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Center for Machine Perception

Czech Technical University, Prague, Czech Republic
{cechj,sara}@cmp.felk.cvut.cz

Abstract

A simple stereo matching algorithm is proposed that vis-
its only a small fraction of disparity space in order to find
a semi-dense disparity map. It works by growing from a
small set of correspondence seeds. Unlike in known seed-
growing algorithms, it guarantees matching accuracy and
correctness, even in the presence of repetitive patterns. This
success is based on the fact it solves a global optimization
task. The algorithm can recover from wrong initial seeds to
the extent they can even be random. The quality of corre-
spondence seeds influences computing time, not the quality
of the final disparity map. We show that the proposed al-
gorithm achieves similar results as an exhaustive disparity
space search but it is two orders of magnitude faster. This is
very unlike the existing growing algorithms which are fast
but erroneous. Accurate matching on 2-megapixel images
of complex scenes is routinely obtained in a few seconds on
a common PC from a small number of seeds, without limit-
ing the disparity search range.

1. Introduction
Traditional area-based dense stereoscopic matching algo-
rithms perform exhaustive search of the entire disparity
space, i.e. they need to compute a correlation statistic for
all putative correspondences [18]. Although efficient im-
plementations for computing most of the commonly used
statistics (SSD, SAD, NCC) are known [20], this is still one
of the most expensive phases of stereo matching.

To avoid visiting the entire disparity space, algorithms
were proposed that greedily grow corresponding patches
from a given set of reliable seed correspondences. Such
algorithms assume that neighboring pixels have similar dis-
parity, not exceeding disparity gradient limit [15] or a simi-
lar constraint.

The principle of growing a solution from initial seeds
had long been known in segmentation [6]. The first algo-

rithms using this principle in stereo were proposed in pho-
togrammetric community: by Otto and Chau [14], O’Neill
and Denos [13], and by Kim and Muller [7].

Later, Lhuillier and Quan [9] employed the uniqueness
constraint and proposed an algorithm both with and without
the epipolar constraint in which images play a symmetric
role. This work has later been used in a 3D surface recon-
struction pipeline [10]. The basic idea is to grow contiguous
components1 in disparity space from initial correspondence
seeds sorted in decreasing value of image similarity and
to stop the growth process at image pixels where unique-
ness constraint would be violated. The growth occurs in the
neighborhood of previous matches in disparity space. This
creates new seeds that are put to the priority queue. A de-
cision on match acceptance is never revised. This inherent
greediness of the algorithm may cause a complete failure
in the presence of repetitive texture in the scene, as will be
discussed later.

Independently, Chen and Medioni [2] proposed an alter-
native scheme in which the growth is not constrained by
uniqueness. The best-first strategy is not used and the seeds
are taken in arbitrary order. When a match of better image
similarity is found at a given pixel, it overrides the previ-
ous match but it does not grow further, hence the correction
is only local and there is no ability to follow a new dis-
parity component of high image similarity. If the seeds in
the queue are processed in a different order, (very) differ-
ent results are obtained. Moreover, images in this algorithm
do not have a symmetric role, which means the resulting
matching violates uniqueness constraint.

The disadvantage of both approaches is that the decision
on a match is local in the sense that other matches do not
influence it (no global optimization is involved).

The following two works use variations of the above
methods which means they suffer from the same drawbacks,
especially in the presence of repeated structures. These
methods are interesting not because of the baseline growth

1The term disparity component has been coined in [1].



mechanism but because of improvements in other respects.
The first, by Zeng et al. [22, 23] uses the best-first strat-

egy in a multi-image algorithm that replaces the small pix-
elwise growth increments by an optimal choice of a whole
surface patch extending the currently found 3D segment.
Final selection is done by marching cube tracing in 3D
which may not be able to recover from the earlier stage er-
rors, especially in complex scenes.

The second, by Megyesi et al. [11] uses the Otto and
Chau’s algorithm with adaptive affine deformation of the
domain of image similarity statistic, where the affine param-
eters are estimated from surface normals which are propa-
gated within the growth process.

In stereo literature, also progressive algorithms have
been proposed [24, 21, 3]. Earlier matches guide the sub-
sequent matching by postponing ambiguous decision until
enough confidence is accumulated to resolve the ambiguity.
Although this may look like a growth from seeds, it does
not explicitly use spatial coherence: the growth does not
necessarily occur in the immediate neighborhood of previ-
ously accepted matches. These algorithms never revise the
decision on match acceptance, as well. They need to visit
a large fraction of disparity space (satisfying a set of con-
straints) before making the first decision. This is unlike the
true growing algorithms (whose decision is online).

A problem common to all known growing algorithms is
their reliance on high-quality seeds. In dense stereo, this
means there must be at least one seed in each true disparity
component, which is very hard to fulfill. To our surprise, it
turned out that there is a suitable algorithm that has the abil-
ity to recover from errors, which means that good-quality
initial seeds are not needed: In fact, even quite complex
scenes can be matched from a few random seed correspon-
dences, as will be discussed in Sec. 3.

To overcome drawbacks of the discussed methods, we
temporarily forego uniqueness constraint and propose an al-
gorithm which, under a theoretically well-grounded rule,
keeps growing disparity components regardless of their
overlap in disparity space. The rule facilitates the efficiency
of the growth process by stopping it at loci where the fi-
nal, optimal result cannot be improved. As a result, it is
not necessary to visit a large fraction of disparity space to
obtain optimal solution. We then solve a global optimality
task by a fast robust matching algorithm that selects among
the competing components in disparity space. This leads to
a significant improvement in the quality of the result at only
a small computational cost and it is equivalent to the ability
to revise decisions made at the growth phase.

The paper is structured as follows: Sec. 2 formulates the
dense stereoscopic matching task as a global discrete opti-
mization problem and describes an efficient disparity com-
ponent growth algorithm. Experimental validation com-
paring the proposed algorithm with a baseline algorithm is

x

y

x
′

y

y

x

x
′

left image right image disparity space

Figure 1. Coordinate system used in this paper. The y is a com-
mon row coordinate in rectified images. The x, x′ are the column
coordinates in the left and right image, respectively.

done in Sec. 3, where we discuss efficiency and the abil-
ity to deal with repetitive image structures correctly and the
ability to find a large number of disparity components from
a small set of seeds, even if they are random. Sec. 4 con-
cludes the paper and hints some extensions of the work.

2. Matching Algorithm
To help understanding the proposed algorithm, we make a
thought decomposition of the matching task to two phases:
(1) an unconstrained growth of disparity components from
an initial set of seeds and (2) an optimal matching working
with the set of components found in the first step. We will
then show that some of the work of the second phase can
already be done during the component growth without loos-
ing optimality of the algorithm, while significantly speeding
up the first phase.

To simplify the description of the algorithm, we assume
a pair of horizontally rectified stereo images is used. Gener-
alization to unrectified images is possible but it will not be
discussed in the present paper. We therefore assume we are
working with matching table. It represents a 3D discretized
disparity space in which each element (x, x′, y) denotes a
possible correspondence (x, y) ↔ (x′, y), see Fig. 1. Each
matching table element (x, x′, y) may be associated with
some parameters θ modeling relative distortion of image
neighborhoods. The parameters θ may be updated during
the growth process to accommodate to the slant of the 3D
surface, as in [11, 14, 13, 7]. This is important in wide-
baseline stereo. For simplicity, we omit the distortion model
here.

2.1. Disparity Component Growth
Suppose we are given an unsorted list of disparity seeds S.
Each seed is a point in disparity space, s = (x, x′, y). Its
neighborhood N (s) in disparity space consists of 16 points
constructed from four sub-sets N1(s) ∪ N2(s) ∪ N3(s) ∪
N4(s), see Fig. 2(a) where we use the same colors for:

N1(s) =
{
(x− 1, x′ − 1, y), (x− 2, x′ − 1, y),
(x− 1, x′ − 2, y)

}
,

N2(s) =
{
(x + 1, x′ + 1, y), (x + 2, x′ + 1, y),
(x + 1, x′ + 2, y)

}
,
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Figure 2. Disparity space neighborhood used in this paper (a). The
X-inhibition zone for s = (x, x′, y) (b).

N3(s) =
{
(x, x′, y − 1), (x± 1, x′, y − 1),
(x, x′ ± 1, y − 1)

}
,

N4(s) =
{
(x, x′, y + 1), (x± 1, x′, y + 1),
(x, x′ ± 1, y + 1)

}
.

The neighborhood is selected so as to limit the magnitude
of disparity gradient to unity and to improve the ability to
follow a disparity component even if the image similarity
peak falls in between pixels in the matching table. This
improves performance in both the baseline and the proposed
algorithms (see below).

Assuming similarity is computed from small image win-
dows around pixels (u, v) and (u′, v) by e.g. the normal-
ized cross-correlation, we prepare an empty matching table
T and start growing disparity components by drawing an
arbitrary seed s from S, adding it to T , individually se-
lecting the best-similarity neighbors qi over its four sub-
neighborhoods Ni(s):

qi = (u, u′, v)i = argmax
(x,x′,y)∈Ni(s)

simil(x, x′, y),

and putting these neighbors qi to the seed list if their inter-
image similarity exceeds a threshold τ . Hence, up to four
new seeds are created. If we draw a seed from the list S that
is already a member of the matching table, then we discard
it. The growth must stop in a finite number of steps by ex-
hausting the list S. The output from the growth phase is a
partially filled matching table whose connected regions in
3D represent disparity components grown around the initial
seeds. Note that disparity components obtained this way are
nothing more than contiguous segments in disparity space.
In the extreme case when τ = −∞ the entire disparity
space is filled by a single component grown from the first
seed.

Obviously, such growth is not a very efficient way of se-
lecting high-similarity tentative matches. Instead, we see it
only as an elementary mechanism for traveling in disparity
space. This phase has been introduced just to show cor-
rectness of the entire proposed algorithm which will be de-
scribed shortly. Note, finally, that the order of selecting the
seeds from the list S is arbitrary, so far.

We refer to the above procedure as unconstrained
growth. Its output is not a matching. This is the reason
why various authors proposed a modification which stops

Algorithm 1 The Baseline Growing Algorithm
Require: Rectified images Il, Ir, initial correspondence

seeds S, image similarity threshold τ .

1.1: Compute similarity simil(s) for every seed s ∈ S.
1.2: Initialize empty matching table T := ∅.
1.3: repeat
1.4: Draw the seed s ∈ S of the best similarity simil(s).
1.5: for each of the four best neighbors

qi = (u, u′, v) = argmax
t∈Ni(s)

simil(t), i ∈ {1, 2, 3, 4}
do

1.6: c := simil(qi).
1.7: if c ≥ τ and X (qi) /∈ T then
1.8: Update the matching table T := T ∪ {qi} and
1.9: the seed queue S := S ∪ {qi}.
1.10: end if
1.11: end for
1.12: until S is empty.
1.13: return matching as a partially filled matching table T .

the growth whenever a violation of uniqueness constraint
is detected. This already requires drawing the seeds in the
order of their image similarity. The result of this modifi-
cation is shown in pseudo-code2 as Alg. 1. We call it the
baseline growth algorithm in this paper. It is very close to
Lhuiller’s algorithm [9]. Note that both images have a sym-
metric role. We will show in Sec. 3 that Alg. 1 is fast but its
performance is not very good. The reason for its bad perfor-
mance is that it does not solve any reasonable optimization
task. In the next paragraph, we show how to incorporate a
formal discrete optimization task into the algorithm. It will
turn out that the necessary changes are small and still the
performance improves dramatically (at the cost of a small
increase in computational complexity).

2.2. Matching
Let s = (u, u′, v) be an element of the matching table T
obtained from the unconstrained growth procedure. Let
( : , u′, v) represent all elements (w, u′, v) such that w 6= u
and the colon in (u, : , v) has a similar meaning. The set
of all ( : , u′, v) together with all (u, : , v) will be called the
X-inhibition zone of s and denoted as X (s), see Fig. 2(b).
Note that s /∈ X (s) and that q ∈ X (s) ⇔ s ∈ X (q). The
relation q ∈ X (s) represents the relation of occlusion [17].
We say element q ∈ T is a competitor to s ∈ T if q ∈ X (s)
and it has better image similarity, i.e. simil(q) ≥ simil(s).
Element q is a strict competitor to element s if q ∈ X (s)
and simil(q) > simil(s) + µ, where µ is called the stability
margin.

The matching task is done by solving a graph-
theoretic problem known as the maximum strict sub-kernel
(SSK) [17, 16]. The basic SSK algorithm, which can be

2The X-inhibition zone X (qi) in Step 1.7 is defined early in Sec. 2.2.



used for our problem class and which we call the domi-
nant element reduction algorithm works as follows. Given
matching table T , partially filled with disparity components
from the unconstrained growth phase, one finds a dominant
element s of the table whose image similarity satisfies

simil(s) > max
t∈X (s)

simil(t) + µ, (1)

where µ is the stability margin. If there was no dominant
element, the algorithm stops. Next, given the dominant el-
ement s, one removes all elements X (s) from T . In the
reduced table, new dominant element is found and the re-
duction process is repeated. The procedure finishes in a fi-
nite number of steps. The fully reduced table T contains a
set that is the largest (i.e. maximum) one-to-one matching
that is a SSK. It can be proved that our problem always has
at most one maximum SSK and that the above algorithm is
able to find it or confirm there is none [17]. The defining
quality of a SSK is its strict stability, which can be consid-
ered a global ‘optimality’ property in the following sense:
Let T be the set of all elements in the initial matching table.
Let K be a subset of T . We say K is strictly stable if for ev-
ery p,q ∈ K it holds that p /∈ X (q) (i.e. K is a one-to-one
matching) and every element s ∈ K is strictly stable with
respect to K. An element s ∈ K is strictly stable wrt K if
every competitor q ∈ T to s has a strict competitor t in K.
Hence, SSK is the only set that is strictly stable. Note that a
SSK can be incomplete. In the extreme case it can be empty
if there was no dominant element. Incompleteness is a nec-
essary prerequisite for robustness. See [17] for a discussion
of properties of SSK related to robustness.

The paper [17] formulates the SSK problem in rigor-
ous graph-theoretical language and should be referred to
for necessary conditions under which the algorithm is valid
(for our problem it is valid).3 The above algorithm directly
performs guiding or the least commitment strategy, as dis-
cussed in [24]: most reliable decisions are made prior to
unreliable ones that wait until the set of putative solutions
becomes more constrained.4 The accuracy of stereoscopic
matching based on the SSK is studied in [8].

Besides the dominant element reduction algorithm, there
is another algorithm for finding an SSK, which is more
suitable for our matching problem and which produces an
equivalent result [16, 17]. It has two phases: The first phase

3Strict sub-kernel is a general notion valid for oriented graphs, in which
the graph structure represents the structure of the underlying problem (the
structure of constraints) and the orientation represents evidence (data) [17].
The notion of SSK is related to the well-known Stable Marriage and Stable
Roommates Problems [5].

4Note that the fact the above algorithm proceeds in this way is only due
to the special structure of our matching problem. In more general graph
orientations, the SSK algorithm is more complex and the general problem
of finding a SSK is NP-complete [17]. It can be shown that when µ = 0
the SSK approximates the max-sum independent vertex set problem within
a factor of two (in our problem) [17].

runs as in the dominant element reduction algorithm but
with µ = 0 and with the dominance test inequalities not
sharp (in such case we are obtaining weakly dominant el-
ements). We call its result a weak kernel (WK). It can be
shown that maximum SSK is always a subset of a WK, ir-
respective of the order of processing the weakly dominant
elements [17]. In the second phase, the WK is converted to
a maximum SSK as follows:

Require: The output T from unconstrained growth,
the WK K ⊆ T .

1: loop
2: Find an element q ∈ T , q /∈ K such that

X (q) ∩ K is empty or

simil(q) + µ ≥ max
t∈X (q)∩K

simil(t).

3: if no such q was found then
4: return reduced WK K
5: else
6: Remove q and X (q) from T and K.
7: end if
8: end loop

The q in Step 2 are called the converting elements. Ob-
viously, their neighbors in X (q) ∩ K violate the strong sta-
bility condition. Correctness of this algorithm has been
proved [17]. A fast algorithm for simultaneous finding WK
and its progressive conversion to SSK, is described in [16].

The formulation given here clearly shows what to do in
the disparity component growth procedure: Instead of stop-
ping whenever the uniqueness constraint would be violated
as in Step 1.7 of Alg. 1, we have to continue the growth
unless image similarities of the overlapping disparity com-
ponents differ more than µ. Hereby, the components that
cannot survive the final competition are not grown further.
The resulting modification of Alg. 1 is shown in pseudo-
code as Alg. 2. The difference is in Step 2.7 and in some
inexpensive bookkeeping in Step 2.10. The difference is
seemingly subtle but it has a strong impact on the ability
to reject some of the bad matches, including some of the
seeds, as will be shown in Sec. 3.

Of course, the partially filled matching table output from
Alg. 2 is not yet a matching because of the overlap of dis-
parity components in matching table T which violates the
uniqueness constraint. The overgrown components undergo
a competition in a subsequent selection process. To this end
the output from Alg. 2 is processed by the dominant element
reduction algorithm discussed above or by the equivalent
WK conversion algorithm. We use an implementation that
has been proposed for semi-dense stereo matching [16] and
that does not require a fully populated matching table. This
final matching is computationally very efficient because of
the sparsity of T . Our experiments show it takes less than
15% of the overall computing time.



Algorithm 2 The Proposed Growing Algorithm
Require: Rectified images Il, Ir, initial correspondence

seeds S, image similarity threshold τ , and margin µ.

2.1: Compute image similarity for all seeds s ∈ S.
2.2: Initialize matching table T := ∅, and auxiliary arrays

Cbest( : , : ) :=−∞, C′
best( : , : ) :=−∞.

2.3: repeat
2.4: Draw the seed s = (x, x′, y) ∈ S of the best image

similarity simil(s).
2.5: for each of the four best neighbors

qi = (u, u′, v) = argmax
t∈Ni(s)

simil(t), i ∈ {1, 2, 3, 4}

do
2.6: c := simil(qi).
2.7: if c ≥ τ and qi /∈ T and

c + µ ≥ min
{
Cbest(u, v), C′

best(u
′, v)

}
then

2.8: Update the matching table T := T ∪ {qi},
2.9: the seed queue S := S ∪ {qi},
2.10: and the best image similarities

Cbest(u, v) := max
{
c, Cbest(u, v)

}
,

C′
best(u

′, v) := max
{
c, C′

best(u
′, v)

}
.

2.11: end if
2.12: end for
2.13: until S is empty.
2.14: return table T with traced-out disparity components.

2.3. Implementation Notes
The matching table T of Alg. 1 is implemented as two 2D
arrays of the input image sizes, each containing a match in-
dex to the other image. The second 2D array is needed for a
fast check of the symmetric uniqueness constraint. The cor-
relation map is stored separately. This is possible because
there is at most one match per pixel.

In the proposed algorithm Alg. 2, the data structure for
T is more complicated, since the uniqueness does not hold
during the growth process. The T is very sparse, therefore,
it is implemented as a 2D array of binary search trees with
disparities as the keys. Inserting an element and the test on
element’s presence both take logarithmic time.

3. Experiments
We first demonstrate the principal differences between the
baseline and the proposed algorithms on synthetic data and
then compare their performance on some real data and on a
ground-truth dataset.

We use Moravec’s NCC [12] on 5 × 5 window as im-
age similarity statistic in all experiments. The default pa-
rameters of the algorithms are τ = 0.6, µ = 0.1. Unless
stated otherwise, we use a simple pre-matcher to obtain ini-
tial seeds which we call Harris seeds: we take all corre-

(a) left image

(b) baseline (c) proposed

(d) baseline (e) proposed

Figure 3. The ability of the baseline and proposed algorithms to
handle repetitive pattern. Disparity maps (b,c) and cross-sections
of disparity space (d,e) for the red line in the image.

spondences of Harris interest points whose image similarity
over 5×5 window exceeds a threshold of 0.9. Note that the
Harris seeds are not necessarily a one-to-one matching.

Disparity maps are shown in color: colder colors code
smaller disparities, warmer colors larger disparities, gray
areas have unassigned disparity. CPU times are measured
on a PC C2 2.4 GHz. Our code combines Matlab and C++.

3.1. Basic Behavior of The Algorithms
We show that the proposed algorithm can handle repetitive
patterns unlike in the baseline algorithm and that it has a
greater ability to find all disparity components, even from a
small set of random seeds. Synthetic scenes in this exper-
iment were piecewise planar random dot 500 × 500 pixel
stereograms.

Repetitive Pattern. The scene in Fig. 3(a) consists of a
foreground plane with a repetitive texture in front of a ran-
domly textured background plane. Harris seeds are used.
Disparity map from the baseline algorithm in Fig. 3(b) is a
set of patchy mismatches. All the patches have high cor-
relation and are too large to be filtered out by any kind of
post-processing. The proposed algorithm grows all seeds
into mutually competing components shown in Fig. 3(e) in
a cross-section of matching table T marked red in Fig. 3(a),
the cross-section shows similarity values, grey are unoccu-
pied elements in T . The final robust matching algorithm
then correctly labels the repetitive area as ambiguous, as-
signing no disparity there, see Fig. 3(c). The bad behavior
in the baseline algorithm is due to a forced stop by the ‘ac-
cept the first match for a pixel’ in Step 1.7. As a result,
the components found in disparity space are of high image
similarity but they are only partial and the information on
ambiguity is lost, see Fig. 3(d).

The Capture of All Disparity Components. The scene in
Fig. 4(a) consists of 36 planar patches of 10 × 10 pix-
els in front of a planar 500 × 500 pixel background. The



(a) left image

(b) baseline (c) proposed

(d) baseline (e) proposed

Figure 4. The ability of the baseline and proposed algorithms to
find all disparity components (small patches). The disparity space
cross-sections (d,e) are shown for the red line in the image.

foreground-to-background disparity difference is five pix-
els. About 1700 Harris seeds are used. We used τ = −∞
to promote growth of disparity components in both algo-
rithms. The baseline algorithm assigned correct disparity
to no foreground component in Fig. 4(b), unlike the pro-
posed algorithm which missed only 1 of 36 in Fig. 4(c).
We conclude the proposed algorithm has the ability to lo-
cate a high-correlated disparity component even if there is
no seed in it. This is again due to the ability to temporarily
forego uniqueness constraint, the benefit of which illustrates
Fig. 4(e), as opposed to the baseline algorithm in Fig. 4(d):
The behavior helps bridge the gap between the components
over a set of elements with low image similarity. Clearly,
even a seed out of any true component may give rise to a
path that ends up on a high-similarity component. Greater
µ helps encourage this behavior. When µ = ∞, the entire
matching table is visited and all disparity components are
found. Nevertheless, our experiments confirm that µ = 0.1
suffices in practice.

For quantitative evaluation, we performed a randomized
experiment. A 500× 500 pixel image with a single 10× 10
pixel patch in a 5-pixel distance from a background is used
in a repeated experiment with a set of n uniformly dis-
tributed random seeds. A thousand trials were performed
for each n. The relative frequency of finding the small dis-
parity component is our measure of success as a function of
n. The result is shown in Fig. 5(a) for the baseline (red) and
the proposed (green) algorithms. We can see that the ability
of the proposed algorithm to find the small component is
indeed much larger for even a small number of seeds. The
baseline algorithm has a negligible ability to find a dispar-
ity component unless the seed is located directly in it. The
non-monotonic behavior of the proposed algorithm is due
to a high number of wrong correspondences clogging the
matching table and preventing growth over bridges of low
image similarity when µ is small.

The probability of hitting the small component with a
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Figure 5. Random sampling of disparity space. The relative fre-
quency of finding a small disparity component in the foreground
(a) and the total computational time as a function of the number of
random initial seeds n (b).

single random seed is5 p = 64/5003 ≈ 5 · 10−7. The prob-
ability the component is hit by at least one of n random
seeds is P = 1 − (1 − p)n, which is shown as the blue
curve in Fig. 5(a). Hence, the baseline algorithm experi-
ment correspond with the theory quite well which shows
the experimental method is correct.

We also measured the CPU time of the algorithm as a
function of the number of random initial correspondences,
as shown in Fig. 5(b), where errorbars show standard devi-
ation. The proposed algorithm is less efficient for a small
number of seeds because it has to travel over large subset of
the disparity space. Both algorithms are less efficient when
the number of seeds is too large. By comparing the plots in
Fig. 5(a) and 5(b) we can see the proposed algorithm finds
a solution of similar density in shorter time.

3.2. Results on Real Scenes
We tested the algorithms on several complex scenes to con-
firm the predictions on their behavior from the synthetic-
data experiment and to show the proposed algorithm is in-
deed fast in practice. We did not limit disparity search range
for any of the three algorithms in this experiment.

Results are shown in Fig. 6, where the row (b) shows
disparity maps from the WK conversion algorithm which
works with fully populated matching table, as described
in [16] (the variant with no ordering constraint was used).
We refer to this as the exhaustive search algorithm.

CPU timings are shown in the table in Fig. 6, together
with the fraction of matching table that was visited by the
respective algorithm. We initialized the growing algorithms
by Harris seeds (as described above) and by random seeds.

Harris seeds. On the St. Martin scene, the proposed algo-
rithm (d) achieves lower density but the holes occur in loca-
tions where the baseline algorithm (c) is erroneous (several-
pixel errors in disparity in the cornice regions). Note the
proposed algorithm grew the tree branches correctly, unlike
the baseline algorithm.

5The high-correlation component is just about 8× 8 pixels for a 5× 5
correlation window.
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St. Martin Head Larch
t [sec] f [%] t [sec] f [%] t [sec] f [%]

exhaustive 1023.0 100 889.0 100 182.0 100
baseline Harris 3.8 0.030 2.7 0.032 1.1 0.057
proposed Harris 7.9 0.048 9.1 0.100 1.6 0.076
baseline random 3.9 0.046 2.8 0.045 1.1 0.088
proposed random 31.2 0.320 30.0 0.510 11.9 0.680

Figure 6. Real complex scenes. The proposed algorithm is more
accurate but slower than the baseline algorithm. The table shows
CPU times t and the fraction f of matching table that was vis-
ited. The image sizes are 1.8 Mpx, 1 Mpx, and 0.5 Mpx; Approx-
imately 2000 Harris (c,d) and 10 random (e,f) seeds were used.

There is a strong repetitive pattern in the Head scene due
to the corrugated iron fence behind the sculpture. The base-
line algorithm (c) suffers from illusions there as well as on
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Figure 7. Middlebury new test results: ROC curves, error rate in
non-occluded regions versus matching density.

the regular cobblestone paving below the sculpture.
The Larch is a scene of great depth and large occlusions.

Results look visually similar, but the baseline algortihm (c)
makes a few small mismatches at occlusion boundaries.
Random seeds. For all scenes, we used 10 random, i.e.
wrong, seeds. We set τ = −∞, and deleted all disparities
whose image similarity dropped below 0.6 in the final map.

The experiment shows that the proposed algorithm (f)
can indeed obtain a dense map from a very small number of
random initial seeds, showing their quality need not be high
to succeed. The bad quality of the seeds just increases the
runtime, as clearly visible in the table in Fig. 6. In a repeated
experiment, the proposed algorithm (f) always succeeded
unlike the baseline algorithm (e) which always failed find-
ing any correct disparity component.

The results from the exhaustive search algorithm are
dense, large ambiguous regions are correctly identified, but
there are more mismatches unlike in the proposed algo-
rithm. This is caused by a higher number of competing pu-
tative correspondences whose image similarity is high due
to statistical fluctuations of the NCC statistic.

3.3. Middlebury Dataset
Results on the standard new Middlebury dataset [18] are
shown in Fig. 7. For both baseline and proposed algorithms,
the ROC curves were obtained using the same method as
in [4], spanning the τ ∈ [−1, 1]. For the proposed algo-
rithm, we set µ = 0.05. The exhaustive search algorithm
has parameters of a similar meaning. We can see the pro-
posed algorithm is consistently better than baseline algo-
rithm producing less errors at the same density. The differ-
ence in matching quality is large on the Tsukuba and Teddy
scenes, due to ambiguous repetitive structures which are
correctly handled by the proposed algorithm. On the Venus,
the error of the proposed algorithm for high densities is



higher than in the baseline algorithm, since the simple pla-
nar scene is well suited for the greedy baseline algorithm.
We observed that most of the errors in the above algorithms
occur at occluding boundaries. Image pre-segmentation as
e.g. in [21] would help reduce this error. Naturally, these
results are inferior to semi-dense methods using a global
optimality in the MAP sense, e.g. [3, 4, 19]. But the results
are comparable to the exhaustive algorithm [16], confirming
the efficiency of the disparity space sampling. The average
time on Middlebury images is about 1 sec. The [3, 4] re-
port faster times, but it is not clear if they count similarity
computation and if they limit the disparity search range or
not. Our runtime on small images is dominated by Matlab
overhead. The time efficiency of the algorithm (due to vis-
iting less than 1% of disparity space) becomes apparent in
images above 1 Mpx, whereas Middlebury images are just
about 0.15 Mpx.

4. Conclusions
We have proposed a novel disparity component growing al-
gorithm that can cope with much more difficult cases (repet-
itive patterns, complex scene) than similar existing algo-
rithms, that can recover from errors in initial seeds, and
that does not require a seed on every component in disparity
space. Hence, the seeds need not be salient image features,
which opens a way to random sampling of disparity space.

The changes against the standard seed growing algo-
rithms are small, but their consequences are deep and allow
the resulting algorithm to be well grounded in the theory of
robust matching.

Although this has not been demonstrated in the present
paper, the algorithm is in no way restricted to narrow base-
line stereo images, since whenever a new seed is created, it
can inherit an updated set of parameters that describe rel-
ative image distortion, as briefly discussed in Sec. 2. The
algorithm can be easily adapted for multi-image matching.

The proposed algorithm implementation is available at
http://cmp.felk.cvut.cz/˜stereo.
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