expression, T is an upper bound on the second derivatives of the energy; T ≥ ∂2EGlobal

∂f2
i

for all components fi in the vector f . The parameter 0 < w < 2 is an over-relaxation
parameter. Without it, Equation (13) tends to take too small steps because: (1) T is an
upper bound, and (2) the equation does not model the off-diagonal elements in the Hessian.
It can be shown that if EGlobal is a quadratic energy function (i.e., the problem is equivalent
to solving a large linear system), convergence to the global minimum can be guaranteed
(albeit possibly slowly) for any 0 < w < 2. In general EGlobal is nonlinear and so there is no
such guarantee. However, based on the theoretical result in the linear case, a value around
w ≈ 1.95 is generally used. Also note that many non-quadratic (e.g., robust) formulations
can be solved with iteratively reweighted least squares (IRLS); i.e., they are posed as a
sequence of quadratic optimization problems with a data-dependent weighting function that
varies from iteration to iteration. The weighted quadratic is iteratively solved and the weights
re-estimated.

In general, steepest descent algorithms are relatively weak optimizers requiring a large
number of iterations because they fail to model the coupling between the unknowns. A
second-order model of this coupling is contained in the Hessian matrix ∂2EGlobal

∂fi∂fj
. Algorithms

that use the Hessian matrix or approximations to it such as the Newton method, Quasi-
Newton methods, the Gauss-Newton method, and the Levenberg-Marquardt algorithm [5]
all converge far faster. These algorithms are however inapplicable to the general optical
flow problem because they require estimating and inverting the Hessian, a 2n × 2n matrix
where there are n pixels in the image. These algorithms are applicable to problems with
fewer parameters such as the Lucas-Kanade algorithm [44] and variants [38], which solve for
a single flow vector (2 unknowns) independently for each block of pixels. Another set of
examples are parametric motion algorithms [9], which also just solve for a small number of
unknowns.

8

2.3.2 Variational and Other Extremal Approaches

The second class of algorithms assume that the global energy function can be written in the
form:

EGlobal =
∫ ∫

E(u(x, y), v(x, y), x, y, ux, uy, vx, vy) dx dy (14)

where ux = ∂u
∂x

, uy = ∂u
∂y

, vx = ∂v
∂x

, and vy = ∂v
∂y

. At this stage, u = u(x, y) and v = v(x, y) are

treated as unknown 2D functions rather than the set of unknown parameters (the flows at
each pixel). The parameterization of these functions occurs later. Note that Equation (14)
imposes limitations on the functional form of the energy, i.e., that it is just a function of the
flow u, v, the spatial coordinates x, y and the gradients of the flow ux, uy, vx and vy. A wide
variety of energy functions do satisfy this requirement including [16,33,52,54,84].

Equation (14) is then treated as a “calculus of variations” problem leading to the Euler-
Lagrange equations:

∂EGlobal

∂u
− ∂

∂x

∂EGlobal

∂ux
− ∂

∂y

∂EGlobal

∂uy
= 0 (15)

∂EGlobal

∂v
− ∂

∂x

∂EGlobal

∂vx
− ∂

∂y

∂EGlobal

∂vy
= 0. (16)

Because they use the calculus of variations, such algorithms are generally referred to as varia-
tional. In the special case of the Horn-Schunck algorithm [32], the Euler-Lagrange equations
are linear in the unknown functions u and v. These equations are then parameterized with
two unknown parameters per pixel and can be solved as a sparse linear system. A variety
of options are possible, including the Jacobi method, the Gauss-Seidel method, Successive
Over-Relaxation, and the Conjugate Gradient algorithm.

For more general energy functions, the Euler-Lagrange equations are nonlinear and are
typically solved using an iterative method (analogous to gradient descent). For example, the
flows can be parameterized by u + du and v + dv where u, v are treated as known (from
the previous iteration or the initialization) and du, dv as unknowns. These expressions are
substituted into the Euler-Lagrange equations, which are then linearized through the use
of Taylor expansions. The resulting equations are linear in du and dv and solved using a
sparse linear solver. The estimates of u and v are then updated appropriately and the next
iteration applied.

One disadvantage of variational algorithms is that the discretization of the Euler-Lagrange
equations is not always exact with respect to the original energy [56]. Another extremal ap-
proach [70], closely related to the variation algorithms is to use:

∂EGlobal

∂f
= 0 (17)

rather than the Euler-Lagrange equations. Otherwise, the approach is similar. Equation (17)
can be linearized and solved using as a sparse linear system. The key difference between this
approach and the variational one is just whether the parameterization of the flow functions

9

into a set of flows per pixel occurs before or after the derivation of the extremal constraint
equation (Equation (17) or the Euler-Lagrange equations). One advantage of the early
parameterization and the subsequent use of Equation (17) is that it reduces the restrictions
on the functional form of EGlobal, important in learning-based approaches [70].

2.3.3 Other Continuous Algorithms

Another approach [74, 80] is to decouple the data and prior terms through the introduction
of two sets of flow parameters, say (udata, vdata) for the data term and (uprior, vprior) for the
prior:

EGlobal = EData(udata, vdata) + λEPrior(uprior, vprior)

+ γ
(
‖udata − uprior‖2 + ‖vdata − vprior‖2

)
. (18)

The final term in Equation (18) encourages the two sets of flow parameters to be roughly the
same. For a sufficiently large value of γ the theoretical optimal solution will be unchanged
and (udata, vdata) will exactly equal (uprior, vprior). Practical optimization with too large a
value of γ is problematic, however. In practice either a lower value is used or γ is steadily
increased. The two sets of parameters allow the optimization to be broken into two steps.
In the first step, the sum of the data term and the third term in Equation (18) is optimized
over the data flows (udata, vdata) assuming the prior flows (uprior, vprior) are constant. In the
second step, the sum of the prior term and the third term in Equation (18) is optimized over
prior flows (uprior, vprior) assuming the data flows (udata, vdata) are constant. The result is two
much simpler optimizations. The first optimization can be performed independently at each
pixel. The second optimization is often simpler because it does not depend directly on the
nonlinear data term [74,80].

Finally, in recent work, continuous convex optimization algorithms such as Linear Pro-
gramming have also been used to compute optical flow [65].

2.3.4 Coarse-To-Fine and Other Heuristics

All of the above algorithms solve the problem as huge nonlinear optimizations. Even the
Horn-Schunck algorithm, which results in linear Euler-Lagrange equations, is nonlinear
through the linearization of the Brightness Constancy constraint to give the Optical Flow
constraint. A variety of approaches have been used to improve the convergence rate and
reduce the likelihood of falling into a local minimum.

One component in many algorithms is a coarse-to-fine strategy. The most common
approach is to build image pyramids by repeated blurring and downsampling [3, 11, 18, 22,
26, 44]. Optical flow is first computed on the top level (fewest pixels) and then upsampled
and used to initialize the estimate at the next level. Computation at the higher levels in
the pyramid involves far fewer unknowns and so is far faster. The initialization at each
level from the previous level also means that far fewer iterations are required at each level.
For this reason, pyramid algorithms tend to be significantly faster than a single solution

10

at the bottom level. The images at the higher levels also contain fewer higher frequency
components reducing the number of local minima in data term. A related approach is to
use a multi-grid algorithm [16] where estimates of the flow are passed both up and down
the hierarchy of approximations. The major limitation of many coarse-to-fine algorithms,
however, is the tendency to over-smooth fine structure and fast-moving objects.

The main purpose of coarse-to-fine strategies is to deal with nonlinearities caused by the
data term (and the subsequent difficulty in dealing with long-range motion). At the coarsest
pyramid level, the flow magnitude is likely to be small making the linearization of the bright-
ness constancy assumption reasonable. Incremental warping of the flow between pyramid
levels [9] helps keep the flow update at any given level small (i.e., under one pixel). When
combined with incremental warping and updating within a level, this method is effective for
optimization with a linearized brightness constancy assumption.

Another common cause of nonlinearity is the use of a robust penalty function (see Sec-
tions 2.1.2 and 2.2.2). A common approach to improve robustness in this case is Graduated
Non-Convexity (GNC) [11, 13]. During GNC, the problem is first converted into a convex
approximation that is more easily solved. The energy function is then made incrementally
more non-convex and the solution is refined, until the original desired energy function is
reached.

2.4 Discrete Optimization Algorithms

A number of recent approaches use discrete optimization algorithms, similar to those em-
ployed in stereo matching, such as graph cuts [14] and belief propagation [71]. Discrete
optimization methods approximate the continuous space of solutions with a greatly simpli-
fied problem. The hope is that this will enable a more thorough and complete search of the
state space. The trade-off in moving from continuous to discrete optimization is one of search
efficiency for fidelity. Note that, in contrast to discrete stereo optimization methods, the 2D
flow field makes discrete optimization of optical flow significantly more challenging. Approx-
imations are usually made, which can limit the power of the discrete algorithms to avoid
local minima. The few methods proposed to date can be divided into two main approaches
described below.

2.4.1 Fusion Approaches

Algorithms such as [37, 40, 74] assume that a number of candidate flow fields have been
generated by running standard algorithms such as Lucas-Kanade [44] and Horn-Schunck
[33], possibly multiple times with a number of different parameters. Computing the flow
is then posed as choosing which of the set of possible candidates is best at each pixel.
Fusion Flow [40] uses a sequence of binary graph-cut optimizations to refine the current flow
estimate by selectively replacing portions with one of the candidate solutions. Trobin et
al. [74] perform a similar sequence of fusion steps, at each step solving a continuous [0, 1]
optimization problem and then thresholding the results.

11

2.4.2 Dynamically Reparameterizing Sparse State-Spaces

Any fixed 2D discretization of the continuous space of 2D flow fields is likely to be a crude
approximation to the continuous field. A number of algorithms take the approach of first
approximating this state space sparsely (both spatially, and in terms of the possible flows at
each pixel) and then refining the state space based on the result. An early use of this idea
for flow estimation employed simulated annealing with a state space that adapted based on
the local shape of the objective function [10]. More recently, Glocker et al. [27] initially use
a sparse sampling of possible motions on a coarse version of the problem. As the algorithm
runs from coarse to fine, the spatial density of motion states (which are interpolated with
a spline) and the density of possible flows at any given control point are chosen based on
the uncertainty in the solution from the previous iteration. The algorithm of Lei et al. [39]
also sparsely allocates states across space and for the possible flows at each spatial location.
The spatial allocation uses a hierarchy of segmentations, with a single possible flow for each
segment at each level. Within any level of the segmentation hierarchy, first a sparse sampling
of the possible flows is used, followed by a denser sampling with a reduced range around the
solution from the previous iteration. The algorithm in [20] iteratively alternates between
two steps. In the first step, all the states are allocated to the horizontal motion, which is
estimated similarly to stereo, assuming the vertical motion is zero. In the second step, all
the states are allocated to the vertical motion, treating the estimate of the horizontal motion
from the previous iteration as constant.

2.4.3 Continuous Refinement

An optional step after a discrete algorithm is to use a continuous optimization to refine the
results. Any of the approaches in Section 2.3 are possible.

2.5 Miscellaneous Issues

2.5.1 Learning

The design of a global energy function EGlobal involves a variety of choices, each with a number
of free parameters. Rather than manually making these decision and tuning parameters,
learning algorithms have been used to choose the data and prior terms and optimize their
parameters by maximizing performance on a set of training data [41,61,70].

2.5.2 Segmentation

If the image can be segmented into coherently moving regions, many of the methods above
can be used to accurately estimate the flow within the regions. Further, if the flow were
accurately known, segmenting it into coherent regions would be feasible. One of the reasons
optical flow has proven challenging to compute is that the flow and its segmentation must
be computed together.

12

Several methods first segment the scene using non-motion cues and then estimate the flow
in these regions [12,83]. Within each image segment, Black and Jepson [12] use a parametric
model (e.g., affine) [9], which simplifies the problem by reducing the number of parameters
to be estimated. The flow is then refined as suggested above.

2.5.3 Layers

Motion transparency has been extensively studied and is not considered in detail here. Most
methods have focused on the use of parametric models that estimate motion in layers [34,77].
The regularization of transparent motion in the framework of global energy minimization,
however, has received little attention with the exception of [36, 81].

2.5.4 Sparse-to-Dense Approaches

The coarse-to-fine methods described above have difficulty dealing with long-range motion
of small objects. In contrast, there exist many methods to accurately estimate sparse feature
correspondences even when the motion is large. Such sparse matching method can be com-
bined with the continuous energy minimization approaches in a variety of ways [15,43,60,83].

2.5.5 Visibility and Occlusion

Occlusions and visibility changes can cause major problems for optical flow algorithms. The
most common solution is to model such effects implicitly using a robust penalty function on
both the data term and the prior term. Explicit occlusion estimation, for example through
cross-checking flows computed forwards and backwards in time, is another approach that
can be used to improve robustness to occlusions and visibility changes [39,83].

2.6 Databases and Evaluations

Prior to our evaluation [6], there were three major attempts to quantitatively evaluate optical
flow algorithms, each proposing sequences with ground truth. The work of Barron et al. [7]
has been so influential that until recently, essentially all published methods compared with it.
The synthetic sequences used there, however, are too simple to make meaningful comparisons
between modern algorithms. Otte and Nagel [53] introduced ground truth for a real scene
consisting of polyhedral objects. While this provided real imagery, the images were extremely
simple. More recently, McCane et al. [46] provided ground truth for real polyhedral scenes
as well as simple synthetic scenes. Most recently Liu et al. [42] proposed a dataset of real
imagery that uses hand segmentation and computed flow estimates within the segmented
regions to generate the ground truth. While this has the advantage of using real imagery, the
reliance on human judgement for segmentation, and on a particular optical flow algorithm
for ground truth, may limit its applicability.

In this paper we go beyond these studies in several important ways. First, we provide
ground-truth motion for much more complex real and synthetic scenes. Specifically, we

13

include ground truth for scenes with nonrigid motion. Second, we also provide ground-
truth motion boundaries and extend the evaluation methods to these areas where many
flow algorithms fail. Finally, we provide a web-based interface, which facilitates the ongoing
comparison of methods.

Our goal is to push the limits of current methods and, by exposing where and how they
fail, focus attention on the hard problems. As described above, almost all flow algorithms
have a specific data term, prior term, and optimization algorithm to compute the flow field.
Regardless of the choices made, algorithms must somehow deal with all of the phenomena
that make optical flow intrinsically ambiguous and difficult. These include: (1) the aperture
problem and textureless regions, which highlight the fact that optical flow is inherently ill-
posed, (2) camera noise, nonrigid motion, motion discontinuities, and occlusions, which make
choosing appropriate penalty functions for both the data and prior terms important, (3) large
motions and small objects which, often cause practical optimization algorithms to fall into
local minima, and (4) mixed pixels, changes in illumination, non-Lambertian reflectance, and
motion blur, which highlight overly simplified assumptions made by Brightness Constancy
(or simple filter constancy). Our goal is to provide ground-truth data containing all of
these components and to provide information about the location of motion boundaries and
textureless regions. In this way, we hope to be able to evaluate which phenomena pose
problems for which algorithms.

3 Database Design

Creating a ground-truth database for optical flow is difficult. For stereo, structured light
[63] or range scanning [66] can be used to obtain dense, pixel-accurate ground truth. For
optical flow, the scene may be moving nonrigidly making such techniques inapplicable in
general. Ideally we would like imagery collected in real-world scenarios with real cameras
and substantial nonrigid motion. We would also like dense, subpixel-accurate ground truth.
We are not aware of any technique that can simultaneously satisfy all of these goals.

Rather than collecting a single type of data (with its inherent limitations) we instead
collected four different types of data, each satisfying a different subset of desirable properties.
Having several different types of data has the benefit that the overall evaluation is less likely
to be affected by any biases or inaccuracies in any of the data types. It is important to
keep in mind that no ground-truth data is perfect. The term itself just means “measured on
the ground” and any measurement process may introduce noise or bias. We believe that the
combination of our four datasets is sufficient to allow a thorough evaluation of current optical
flow algorithms. Moreover, the relative performance of algorithms on the different types of
data is itself interesting and can provide insights for future algorithms (see Section 5.2.4).

Wherever possible, we collected eight frames with the ground-truth flow being defined
between the middle pair. We collected color imagery, but also make grayscale imagery
available for comparison with legacy implementations and existing approaches that only
process grayscale. The dataset is divided into 12 training sequences with ground truth,
which can be used for parameter estimation or learning, and 12 test sequences, where the

14

(b) (c) (d)

(a) (e) (f) (g)

Figure 1: (a) The setup for obtaining ground-truth flow using hidden fluorescent texture
includes computer-controlled lighting to switch between the UV and visible lights. It also
contains motion stages for both the camera and the scene. (b–d) The setup under the
visible illumination. (e–g) The setup under the UV illumination. (c) and (f) show the high-
resolution images taken by the digital camera. (d) and (g) show a zoomed portion of (c) and
(f). The high-frequency fluorescent texture in the images taken under UV light (g) allows
accurate tracking, but is largely invisible in the low-resolution test images.

ground truth is withheld. In this paper we only describe the test sequences. The datasets,
instructions for evaluating results on the test set, and the performance of current algorithms
are all available at http://vision.middlebury.edu/flow/. We describe each of the four types
of data below.

3.1 Dense GT Using Hidden Fluorescent Texture

We have developed a technique for capturing imagery of nonrigid scenes with ground-truth
optical flow. We build a scene that can be moved in very small steps by a computer-controlled
motion stage. We apply a fine spatter pattern of fluorescent paint to all surfaces in the scene.
The computer repeatedly takes a pair of high-resolution images both under ambient lighting
and under UV lighting, and then moves the scene (and possibly the camera) by a small
amount.

In our current setup, shown in Figure 1(a), we use a Canon EOS 20D camera to take
images of size 3504×2336, and make sure that no scene point moves by more than 2 pixels
from one captured frame to the next. We obtain our test sequence by downsampling every
40th image taken under visible light by a factor of six, yielding images of size 584×388.
Because we sample every 40th frame, the motion can be quite large (up to 12 pixels between
frames in our evaluation data) even though the motion between each pair of captured frames
is small and the frames are subsequently downsampled, i.e., after the downsampling, the
motion between any pair of captured frames is at most 1/3 of a pixel.

Since fluorescent paint is available in a variety of colors, the color of the objects in the
scene can be closely matched. In addition, it is possible to apply a fine spatter pattern,

15

where individual droplets are about the size of 1–2 pixels in the high-resolution images. This
high-frequency texture is therefore far less perceptible in the low-resolution images, while
the fluorescent paint is very visible in the high-resolution UV images in Figure 1(g). Note
that fluorescent paint absorbs UV light but emits light in the visible spectrum. Thus, the
camera optics affect the hidden texture and the scene colors in exactly the same way, and
the hidden texture remains perfectly aligned with the scene.

The ground-truth flow is computed by tracking small windows in the original sequence of
high-resolution UV images. We use a sum-of-squared-difference (SSD) tracker with a window
size of 15×15, corresponding to a window radius of less than 1.5 pixels in the downsampled
images. We perform a local brute-force search, using each frame to initialize the next. We
also crosscheck the results by tracking each pixel both forwards and backwards through
the sequence and require perfect correspondence. The chances that this check would yield
false positives after tracking for 40 frames are very low. Crosschecking identifies the occluded
regions, whose motion we mark as “unknown.” After the initial integer-based motion tracking
and crosschecking, we estimate the subpixel motion of each window using Lucas-Kanade [44]
with a precision of about 1/10 pixels (i.e., 1/60 pixels in the downsampled images). Using
the combination of fluorescent paint, downsampling high-resolution images, and sequential
tracking of small motions, we are able to obtain dense, subpixel accurate ground truth for a
nonrigid scene.

We include four sequences in the evaluation set (Figure 2). Army contains several
independently moving objects. Mequon contains nonrigid motion and large areas with
little texture. Schefflera contains thin structures, shadows, and foreground/background
transitions with little contrast. Wooden contains rigidly moving objects with little texture
in the presence of shadows. The maximum motion in Army is approximately 4 pixels.
The maximum motion in the other three sequences is about 10 pixels. All sequences are
significantly more difficult than the Yosemite sequence due to the larger motion ranges,
the non-rigid motion, various photometric effects such as shadows and specularities, and the
detailed geometric structure.

The main benefit of this dataset is that it contains ground truth on imagery captured
with a real camera. Hence, it contains real photometric effects, natural textural properties,
etc. The main limitations of this dataset are that the scenes are laboratory scenes, not
real-world scenes. There is also no motion blur due to the stop motion method of capture.

One drawback of this data is that the ground truth it is not available in areas where cross-
checking failed, in particular, in regions occluded in one image. Even though the ground
truth is reasonably accurate (on the order of 1/60th of a pixel), the process is not perfect;
significant errors however, are limited to a small fraction of the pixels. The same can be
said for any real data where the ground truth is measured, including, for example, in the
Middlebury stereo dataset [63]. The ground-truth measuring technique may always be prone
to errors and biases. Consequently, the following section describes realistic synthetic data
where the ground truth is guaranteed to be perfect.

16

Army frame 0 Army frame 1 Army GT flow flow color coding

Mequon frame 0 Mequon frame 1 Mequon GT flow flow color coding

Schefflera frame 0 Schefflera frame 1 Schefflera GT flow flow color coding

Wooden frame 0 Wooden frame 1 Wooden GT flow flow color coding

Figure 2: Hidden Texture Data. Army contains several independently moving objects.
Mequon contains nonrigid motion and textureless regions. Schefflera contains thin struc-
tures, shadows, and foreground/background transitions with little contrast. Wooden con-
tains rigidly moving objects with little texture in the presence of shadows. In the right-most
column, we include a visualization of the color-coding of the optical flow. The “ticks” on the
axes denote a flow unit of one pixel; note that the flow magnitudes are fairly low in Army
(< 4 pixels), but higher in the other three scenes (up to 10 pixels).

17

3.2 Realistic Synthetic Imagery

Synthetic scenes generated using computer graphics are often indistinguishable from real
ones. For the study of optical flow, synthetic data offers a number of benefits. In particular,
it gives full control over the rendering process including material properties of the objects,
while providing precise ground-truth motion and object boundaries.

To go beyond previous synthetic ground truth (e.g., the Yosemite sequence), we gen-
erated two types of fairly complex synthetic outdoor scenes. The first is a set of “natural”
scenes (Figure 3 top) containing significant complex occlusion. These scenes consist of a ran-
dom number of procedurally generated “rocks” and “trees” with randomly chosen ground
texture and surface displacement. Additionally, the tree bark has significant 3D texture.
The trees have a small amount of independent movement to mimic motion due to wind.
The camera motions include camera rotation and 3D translation. A second set of “urban”
scenes (Figure 3 middle) contain buildings generated with a random shape grammar. The
“buildings” have randomly selected scanned textures and some surfaces are slightly reflective.
There are cast shadows as well as a few independently moving “cars”.

These scenes were generated using the 3Delight Renderman-compliant renderer [21] at a
resolution of 640x480 pixels using linear gamma. The images are antialiased, mimicking the
effect of sensors with finite area. Current rendered scenes do not use full global illumination
but use the ambient occlusion approximation. Frames in these synthetic sequences were
generated without motion blur.

The ground truth was computed using a custom shader that projects the 3D motion of
the scene corresponding to a particular image onto the 2D image plane. Since individual
pixels can potentially represent more than one object, simply point-sampling the flow at the
center of each pixel could result in a flow vector that does not reflect the dominant motion
under the pixel. On the other hand, applying antialiasing to the flow would result in an
averaged flow vector at each pixel that does reflect the true motion of any object within that
pixel. Instead, we clustered the flow vectors within each pixel and selected a flow vector
from the dominant cluster: The flow fields are initially generated at 3× resolution, resulting
in nine candidate flow vectors for each pixel. These motion vectors are grouped into two
clusters using k-means. The k-means procedure is initialized with the vectors closest and
furthest from the pixel’s average flow as measured using the flow vector end points. The
flow vector closest to the mean of the dominant cluster is then chosen to represent the flow
for that pixel. The images were also generated at 3× resolution and downsampled using a
bicubic filter.

We selected three synthetic sequences to include in the evaluation set (Figure 3). Grove
contains a close-up view of a tree, with a substantial parallax and motion discontinuities.
Urban contains images of a city, with substantial motion discontinuities, a large motion
range, and an independently moving object. We also include the Yosemite sequence to
allow some comparison with algorithms published prior to the release of our data.

18

Grove frame 0 Grove frame 1 Grove GT flow flow color coding

Urban frame 0 Urban frame 1 Urban GT flow flow color coding

Yosemite frame 0 Yosemite frame 1 Yosemite GT flow flow color coding

Figure 3: Synthetic Data. Grove contains a close up of a tree with thin structures, very
complex motion discontinuities, and a large motion range (up to 20 pixels). Urban contains
large motion discontinuities and an even larger motion range (up to 35 pixels). Yosemite is
included in our evaluation to allow comparison with algorithms published prior to our study.

19

3.3 Imagery for Frame Interpolation

In a wide class of applications such as video re-timing, novel view generation, and motion-
compensated compression, what is important is not how well the flow field matches the
ground-truth motion, but how well intermediate frames can be predicted using the flow. To
allow for measures that predict performance on such tasks, we collected a variety of data
suitable for frame interpolation. The relative performance of algorithms with respect to
frame interpolation and ground-truth motion estimation is interesting in its own right.

3.3.1 Frame Interpolation Datasets

We used a PointGrey Dragonfly Express camera to capture the data, acquiring 60 frames
per second. We provide every other frame to the optical flow algorithms and retain the
intermediate images as frame-interpolation ground truth. This temporal subsampling means
that the input to the flow algorithms is captured at 30Hz while enabling generation of a 2×
slow-motion sequence.

We include four such sequences in the evaluation set (Figure 4). The first two (Backyard
and Basketball) include people, a common focus of many applications, but a subject matter
absent from previous evaluations. Backyard is captured outdoors with a short shutter (6ms)
and has little motion blur. Basketball is captured indoors with a longer shutter (16ms) and
so has more motion blur. The third sequence, Dumptruck, is an urban scene containing
several independently moving vehicles, and has substantial specularities and saturation (2ms
shutter). The final sequence, Evergreen, includes highly textured vegetation with complex
motion discontinuities (6ms shutter).

The main benefit of the interpolation dataset is that the scenes are real world scenes,
captured with a real camera and containing real sources of noise. The ground truth is not
a flow field, however, but an intermediate image frame. Hence, the definition of flow being
used is the apparent motion, not the 2D projection of the motion field.

3.3.2 Frame Interpolation Algorithm

Note that the evaluation of accuracy depends on the interpolation algorithm used to con-
struct the intermediate frame. By default, we generate the intermediate frames from the
flow fields uploaded to the website using our baseline interpolation algorithm. Researchers
can also upload their own interpolation results in case they want to use a more sophisticated
algorithm.

Our algorithm takes a single flow field u0 from image I0 to I1 and constructs an inter-
polated frame It at time t ∈ (0, 1). We do, however, use both frames to generate the actual
intensity values. In all the experiments in this paper t = 0.5. Our algorithm is closely related
to previous algorithms for depth-based frame interpolation [67,85]:

1. Forward-warp the flow u0 to time t to give u1 where:

ut(round(x + tu0(x))) = u0(x). (19)

20

Backyard frame 0 Backyard frame 1 GT interpolated frame

Basketball frame 0 Basketball frame 1 GT interpolated frame

Dumptruck frame 0 Dumptruck frame 1 GT interpolated frame

Evergreen frame 0 Evergreen frame 1 GT interpolated frame

Figure 4: High-Speed Data for Interpolation. We collected four sequences using a PointGrey
Dragonfly Express running at 60Hz. We provide every other image to the algorithms and
retain the intermediate frame as interpolation ground truth. The first two sequences (Back-
yard and Basketball) include people, a common focus of many applications. Dumptruck
contains several independently moving vehicles, and has substantial specularities and satu-
ration. Evergreen includes highly textured vegetation with complex discontinuities.

21

In order to avoid sampling gaps, we splat the flow vectors with a splatting radius of
±0.5 pixels. In cases where multiple flow vectors map to the same location, we attempt
to resolve the ordering independently for each pixel by checking photoconsistency; i.e.,
we retain the flow u0(x) with the lowest color difference |I0(x)− I1(x + u0(x))|.

2. Fill any holes in ut using a simple outside-in strategy.

3. Estimate occlusions masks O0(x) and O1(x), where Oi(x) = 1 means pixel x in image
Ii is not visible in the respective other image. To compute O0(x) and O1(x), we first
forward-warp the flow u0(x) to time t = 1 using the same approach as in Step 1 to give
u1(x). Any pixel x in u1(x) that is not targeted by this splatting has no corresponding
pixel in I0 and thus we set O1(x) = 1 for all such pixels. (See [31] for a bidirectional
algorithm that performs this reasoning at time t.) In order to compute O0(x), we
cross-check the flow vectors, setting O0(x) = 1 if

|u0(x)− u1(x + u0(x))| > 0.5. (20)

4. Compute the colors of the interpolated pixels, taking occlusions into consideration. Let
x0 = x − tut(x) and x1 = x + (1 − t)ut(x) denote the locations of the two “source”
pixels in the two images. If both pixels are visible, i.e., O0(x0) = 0 and O1(x1) = 0,
blend the two images [8]:

It(x) = (1− t)I0(x0) + tI1(x1). (21)

Otherwise, only sample the non-occluded image, i.e., set It(x) = I0(x0) if O1(x1) =
1 and vice versa. In order to avoid artifacts near object boundaries, we dilate the
occlusion masks O0, O1 by a small radius before this operation. We use bilinear
interpolation to sample the images.

This algorithm, while reasonable, is only meant to serve as starting point. One area for future
research is to develop better frame interpolation algorithms. We hope that our database will
be used both by researchers working on optical flow and on frame interpolation [31,45].

3.4 Modified Stereo Data for Rigid Scenes

Our final type of data consists of modified stereo data. Specifically we include the Teddy
dataset [62] in the evaluation set, the ground truth for which was obtained using struc-
tured lighting [64] (Figure 5). Stereo datasets typically have an asymmetric disparity range
[0, dmax], which is appropriate for stereo, but not for optical flow. We crop different subre-
gions of the images, thereby introducing a spatial shift, to convert this disparity range to
[−dmax/2, dmax/2].

A key benefit of the modified stereo dataset, like the hidden fluorescent texture dataset,
is that it contains ground-truth flow fields on imagery captured with a real camera. An
additional benefit is that it allows a comparison between state-of-the-art stereo algorithms

22

Teddy frame 0 Teddy frame 1 Teddy GT flow flow color coding

Figure 5: Stereo Data. We cropped the stereo dataset Teddy [64] to convert the asymmetric
stereo disparity range into a roughly symmetric flow field. This dataset includes complex
geometric, and significant occlusions and motion discontinuities. One reason for including
this dataset is to allow comparison with state-of-the-art stereo algorithms.

and optical flow algorithms. Shifting the disparity range does not affect the performance
of stereo algorithms as long as they are given the new search range. Although optical flow
is a more under-constrained problem, the relative performance of algorithms may lead to
algorithmic insights.

One concern with the modified stereo dataset is that algorithms may take advantage of
the knowledge that the motions are all horizontal. Indeed a number recent algorithms have
considered rigidity priors [78, 79]. However, these algorithms must also perform well on the
other types of data and any over-fitting to the rigid data should be visible by comparing
results across the 12 images in the evaluation set. Another concern would be that the ground
truth is only accurate to 0.25 pixels. (The original stereo data comes with pixel-accurate
ground truth but is four times higher resolution [64].) The most appropriate performance
statistics for this data, therefore, are the robustness statistics used in the Middlebury stereo
dataset [63] (Section 4.2).

4 Evaluation Methodology

We refine and extend the evaluation methodology of [7] in terms of: (1) the performance
measures used, (2) the statistics computed, and (3) the sub-regions of the images considered.

4.1 Performance Measures

The most commonly used measure of performance for optical flow is the angular error (AE).
The AE between a flow vector (u, v) and the ground-truth flow (uGT, vGT) is the angle in 3D
space between (u, v, 1.0) and (uGT, vGT, 1.0). The AE can be computed by taking the dot
product of the vectors, dividing by the product of their lengths, and then taking the inverse

23

cosine:

AE = arccos

(
1.0 + u× uGT + v × vGT√

1.0 + u× u+ v × v
√

1.0 + uGT × uGT + vGT × vGT

)
. (22)

The popularity of this measure is based on the seminal survey by Barron et al. [7], although
the measure itself dates to prior work by Fleet and Jepson [25]. The goal of the AE is to
provide a relative measure of performance that avoids the “divide by zero” problem for zero
flows. Errors in large flows are penalized less in AE than errors in small flows.

Although the AE is prevalent, it is unclear why errors in a region of smooth non-zero
motion should be penalized less than errors in regions of zero motion. The AE also contains
an arbitrary scaling constant (1.0) to convert the units from pixels to degrees. Hence, we
also compute an absolute error, the error in flow endpoint (EE) used in [53] defined by:

EE =
√

(u− uGT)2 + (v − vGT)2. (23)

Although the use of AE is common, the EE measure is probably more appropriate for most
applications (see Section 5.2.1). We report both.

For image interpolation, we define the interpolation error (IE) to be the root-mean-square
(RMS) difference between the ground-truth image and the estimated interpolated image

IE =

 1

N

∑
(x,y)

(I(x, y)− IGT(x, y))2 ,

 1
2

(24)

where N is the number of pixels. For color images, we take the L2 norm of the vector of
RGB color differences.

We also compute a second measure of interpolation performance, a gradient-normalized
RMS error inspired by [72]. The normalized interpolation error (NE) between an interpolated
image I(x, y) and a ground-truth image IGT(x, y) is given by:

NE =

 1

N

∑
(x,y)

(I(x, y)− IGT(x, y))2

‖∇IGT(x, y)‖2 + ε

 1
2

. (25)

In our experiments the arbitrary scaling constant is set to be ε = 1.0 (graylevels per pixel
squared). Again, for color images, we take the L2 norm of the vector of RGB color differences
and compute the gradient of each color band separately.

Naturally, an interpolation algorithm is required to generate the interpolated image from
the optical flow field. In this paper, we use the baseline algorithm outlined in Section 3.3.2.

4.2 Statistics

Although the full histograms are available in a technical report, Barron et al. [7] only reports
averages (AV) and standard deviations (SD). This has led most subsequent researchers to

24

Schefflera frame 0 Known flow vectors Motion discontinuities Textureless regions
(All) (Disc) (Untext)

Figure 6: Region masks for Schefflera. Statistics are computed over the white pixels. All
includes all the pixels where the ground-truth flow can be reliably determined. The Disc
mask is computed by taking the gradient of the ground-truth flow (or pixel differencing if
the ground-truth flow is unavailable), thresholding and dilating. The Untext regions are
computed by taking the gradient of the image, thresholding and dilating.

only report these statistics. We also compute the robustness statistics used in the Middlebury
stereo dataset [63]. In particular RX denotes the percentage of pixels that have an error
measure above X. For the angle error (AE) we compute R2.5, R5.0, and R10.0 (degrees); for
the endpoint error (EE) we compute R0.5, R1.0, and R2.0 (pixels); for the interpolation error
(IE) we compute R2.5, R5.0, and R10.0 (graylevels); and for the normalized interpolation
error (NE) we compute R0.5, R1.0, and R2.0 (no units). We also compute robust accuracy
measures similar to those in [66]: AX denotes the accuracy of the error measure at the Xth

percentile, after sorting the errors from low to high. For the flow errors (AE and EE), we
compute A50, A75, and A95. For the interpolation errors (IE and NE), we compute A90,
A95, and A99.

4.3 Region Masks

It is easier to compute flow in some parts of an image than in others. For example, computing
flow around motion discontinuities is hard. Computing motion in textureless regions is also
hard, although interpolating in those regions should be easier. Computing statistics over such
regions may highlight areas where existing algorithms are failing and spur further research
in these cases. We follow the procedure in [63] and compute the error measure statistics
over three types of region masks: everywhere (All), around motion discontinuities (Disc),
and in textureless regions (Untext). We illustrate the masks for the Schefflera dataset in
Figure 4.3.

The All masks for flow estimation include all the pixels where the ground-truth flow could
be reliably determined. For the new synthetic sequences, this means all of the pixels. For
Yosemite, the sky is excluded. For the hidden fluorescent texture data, pixels where cross-
checking failed are excluded. Most of these pixels are around the boundary of objects, and
around the boundary of the image where the pixel flows outside the second image. Similarly,
for the stereo sequences, pixels where cross-checking failed are excluded [64]. Most of these
pixels are pixels that are occluded in one of the images. The All masks for the interpolation

25

metrics include all of the pixels. Note that in some cases (particularly the synthetic data),
the All masks include pixels that are visible in first image but are occluded or outside the
second image. We did not remove these pixels because we believe algorithms should be able
to extrapolate into these regions.

The Disc mask is computed by taking the gradient of the ground-truth flow field, thresh-
olding the magnitude, and then dilating the resulting mask with a 9×9 box. If the ground-
truth flow is not available, we use frame differencing to get an estimate of fast-moving regions
instead. The Untext regions are computed by taking the gradient of the image, thresholding
the magnitude, and dilating with a 3×3 box. The pixels excluded from the All masks are
also excluded from both Disc and Untext masks.

5 Experimental Results

We now discuss our empirical findings. We start in Section 5.1 by outlining the evolution
of our online evaluation since the publication of our preliminary paper [6]. In Section 5.2,
we analyze the flow errors. In particular, we investigate the correlation between the various
metrics, statistics, region masks, and datasets. In Section 5.3, we analyze the interpolation
errors and in Section 5.4, we compare the interpolation error results with the flow error
results. Finally, in Section 5.5, we compare the algorithms that have reported results using
our evaluation in terms of which components of our taxonomy in Section 2 they use.

5.1 Online Evaluation

Our online evaluation at http://vision.middlebury.edu/flow/ provides a snapshot of the state-
of-the-art in optical flow. Seeded with the handful of methods that we implemented as part
of our preliminary paper [6], the evaluation has quickly grown. At the time of writing,
the evaluation contains results for 24 published methods and several unpublished ones. In
this paper, we restrict attention to the published algorithms. Four of these methods were
contributed by us (our implementations of Horn and Schunck [33], Lucas-Kanade [44], Com-
bined Local-Global [16], and Black and Anandan [11]). Results for the 20 other methods
were submitted by their authors. Of these new algorithms, two were published before 2007,
11 were published in 2008, and 7 were published in 2009.

On the evaluation website, we provide tables comparing the performance of the algorithms
for each of the four error measures, i.e., endpoint error (EE), angular error (AE), interpolation
error (IE), and normalized interpolation error (NE), on a set of 8 test sequences. For EE and
AE, which measure flow accuracy, we use the 8 sequences for which we have ground-truth
flow: Army, Mequon, Schefflera, Wooden, Grove, Urban, Yosemite, and Teddy. For
IE and NE, which measure interpolation accuracy, we use only four of the above datasets
(Mequon, Schefflera, Urban, and Teddy) and replace the other four with the high-speed
datasets Backyard, Basketball, Dumptruck, and Evergreen. For each measure, we
include a separate page for each of the eight statistics in Section 4.2. Figure 7 shows a
screenshot of the first of these 32 pages, the average endpoint error (Avg. EE). For each

26

Figure 7: A screenshot of the default page at http://vision.middlebury.edu/flow/eval/, eval-
uating the current set of 24 published algorithms using the average endpoint error (Avg. EE).
This page is one of 32 possible metric/statistic combinations the user can select. By moving
the mouse pointer over an underlined performance score, the user can interactively view the
corresponding flow and error maps. Clicking on a score toggles between the computed and
the ground-truth flows. Next to each score, the corresponding rank in the current column is
indicated with a smaller blue number. The minimum (best) score in each column is shown
in boldface. The table is sorted by the average rank (computed over all 24 columns, three
region masks for each of the eight sequences). The average rank serves as an approximate
measure of performance under the selected metric/statistic.

27

Algorithm Runtime

Adaptive [78] 9.2
Complementary OF [84] 44
Aniso. Huber-L1 [82] 2
DPOF [39] 261
TV-L1-improved [80] 2.9
CBF [74] 69
Brox et al. [54] 18
Rannacher [59] 0.12
F-TV-L1 [79] 8
Second-order prior [75] 14
Fusion [40] 2,666
Dynamic MRF [27] 366

Algorithm Runtime

Seg OF [83] 60
Learning Flow [70] 825
Filter Flow [65] 34,000
Graph Cuts [20] 1,200
Black & Anandan [11] 328
SPSA-learn [41] 200
Group Flow [60] 600
2D-CLG [16] 844
Horn & Schunck [33] 49
TI-DOFE [19] 260
FOLKI [38] 1.4
Pyramid LK [44] 11.9

Table 1: Reported runtimes on the Urban sequence in seconds. We do not normalize for
the programming environment, CPU speed, number of cores, or other hardware acceleration.
These numbers should be treated as a very rough guideline of the inherent computational
complexity of the algorithms.

measure and statistic, we evaluate all methods on the set of eight test images with three
different regions masks (all, disc, and untext; see Section 4.3), resulting in a set of 24 scores
per method. We sort each table by the average rank across all 24 scores to provide an
ordering that roughly reflects the overall performance on the current metric and statistic.

We want to emphasize that we do not aim to provide an overall ranking among the
submitted methods. Authors sometimes report the rank of their method on one or more of
the 32 tables (often average angular error); however, many of the other 31 metric/statistic
combinations might be better suited to compare the algorithms, depending on the application
of interest. Also note that the exact rank within any of the tables only gives a rough measure
of performance, as there are various other ways that the scores across the 24 columns could
be combined.

We also list the runtimes reported by authors on the Urban sequence on the evaluation
website (see Table 1). We made no attempt to normalize for the programming environment,
CPU speed, number of cores, or other hardware acceleration. These numbers should be
treated as a very rough guideline of the inherent computational complexity of the algorithms.

Finally, we report on the evaluation website for each method the number of input frames
and whether color information was utilized. At the time of writing, all of the 24 published
methods discussed in this paper use only 2 frames as input; and 10 of them use color
information.

The best-performing algorithm (both in terms of average endpoint error and average
angular error) in our preliminary study [6] was 2D-CLG [16]. In Table 2, we compare the
results of 2D-CLG with the current best result in terms of average endpoint error (Avg. EE).

28

Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy

Best 0.09 0.18 0.24 0.18 0.74 0.39 0.08 0.50
2D-CLG [16] 0.28 0.67 1.12 1.07 1.23 1.54 0.10 1.38

Table 2: A comparison of the average endpoint error (Avg. EE) results for 2D-CLG [16]
(overall the best-performing algorithm in our preliminary study [6]) and the best result
uploaded to the evaluation website at the time of writing (Figure 7).

The first thing to note is that performance has dramatically improved, with average EE
values of less than 0.2 pixels on four of the datasets (Yosemite, Army, Mequon, and
Wooden). The common elements of the more difficult sequences (Grove, Teddy, Urban,
and Schefflera) are the presence of large motions and strong motion discontinuities. The
complex discontinuities and fine structures of Grove seem to cause the most problems for
current algorithms. A visual inspection of some computed flows (Figure 8) shows that
oversmoothing motion discontinuities is common even for the top-performing algorithms.
A possible exception is DPOF [39]. On the other hand, the problems of complex non-
rigid motion confounded with illumination changes, moving shadows, and real sensor noise
(Army, Mequon, Wooden) do not appear to present as much of a problem for current
algorithms.

5.2 Analysis of the Flow Errors

We now analyze the correlation between the metrics, statistics, region masks, and datatypes
for the flow errors. Figure 9 compares the average ranks computed over different subsets of
the 32 pages of results, each of which contains 24 results for each algorithm. Column (a)
contains the average rank computed over seven of the eight statistics (the standard deviation
is omitted) and the three region masks for the endpoint error (EE). Column (b) contains the
corresponding average rank for the angular error (AE). Columns (c) contain the average rank
for each of the seven statistics for the endpoint error (EE) computed over the three masks
and the eight datasets. Columns (d) contain the average endpoint error (Avg. EE) for each
of the three masks just computed over the eight datasets. Columns (e) contains the Avg. EE
computed for each of the datasets, averaged over each of the three masks. The order of the
algorithms is the same as Figure 7, i.e., we order by the average endpoint error (Avg. EE),
the highlighted, leftmost column in (c). To help visualize the numbers, we color-code the
average ranks with a color scheme where green denotes low values, yellow intermediate, and
red large values.

We also include the Pearson product-moment coefficient r between various subsets of
pairs of columns at the bottom of the figure. The Pearson measure of correlation takes on
values between -1.0 and 1.0, with 1.0 indicating perfect correlation. First, we include the
correlation between each column and column (a). As expected, the correlation of column (a)
with itself is 1.0. We also include the correlation between all pairs of the statistics, between

29

Schefflera Grove Teddy

Ground truth Input image Ground truth Input image Ground truth Input image

Computed flow Flow error Computed flow Flow error Comp. flow Flow error

Adaptive [78]

Complementary OF [84]

DPOF [39]

Figure 8: The results of some of the top-performing methods on three of the more difficult
sequences. All three sequences contain strong motion discontinuities. Grove also contains
particularly fine structures. The general tendency is to oversmooth motion discontinuities
and fine structures. A possible exception is DPOF [39].

30

Flow accuracy - analysis of statistics

Method

EE AE Avg R0.5 R1.0 R2.0 A50 A75 A95 all disc untext Army Mequ. Scheffl. Wood. Grove Urban Yosem. Teddy

Adaptive 4.8 4.4 4.4 5.2 5.3 4.7 3.9 3.7 6.7 4.3 4.9 4.0 1.0 4.7 7.0 1.7 3.7 3.0 10.7 3.3

Complementary OF 5.2 5.9 5.7 4.3 3.7 3.8 6.5 6.0 6.4 6.1 3.9 7.1 5.7 1.0 2.3 3.3 9.0 13.7 5.3 5.3

Aniso. Huber-L1 6.6 6.7 5.8 7.4 6.4 6.0 6.9 6.8 7.2 6.0 4.5 6.9 3.0 10.3 9.7 4.3 2.0 1.0 13.3 2.7

DPOF 6.7 8.0 6.1 7.5 5.6 4.5 9.4 7.9 6.1 5.9 5.6 6.8 9.3 5.7 1.7 4.7 1.0 8.3 17.0 1.0

TV-L1-improved 6.8 6.7 7.2 6.3 6.0 6.9 5.7 6.1 9.4 7.5 8.0 6.1 1.3 2.7 7.0 6.7 4.3 12.0 15.7 8.0

CBF 8.1 9.2 7.8 8.6 7.3 6.8 7.9 8.6 9.4 8.0 6.6 8.6 3.3 10.3 6.0 6.7 5.0 1.7 21.0 8.0

Brox et al. 8.7 8.4 8.4 9.6 9.8 7.8 7.6 8.2 9.4 7.6 8.8 8.8 8.3 9.3 5.0 8.7 14.0 7.7 2.3 11.7

Rannacher 8.1 7.5 8.5 7.2 7.8 9.1 6.4 7.2 10.8 8.8 9.8 7.0 5.0 7.0 11.7 9.3 6.0 11.7 10.7 6.7

F-TV-L1 8.3 8.1 8.8 6.8 7.9 10.5 6.8 7.5 9.5 8.8 9.4 8.4 13.3 11.7 10.7 13.3 5.0 4.7 8.0 4.0

Second-order prior 9.6 10.2 9.0 11.0 11.4 9.5 6.9 8.8 10.5 8.9 9.8 8.3 5.0 8.3 11.3 4.3 8.7 7.7 16.3 10.0

Fusion 9.3 11.8 9.4 9.1 8.7 8.2 9.9 8.8 11.0 8.3 9.9 10.1 8.0 2.0 3.3 7.7 12.3 9.3 17.3 15.3

Dynamic MRF 10.3 9.7 11.1 9.2 9.9 10.8 8.8 9.9 12.7 10.4 12.3 10.8 11.0 5.0 5.0 10.3 14.3 16.7 8.3 18.3

SegOF 12.2 12.4 11.7 14.8 13.7 9.5 12.8 13.1 10.0 12.8 10.3 12.0 12.3 16.3 13.7 10.7 17.0 16.0 2.3 5.0

Learning Flow 12.6 11.7 13.3 11.7 13.0 14.0 9.5 12.6 14.0 12.6 15.8 11.6 5.7 11.0 11.0 15.7 18.7 16.0 13.3 15.3

Filter Flow 14.2 14.2 14.3 14.5 14.4 13.2 15.2 15.5 12.6 14.8 13.9 14.3 15.3 14.0 17.0 18.0 15.3 4.7 18.7 11.3

Graph Cuts 14.5 14.5 14.5 15.6 15.4 12.0 15.6 15.2 13.5 15.5 12.0 16.1 15.0 17.3 10.0 11.0 9.7 17.7 18.7 17.0

Black & Anandan 15.5 15.7 15.0 15.2 15.8 16.7 15.2 15.6 14.8 15.1 16.0 13.8 17.3 16.7 17.7 17.3 12.7 12.7 10.7 14.7

SPSA-learn 15.0 14.9 15.7 14.8 13.8 14.6 14.8 14.5 16.5 15.8 15.1 16.1 17.3 16.7 17.0 18.3 14.3 18.0 5.7 18.0

Group Flow 16.2 16.3 15.9 17.4 18.3 15.5 16.2 16.6 13.5 16.5 15.8 15.5 19.0 21.0 18.3 12.0 17.0 20.3 6.0 13.7

2D-CLG 17.3 15.9 17.4 18.3 18.2 17.5 16.8 17.2 15.5 17.4 16.6 18.1 20.7 18.7 21.3 21.7 19.0 15.7 2.3 19.7

Horn & Schunck 18.6 19.1 18.6 18.8 19.1 19.0 18.9 19.0 16.5 18.1 20.0 17.6 20.3 19.0 20.0 20.0 19.7 17.0 11.7 21.0

TI-DOFE 19.8 20.7 19.6 21.2 20.8 19.2 20.9 20.0 17.2 18.6 20.5 19.6 23.0 22.0 23.3 23.0 20.7 16.3 6.3 22.0

FOLKI 22.2 21.8 22.6 22.1 22.5 21.8 21.5 22.3 22.6 22.4 23.1 22.4 22.7 23.3 22.0 21.3 23.0 23.0 22.7 23.0

Pyramid LK 23.2 23.1 23.7 22.8 23.3 23.4 23.2 23.3 22.9 24.0 23.1 24.0 23.0 23.7 23.3 24.0 24.0 23.7 24.0 24.0

Correlation with EE: 1.0 .989 .996 .985 .989 .977 .973 .993 .954 .992 .971 .986 .919 .913 .899 .920 .879 .755 .158 .870

Avg R0.5 R1.0 R2.0 A50 A75 A95 all disc untext Army Mequ. Scheffl. Wood. Grove Urban Yosem. Teddy

Correlation in group: Avg 1.0 .970 .978 .981 .962 .986 .968 all 1.0 .960 .985 Army 1.0 .873 .827 .887 .783 .693 -.045 .759

R0.5 .970 1.0 .991 .937 .972 .985 .903 disc .960 1.0 .937 Mequ. .873 1.0 .909 .831 .725 .595 .041 .658

R1.0 .978 .991 1.0 .962 .952 .980 .922 untext .985 .937 1.0 Scheffl. .827 .909 1.0 .878 .741 .569 .005 .675

R2.0 .981 .937 .962 1.0 .915 .954 .964 Wood. .887 .831 .878 1.0 .831 .634 .026 .813

A50 .962 .972 .952 .915 1.0 .986 .888 Grove .783 .725 .741 .831 1.0 .766 -.068 .852

A75 .986 .985 .980 .954 .986 1.0 .925 Urban .693 .595 .569 .634 .766 1.0 -.042 .744

A95 .968 .903 .922 .964 .888 .925 1.0 Yosem. -.045 .041 .005 .026 -.068 -.042 1.0 .135

Teddy .759 .658 .675 .813 .852 .744 .135 1.0

(a) (b)

Avg over all stats Individual EE statistics Avg EE by mask Avg EE by dataset

(c) (d) (e)

Figure 9: A comparison of the various different metrics, statistics, region masks, and
datatypes for flow errors. Each column contains the average rank computed over a dif-
ferent subset of the 32 pages of results, each of which contains 24 different results for each
algorithm. See the main body of the text for a description of exactly how each column
is computed. To help visualize the numbers, we color-code the average ranks with a color
scheme where green denotes low values, yellow intermediate, and red large values. The or-
der of the algorithms is the same as Figure 7, i.e., we order by the average endpoint error
(Avg. EE), the leftmost column in (c), which is highlighted in the table. At the bottom of
the table, we include correlations between various subsets of pairs of the columns. Specifi-
cally, we compute the Pearson product-moment coefficient r. We separately color-code the
correlations with a scale where dark green is 1.0 and yellow/red denote lower values.

31

(a) First input image (b) Ground-truth flow (c) Computed flow (d) Flow absolute error

Figure 10: Results of the Complementary OF algorithm [84] on the Urban sequence. The
average AE is 4.64 degrees which ranks 6th in the table at the time of writing. The average
EE is 1.78 pixels which ranks 20th at the time of writing. The huge discrepancy is due to the
fact that the building in the bottom left has a very large motion, so the AE in that region
is downweighted. Based on this example, we argue that the endpoint error (EE) should
become preferred measure of flow accuracy.

all pairs of the masks, and between all pairs of the datasets. The results are shown in the
7× 7, 3× 3, and 8× 8 (symmetric) matrices at the bottom of the table. We color-code the
correlation results with a separate scale where 1.0 is dark green and yellow/red denote lower
values (less correlation).

5.2.1 Comparison of the Endpoint Error and the Angular Error

Columns (a) and (b) in Figure 9 contain average ranks for the endpoint error (EE) and
angular error (AE). The rankings generated with these two measures are highly correlated
(r = 0.989), with only a few ordering reversals. At first glance, it may seem that the two
measures could be used largely interchangeably. Studying the qualitative results contained
in Figure 10 for the Complementary OF algorithm [84] on the Urban sequence leads to a
different conclusion. The Complementary OF algorithm (which otherwise does very well)
fails to correctly estimate the flow of the building in the bottom left. The average AE for
this result is 4.64 degrees which ranks 6th in the table at the time of writing. The average
EE is 1.78 pixels which ranks 20th at the time of writing. The huge discrepancy is due to the
fact that the building in the bottom left has a very large motion, so the AE in that region
is downweighted. Based on this example, we argue that the endpoint error (EE) should
become the preferred measure of flow accuracy.

5.2.2 Comparison of the Statistics

Columns (c) in Figure 9 contains a comparison of the various statistics, the average (Avg),
the robustness measures (R0.5, R1.0, and R2.0), and the accuracy measures (A50, A75, and
A95). The first thing to note is that again these measures are all highly correlated with the
average over all the statistics in column (a) and with themselves.

The outliers and variation in the measures for any one algorithm can be very informative.
For example, the performance of DPOF [39] improves dramatically from R0.5 to R2.0 and

32

similarly from A50 to A95. This trend indicates that DPOF is good at avoiding gross outliers
but is relatively weak at obtaining high accuracy. DPOF [39] is a segmentation-based discrete
optimization algorithm, followed by a continuous refinement (Section 2.4.2). The variation of
the results across the measures indicates that the combination of segmentation and discrete
optimization is beneficial in terms of avoiding outliers, but that perhaps the continuous
refinement is not as sophisticated as recent purely continuous algorithms. The qualitative
results obtained by DPOF on the Schefflera and Grove sequences in Figure 8 show relatively
good results around motion boundaries, supporting this conclusion.

5.2.3 Comparison of the Region Masks

Columns (d) in Figure 9 contain a comparison of the region masks, All, Disc, and Untext.
Overall, the measures are highly correlated by rank, particularly for the All and Untext
masks. When comparing the actual error scores in the individual tables (e.g., Figure 7),
however, the errors are much higher throughout in the Disc regions than in the All regions,
while the errors in the Untext regions are typically the lowest. As expected, the Disc
regions thus capture what is still the hardest task for optical flow algorithms: to accurately
recover motion boundaries. Methods that strongly smooth across motion discontinuities
(such as the Horn and Schunck algorithm [33], which uses a simple L2 prior) also show a
worse performance for Disc in the rankings (columns (d) in Figure 9). Textureless regions,
on the other hand, seem to be no problem for today’s methods, essentially all of which
optimize a global energy.

5.2.4 Comparison of the Datasets

Columns (e) in Figure 9 contain a comparison across the datasets. The first thing to note
is how relatively uncorrelated the results are. The results on the Yosemite sequence, in
particular, are either poorly or negatively correlated with all of the others. (The main reason
is that the Yosemite flow contains few discontinuities and consequently methods do well here
that oversmooth other sequences with more motion boundaries.) The most correlated subset
of results appear to be the four hidden texture sequences Army, Mequon, Schefflera, and
Wooden. These results show how performance on any one sequence can be a poor predictor
of performance on other sequences and how a good benchmark needs to contain as diverse
a set of data as possible. Conversely, any algorithm that performs consistently well across a
diverse collection of datasets can probably be expected to perform well on most inputs.

Studying the results in detail, a number of interesting conclusions can be noted. Com-
plementary OF [84] does well on the hidden texture data (Army, Mequon, Schefflera,
Wooden) presumably due to the sophisticated normalizations in the data term (the hidden
texture data contains a number of moving shadows and other illumination related effects),
but relatively poorly on the sequences with large motion (Urban) and complex discontinu-
ities (Grove). DPOF [39], which involves segmentation and performs best on Grove, does
particular poorly on Yosemite presumably because segmenting the grayscale Yosemite
sequence is difficult. F-TV-L1 [79] does well on the largely rigid sequences (Grove, Urban,

33

Yosemite, and Teddy), but poorly on the non-rigid sequences (Army, Mequon, Schef-
flera, and Wooden). F-TV-L1 uses a rigidity prior and so it seems that this component
is being used too aggressively. Note, however, that a later algorithm by the same group of
researchers (Adaptive [78], which also uses a rigidity prior) appears to have addressed this
problem. The flow fields for Dynamic MRF [27] all appear to be over-smoothed; however,
quantitatively, the performance degradation is only apparent on the sequences with strong
discontinuities (Grove, Urban, and Teddy). In summary, the relative performance of an
algorithm across the various datatypes in our benchmark can lead to insights into which of
its components work well and which are limiting performance.

5.3 Analysis of the Interpolation Errors

We now analyze the correlation between the metrics, statistics, region masks, and datatypes
for the interpolation errors. In Figure 11, we include results for the interpolation errors
that are analogous to the flow error results in Figure 9, described in Section 5.2. Note that
we are now comparing interpolated frames (generated from the submitted flow fields using
the interpolation algorithm from Section 3.3.2) with the true intermediate frames. Also,
recall that we use a different set of test sequences for the interpolation evaluation: the four
high-speed datasets Backyard, Basketball, Dumptruck, and Evergreen, in addition to
Mequon, Schefflera, Urban, and Teddy, as representatives of the three other types of
datasets. We sort the algorithms by the average interpolation error performance (Avg. IE),
the leftmost column in Figure 11(c). The ordering of the algorithms in Figure 11 is therefore
different from that in Figure 9.

5.3.1 Comparison of the Interpolation and Normalized Interpolation Errors

Columns (a) and (b) in Figure 11 contain average ranks for the interpolation error (IE) and
the normalized interpolation error (NE). The rankings generated with these two measures
are highly correlated (r = 0.981), with only a few ordering reversals. Most of the differences
between the two measures can be explained by the relative weight given to the discontinuity
and textureless regions. The rankings in columns (a) and (b) are computed by averaging
the ranking over the three masks. The normalized interpolation error (NE) generally gives
additional weight to textureless regions, and less weight to discontinuity regions (which often
also exhibit an intensity gradient). For example, CBF [74] performs better on the All and
Disc regions than it does on the Untext regions, which explains why the NE rank for this
algorithm is slightly higher than the IE rank.

5.3.2 Comparison of the Statistics

Columns (c) in Figure 11 contain a comparison of the various statistics, the average (Avg),
the robustness measures (R2.5, R5.0, and R10.0), and the accuracy measures (A90, A95, and
A99). Overall the results are highly correlated. The most obvious exception is R2.5, which
measures the percentage of pixels that are predicted very precisely (within 2.5 graylevels).

34

Interpolation accuracy - analysis of statistics

Method

IE NE Avg R2.5 R5.0 R10 A90 A95 A99 all disc untext Mequ. Scheffl. Urban Teddy Backyd. Basktb. Dumptr. Evergr.

CBF 5.6 7.9 3.5 10.6 7.4 3.8 4.6 5.0 4.0 2.4 2.3 6.0 2.3 5.3 1.3 3.3 4.0 3.0 3.7 5.3

Aniso. Huber-L1 4.5 4.0 4.6 5.8 5.5 4.2 3.2 3.8 4.1 4.1 4.6 5.0 4.0 11.3 2.3 4.0 8.3 1.7 1.0 4.0

Second-order prior 5.2 4.4 5.5 4.9 5.1 6.1 4.0 5.0 5.8 5.1 6.4 4.9 3.3 8.0 6.0 3.0 6.3 4.3 3.0 9.7

Brox et al. 4.6 4.8 6.3 5.4 4.5 3.8 3.0 3.8 5.2 6.3 6.4 6.3 5.7 3.0 4.7 3.3 2.3 14.0 16.3 1.0

F-TV-L1 6.5 8.0 7.1 9.0 7.4 5.4 4.0 5.8 7.1 5.8 6.1 9.4 14.7 11.0 5.0 7.7 4.0 2.7 5.7 6.0

Filter Flow 11.7 12.8 9.7 14.8 13.1 10.8 10.5 12.0 10.7 8.9 8.6 11.5 10.7 16.0 9.0 9.3 5.3 9.7 7.0 10.3

Fusion 9.3 8.3 10.0 7.3 10.5 11.6 8.2 8.1 9.2 10.3 10.1 9.8 4.7 2.0 6.3 6.7 13.3 21.3 10.0 16.0

Black & Anandan 11.0 10.4 10.1 12.9 12.7 11.1 10.0 9.9 10.2 11.1 9.5 9.6 12.7 17.7 15.7 12.3 4.0 7.7 7.7 3.0

DPOF 9.7 10.1 10.2 11.8 10.1 8.8 8.1 9.2 10.0 9.9 12.0 8.6 15.0 1.0 15.3 6.7 13.7 9.0 8.7 12.0

2D-CLG 10.4 10.9 11.0 11.5 11.7 11.0 8.7 8.3 10.6 10.5 8.1 14.4 8.0 15.7 9.7 12.3 17.3 6.7 13.3 5.0

Horn & Schunck 13.9 13.9 11.1 17.3 16.4 14.0 13.1 13.0 12.2 12.1 10.8 10.5 9.0 20.0 13.7 16.3 4.7 5.3 13.0 7.0

Adaptive 10.1 9.3 12.5 9.1 10.2 10.2 7.7 9.6 11.4 13.1 14.9 9.5 11.7 16.7 7.0 12.0 14.3 14.3 12.0 12.0

Complementary OF 9.8 8.8 12.5 6.1 7.6 11.6 7.8 9.8 13.4 14.0 14.5 8.9 13.3 4.3 19.0 13.0 14.7 9.0 11.0 15.3

TV-L1-improved 11.0 11.6 12.8 10.8 11.3 10.9 7.8 10.7 12.5 13.1 12.9 12.4 8.3 15.3 11.0 5.0 11.7 18.3 18.3 14.3

Graph Cuts 10.2 11.5 13.0 7.1 8.0 10.9 9.0 11.0 12.2 14.1 12.9 11.9 17.0 5.3 14.0 12.0 15.7 10.3 15.7 13.7

TI-DOFE 14.7 14.4 13.5 17.4 16.2 14.4 13.8 13.9 13.4 13.4 12.9 14.4 17.3 22.3 9.0 19.0 5.0 12.7 7.3 15.7

Dynamic MRF 14.5 14.5 14.5 12.8 14.5 16.2 12.4 14.8 16.2 14.0 15.0 14.6 9.0 7.3 12.7 18.0 12.3 22.0 18.3 16.7

Learning Flow 17.3 18.1 15.8 20.1 20.0 17.6 15.8 16.0 15.7 15.6 15.6 16.3 11.0 13.3 24.0 13.7 19.3 15.3 12.0 18.0

FOLKI 19.0 20.9 15.9 22.5 22.2 18.6 19.0 18.9 16.2 14.3 13.9 19.5 20.3 22.7 15.0 20.7 11.3 16.3 10.7 10.0

Rannacher 12.6 13.2 16.0 11.5 11.9 12.5 9.0 12.0 15.0 16.9 17.5 13.8 13.0 18.0 15.3 13.0 15.7 19.0 18.3 16.0

SPSA-learn 14.5 15.6 18.0 10.7 12.6 15.2 12.4 14.9 17.8 18.8 18.4 16.9 19.0 12.3 21.7 18.3 17.7 12.3 24.0 18.7

SegOF 14.3 14.0 18.1 11.7 12.0 15.2 11.9 13.8 17.5 19.1 18.8 16.5 19.0 7.7 19.3 22.0 21.3 19.3 21.7 14.7

Group Flow 19.8 18.9 21.1 18.3 19.8 21.7 19.0 18.4 20.2 21.1 21.8 20.4 23.0 15.7 20.3 22.3 23.0 23.7 18.7 22.0

Pyramid LK 21.9 22.3 22.2 21.9 22.5 22.5 20.9 21.8 21.6 22.9 21.3 22.4 23.3 23.7 22.7 24.0 22.0 15.7 22.0 24.0

Correlation with IE: 1.0 .981 .916 .876 .956 .983 .987 .991 .937 .874 .835 .946 .766 .610 .796 .901 .621 .605 .592 .725

Avg R2.5 R5.0 R10 A90 A95 A99 all disc untext Mequ. Scheffl. Urban Teddy Backyd. Basktb. Dumptr. Evergr.

Correlation in group: Avg 1.0 .633 .769 .933 .859 .918 .988 all 1.0 .979 .877 Mequ. 1.0 .422 .725 .819 .564 .395 .539 .599

R2.5 .633 1.0 .963 .793 .900 .847 .670 disc .979 1.0 .824 Scheffl. .422 1.0 .262 .549 .065 .091 .142 .173

R5.0 .769 .963 1.0 .914 .968 .929 .799 untext .877 .824 1.0 Urban .725 .262 1.0 .738 .723 .459 .658 .687

R10 .933 .793 .914 1.0 .968 .973 .954 Teddy .819 .549 .738 1.0 .585 .507 .611 .622

A90 .859 .900 .968 .968 1.0 .976 .885 Backyd. .564 .065 .723 .585 1.0 .582 .669 .759

A95 .918 .847 .929 .973 .976 1.0 .946 Basktb. .395 .091 .459 .507 .582 1.0 .692 .680

A99 .988 .670 .799 .954 .885 .946 1.0 Dumptr. .539 .142 .658 .611 .669 .692 1.0 .596

Evergr. .599 .173 .687 .622 .759 .680 .596 1.0

(a) (b)

Avg over all stats Individual IE statistics Avg IE by mask Avg IE by dataset

(c) (d) (e)

Figure 11: A comparison of the various different metrics, statistics, region masks, and
datatypes for interpolation errors. These results are analogous to those in Figure 9, ex-
cept the results here are for interpolation errors rather than flow errors. See Section 5.2 for a
description of how this table was generated. We sort the algorithms by the average interpo-
lation error performance (Avg. IE), the first column in (c). The ordering of the algorithms
is therefore different to that in Figure 9.

35

In regions with some texture, very accurate flow is needed to obtain the highest possible
precision. Algorithms such as CBF [74] and DPOF [39], which are relatively robust but not
so accurate (compare the performance of these algorithms for R0.5 and R2.0 in Figure 9),
therefore perform worse in terms of R2.5 than they do in terms of R5.0 and R10.0.

5.3.3 Comparison of the Region Masks

Columns (d) in Figure 11 contain a comparison of the region masks, All, Disc, and Untext.
The All and Disc results are highly correlated, whereas the Untext results are less corre-
lated with the other two masks. Studying the detailed results on the webpage for the outliers
in columns (d), there does not appear to be any obvious trend. The rankings in the Untext
regions just appear to be somewhat more “noisy” due to the fact that for some datasets
there are relatively few Untext pixels and all algorithms have relatively low interpolation
errors in those regions. The actual error values (as opposed to their rankings) are quite
different between the three regions masks. Like the flow accuracy errors (Section 5.2.3), the
IE values are highest in the Disc regions since flow errors near object boundaries usually
cause interpolation errors as well.

5.3.4 Comparison of the Datasets

Columns (e) in Figure 11 contain a comparison across the datasets. The results are relatively
uncorrelated, just like the flow errors in Figure 9. The most notable outlier for interpolation
is Schefflera. Studying the results in detail on the website, the primary cause appears to
the right hand side of the images, where the plant leaves move over the textured cloth. This
region is difficult for many flow algorithms because the difference in motions is small and the
color difference is not great either. Only a few algorithms (e.g., DPOF [39], Fusion [40], and
Dynamic MRF [27]) perform well in this region. Getting this region correct is more important
in the interpolation study than in the flow error study because: (1) the background is quite
highly textured, so a small flow error leads to a large interpolation error (see the error maps
on the webpage) and (2) the difference between the foreground and background flows is
small, so oversmoothing the foreground flow is not penalized by a huge amount in the flow
errors. The algorithms that perform well in this region do not perform particularly well on
the other sequences, as none of the other seven interpolation datasets contain regions with
similar causes of difficulty, leading to the results being fairly uncorrelated.

5.4 Comparison of the Flow and Interpolation Errors

In Figure 12, we compare the flow errors with the interpolation errors. In the left half of the
figure, we include the average rank scores, computed over all statistics (except the standard
deviation) and all three masks. We compare flow endpoint errors (EE), interpolation errors
(IE), and normalized interpolation errors (NE), and include two columns for each, Avg
and Avg4. The first column, Avg EE, is computed over all eight flow error datasets, and
corresponds exactly to column (a) in Figure 9. Similarly, the third and fifth columns, Avg IE

36

Correlation of flow and interpolation accuracy

Method Correlation:

Avg Avg4 Avg Avg4 Avg Avg4 Avg Avg4 Avg Avg4 Avg Avg4

Adaptive 4.4 4.5 12.5 11.8 9.8 10.4 Avg EE 1.0 .983 .542 .726 .632 .793

Complementary OF 5.7 5.6 12.5 12.4 11.0 9.3 Avg4 EE .983 1.0 .594 .763 .663 .803

Aniso. Huber-L1 5.8 5.9 4.6 5.4 5.0 5.1 Avg IE .542 .594 1.0 .905 .960 .873

DPOF 6.1 4.2 10.2 9.5 10.9 10.3 Avg4 IE .726 .763 .905 1.0 .895 .976

TV-L1-improved 7.2 7.4 12.8 9.9 12.7 9.8 Avg NE .632 .663 .960 .895 1.0 .902

CBF 7.8 6.5 3.5 3.1 5.6 4.8 Avg4 NE .793 .803 .873 .976 .902 1.0

Brox et al. 8.4 8.4 6.3 4.2 7.5 4.8

Rannacher 8.5 9.3 16.0 14.8 14.1 13.2

F-TV-L1 8.8 7.8 7.1 9.6 8.4 9.2

Second-order prior 9.0 9.3 5.5 5.1 5.5 5.1

Fusion 9.4 7.5 10.0 4.9 8.7 6.3

Dynamic MRF 11.1 11.3 14.5 11.8 15.3 11.3

SegOF 11.7 12.8 18.1 17.0 15.3 15.8

Learning Flow 13.3 13.3 15.8 15.5 15.2 15.6

Filter Flow 14.3 11.8 9.7 11.3 11.0 14.0

Graph Cuts 14.5 15.5 13.0 12.1 13.0 11.8

Black & Anandan 15.0 15.4 10.1 14.6 10.1 14.5

SPSA-learn 15.7 17.4 18.0 17.8 19.0 18.4

Group Flow 15.9 18.3 21.1 20.3 19.2 18.8

2D-CLG 17.4 18.8 11.0 11.4 11.6 11.3

Horn & Schunck 18.6 19.3 11.1 14.8 10.4 14.0

TI-DOFE 19.6 20.9 13.5 16.9 12.0 16.1

FOLKI 22.6 22.8 15.9 19.7 18.0 19.8

Pyramid LK 23.7 23.7 22.2 23.4 21.5 23.1

NEEE IE EE IENE

Figure 12: A comparison of the flow errors, the interpolation errors, and the normalized
interpolation errors. We include two columns for the average endpoint error. The leftmost
(Avg EE) is computed over all eight flow error datasets. The other column (Avg4 EE) is
computed over the four sequences that are common to the flow and interpolation studies
(Mequon, Schefflera, Urban, and Teddy). We also include two columns each for the
average interpolation error and the average normalized interpolation error. The leftmost of
each pair (Avg IE and Avg NE) are computed over all eight interpolation datasets. The other
columns (Avg4 IE and Avg NE) are computed over the four sequences that are common to
the flow and interpolation studies (Mequon, Schefflera, Urban, and Teddy). On the
right, we include the 6 × 6 matrix of the correlations of the six columns on the left. As in
previous figures, we separately color-code the average rank columns and the 6×6 correlation
matrix.

and Avg NE, are computed over all eight interpolation error datasets, and correspond exactly
to columns (a) and (b) in Figure 11. To remove any dependency on the different datasets,
we provide the Avg4 columns, which are computed over the four sequences that are common
to the flow and interpolation studies: Mequon, Schefflera, Urban, and Teddy.

The right half of Figure 12 shows the 6 × 6 matrix of the column correlations. It can
be seen that the correlation between the results for Avg4 EE and Avg4 IE is only 0.763.
The comparison here uses the same datasets, statistics, and masks; the only difference is
the error metric, flow endpoint error (EE) vs. interpolation error (IE). Part of the reason
these measures are relatively uncorrelated is that the interpolation errors are themselves a
little noisy internally. As discussed above, the R2.5 and Untext mask results are relatively
uncorrelated with the results for the other measures and masks. The main reason, however,

37

Flow Flow error Interpolation Interpolation error
D

P
O

F
[3

9]
C

B
F

[7
4]

Figure 13: A comparison of the flow and interpolation results for DPOF [39] and CBF [74] on
the Teddy sequence to illustrate the differences between the two measures of performance.
DPOF obtains the best flow results with an Avg. EE of 0.5 pixels, whereas CBF is ranked
9th with an Avg. EE of 0.76 pixels. CBF obtains the best interpolation error results with an
Avg. IE of 5.21 graylevels, whereas DPOF is ranked 6th with an Avg. IE of 5.58 graylevels.

is that the interpolation penalizes small flow errors in textured regions a lot, and larger flow
errors in untextured regions far less. An illustration of this point is included in Figure 13.
We include both flow and interpolation results for DPOF [39] and CBF [74] on the Teddy
sequence. DPOF obtains the best flow results with an average endpoint error of 0.5 pixels,
whereas CBF is the 9th best with an average endpoint error of 0.76 pixels. CBF obtains
the best interpolation error results with an average interpolation error of 5.21 graylevels,
whereas DPOF is 6th best with an average interpolation error of 5.58 graylevels. Although
the flow errors for CBF are significantly worse, the main errors occur where the foreground
flow is “fattened” into the relatively textureless background to the left of the birdhouse and
the right of the teddy bear. The interpolation errors in these regions are low. On the other
hand, DPOF makes flow errors on the boundary between the white cloth and blue painting
that leads to large interpolation errors. The normalized interpolation error (NE) is meant to
compensate for this difference between the flow and interpolation errors. Figure 12 does show
that the Avg4 NE and Avg4 EE measures are more correlated (r = 0.803) than the Avg4 IE
and Avg4 EE measures (r = 0.763). The increased degree of correlation is marginal, however,
due to the difficulty in setting a spatial smoothing radius for the gradient computation, and
the need to regularize the NE measure by adding ε to the denominator. Therefore, as one
might expect, the performance of a method in the interpolation evaluation yields only limited
information about the accuracy of the method in terms of recovering the true motion field.

38

Data Term Prior Term Optimization Misc.

Algorithm L
1

N
or

m

O
th

er
R

o
b

u
st

P
en

a
lt

y
F

n

G
ra

d
ie

n
t/

O
th

er
F

ea
tu

re
s

Il
lu

m
.

M
o
d

el
in

g
/
N

o
rm

.

L
1
/T

V
N

or
m

O
th

er
R

ob
u

st
P

en
al

ty
F

n

S
p

at
ia

l
W

ei
g
h
ti

n
g

A
n

is
o
tr

o
p

ic
W

ei
gh

ti
n

g

H
ig

h
er

-O
rd

er
P

ri
o
r

R
ig

id
it

y
P

ri
o
r

C
on

t.
-G

ra
d

ie
n
t

D
es

ce
n
t

C
on

t.
-V

ar
ia

ti
o
n

a
l/

E
x
tr

em
a
l

C
on

t.
-O

th
er

D
is

cr
.-

F
u

si
on

D
is

cr
.-

R
ep

a
ra

m
et

er
iz

a
ti

o
n

L
ea

rn
in

g

V
is

ib
il

it
y
/
O

cc
lu

si
o
n

C
o
lo

r

Adaptive [78] X X X X X X X
Complementary OF [84] X X X X X X X X
Aniso. Huber-L1 [82] X X X X X X
DPOF [39] X X X X X X X
TV-L1-improved [80] X X X X
CBF [74] X X X X X
Brox et al. [54] X X X X X
F-TV-L1 [79] X X X X
Second-order prior [75] X X X
Fusion [40] X X X X X X X
Dynamic MRF [27] X X X
Seg OF [83] X X X X X X
Learning Flow [70] X X X X X X
Filter Flow [65] X X X X X X X
Graph Cuts [20] X X X X
Black & Anandan [11] X X X
SPSA-learn [41] X X X X X
Horn & Schunck [33] X

Table 3: A classification of most of the algorithms for which results have been uploaded to
our online evaluation in terms of which elements of our taxonomy in Section 2 they use.

5.5 Analysis of the Algorithms

Table 3 contains a summary of most of the algorithms for which results have been uploaded
to our online evaluation. We omit the unpublished algorithms and a small number of the
algorithms that are harder to characterize in terms of our taxonomy. We list the algorithms
in the same order as Figures 7 and 9. Generally speaking, the better algorithms are at the
top, although note that this is just one way to rank the algorithms. For each algorithm, we
mark which elements of our taxonomy in Section 2 it uses. In terms of the data term, we mark
whether the algorithm uses the L1 norm or a different robust penalty function (Section 2.1.2).
Neither column is checked for an algorithm such as the Horn and Schunck [33] algorithm,
which uses the L2 norm. We note if the algorithm uses a gradient component in the data
term or any other more sophisticated features (Section 2.1.3). We also note if the algorithm

39

uses either an explicit illumination model (Section 2.1.4) or normalizes the data term in any
way to reduce the effects of temporal illumination variation.

For the spatial prior term, we also mark whether the algorithm uses the Total Variation
(TV) norm or a different robust penalty function (Section 2.2.2). We note if the algorithm
spatially weights the prior (Section 2.2.3) or if the weighting is anisotropic (Section 2.2.4).
We also note if the algorithm uses a higher-order prior (Section 2.2.5) or a rigidity prior
(Section 2.2.6).

In terms of the optimization algorithm, we mark if the algorithm uses a gradient-descent
based continuous optimization (Section 2.3.1). We also specify which algorithms are varia-
tional or use other extremal approaches (Section 2.3.2). Other approaches (Section 2.3.3),
such as the dual variable approach and the use of Linear Programming, are grouped together.
In terms of discrete optimization, we distinguish fusion based algorithms (Section 2.4.1) from
reparameterization based algorithms (Section 2.4.1) and note which approaches also use a
continuous optimization phase to refine the results (Section 2.4.3).

Finally, we also denote which algorithms use learning (Section 2.5.1) to optimize the
parameters and which algorithms perform explicit visibility or occlusion reasoning (Sec-
tion 2.5.5). In the last column we mark whether the algorithm uses color images.

Based on Table 3, we note the following:

• Degree of Sophistication: The algorithms toward the top of the table tend to use a
lot more of the refinements to the data and prior terms. Spatial weighting, anisotropic
weighting, and the addition of robustness to illumination changes through data term
normalization or the use of features, are all common components in the top-performing
algorithms.

• Choice of Penalty Function: The L1 norm is a very popular choice, particularly
for the data term. A couple of the top-performing algorithms combine a L1 norm on
the data term with a different (more truncated) robust penalty function on the prior
term.

• Rigidity: As discussed in Section 5.2.4, one algorithm that uses rigidity (F-TV-L1 [79])
does poorly on the non-rigid scenes, however, Adaptive [78] (a subsequent algorithm
by the same researchers) does well on all sequences.

• Continuous Optimization: The gradient descent algorithms (discounting the ones
that first perform a discrete optimization) all appear at the bottom of the table. On
the other hand, the variational approaches appear throughout the table. Note that
there is a correlation between the use of variational methods and more sophisticated
energy functions that is not intrinsic to the variational approach. A direct comparison
of different optimization methods with the same objective functions needs to be carried
out. The dual-variable approach is competitive with the best algorithms, and may offer
a speed advantage.

40

• Discrete Optimization: The discrete optimization algorithms do not perform par-
ticularly well. Note, however, that the energy functions used in these methods are
generally relatively simple and might be extended in the future to incorporate some of
the more sophisticated elements. It does, however, appear that refining the results with
a continuous optimization is required to obtain good results (if accuracy is measured
using average endpoint error).

• Miscellaneous: There are few algorithms that employ learning in the table, making
it difficult to draw conclusions in terms of performance. This is likely to change in
the future, as learning techniques are maturing and more labeled training data is
becoming available. Similarly, few algorithms incorporate explicit visibility or occlusion
reasoning, making it difficult to assess how important this could be. Notably, all 24
algorithms considered here utilize only 2 input frames, despite the fact that we make
8-frame sequences available. In contrast, on previous evaluation sets (particularly
Yosemite) multi-frame methods relying on temporal smoothing were quite common.
This raises the question of whether temporal smoothing, at least as applied so far, is
less suited for the more challenging sequences considered here. A definitive answer to
this point cannot be given in this paper, but should be subject of future work. Finally,
less than half of the algorithms utilize color information, and there is no obvious
correlation with performance. The utility of color for image matching clearly deserves
further study as well.

6 Conclusion

We have presented a collection of datasets for the evaluation of optical flow algorithms. These
datasets are significantly more challenging and comprehensive than previous ones. We have
also extended the set of evaluation measures and improved the evaluation methodology of
Barron et al. [7]. The data and results are available at http://vision.middlebury.edu/flow/.
Since the publication of our preliminary paper [6], a large number of authors have uploaded
results to our online evaluation. The best results are a huge improvement over the algorithms
in [6] (Table 2). Our data and metrics are diverse, offering a number of insights into the choice
of the most appropriate metrics and statistics (Section 5.2), the effect of the datatype on the
performance of algorithms and the difficulty of the various forms of data (Section 5.2.4), the
differences between flow errors and interpolation errors (Section 5.3), and the importance of
the various components in an algorithm (Section 5.5).

Progress on our data has been so rapid that the performance on some of the sequences
is already very good (Table 2). The main exceptions are Grove, Teddy, Urban, and per-
haps Schefflera. As our statistical analysis shows, however, the correlation in performance
across datasets is relatively low. This suggest that no single method is yet able to achieve
strong performance across a wide variety of datatypes. We believe that such generality is a
requirement for robust optical flow algorithms suited for real-world applications.

Any such dataset and evaluation has a limited lifespan and new and more challenging

41

sequences should be collected. A natural question, then, is how such data is best collected. Of
the various possible techniques (synthetic data [7,46], some form of hidden markers [48,58,73],
human annotation [42], interpolation data [72], and modified stereo data [64]), the authors
believe that synthetic data is probably the best approach (although generating high-quality
synthetic data is not as easy as it might seem). Large motion discontinuities and fast motion
of complex, fine structures appear to be more of a problem for current optical flow algorithms
than non-rigid motion, complex illumination changes, and sensor noise. The level of difficulty
is easier to control using synthetic data. Degradations such as sensor noise, etc., can also
easily be added. The realism of synthetic sequences could also be improved further beyond
the data in our evaluation.

Future datasets should also consider more challenging types of materials, illumination
change, atmospheric effects, and transparency. Highly specular and transparent materials
present not just a challenge for current algorithms, but also for quantitative evaluation.
Defining the ground-truth flow and error metrics for these situations will require some care.

With any synthetic dataset, it is important to understand how representative it is of
real data. Hence, the use of multiple types of data and an analysis of the correlation across
them is critical. A diverse set of datatypes also reduces overfitting to any one type, while
offering insights into the relative performance of the algorithms in different scenarios. On
balance, however, we would recommend that any future studies contain a higher proportion
of challenging, realistic synthetic data. Future studies should also extend the data to longer
sequences than the 8-frame sequences that we collected.

Acknowledgments

Many thanks to Brad Hiebert-Treuer and Alan Lim for their help in creating the fluorescent
texture data sets. Michael Black and Stefan Roth were supported by NSF grants IIS-0535075
and IIS-0534858, and a gift from Intel Corporation. Daniel Scharstein was supported by NSF
grant IIS-0413169. Aghiles Kheffache generously donated a software license for the 3Delight
renderer for use on this project. Michael Black and JP Lewis thank Lance Williams for early
discussions on synthetic flow databases and Doug Creel and Luca Fascione for discussions of
rendering issues. Thanks to Sing Bing Kang, Simon Winder, and Larry Zitnick for providing
implementations of various algorithms. Finally, thanks to all the authors who have used our
data and uploaded results to our website.

References

[1] G. Adiv. Determining three-dimensional motion and structure from optical flow gener-
ated by several moving objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 7(4):384–401, 1985.

[2] J. Aggarwal and N. Nandhakumar. On the computation of motion from sequences of
images—A review. Proceedings of the IEEE, 76(8):917–935, 1988.

42

[3] P. Anandan. A computational framework and an algorithm for the measurement of
visual motion. International Journal of Computer Vision, 2(3):283–310, 1989.

[4] P. Anandan and R. Weiss. Introducing smoothness constraint in a matching approach
for the computation of displacement fields. In Proceedings of the DARPA Image Un-
derstanding Workshop, pages 186–196, 1985.

[5] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. Interna-
tional Journal of Computer Vision, 46(3):221–255, 2004.

[6] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski. A database
and evaluation methodology for optical flow. In Proceedings of the IEEE International
Conference on Computer Vision, 2007.

[7] J. Barron, D. Fleet, and S. Beauchemin. Performance of optical flow techniques. Inter-
national Journal of Computer Vision, 12(1):43–77, 1994.

[8] T. Beier and S. Neely. Feature-based image metamorphosis. ACM Computer Graphics,
Annual Conference Series (SIGGRAPH), 26(2):35–42, 1992.

[9] J. Bergen, P. Anandan, K. Hanna, and R. Hingorani. Hierarchical model-based motion
estimation. In Proceedings of the Second European Conference on Computer Vision,
pages 237–252, 1992.

[10] M. Black and P. Anandan. Robust dynamic motion estimation over time. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 296–302,
1991.

[11] M. Black and P. Anandan. The robust estimation of multiple motions: Parametric and
piecewise-smooth flow fields. Computer Vision and Image Understanding, 63(1):75–104,
1996.

[12] M. Black and A. Jepson. Estimating optical flow in segmented images using variable-
order parametric models with local deformations. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 18(10):972–986, 1996.

[13] A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, 1987.

[14] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–
1239, 2001.

[15] T. Brox, C. Bregler, and J. Malik. Large displacement optical flow. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2009.

[16] A. Bruhn, J. Weickert, and C. Schnorr. Lucas/Kanade meets Horn/Schunck: Com-
bining local and global optic flow methods. International Journal of Computer Vision,
61(3):211–231, 2005.

[17] P. Burt, C. Yen, and X. Xu. Local correlation measures for motion analysis: A com-
parative study. IEEE Proc. PRIP , pages 269–274, 1982.

43

[18] P. Burt, C. Yen, and X. Xu. Multi-resolution flow-through motion analysis. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
246–252, 1983.

[19] C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an un-
warped multiresolution scheme. In Proceedings of the Iberoamerican Congress on Pat-
tern Recognition, pages 790–797, 2009.

[20] T. Cooke. Two applications of graph-cuts to image processing. In Digital Image Com-
puting: Techniques and Applications, pages 498–504, 2008.

[21] DNA Research. 3Delight rendering software. http://www.3delight.com/.

[22] W. Enkelman. Investigations of multigrid algorithms for the estimation of optical flow
fields in image sequences. In Proceedings of the Workshop on Motion: Representations
and Analysis, pages 81–87, 1986.

[23] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisser-
man. The PASCAL visual object classes challenge 2009. http://www.pascal-
network.org/challenges/VOC/voc2009/workshop/index.html.

[24] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 28(4):594–611, 2006.

[25] D. Fleet and A. Jepson. Computation of component image velocity from local phase
information. International Journal of Computer Vision, 5(1):77–104, 1990.

[26] F. Glazer, G. Reyonds, and P. Anandan. Scene matching by hierarchical correlation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 432–441, 1983.

[27] B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estima-
tion with uncertainties through dynamic MRFs. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2008.

[28] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker. Multi-PIE. In Proceedings
of the International Conference on Automatic Face and Gesture Recognition, 2008.

[29] K. Hanna. Direct multi-resolution estimation of ego-motion and stucture from motion.
In Proceedings of the IEEE Workshop on Visual Motion, pages 156–162, 1991.

[30] H. Haussecker and D. Fleet. Computing optical flow with physical models of brightness
variation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, volume 2, pages 760–767, 2000.

[31] E. Herbst, S. Seitz, and S. Baker. Occlusion reasoning for temporal interpolation using
optical flow. Technical Report UW-CSE-09-08-01, University of Washington, Depart-
ment of Computer Science and Engineering, 2009.

[32] B. Horn. Robot Vision. MIT Press, Cambridge, Massachusetts, 1986.

[33] B. Horn and B. Schunck. Determining optical flow. Artificial Intelligence, 17:185–203,
1981.

44

[34] A. Jepson and M. Black. Mixture models for optical flow computation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 760–761,
1993.

[35] S. Ju. Estimating Image Motion in Layers: The Skin and Bones Model. PhD thesis,
Department of Computer Science, University of Toronto, 1998.

[36] S. Ju, M. Black, and A. Jepson. Skin and bones: Multi-layer, locally affine, optical flow
and regularization of transparency. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 307–314, 1996.

[37] H. Jung, K. Lee, and S. Lee. Toward global minimum through combined local minima.
In Proceedings of the European Conference on Computer Vision, volume 4, pages 298–
311, 2008.

[38] G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window regis-
tration. In Proceedings of the International Conference on Image Processing, volume 1,
pages 137–140, 2005.

[39] C. Lei and Y. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete
optimization. In Proceedings of the IEEE International Conference on Computer Vision,
2009.

[40] V. Lempitsky, S. Roth, and C. Rother. Fusion flow. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2008.

[41] Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. In
Proceedings of the European Conference on Computer Vision, volume 2, pages 373–391,
2008.

[42] C. Liu, W. Freeman, E. Adelson, and Y. Weiss. Human-assisted motion annotation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2008.

[43] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. Freeman. SIFT flow: Dense correspon-
dence across difference scenes. In Proceedings of the European Conference on Computer
Vision, volume 3, pages 28–42, 2008.

[44] B. Lucas and T. Kanade. An iterative image registration technique with an application
in stereo vision. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 674–679, 1981.

[45] D. Mahajan, F. Huang, W. Matusik, R. Ramamoorthi, and P. Belhumeur. Moving
gradients: A path-based method for plausible image interpolation. In ACM Computer
Graphics, Annual Conference Series (SIGGRAPH), 2009.

[46] B. McCane, K. Novins, D. Crannitch, and B. Galvin. On benchmarking optical flow.
Computer Vision and Image Understanding, 84(1):126–143, 2001.

[47] A. Mitiche and P. Bouthemy. Computation and analysis of image motion: A synopsis of
current problems and methods. International Journal of Computer Vision, 19(1):29–55,
1996.

45

[48] Mova LLC. Contour reality capture. http://www.mova.com/.

[49] D. Murray and B. Buxton. Scene segmentation from visual motion using global opti-
mization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(2):220–
228, 1987.

[50] H.-H. Nagel and W. Enkelmann. An investigation of smoothness constraints for the
estimation of displacement vector fields from image sequences. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(5):565–593, 1986.

[51] S. Negahdaripour. Revised definition of optical flow: Integration of radiometric and
geometric cues for dynamic scene analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 20(9):961–979, 1998.

[52] T. Nir, A. Bruckstein, and R. Kimmel. Over-parameterized variational optical flow.
International Journal of Computer Vision, 76(2):205–216, February 2008.

[53] M. Otte and H.-H. Nagel. Optical flow estimation: Advances and comparisons. In
Proceedings of the European Conference on Computer Vision, pages 51–60, 1994.

[54] N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert. Highly accurate optic flow
computation with theoretically justified warping. International Journal of Computer
Vision, 67(2):141–158, 2006.

[55] P. Philips, W. Scruggs, A. O’Toole, P. Flynn, K. Bowyer, C. Schott, and M. Sharpe.
Overview of the face recognition grand challenge. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, volume 1, pages 947–954, 2005.

[56] T. Pock, M. Pock, and H. Bischof. Algorithmic differentiation: Application to varia-
tional problems in computer vision. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 29(7):1180–1193, 2007.

[57] W. Pratt. Correlation techniques of image registration. IEEE Trans. Aerospace and
Electronic Systems AES-10, pages 353–358, 1974.

[58] K. Ramnath, S. Baker, I. Matthews, and S. Baker. Increasing the density of active
appearance models. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2008.

[59] J. Rannacher. Realtime 3D motion estimation on graphics hardware. Undergraduate
Thesis, Heidelberg University, 2009.

[60] X. Ren. Local grouping for optical flow. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2008.

[61] S. Roth and M. Black. On the spatial statistics of optical flow. International Journal
of Computer Vision, 74(1):33–50, 2007.

[62] D. Scharstein and C. Pal. Learning conditional random fields for stereo. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2007.

[63] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, 47(1–3):7–42,
2002.

46

[64] D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using structured light.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 195–202, 2003.

[65] S. Seitz and S. Baker. Filter flow. In Proceedings of the IEEE International Conference
on Computer Vision, 2009.

[66] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A comparison and evalu-
ation of multi-view stereo reconstruction algorithms. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, volume 1, pages 519–526, 2006.

[67] J. Shade, S. Gortler, L.-W. He, and R. Szeliski. Layered depth images. In ACM
Computer Graphics, Annual Conference Series (SIGGRAPH), pages 231–242, 1998.

[68] T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and expression database.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12):1615–1618,
2003.

[69] C. Stiller and J. Konrad. Estimating motion in image sequences: A tutorial on modeling
and computation of 2D motion. IEEE Signal Processing Magazine, 16(4):70–91, 1999.

[70] D. Sun, S. Roth, J. Lewis, and M. Black. Learning optical flow. In Proceedings of the
European Conference on Computer Vision, volume 3, pages 83–97, 2008.

[71] J. Sun, H.-Y. Shum, and N. Zheng. Stereo matching using belief propagation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 25(7):787–800, 2003.

[72] R. Szeliski. Prediction error as a quality metric for motion and stereo. In Proceedings
of the IEEE International Conference on Computer Vision, pages 781–788, 1999.

[73] M. Tappen, E. Adelson, and W. Freeman. Estimating intrinsic component images using
non-linear regression. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 1992–1999, 2006.

[74] W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via
repeated binary fusion. In Proceedings of the European Conference on Computer Vision,
volume 4, pages 677–690, 2008.

[75] W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for
high-accuracy motion estimation. In Proceedings of Pattern Recognition (DAGM), pages
396–405, 2008.

[76] S. Vedula, S. Baker, P. Rander, R. Collins, and T. Kanade. Three-dimensional scene
flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3):475–480,
2005.

[77] J. Wang and E. Adelson. Layered representation for motion analysis. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 361–366,
1993.

[78] A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regular-
ization for high accuracy optic flow. In Proceedings of the IEEE International Conference
on Computer Vision, 2009.

47

[79] A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with
fundamental matrix prior. In Proceedings of Image and Vision Computing New Zealand,
2008.

[80] A. Wedel, T. Pock, C. Zach, D. Cremers, and H. Bischof. An improved algorithm for
TV-L1 optical flow. In Proceedings of the Dagstuhl Motion Workshop, 2008.

[81] Y. Weiss. Smoothness in layers: Motion segmentation using nonparametric mixture
estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 520–526, 1997.

[82] M. Werlberger, W. Trobin, T. Pock, H. Bischof, A. Wedel, and D. Cremers. Anisotropic
Huber-L1 optical flow. In Proceedings of the British Machine Vision Conference, 2009.

[83] L. Xu, J. Chen, and J. Jia. A segmentation based variational model for accurate
optical flow estimation. In Proceedings of the European Conference on Computer Vision,
volume 1, pages 671–684, 2008.

[84] H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P.
Seidel. Complementary optic flow. In Proceedings of Seventh International Workshop
on Energy Minimization Methods in Computer Vision and Pattern Recognition, 2009.

[85] C. Zitnick, S. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-quality video
view interpolation using a layered representation. ACM Transactions on Graphics,
23(3):600–608, 2004.

48

	Introduction
	Related Work
	Data Term
	Brightness Constancy
	Choice of the Penalty Function
	Photometrically Invariant Features
	Modeling Illumination, Blur, and Other Appearance Changes

	Prior Term
	First Order
	Choice of the Penalty Function
	Spatial Weighting
	Anisotropic Smoothness
	Higher-Order Priors
	Rigidity Priors

	Continuous Optimization Algorithms
	Gradient Descent Algorithms
	Variational and Other Extremal Approaches
	Other Continuous Algorithms
	Coarse-To-Fine and Other Heuristics

	Discrete Optimization Algorithms
	Fusion Approaches
	Dynamically Reparameterizing Sparse State-Spaces
	Continuous Refinement

	Miscellaneous Issues
	Learning
	Segmentation
	Layers
	Sparse-to-Dense Approaches
	Visibility and Occlusion

	Databases and Evaluations

	Database Design
	Dense GT Using Hidden Fluorescent Texture
	Realistic Synthetic Imagery
	Imagery for Frame Interpolation
	Frame Interpolation Datasets
	Frame Interpolation Algorithm

	Modified Stereo Data for Rigid Scenes

	Evaluation Methodology
	Performance Measures
	Statistics
	Region Masks

	Experimental Results
	Online Evaluation
	Analysis of the Flow Errors
	Comparison of the Endpoint Error and the Angular Error
	Comparison of the Statistics
	Comparison of the Region Masks
	Comparison of the Datasets

	Analysis of the Interpolation Errors
	Comparison of the Interpolation and Normalized Interpolation Errors
	Comparison of the Statistics
	Comparison of the Region Masks
	Comparison of the Datasets

	Comparison of the Flow and Interpolation Errors
	Analysis of the Algorithms

	Conclusion

