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Abstract. In a local and perceptual organization framework, a novel
stereo correspondence algorithm is proposed to provide dense and accu-
rate disparity maps under point ambiguity. First, the initial matching
technique is based on raw matching cost obtained from local descrip-
tor with contrast context histogram and two-pass cost aggregation via
segmentation-based adaptive support weight. Second, the disparity es-
timation procedure consists sequentially of two steps: namely, a narrow
occlusion handling and a multi-directional weighted least square (WLS)
fitting for large occlusion. The experiment results indicate that our algo-
rithm can increase robustness against outliers, and then obtain compa-
rable and accurate disparity than other local stereo methods effectively,
and it is even better than some algorithms using advanced and offline
but computationally complicated global optimization based algorithms.

Keywords: Stereo vision, stereo matching, local descriptor, segmenta-
tion, parallel computing, weighted least square, large occlusion.

1 Introduction

Accurate dense stereo matching is a fundamental and crucial problem in com-
puter vision. A comparison of current stereo matching algorithms is given on the
Middlebury Stereo Pages [1]. In general, stereo vision algorithms can be classified
into local and global methods [1]. In local method, an area-based cost function is
carefully selected and aggregated within a certain neighborhood to obtain result-
ing disparity with winner-takes-all (WTA) optimization [2,3,4,5,6,7,8,9,10].To
provide a robust result in stereo matching, the family of global algorithms seeks a
disparity surface minimizing a global cost function defined by making an explicit
smoothness assumption [12,13,14,15,16,17]. Recently there also exists trade-off
between local and global methods, such as semi-global matching [18].The latter
two families usually have high matching accuracy. But most of them are compu-
tationally expensive and need many parameters that are hard to be set. However,
the local methods are generally outperformed by the global and semi-global ones
in higher speed.
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To resolve the point ambiguity problem in image matching, many methods
have been proposed for decades. Feature-based methods match only a few points
proper for matching [20,21] while filtering out ambiguous points. In general, the
idea is to detect the invariant local properties of salient image corners under a
class of transformations, and then establish discriminating descriptors for these
corners. As a result, feature-based methods yield sparse disparity maps. This
approach is comparatively robust to the point ambiguity and produces accurate
results rapidly in general. However, an efficient discriminating local descriptor,
which is called contrast context histogram (CCH) and adopted previously for
object recognition and image matching [20], is now proposed to extract local
feature from image pairs to be constructed raw and robust matching cost for
dense disparity map in local stereo correspondence in our work.

The local techniques typically use some kinds of statistical correlation among
color or intensity patterns in local support windows in cost aggregation step
[2,5,6]. In this approach, it is implicitly assumed that all points in a support
window are from the same disparity in the scene. The variable support strate-
gies with or without segmentation information in a specific support window
are proposed to compute matching costs for the state-of-art local stereo meth-
ods [2,5]. But these variable support strategies with large window size have
much high computational complexity because of symmetry (left-and-right) and
traverse (pixel-by-pixel).

Recently a new post-processing technique has been studied to improve stereo
matching performance [23]. This approach was presented to address the disparity
discontinuity problem in narrow occluded regions when the better initial dispar-
ity maps were obtained from global method (such as graph cut). It consists of
two parts; namely, a greedy disparity filling and a least-squared-errors (LSE) fit-
ting. However, if the initial results with worse quality were gotten from a simple
and efficient local method other than good global method, this approach can
not effectively improve the resulting disparity maps. The latter one should be
modified a bit to solve new problem.

This paper proposes a novel local stereo method which employs segmentation
cue and can be divided into two steps: initial matching and disparity estimation.
The initial matching is on the basis of raw matching cost with the CCH descrip-
tor and two-pass cost aggregation with segmentation-based adaptive support
weight (SASW). The disparity estimation in turn consists of two parts: narrow
occlusion handling and multi-directional weighted least square (WLS) fitting for
the broad or large occlusion areas. By means of experimental results we demon-
strate that our approach can obtain the comparable disparity maps with high
quality compared to some other traditional stereo algorithms.

The remainder of this paper is organized as follows. In Section 2, the CCH-
based initial matching algorithm with segmentation information is discussed.
The disparity estimation is addressed as a post-processing module for some un-
reliable disparities in Section 3. Experimental results are shown in Section 4. At
last, conclusion and our future work are given in Section 5.
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2 Initial Matching

2.1 The CCH-Based Cost Initialization and Color Segmentation

The dissimilarity measure is a crucial part of the stereo correspondence in a
local perspective. In this paper, before computing pixel-wise matching cost, we
select a local discriminating CCH descriptor to capture the feature for each pixel
robustly and efficiently [20]. The local descriptor is a histogram of the contrast
values inside the local region, which features log-polar mapping. The use of log-
polar transformation is introduced as a preprocessing module to recover large
scale changes and arbitrary rotations, which is a nonlinear and non-uniform
sampling of spatial domain. Meanwhile, the histogram of the contrast values,
comparing with other dissimilarity measures, are more insensitive to image noise
and intensity difference of stereo pairs.

In general, how to construct the CCH descriptors for each pixel can be de-
scribed as follows: firstly, to define a specified Log-polar mask M of the CCH
descriptors, which is divided into several non-overlapping regions, R1, R2, . . . , Rt,
by quantizing the radius and the direction in a n×n local region R, as illustrated
in Fig. 1. The current point pc lies in the center of the coordinate. Then, accord-
ing to the mask M with several sub-regions, we traverse each pixel pc ignoring
image borders to compute statistically positive and negative contrast histogram
for each sub-region Ri. For each p in Ri, we can in turn define the two contrast
histogram bins with respect to pc as

HR+
i

=
∑

{Diff | p ∈ Ri and Diff ≥ 0}
#R+

i

(1)

HR−
i

=
∑

{Diff | p ∈ Ri and Diff < 0}
#R−

i

(2)

where Diff is the center-based intensity difference between p and pc, #R+
i

and #R−
i are the number of the positive and negative contrast values in the

ith region Ri, respectively. And then, by concatenating the values of all the
contrast histogram entries from all the sub-regions into a single vector, the CCH
descriptor of pc in correspondence with its local region can be defined as follows:
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which can be considered as robust measurement of local intensity variations. The
vector length T of this descriptor accords with the number of histogram bins.

The cost initialization module computes the initial matching cost C(pb, qm,d)
(or C(pbx, pby, d)) between points pb ∈ Ib and qm,d ∈ Im for assigning disparity
hypothesis d to each pixel pb in which the coordinates of pb and qm,d are (pbx, pby)
and (pbx − d, pby). To deal with linear lighting change and make the best use
of the range that a single byte offers similarly to [6], the CCH descriptor can
be normalized to a unit vector and scaled with 255. As the computed CCH
descriptors are distributions represented as histograms, it is natural to calculate
the correspondence scores using χ2 distance [21]:
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C(pb, qm,d) =
1
2

T∑

k=1

(hk(pb) − hk(qm,d))2

hk(pb) + hk(qm,d)
(4)

where hk(pb) and hk(qm,d) denote the k-bin normalized and scaled histogram at
pb and qm,d, respectively. This matching will result in close distributions because
this distance measures how unlikely it is that one distribution is drawn from the
population represented by the other.

And then, we adopt color segmentation and then assume that pixels in the
each segment should have similar disparity values. In our implementation, the
Mean Shift algorithm [22] is used for color segmentation in CIELab space. The
difference between pixel colors is measured in the CIELab color space because it
provides three-dimensional representation for the perception of color stimuli sim-
ilar to human color discrimination performance in short Euclidean distances [2].

2.2 The SASW-Based Two-Pass Cost Aggregation and Disparity
Selection

The robust and fast support aggregation stage is also an important part in the
local stereo matching. In order to reduce false matches owing to the point am-
biguity and preserve efficient computation, we adopt a two-pass weighted cost
aggregation with color segmentation cue. This SASW-based two-pass aggrega-
tion is inspired by the work of [5,19] and [6]. To construct the matching cost
between two points pb and qm,d, a specific support weight, which is determined
by color proximity from pb as well as on segmentation information in monocular
cue, is first assigned during the aggregation step to each point of Ib. In partic-
ular, weight wb(pi, pb) for point pi belonging to Ib and close to pb is defined as:

wb(pi, pb) =

{
1.0 pi ∈ Sb

exp(− dc(Ib(pi),Ib(pb))
γc

) otherwise
(5)

with Sb being the segment on which pb lies, dc being the Euclidean distance
between two RGB triplets and the constant γc being an experimental parameter
of the algorithm. Instead, the use of segmentation plays the role of an intelligent
proximity criterion. It is a weight with zero value that is assigned to those points
of Ib which lie too far from pb, i.e. whose distance in the horizontal or vertical
direction exceeds a certain length. As the use of segmentation in CIELab color
space implies adding robustness to the support, we operate the RGB space for
its convenience outside of segment in order to enforce smoothness over textured
planes as well as to increase the accuracy of depth borders localization.

When aggregating matching costs, the original segmentation-based adaptive-
weight approach computes the weighted average of adjacent matching costs,
with the weights generated using both stereo images [5,19]. A similar approach
is adopted to assign a weight wm(qi, qm,d) to each point qi ∈ Im. The strategy
of SASW is similar to that of traditional adaptive weight approach [2]. Under
the left-and-right stereo setting with the weights being calculated, the matching
cost for correspondence (pb, qm,d) depends on summing over the image area the



Dense Stereo Correspondence with Contrast Context Histogram 453

product of such weights with the above point-wise matching score normalized
by the weight sum:

Cosaw(pb, qm,d) =

∑

pi∈Npb
,qi∈Nqm

wb(pi, pb) · wm(qi, qm,d) · C(pi, qi)

∑

pi∈Npb
,qi∈Nqm

wb(pi, pb) · wm(qi, qm,d)
(6)

where Npb
and Nqm are respectively support neighbor window around pb in

base image and that of qm,d with respect to a disparity value d in matching
image.

In this paper, we present two simplifications to the original segmentation-
based algorithm with high computational complexity for achieving better per-
formance in computational time similar to [6]. The first one is to ignore the
weight term obtained from the matching image and its monocular segmentation
cue. Therefore, to make it possible to compute the aggregated matching costs for
different disparity hypotheses in parallel, the same weight is imposed to the same
pixel when handling different disparity hypotheses. The second simplification is
to approximate the weighted average of matching costs in the 2D rectangle win-
dow (i.e. r × r) using a two-pass technique, in which the first pass computes the
weighted average along the horizontal scanline while the second pass computing
along the vertical scanline. This can further decrease the computational com-
plexity of the aggregation approach from O(r2) to O(r), which depends strongly
on the window size used. Two additional steps are used to calculate the weighted
averages being splitted in two separate components (horizontal and vertical). As
a result, the aggregated costs are calculated in the simplified version using:

T r(pbx, pby, d) =

∑r
u=−r w(pbx, pby, u, 0) · C(pbx + u, pby, d)

∑r
u=−r w(pbx, pby, u, 0)

(7)

Cr
sasw(pbx, pby, d) =

∑r
v=−r w(pbx, pby, 0, v) · T r(pbx, pby + v, d)

∑r
v=−r w(pbx, pby, 0, v)

(8)

This cost aggregation with SASW mentioned above is a good technique for
strengthening dissimilarity measure in itself. It is possible to get accurate dense
matching results by performing a simple and local WTA optimization at each
pixel with the proposed SASW without any complicated processes. The WTA
method for the disparity of pb in the base image can be formally defined as:

Dinit(pb) = arg min
d∈Rd

Cr
sasw(pbx, pby, d) (9)

with Rd = [dmin, dmax] being the predefined range of all possible disparities. A
similar approach can be adopted for the matching image Im. After the WTA-
based local optimization, coarse outliers are filtered using a 3 × 3 median
filter.
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Fig. 1. Log-polar mask for the CCH Fig. 2. WLS fitting paths in all directions

3 Disparity Estimation

3.1 Narrow Occlusion Handling

Firstly, unreliable disparities should be detected in this phase before addressing
occluded regions which are small or narrow. To filter out these more erroneous
matches, we apply the left-right consistency check symmetrically from stereo
itself [19,23]. A threshold Tocc can be used for uniqueness constraint in our
implementation. As mentioned above, color segmentation algorithm [22] is firstly
employed for the selected base or matching image in CIELab color space in the
implementation. It is more suitable for detecting outlier in segmented patch with
small enough area and similar color if the segmentation is strong over-segmented.

After that, outlier removal is used to cluster reliable disparities in the same
color segment into groups in an iterative framework, and identify unreliable dis-
parity based on two measurements proposed in [26]. And then, greedy disparity
filling is deployed to address the unreliable disparity when the occlusion region
is small or narrow. The basic assumption for the disparity filling scheme is that
the disparity of an unreliable pixel is the same as that of one of its neighbors in
the same color segment by using the greedy-based strategy. The algorithm can
be represented in details in [23]. The binocular and the monocular image data
are used sequentially. There exists a threshold s as an appropriate constraint for
both image cues to fill the unreliable disparities from neighboring reliable pixels.

3.2 Large Occlusion Handling

After the narrow occlusion handling procedure, it is possible that the disparity
map still has unreliable pixels which do not have a disparity value. To resolve
this issue more efficiently in purely local stereo correspondence perspective, the
multi-directional WLS technique is proposed in this paper.

We assume that pixels which do not have a disparity up to now are justly
resolved by the WLS scheme. In a known epipolar geometry, least-square-errors
(LSE) fitting [23] with only intensity cue along the corresponding horizontal
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scanline is naturally selected while ignoring the boundaries of color segmenta-
tion. However, to resolve still existed larger and more unreliable disparities, we
do not have to enforce only the one or two ordering direction constraint in the
horizontal scanline in LSE , and should exploit sufficiently monocular cues (in-
tensity, color and shape etc.) in all directions to pursuit perfect disparity filling.

This leads to a new idea of greedy filling unreliable disparities by means of
adaptive weight WLS fitting in 1D from all directions, while looking like semi-
global cost aggregation step radially and equally for each path [18]. Each 1D
measured path is started from an unreliable disparity pixel p and ended in first
existed disparity pixel qNk encountered in the given radial direction. This can be
explained by Fig. 2. The pixels outside of a convex hull in Fig. 2 represent pixels
that have a disparity while the pixels inside of the hull have no disparity. The
pixels of the hull itself also represent existed disparities passed a chain of pro-
cedures above. We assume that the disparity of the pixels inside the hull varies
from the range of the existed disparities on the convex hull in this example.

These are the closest disparity values that can be obtained using the greedy
disparity filling scheme when being approached from not only the left and the
right directions, but multi-directions in a 2D image space. Considering com-
putation complexity, we can assume that the number of all directions with
WLS is in practice not arbitrarily large, but finite positive integer K (such as,
2 < K ≤ 36). The weight in this phase can be determined similarly by adaptive
support weight [2]. The reason for the weight used in the disparity filling is that
the smaller the distance between them in image spatial domain is, the higher the
priority of filling candidate is; while the reason for color contribution is similar.

The WLS is calculated as a function of intensity variations along specific di-
rectional paths equally, which can be defined as minimizing the total weighted
intensity variations along each 1D measured path from all 1D intensity variation
paths with unreliable disparity pixels. We can get

q∗ki
= argmin

k=1,...,K
{f1(qN1), · · · , fk(qNk), · · · , fK(qNK)} (10)

where

fk(qNk) =
∑Mk

i=0 w(p, qki) · (ILk
(qki) − Mean(p, k))2

∑Mk

i=0 w(p, qki )
(11)

Mean(p, k) =
1
M k

Mk∑

i=0

ILk
(qki) (12)

with ILk
(qki) being the intensity of pixel qki in the kth radial direction path Lk,

Mk being the length of the given kth path Lk and qki denoting the ith pixel close
to the current unreliable disparity pixel p in the path Lk. w(p, qki ) indicates the
support weight between p and qki using color similarity and spatial proximity [2].
fk(qNk) represents the perceptual distance between unreliable disparity pixel p
and nearest disparity existed pixel qki in the path Lk, which is weighted and
normalized from three monocular cues: intensity, color and spatial distance etc.
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Then, we assign reliable and closest disparity value qNk to unreliable pixels qki

when satisfying the criteria function (10). Finally, median filter can be adopted
to remove remaining irregularities and smooth the last disparity map.

4 Experiment Results

4.1 Experiment Setup on Middlebury Stereo Pairs

To verify the effectiveness of our method at present, we computed the dense
disparity maps while exploiting color segmentation in local technique for the
Tsukuba, Venus, Teddy and Cones from the Middlebury ’s second version stereo
evaluation data set [1]. The parameters were kept constant for all stereo pairs.

In the CCH descriptor, we adopt three levels in the quantization of the dis-
tance and eight intervals in the quantization of the orientation under the log-
polar coordinate system to generate the mask M with 3×8 = 24 non-overlapping
regions, as shown in Fig. 1. Hence, the dimensions of the CCH descriptor T are
2 × 3 × 8 = 48. And the definition of the distance and orientation is similar to
that of them in the paper [20]. The color segmentation is obtained by running
the Mean Shift algorithm using high speed version in CIELab space with a con-
stant set of parameters (spatial radius δS = 3, range radius δR = 3, minimum
region size minR = 35). For what means the variable support for the base image

Table 1. Quantitative evaluation of the proposed algorithm, comparing the percentage
of ”bad pixels” in non-occluded regions (RO−), all regions except for unknown pixels
(RA), and regions near depth discontinuities (RD). In each column, our result and
some best of them are in bold and italic print, respectively. The overall performance
measure is displayed in the 2th column, in which the average rank are over all latter
12 columns while subscript numbers being the relative ranks similar to the website [1].

Algorithm Rank Tsukuba Venus Teddy Cones
RO− RA RD RO− RA RD RO− RA RD RO− RA RD

CooptRegion [16] 3.31 0.87 1.16 4.6 0.11 0.21 1.54 5.16 8.31 13.0 2.79 7.18 8.01
AdaptingBP [13] 3.52 1.11 1.37 5.79 0.10 0.21 1.44 4.22 7.06 11.8 2.48 7.92 7.32

AdaptOvrSegBP [14] 11.67 1.69 2.04 5.64 0.14 0.20 1.47 7.04 11.1 16.4 3.60 8.96 8.84
AdaptDispCalib [4] 13.810 1.19 1.42 6.15 0.23 0.34 2.50 7.80 13.6 17.3 3.62 9.33 9.72
C-SemiGlob [18] 15.012 2.61 3.29 9.89 0.25 0.57 3.24 5.14 11.8 13.0 2.77 8.35 8.20
SO+borders [19] 15.013 1.29 1.71 6.83 0.25 0.53 2.26 7.02 12.2 16.3 3.90 9.85 10.2
CostAggr+occ [3] 17.216 1.38 1.96 7.14 0.44 1.13 4.87 6.80 11.9 17.3 3.60 8.57 9.36

SegmentSupport [5] 17.317 1.25 1.62 6.68 0.25 0.64 2.59 8.43 14.2 18.2 3.77 9.87 9.77
AdaptWeight [2] 20.720 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26
2OP+occ [17] 26.827 2.91 3.56 7.33 0.24 0.49 2.76 10.9 15.4 20.6 5.42 10.8 12.5
Our method 27.628 1.74 2.11 9.23 0.41 0.94 3.97 8.08 14.3 19.8 7.07 12.9 16.3
FastAggreg [8] 28.029 1.16 2.11 6.06 4.03 4.75 6.43 9.04 15.2 20.2 5.37 12.6 11.9
GC+occ [12] 28.230 1.19 2.01 6.24 1.64 2.19 6.75 11.2 17.4 19.8 5.36 12.4 13.0

AdaptPolygon [10] 30.633 2.29 2.88 8.94 0.80 1.11 3.41 10.5 15.9 21.3 6.13 13.2 13.3
TensorVoting [11] 32.435 3.79 4.79 8.86 1.23 1.88 11.5 9.76 17.0 24.0 4.38 11.4 12.2
RealTimeGPU [6] 32.836 2.05 4.22 10.6 1.92 2.98 20.3 7.23 14.4 17.6 6.41 13.7 16.5

CostRelax [9] 33.737 4.76 6.08 20.3 1.41 2.48 18.5 8.18 15.9 23.8 3.91 10.2 11.8
TreeDP [15] 36.739 1.99 2.84 9.96 1.41 2.10 7.74 15.9 23.9 27.1 10.0 18.3 18.9
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Fig. 3. Dense disparity results for the Tsukuba, Venus, Teddy and Cones stereo pairs:
base images (first column), ground truth (second column), our results (third column)
and bad pixels (last column)

in stereo pairs, the size of support window r is set to 51; and the parameter γc

is equal to 15 in the two-pass cost aggregation stage.
For parameters in Section 3, the parameter Tocc in the symmetrical occlusion

detection module is set to 2 in order to consider appropriately for part slanted
object surfaces. In outlier removing [23], the first criterion (i.e., the ratio of oc-
clusion in the segment) is set to be O/S ≥ 0.75, where O and S are the numbers
of pixels without disparity values and the area of the segment. The second cri-
terion is chosen to be ”if the percentage of the same disparity is smaller than
0.05%”, pixels with a disparity value are still set to unreliable pixels. Meanwhile
the threshold s is set to 5 for greedy disparity filling. K is equal to 36 and the
parameters for the adaptive weight in WLS fitting are set by default values [2].

4.2 Quantitative and Qualitative Evaluation

The comparative results measured for each pair are summarized in Table 1 in
terms of the percentage of bad matching pixels with the error tolerance δ = 1.0.
The Middlebury’s second version stereo evaluation is measured based on known
ground truth data. We cannot list total 49 algorithms including ours (as of July
2008) for lacking enough space; some other details can be found in the website [1].



458 T. Liu, P. Zhang, and L. Luo

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 4. Some parts of our algorithm contribute to the robustness of the disparity maps
while comparing with several well-known local algorithms on the famous Tsukuba
stereo image pair. (a and e) our final result and its bad pixels, (b and f) ground
truth and segmentation result, (c and g) the result and its bad pixels replacing our
disparity estimation by the default disparity estimation [23], (d and h) our initial result
and its bad pixels, (i and m) the result and its bad pixels replacing our raw CCH-
based matching cost by non-truncated SSD, (j and n) the result and its bad pixels via
AdaptPolygon [10], (k and o) the result and its bad pixels via TensorVoting [11], (l
and p) the result and its bad pixels via RealTimeGPU [6].

As it is clear from the Table 1 and the website, the rank of our algorithm with
low computation cost is currently the 28th top of overall 49 algorithms in the
evaluation. Our overall results in matching precision are apparently improved on
the whole than some local methods, such as FastAggreg [10], TensorVoting [11],
RealTimeGPU [6] and CostRelax [9] et al., and some advanced global ones such
as GC+occ [12] and TreeDP [15] et al. However, our results are a bit worse
than the other state-of-the-art methods in overall performance measure, such
as CooptRegion [16], AdaptingBP [13], AdaptDispCalib [4], C-SemiGlob [18],
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SO+borders [19], SegmSupport [5] and 2OP+occ [17] et al. As can be seen from
the table, the proposed approach is comparably good among the purely local
methods on standard stereo benchmarks.

Meanwhile, the proposed method is less expensive than other local methods in
computational complexity. For some state-of-art local methods, such as Adapt-
DispCalib, AdaptWeight, SO+borders and SegmSupport, the support window
selected with too large value in cost aggregation will introduce very expensive
complexity being the dominant processing time in the overall computation time;
however, our method with parallel computing ability can generate efficiently
comparative or equivalent result. But the complexity in two other modules will
be increased a bit in computation time. The reasons may be listed as follows.
Firstly, the Log-polar transformation should be run on several non-uniform sam-
pling sub-regions to retrieval the local feature in the raw matching cost. Sec-
ondly, the disparity maps for both views should be doubly obtained from initial
matching to check left-right consistency symmetrically in the narrow occlusion
handling. Finally, the WLS fitting with K directions should be deployed to each
unreliable disparity pixel in the large occlusion area. Fortunately, comparing with
the obvious increase of matching precision, the little additional computational
cost is negligible.

To compare visually and understand clearly our discussed algorithm, Fig. 3
shows the actual dense disparity results in our experiment. As can be seen clearly
from the figure, the proposed approach can produce dense and accurate piece-
wise smooth disparity maps. Fig. 4 shows the disparity maps from some parts
of our algorithm replaced by other traditional and similar module, while com-
paring with several previously known local algorithms, to illustrate how they
complement each other to achieve robust disparity estimation. Especially, our
algorithm can handle large occlusion effectively while comparing our results (a
and e) with the results (c and g) by the default disparity estimation [23] without
multi-directional weighted large occlusion handling in Fig. 4.

5 Conclusion

This paper presents a new and simple stereo approach with the CCH descriptor,
SASW-based two-pass cost aggregation and multi-directional WLS fitting in a
local perspective to generate more reliable and accurate disparity maps under
point ambiguity effectively and efficiently. The stereo correspondence roughly
consists of two steps sequentially: initial matching and disparity estimation. The
CCH descriptor in the cost initialization, color segmentation and variable sup-
port weight in the two-pass cost aggregation are combined to obtain reliable
and initial disparity maps; and then disparity estimation via narrow occlusion
handling and multi-directional WLS fitting is designed to improve the stereo
matching performance.

The advantages and shortcomings of the underlying design mechanisms in our
method are discussed and analyzed through experimental evaluations conducted
for the Middlebury data sets quantitatively and qualitatively. The experimental
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results show that the proposed algorithm has higher matching precision and
better robustness when compared with some part of standard stereo benchmarks.

In our future, we plan to observe this technique with more robust and other
dissimilarity measure as raw pixel-wise matching cost, resegment strategy for
large segments and more robust post-processing with reduced border errors while
preserving higher processing speed.
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