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Abstract

Thispaperpresentsa quantitativecomparisonof several
multi-view stereoreconstructionalgorithms.Until now, the
lack of suitablecalibratedmulti-view image datasetswith
knowngroundtruth (3D shapemodels)haspreventedsuch
directcomparisons.In thispaper, we�r stsurvey multi-view
stereo algorithmsand compare themqualitativelyusinga
taxonomythat differentiatestheir key properties. We then
describeour processfor acquiring and calibrating multi-
view image datasetswith high-accuracy groundtruth and
introduceour evaluationmethodology. Finally, wepresent
theresultsofourquantitativecomparisonof state-of-the-art
multi-view stereo reconstructionalgorithmson six bench-
mark datasets. The datasets,evaluation details, and in-
structionsfor submittingnew modelsare availableonline
at http://vision.middlebury.edu/mview.

1. Intr oduction

The goal of multi-view stereois to reconstructa com-
plete 3D object model from a collection of imagestaken
from known cameraviewpoints. Over the last few years,
a numberof high-qualityalgorithmshave beendeveloped,
andthestateof theart is improving rapidly. Unfortunately,
the lack of benchmarkdatasetsmakes it dif�cult to quan-
titatively comparetheperformanceof thesealgorithmsand
to thereforefocusresearchon themostneededareasof de-
velopment.

The situationin binocularstereo,wherethe goal is to
produceadensedepthmapfrom apairof images,wasuntil
recentlysimilar. Here,however, a databaseof imageswith
ground-truthresultshasmadethecomparisonof algorithms
possibleandhencestimulatedanevenfasterincreasein al-
gorithmperformance[1].

In this paper, we aim to rectify this imbalanceby pro-
viding, for the �rst time, a collection of high-quality cal-
ibratedmulti-view stereoimagesregisteredwith ground-
truth 3D modelsandan evaluationmethodologyfor com-
paringmulti-view algorithms.

Our paper's contributionsincludea taxonomyof multi-
view stereoreconstructionalgorithmsinspiredby [1] (Sec-

tion 2), the acquisition and disseminationof a set of
calibratedmulti-view image datasetswith high-accuracy
ground-truth3D surface models (Section 3), an evalua-
tion methodologythat measuresreconstructionaccuracy
andcompleteness(Section4), anda quantitative evaluation
of someof the currentlybest-performingalgorithms(Sec-
tion 5). While the currentevaluationonly includesmeth-
odswhoseauthorswereableto provide us their resultsby
CVPR �nal submissiontime, our datasetsand evaluation
resultsare publicly available [2] and opento the general
community. We plan to regularly updatethe results,and
publisha morecomprehensive comparative evaluationasa
full-length journalpublication.

We limit the scopeof this paperto algorithmsthat re-
constructdenseobjectmodelsfrom calibratedviews. Our
evaluationthereforedoesnot includetraditionalbinocular,
trinocular, andmulti-baselinestereomethods,which seek
to reconstructasingledepthmap,or structure-from-motion
andsparsestereomethodsthatcomputea sparsesetof fea-
turepoints. Furthermore,we restrictthecurrentevaluation
to objectsthatarenearlyLambertian,which is assumedby
most algorithms. However, we also captured and plan to
provide datasetsof specularscenesandplan to extendour
studyto includesuchscenesin thefuture.

This paperis not the �rst to survey multi-view stereo
algorithms;we refer readersto nice surveys by Dyer [3]
and Slabaughet al. [4] of algorithmsup to 2001. How-
ever, thestateof thearthaschangeddramaticallyin thelast
� ve years,warrantinga new overview of the�eld. In addi-
tion, this paperprovidesthe �rst quantitativeevaluationof
abroadrangeof multi-view stereoalgorithms.

2. A multi-view stereotaxonomy

One of the challengesin comparing and evaluating
multi-view stereoalgorithms is that existing techniques
vary signi�cantly in their underlyingassumptions,operat-
ing ranges,and behavior. Similar in spirit to the binoc-
ular stereo taxonomy [1], we categorize existing meth-
odsaccordingto six fundamentalpropertiesthat differen-
tiatethemajoralgorithms:thescenerepresentation, photo-
consistencymeasure, visibility model, shapeprior, recon-
structionalgorithm, andinitialization requirements.



2.1.Scenerepresentation

The geometryof an objector scenecanbe represented
in numerous ways; the vast majority of multi-view algo-
rithms use voxels, level-sets,polygon meshes,or depth
maps.While somealgorithmsadoptasinglerepresentation,
othersemploy differentrepresentationsfor variousstepsin
the reconstructionpipeline. In this sectionwe give a very
brief overview of theserepresentationsand in Section2.5
wediscusshow they areusedin thereconstructionprocess.

Many techniquesrepresentgeometryonaregularlysam-
pled3D grid (volume),eitherasadiscreteoccupancy func-
tion (e.g.,voxels[5–19]),or asafunctionencodingdistance
to theclosestsurface(e.g.,level-sets[20–26]).3D gridsare
popularfor their simplicity, uniformity, andability to ap-
proximateany surface.

Polygonmeshesrepresentasurfaceasasetof connected
planar facets. They are ef�cient to storeand renderand
arethereforea popularoutputformat for multi-view algo-
rithms. Meshesarealsoparticularly well-suitedfor visibil-
ity computationsandarealsousedasthecentralrepresen-
tationin somealgorithms[27–32].

Some methodsrepresentthe sceneas a set of depth
maps,onefor eachinput view [33–38]. This multi-depth-
maprepresentationavoidsresamplingthegeometryona3D
domain,and the 2D representationis convenientparticu-
larly for smallerdatasets.An alternative is to de�ne the
depthmapsrelative to scenesurfacesto form a relief sur-
face[39,40].

2.2.Photoconsistencymeasure

Numerousmeasureshave beenproposedfor evaluating
thevisualcompatibilityof a reconstructionwith asetof in-
put images.Thevastmajorityof thesemeasuresoperateby
comparingpixels in oneimageto pixels in otherimagesto
seehow well they correlate.For this reason,they areoften
calledphoto-consistencymeasures[11]. Thechoiceof mea-
sureis notnecessarilyintrinsic to aparticularalgorithm—it
is often possibleto take a measurefrom one methodand
substituteit in another. We categorize photo-consistency
measuresbasedon whetherthey arede�ned in scenespace
or imagespace[22].

Scenespacemeasureswork by takinga point, patch,or
volumeof geometry, projectingit into theinput images,and
evaluatingthe amountof mutualagreement betweenthose
projections.A simplemeasureof agreementis thevariance
of the projectedpixels in the input images[8, 11]. Other
methodscompareimagestwo at a time, andusewindow-
matchingmetricssuchassumof squareddifferencesor nor-
malizedcrosscorrelation[20,23,31]. An interestingfea-
tureof scene-spacewindow-basedmethodsis that thecur-
rentestimateof thegeometrycaninform thesizeandshape
of thewindow [20]. A numberof otherphoto-consistency

measureshavebeenproposedto providerobustnessto small
shiftsandothereffects[12,18].

Imagespacemethodsuseanestimateof scenegeometry
to warpanimagefrom oneviewpoint to predicta different
view. Comparingthepredictedandmeasuredimagesyields
aphoto-consistency measureknown aspredictionerror [26,
41]. While prediction error is conceptuallyvery similar to
scenespacemeasures,animportantdifferenceis thedomain
of integration. Scenespaceerror functionsare integrated
overasurfaceandthusoftentendto prefersmallersurfaces,
whereaspredictionerroris integratedover thesetof images
of asceneandthusascribemoreweightto partsof thescene
thatappearfrequentlyor occupy a largeimagearea.

While moststereoalgorithmshavetraditionallyassumed
approximatelyview-independentintensities,i.e., Lamber-
tian scenes,a numberof new photo-consistency metrics
have beendevisedthat seekto modelmoregeneralre�ec-
tion functions(BRDFs)[15–17,22,23,32]. Somemethods
alsoutilize silhouettes[27,30,31] or shadows [17,42].

2.3.Visibility model

Visibility modelsspecifywhich views to considerwhen
evaluatingphoto-consistency measures.Becausescenevis-
ibility canchangedramaticallywith viewpoint, almostall
modern multi-view stereoalgorithms accountfor occlu-
sionsin someway or another. Early algorithmsthatdid not
modelvisibility [6,27,43] have troublescalingto largedis-
tributionsof viewpoints.Techniquesfor handlingvisibility
includegeometric, quasi-geometric, andoutlier-basedap-
proaches.

Geometrictechniquesseekto explicitly modeltheimage
formationprocessandthe shapeof the sceneto determine
whichscenestructuresarevisible in which images.A com-
monapproachin surfaceevolution approachesis to usethe
currentestimateof thegeometryto predictvisibility for ev-
ery point on thatsurface[5,11,12,19,20,29,30,40]. Fur-
thermore,if thesurfaceevolutionbeginswith asurfacethat
enclosesthescenevolumeandevolvesby carvingawaythat
volume,thisvisibility approachcanbeshown to beconser-
vative [11,18]; i.e., the set of camerasfor which a scene
point is predictedto bevisible is asubsetof thesetof cam-
erasin which thatpoint is truly visible.

Visibility computationscanbe simpli�ed by constrain-
ing theallowabledistribution of cameraviewpoints. If the
scenelies outsidethe convex hull of the cameracenters,
the occlusionorderingof points in the sceneis samefor
all cameras[8], enablinga numberof moreef�cient algo-
rithms[8,10,13,35,44].

Quasi-geometrictechniquesuseapproximategeometric
reasoningto infer visibility relationships.For example,a
popularheuristicfor minimizing theeffectsof occlusionsis
to limit thephoto-consistency analysisto clustersof nearby
cameras[31,45]. This approachis often usedin combi-



nation with other forms of geometricreasoningto avoid
obliqueviewsandto minimizecomputations[5,11,26]. An-
othercommonquasi-geometrictechniqueis to usea rough
estimateof thesurfacesuchasthevisualhull [46] to guess
visibility for neighboringpoints[19,47,48].

The third type of methodis to avoid explicit geometric
reasoningand insteadtreat occlusionsas outliers [31,34,
37,38]. Especiallyin caseswherescenepointsarevisible
moreoften thanthey areoccluded,simpleoutlier rejection
techniques[49] can be usedto selectthe good views. A
heuristicoften usedin tandemwith outlier rejectionis to
avoid comparingviewsthatarefarapart,therebyincreasing
thelikely percentageof inliers [31,34,37,38].

2.4.Shapeprior

Photo-consistency measuresaloneare not always suf-
�cient to recover precisegeometry, particularly in low-
texturedsceneregions[11,50]. It canthereforebehelpful
to imposeshapepriors thatbiasthereconstructionto have
desiredcharacteristics.While priorsareessentialfor binoc-
ular stereo,they play a less important role in multi-view
stereowheretheconstraintsfrom many views arestronger.

Techniques that minimize scene-based photo-
consistency measuresnaturally seek minimal surfaces
with small overall surfacearea. This bias is what enables
many level-setalgorithmsto converge from a grossinitial
shape[20]. The preferencefor minimal surfacescanalso
resultin a tendency to smoothoverpointsof highcurvature
(see[51, 52] for ways to addressthis problem). Recent
approachesbased on volumetric min-cut [19, 47] also
have a bias for minimum surfaces. A numberof mesh-
basedalgorithmsincorporatetermsthat causetrianglesto
shrink [29,31] or preferreferenceshapessuchasa sphere
or aplane[27].

Many methodsbasedon voxel coloringandspacecarv-
ing [5, 8,9,11,12,16,18,53] insteadprefer maximalsur-
faces. Since thesemethods operateby removing voxels
only whenthey arenot photo-consistent,they producethe
largestphoto-consistentscenereconstruction,known asthe
“photo hull.” Becausethey do not assumethat the surface
is smooth,thesetechniquesaregoodat reconstructinghigh
curvatureor thin structures.However, thesurfacetendsto
bulgeout in regionsof low surfacetexture[8,11].

Ratherthan imposeglobal priors on the overall sizeof
the surface, other methodsemploy shapepriors that en-
couragelocal smoothness.Approachesthat representthe
scenewith depthmapstypically optimizean image-based
smoothnessterm[33–37,45] thatseeksto giveneighboring
pixels the samedepthvalue. This kind of prior �ts nicely
into a 2D Markov RandomField (MRF) framework, and
canthereforetake advantageof ef�cient MRF solvers[35].
A disadvantage is thatthereis a biastowardfronto-parallel
surfaces. This bias can be avoided by enforcingsurface-

basedpriors,asin [27,29–32,40,47,48].

2.5.Reconstructionalgorithm

Multi-view stereoalgorithmscanberoughlycategorized
into four classes.

The�rst classoperatesby �rst computingacostfunction
on a 3D volume, and then extracting a surfacefrom this
volume. A simple exampleof this approachis the voxel
coloring algorithm and its variants[8, 17], which make a
singlesweepthroughthevolume,computingcostsandre-
constructingvoxelswith costsbelow athresholdin thesame
pass(notethat [13] avoidstheneedfor a threshold).Other
algorithmsdiffer in the de�nition of the cost function and
the surfaceextractionmethod. A numberof methodsde-
�ne a volumetricMRF andusemax-�ow [6, 19,47,48] or
multi-waygraphcut [35] to extractanoptimalsurface.

The secondclass of techniquesworks by iteratively
evolving a surface to decreaseor minimize a cost func-
tion. This classincludesmethodsbasedon voxels, level
sets,and surface meshes. Spacecarving [5, 11] and its
variants[9, 11,12,14,18,40,53] progressively remove in-
consistentvoxels from an initial volume. Othervariantsof
this approachenableaddingas well as deletingvoxels to
minimizeanenergy function[15,54]. Level-settechniques
minimize a setof partial differentialequationsde�ned on
a volume. Like spacecarvingmethods,level-setmethods
typically start from a large initial volume and shrink in-
ward; unlike most spacecarving methods,however, they
can also locally expandif neededto minimize an energy
function.Otherapproachesrepresentthesceneasanevolv-
ing mesh[27–32] that movesasa function of internaland
externalforces.

In the third classare image-spacemethodsthat com-
pute a set of depthmaps. To ensurea single consistent
3D sceneinterpretation,thesemethodsenforceconsistency
constraintsbetweendepthmaps[33,35–37],or merge the
setof depthmapsinto a3D sceneasapostprocess[45].

The �nal classconsistsof algorithmsthat �rst extract
andmatchasetof featurepointsandthen�t asurfaceto the
reconstructedfeatures[55–58].

2.6.Initialization requirements

In additionto a setof calibratedimages,all multi-view
stereoalgorithmsassumeor requireasinputsomeinforma-
tion aboutthegeometricextentof theobjector scenebeing
reconstructed.Providing someconstraintson scenegeom-
etry is in factnecessaryto rule out trivial shapes,suchasa
differentpostcardplacedin front of eachcameralens.

Many algorithmsrequire only a rough boundingbox
or volume (e.g., spacecarving variants [8, 9, 11,12,14,
18,40,53] and level-setalgorithms[20–26]). Somealgo-
rithmsrequirea foreground/backgroundsegmentation(i.e.,
silhouette)for eachinput imageand reconstructa visual
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Figure1. Multi-view datasetswith laser-scanned3D models.

Figure2.The317camerapositionsandorientationsfor thetemple
dataset.Thegapsaredueto shadows. The47camerascorrespond-
ing to thering datasetareshown in blueandred,andthe16sparse
ring camerasonly in red.

hull [46] that servesasan initial estimateof scenegeom-
etry [5,19,31,47,48].

Image-spacealgorithms [33, 35–37] typically enforce
constraintson theallowablerangeof disparityor depthval-
ues, therebyconstrainingscenegeometryto lie within a
nearandfardepthplanefor eachcameraviewpoint.

3. Multi-view data sets

To enablea quantitative evaluationof multi-view stereo
reconstructionalgorithms,we collectedseveral calibrated

multi-view imagesetsandcorrespondinggroundtruth 3D
meshmodels. Similar dataareavailablefor surfacelight-
�eld studies[59,60]; we have followedsimilar procedures
for acquiring the imagesand modelsand for registering
themto oneanother(althoughwe adda stepto automati-
cally re�ne thealignmentof thegroundtruth to the image
setsbasedon minimizing photo-consistency). The surface
light�eld datasetsthemselvesarenot,however, suitablefor
this evaluationdueto thehighly specularnatureof theob-
jectsselectedfor thosestudies.We notethat a numberof
otherhighqualitymulti-view datasetsarepublicly available
(without registeredgroundtruth models),andwe provide
links to many of thesethroughourwebsite.

The target objectsfor this study were selectedto have
a variety of characteristicsthat are challengingfor typi-
calmulti-view stereoreconstructionalgorithms.We sought
objectsthat broadly samplethe spaceof thesecharacter-
istics by including both sharpand smoothfeatures,com-
plex topologies,strongconcavities, andboth stronglyand
weaklytexturedsurfaces(seeFigure1).

The imageswerecapturedusingthe Stanfordspherical
gantry, a roboticarmthatcanbepositionedon a one-meter
radiussphereto anaccuracy of approximately0.01degrees.
Imageswerecapturedusinga CCD camerawith a resolu-
tion of 640 � 480 pixels attachedto the tip of the gantry
arm. At this resolution,a pixel in the imagespansroughly
0:25mm on the surfaceof the object(the templeobject is
10cm � 16cm � 8cm, andthedino is 7cm � 9cm � 7cm).

Thesystemwascalibratedby imaginga planarcalibra-
tion grid from 68viewpointsover thehemisphereandusing
[61] to computeintrinsic and extrinsic parameters.From
theseparameters,we computedthe camera's translational
androtationaloffsetrelativeto thetip of thegantryarm, en-
ablingusto determinethecamera'spositionandorientation
asa functionof any desiredarmposition.

The target objectsits on a stationaryplatform nearthe
centerof thegantrysphereandis lit by threeexternalspot-
lights. Becausethe gantry castsshadows on the object in
certainviewpoints,wedouble-coveredthehemispherewith
two different arm con�gurations,capturinga total of 790
images. After shadowed imagesweremanuallyremoved,
weobtainedroughly80%coverageof thesphere.Fromthe
resultingimages,we createdthreedatasetsfor eachobject,
correspondingto afull hemisphere,asinglering aroundthe
object,andasparselysampledring (Figure2).

The reference3D model was capturedusing a Cyber-
wareModel 15 laserstripescanner. This unit hasa single-
scanresolutionof 0:25mm and an accuracy of 0:05mm
to 0:2mm, dependingon the surface characteristicsand
the viewing angle. For eachobject, roughly 200 individ-
ual scanswerecaptured,alignedandmergedon a 0:25mm
grid,with theresultingmeshextractedwith sub-voxel preci-
sion[62]; theaccuracy of thecombinedscansis appreciably



greaterthanthe individual scans.The procedurealsopro-
ducesper-vertex con�denceinformation,which we usein
theevaluationprocedure.

The referencemodelswerealignedto their imagesets
usingan iterative optimizationapproachthat minimizesa
photo-consistency functionbetweenthereferencemeshand
the images. The alignmentparametersconsistof a trans-
lation, rotation, and uniform scale. The scalefactor was
introducedto compensatefor small differencesin calibra-
tion betweenthe laserscannerand eachimageset. The
photo-consistency function for eachvertex of the meshis
thevarianceof thecolor of all raysimpingingon that ver-
tex, timesthenumberof imagesin which thatvertex is vis-
ible, times the con�denceof that vertex. This function is
summedoverall verticesin themesh,andminimizedusing
a coordinatedescentmethodwith a bounded�nite differ-
enceNewton line search.The sizeof the �nite difference
incrementis reducedbetweensuccessiveiterationsby afac-
tor of two until a minimum value is reached.After every
step,a checkis madeto ensurethat the objective function
strictly decreases. The optimizationwas initialized with
theoutputof an iterative closestpoint (ICP) alignmentbe-
tweenthe referencemeshandoneof the submittedrecon-
structions.It wasfound that the resultof the optimization
wasinvariantto which samplereconstructionwasselected
for theICP alignment.Thequality of thesealignmentswas
validatedby manuallyinspectingthereprojectionof thefull
images;maximumreprojectionerrorswerefound to beon
theorderof 1 pixel, andusuallysubstantiallyless.

4. Evaluation methodology

Wenow describehow weevaluatereconstructionsby ge-
ometriccomparisonto thegroundtruthmodel.

Let usdenotethegroundtruth modelasG andthesub-
mittedreconstructionresultto beevaluatedasR. Thegoal
of our evaluationis to assessboth theaccuracyof R (how
closeR is to G), andthecompletenessof R (how muchof
G is modeledby R). For the purposesof this paper, we
assumethatR is itself a trianglemesh.

Tomeasuretheaccuracy of areconstruction,wecompute
thedistancebetweenthepointsin R andthenearestpoints
on G. SinceR is a surface,in theory, we shouldconstruct
measuresthatentail integrationoverR althoughin practice
wesimply sampleR at its vertices.

A problemariseswhere G is incomplete. In this case,
for a given point on R in an areawhereG is incomplete,
thenearestpoint on G couldbeon its boundaryor possibly
on a distantpartof themesh.Ratherthantry to detectand
remove sucherrorswe insteadcomputenearestdistances
to G0, a hole-�lled versionof G, and discountpoints in
R whosenearestpointson G0 areclosestto thehole-�lled
regions. Figure 3(b) illustratesthis approach.While this
solution is itself imperfect,if the hole �lls are reasonably

R
G

(a)

G'

(b) (c)

Figure3. Evaluationof reconstructionR relative to groundtruth
modelG. (a)R andG arerepresentedasmeshes,eachshown here
to be incompleteat differentpartsof thesurface. (b) To compute
accuracy, for eachvertex on R, we �nd the nearestpoint on G.
We augmentG with a hole�lled region (solid red)to give a mesh
G0. Vertices(shown in red) that project to the hole �lled region
arenotusedin theaccuracy metric. (c) To measurecompleteness,
for eachvertex on G, we �nd thenearestpointson R (wherethe
dottedlines terminateon R). Vertices(shown in red) thatmapto
theboundaryof R or arebeyondan“inlier distance”from R to G
aretreatedasnot coveredby R.

“tight,” this approachwill avoid penalizingaccuratepoints
in R at the costof discardingsomepossiblylessaccurate
pointsthathappento matchto thehole �ll. In practice,we
usethehole-�lled surfacesgeneratedby spacecarving[62]
duringsurfacereconstructionfrom rangescans,andweper-
form many scans(approximately200 per object), so that
thesehole�lls arefairly closeto theactualsurfaceandcon-
stitutea smallportionof thesurfaceof themodel. In addi-
tion, the meshG hasper-vertex con�dencevaluesindicat-
ing how well it wassampledby thescanner[62]; we ignore
pointsonR thatmapto low con�denceregionsof G.

After determiningthenearestvalid pointson G from R,
we computethe distancesbetweenthem. We computethe
signeddistancesto geta senseof whethera reconstruction
tendsto under- or over-estimatethe trueshape.We setthe
sign of eachdistanceequalto the sign of the dot product
betweentheoutward facingnormalat thenearestpoint on
G andthevectorfrom thatpoint to thequerypointonR.

Giventhesamplingof signeddistancesfrom thevertices
of R to G (lessthedistancesfor pointsthatprojectto hole
�lls of G0), wecannow visualizetheirdistributionandcom-
putesummarystatisticsusefulin comparingtheaccuracy of
thereconstruction algorithms.Oneusefulexampleof such
a statisticis to computethedistanced suchthatX% of the
pointson R arewithin distanced of G. WhenX = 50 for
instance,this givesmediandistancefrom R to G. Onesuch
statisticis presentedin Section5.

To measurecompleteness,we computethe distances
from G to R, i.e., the oppositeof what we do for mea-
suringaccuracy. Intuitively, pointson G thathave no suit-
ablenearestpointson R will beconsidered“not covered”.
Again,while wecouldmeasurethecoveredareaby integra-
tion, we insteadsampleusingtheverticesof G, which are
fairly uniformly distributedover G for our models. Unfor-



tunately, we cannotusethesameideafor rejectingnearest
pointsthatwe usefor theaccuracy metric,since,generally,
ahole-�lled R0 is notavailable.

Instead,weproposeanalternativecompletenessmeasure
thatsimplyreportsthefractionof pointsof G thatarewithin
anallowabledistanced of R 1. Theparameterd shouldbe
chosento be large enoughto accommodate“reasonable”
errorsin the reconstructions.A consequenceof this mea-
sureis thatunusuallynoisyreconstructionswill tendto have
lower completeness scores.Figure3(c) illustratestheprin-
cipleof thecompletenessmeasure.

5. Results

In this section,we presentthe resultsof our quantita-
tiveevaluationof six multi-view stereoreconstructionalgo-
rithmson thetempleanddinodatasetsshown in Figure1.

First, we brie�y describeeachalgorithm. In an effort
to cover the currentstateof the art, we soughtto include
new, recentlypublishedalgorithmsratherthan evaluating
classicmethodsfrom afew yearsago.In additionto thesix
reportedhere,threeothergroupstriedout thedatabut were
not ableto producereasonableresultsandarethereforenot
includedin thestudy.

Furukawa et al. [48] usewide-baselinestereomatching
to recover the3D coordinatesof salientfeaturepoints,then
shrink a visual hull modelso that the recoveredpoints lie
on its surface,thenre�ne theresultusingenergy minimiza-
tion. Goeseleet al. [63] computea depthmapfrom each
cameraviewpoint (similar to [31]) and merge the results
using VRIP [62]. Hernandezand Schmitt [31] �rst com-
putea depthmapfrom eachcameraviewpoint andmerge
the resultsinto a cost volume. They then iteratively de-
form a mesh,initialized at the visualhull, to �nd a mini-
mum costsurfacein this volume,alsoincorporatingterms
to �t silhouettes.Kolmogorov andZabih[35] computeaset
of depthmapsusingmulti-baselinestereowith graphcuts,
thenmerge the resultsinto a voxel volumeby computing
the intersectionsof theoccludedvolumesfrom eachview-
point. Pons,Keriven, andFaugeras[26] computea mini-
mumcostsurfaceby evolving asurfacein alevel-setframe-
work,usingaprediction-errormeasure.Vogiatzis,Torr, and
Cipolla[19] computeacorrelationcostvolumein theneigh-
borhoodof thevisualhull. A minimum-costsurfaceis then
computedusingvolumetricmin-cut.

Wefoundthatthedifferentmulti-view stereoreconstruc-
tionshave sub-millimetertranslationaloffsetswith respect
to eachother. Relative to theaccuraciesof thebestmodels,
theseoffsetsarequite signi�cant. We postulatethat these
shiftsareduein part to smallerrorsin calibration,asshifts

1PointsonG thatmapto theboundaryof R donothaveawell-de�ned
signeddistance.Wethereforetreathalf of thosepointsaspositive,andhalf
asnegative.

in the gantry cancausesmall offsetsat different latitudes,
but alsore�ect intrinsicdifferencesbetweenthealgorithms.
To compensatefor theseshifts, we �rst alignedtheground
truth mesh(GTM) to eachreconstructionusingICP, before
computingtheaccuracy andcompletenessmeasures.

Table1 summarizesthe resultsof runningour accuracy
andcompletenessmetricson thealignedmodelsthat these
six participantssubmitted.We usedan accuracy threshold
of 90%,i.e., anaccuracy of 1:0mm meansthat90%of the
pointsarewithin onemm of theGTM. For completeness,
weusedaninlier thresholdof 1:25mm, i.e.,acompleteness
of 95% meansthat 95% of the pointsarewithin 1:25mm
of theGTM. We foundthat theaccuracy andcompleteness
rankingsamongthe algorithmswererelatively stable(see
ourwebpage[2] for resultswith otherthresholds).

The accuracy of many of these methodsis remark-
able. Most methodsconsistentlyget sub-millimeteraccu-
racy with very few outliers—andthis is from imagescap-
turedonly at video resolution.Hernandezhadthebestac-
curacy on thetempledatasets,with 90%of its pointsbeing
within 0:36mm of the GTM on the full templeset. How-
ever, Hernandezconsistentlyhadoneof thelargesttransla-
tional offsetsamongthealgorithms(e.g.,a shift of 0:6mm
on thetempleset)—if we hadnot normalizedfor suchoff-
setstheresultswouldhavechangedsigni�cantly.

We were surprisedhow well methodsdid on the dino
set, given that the only texture wasdue to subtleshading
variationson the surface. Visual inspectionof the recon-
structionsdoesshow that even the bestmulti-view stereo
resultsarenoisier thanthe laserscannedGTM, indicating
thatthereis potentiallystill roomfor improvement.

While accuracy numbersdecreasedwith fewer images
on the templedatasets,the dino resultssurprisinglyshow
the oppositetrend,with mostmethodsdoing betteron the
Ring thanontheFull dinoset.Dueto thelackof textureon
thedino, regularizationlikely playsamorecentralrole.

Sincemostof thealgorithmsin thissurvey generatecom-
plete object models,the completenessnumberswere not
very discriminative. The primary exception is Goesele,
whosereconstructionscontainholesin low-con�dencere-
gions,andcausethe lower completenessnumbers for tem-
pleSparseRing(dueto sparseview sampling)andthe dino
sets(dueto areaswith low texture).

Almostall of thesealgorithmsexploitedthefactthatrea-
sonablesilhouetteswere easily available via background
thresholdingon thesedatasets(Hernandez,Vogiatzis,and
Furukawa requiresilhouettesto operate).An exceptionis
Pons,which doesnot usesilhouettes.Also, Goeseleused
silhouetteson the temple but not the dino datasets. We
foundtheselatterresultsencouraging,sincesilhouettesare
notalwaysavailable(e.g.,theotherdatasetsin Table1).

We alsonotethat therun-timesof thesealgorithmsvar-
ieddramatically, with Ponsconsistentlythefastest(31min-



Temple Dino
Full (317) Ring (47) SparseR. (16) Full (363) Ring (48) SparseR.(16)

Furukawa [48] 0.65, 98.7% 0.58, 98.5% 0.82, 94.3% 0.52, 99.2% 0.42, 98.8% 0.58, 96.9%
Goesele[63] 0.42, 98.0% 0.61, 86.2% 0.87, 56.6% 0.56, 80.0% 0.46, 57.8% 0.56, 26.0%
Hernandez[31] 0.36, 99.7% 0.52, 99.5% 0.75, 95.3% 0.49, 99.6% 0.45, 97.9% 0.60, 98.5%
Kolmogorov [35] 1.86, 90.4% 2.80, 85.7%
Pons[26] 0.60, 99.5% 0.90, 95.4% 0.55, 99.0% 0.71, 97.7%
Vogiatzis[19] 1.07, 90.7% 0.76, 96.2% 2.77, 79.4% 0.42, 99.0% 0.49, 96.7% 1.18, 90.8%

Table1. Accuracy andCompletenessresults. The �rst number0:xx measuresaccuracy: the distanced (in mm ) suchthat 90% of the
reconstructionis within d of thegroundtruth mesh(GTM). Thesecondnumberxx :x% speci�escompleteness: thepercentof pointson
theGTM thatarewithin 1:25mm of thereconstruction.Thenumberof views in eachdatasetis shown in parenthesesin thetableheader.

uteson templeRing)andGoeseleby far theslowest(more
thanadayon templeRing).

Ourwebpage[2] containsmany otherstatisticson these
experiments,includingrun-times,unsignedandsignedhis-
togramsof distancesfrom reconstructionto ground truth
model(andviceversa),cumulativehistogramsof distances,
RMS error measures,and alignmentoffsets betweenthe
modelsandtheGTM. While welackspaceto show viewsof
the reconstructionshere,we strongly encouragereadersto
look at theserenderingson our webpages;we feel that the
accuracy numbersin Table1 matchquitewell to thevisual
qualityof thereconstructions.

6. Conclusions

This paperpresenteda taxonomyof multi-view stereo
algorithms,new multi-view datasetsregisteredwith laser-
scannedsurface models,an evaluation methodology that
measuresaccuracy and completeness,and a quantitative
evaluationof someof thebest-performingalgorithms.

We are now preparingmore challengingdatasetswith
specularities,nosilhouettes,etc.,thatwehopewill helpfur-
theradvancethestateof theart. Wealsoplanto capturedata
at higher resolutionand are investigating techniquessuch
asindustrialCT scanningto obtainhigheraccuracy ground
truth. Finally, we arenow openingtheevaluationto allow
otherresearchersto benchmarktheir algorithmsagainstthe
bestof breedtechniques.
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