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Abstract

In this study we propose an integrated approach to the
problem of 3D pose estimation. The main difference to
the majority of known methods is the usage of complemen-
tary image information, including intensity and polarisa-
tion state of the light re�ected from the object surface, edge
information, and absolute depth values obtained based on
a depth from defocus approach. Our method is based on
the comparison of the input image to synthetic images gen-
erated by an OpenGL-based renderer using model informa-
tion about the object provided by CAD data. This compar-
ison provides an error term which is minimised by an iter-
ative optimisation algorithm. Although all six degrees of
freedom are estimated, our method requires only a monoc-
ular camera, circumventing disadvantages of multiocular
camera systems such as the need for external camera cal-
ibration. Our framework is open for the inclusion of inde-
pendently acquired depth data. We evaluate our method on
a toy example as well as in two realistic scenarios in the do-
main of industrial quality inspection. Our experiments re-
garding complex real-world objects located at a distance of
about0:5 m to the camera show that the algorithm achieves
typical accuracies of better than1 degree for the rotation
angles,1–2 image pixels for the lateral translations, and
several millimetres or about1 percent for the object dis-
tance.

1. Introduction

3D pose estimation is an important problem in many ap-
plications of computer vision and photogrammetry. The
problem of pose estimation corresponds to a determination
of the rotation and the translation of an object relative to the
camera, given the 3D model points and the corresponding
2D perspective projection points in the image. This prob-
lem is also known as the exterior orientation problem in the
photogrammetric literature [12]. An early survey of pose
estimation methods based on the bundle adjustment tech-
nique is given in [23]. In the �eld of computer vision, a

�rst description of the pose estimation problem is given in
[8]. The term 2D-3D pose estimation is de�ned in [10]
as an estimation of the pose of a 3D object in 2D input
data, for example an intensity image. The geometrical and
mathematical problem is regarded in [16], where an edge-
based solution is provided. In [15] groupings and struc-
tures in the image which are likely to be invariant over a
wide range of viewpoints are formed by perceptual organ-
isation. The search space during model based matching is
reduced based on a probabilistic ranking method. Another
monocular pose estimation approach is described in [20],
which exploits point and line correspondences by minimis-
ing a suitably chosen error function. The problem of object
recognition and localisation is addressed in [18]. The object
is represented in a probabilistic framework as a parametric
probability density, and the recognition process basically re-
lies on the Bayes rule. The problem of 2D-3D pose estima-
tion of 3D free-form surface models is discussed in [22].
The object is modelled as a two-parametric surface model
represented by Fourier descriptors, and the pose estimation
problem is solved in the framework of conformal geomet-
ric algebra. An edge-based pose estimation approach is de-
scribed in [24]. In that work, the Chamfer matching tech-
nique is used to force convergence of a hierarchical template
matching approach. In [17] an object representation based
on re�ectance ratios is introduced which is used to recog-
nise objects from monocular brightness images of the scene.
Pose estimation is performed relying on the re�ectance ra-
tio representation and the known geometric object proper-
ties. A pose estimation approach that combines intensity
and edge information extracted from the input image is de-
scribed in [19].

Classical monocular pose estimation approaches have in
common that they are not able to estimate the distance to the
object at reasonable accuracy, since the only available infor-
mation is the scale of a known object in the resulting image.
Scale information yields no accurate results since for small
distance variations the object scale does not change signi�-
cantly. In comparison, for a convergent stereo setup with a
baseline similar to the object distance, for geometrical rea-



(a) Intensity image. (b) Polarisation angle image.

Figure 1. Example of a high-dynamic range intensity image (grey-
values are scaled logarithmically) and a polarisation angle image
(colour map is scaled in degrees).

sons a depth accuracy of the same order as the lateral trans-
lational accuracy is obtainable. For this reason, a varietyof
3D pose estimation methods relying on multiple images of
the scene have been proposed more recently. For example,
a fast tracking algorithm for estimating the pose of an au-
tomotive part from a pair of stereo images is presented in
[25]. In [21], the iterative closest point algorithm for 3D
pose estimation in stereo image pairs is compared with a
numerical scheme which is introduced in the context of op-
tical �ow estimation. A quantitative evaluation of the two
methods and their combination is performed, demonstrating
that the highest stability and most favourable convergence
behaviour is achieved with the combined approach.

However, many industrial applications of pose estima-
tion methods for quality inspection purposes impose severe
constraints on the hardware to be used with respect to ro-
bustness and easy maintenance. Hence, it is often not pos-
sible to utilise stereo camera systems since they have to
be recalibrated regularly, especially when the sensor unitis
mounted on an industrial robot. As a consequence, employ-
ing a monocular camera system may be favourable from the
practical point of view while nevertheless a high pose esti-
mation accuracy is required to detect subtle deviations be-
tween the true and the desired object pose.

The pose estimation approach presented in this study ex-
ploits the only information in a monocular image apart from
scaling which provides an information about the object dis-
tance: the amount of defocus. Depth from defocus methods
(cf. [2] for a detailed survey) yield a relation between the
amount of defocus in the scene and the distance to the cam-
era, allowing to estimate a depth value for each image pixel
if texture is present. The accuracy of depth from defocus
methods is clearly inferior to that of multi-viewpoint meth-
ods such as stereo vision or structure from motion [5] but
may provide much more accurate depth cues than merely
using scale information.

In the presence of cluttered background or low contrast
between object and background, edge information tends to
be an unreliable cue for pose estimation. Hence, apart from
edge information and defocus, our approach takes into ac-
count intensity and polarisation information extracted from

the input image data. Such photometric approaches are
commonly used for 3D surface reconstruction purposes
[3, 11]. Hence, we exploit four complementary sources of
radiometric, geometric, and real-aperture information about
the scene (intensity, polarisation, edges, and defocus) which
we combine in a multi-cue approach to estimate the six de-
grees of freedom of a rigid object in 3D space. We will
evaluate our approach in realistic scenarios related to indus-
trial quality inspection.

2. Combined approach to monocular pose esti-
mation

2.1. Intensity information

A well-known method for 3D surface reconstruction is
shape from shading [3, 11]. This approach is based on the
so-called re�ectance functionRI , which provides the inten-
sity of the light re�ected by the object surface depending on
the surface orientation, the camera position, and the posi-
tion of the light source. In the scenarios regarded in this
study, we always assume a point light source. In [3] a for-
mulation of the re�ectance function of a specular surface
is introduced which is based on a diffuse Lambertian com-
ponent, a broad specular lobe, and a narrow specular spike
according to

RI (� i ; � r ) = �

2

4cos� i +
KX

j =1

� j � (cos� r )m j

3

5 ; (1)

where� i denotes the incidence angle and� r the angle be-
tween the viewing direction and the direction of mirror-like
re�ection. We found experimentally that for the surfaces re-
garded in our experiments it is appropriate to assumeK = 2
specular components (cf. Section 3.3). The parameter� de-
notes the surface albedo, which is de�ned here as a fac-
tor depending on the camera lens, the surface re�ectivity,
the brightness of the light source, and the sensitivity of the
camera sensor [11]. It is generally not possible to directly
measure this parameter, such that we estimate it in the opti-
misation algorithm. Although we regard objects of uniform
surface albedo in our experiments, our framework would in
principle allow to render and investigate objects with a tex-
tured surface by using texture mapping in combination with
an estimation of the factor� . The other parameters of the
re�ectance function,f � j g andf mj }, are determined em-
pirically, regarding a sample of the corresponding surface
material attached to a goniometer [3].

We utilise this re�ectance function and a CAD model
of the object to generate a synthetic image of the observed
scene. We implemented an OpenGL-based renderer. Since
surface orientation is required for each point of the object
surface to compute a re�ectance value according to Eq. (1)
but OpenGL does not directly provide this information, the



Figure 2. Example of a distance-transformed edge image.

technique developed in [7] is used to calculate the surface
normal for every pixel. Afterwards, the re�ectance function
(1) is used to compute the predicted intensity for each pixel.
We obtain a photorealistic imageI S which can be compared
with the input imageI I , resulting in the intensity error term

eI =
X

u;v

[I I (u; v) � I S (u; v)]2 ; (2)

where the summation is carried out for the rendered pixels
representing the object surface. A disadvantage of the tech-
nique proposed in [7] is the fact that no shadow information
is generated for the scene. Hence, shadows are computed
in a further raytracing step after the photorealistic rendering
process.

As the dynamic range of the CCD camera used for our
experiments is not suf�ciently high to cover both the dif-
fuse and the specular re�ectance components, we acquire a
series of images of the scene over a wide range of shutter
times, combining the individual frames into a single high
dynamic range image as described e. g. in [6] (cf. Fig. 1a).

2.2. Edge information

We compute a binarised edge image from the observed
intensity image using the well-known Canny edge detector
[1]. In a second step, a distance transform imageI D is ob-
tained by computing the Chamfer distance for each pixel
[9] (cf. Fig. 2). As our approach compares synthetically
generated images with the observed image, we use a mod-
i�ed Chamfer matching technique which is related to the
approach described in [24]. We extract the edges in the ren-
dered image with a Sobel edge detector, resulting in a So-
bel magnitude imageI E , which is not binarised. To obtain
an error term which gives information about the quality of
the match, a pixel-wise multiplication ofI D by I E is per-
formed. The advantage of omitting the binarisation is the
continuous behaviour of the dependence of the resulting er-
ror function on the pose parameters, which turned out to be
a favourable property with respect to the optimisation stage.
If the edge image extracted from the rendered image is bi-

narised, the error function becomes discontinuous, making
the optimisation task more dif�cult. Accordingly, the edge
error termeE is de�ned as

eE = �
X

u;v

I D (u; v)I E (u; v); (3)

where the summation is carried out over all image pixels
(u; v). The minus sign in Eq. (3) arises from the fact that
our optimisation scheme aims at a determination of the min-
imum of the error function.

2.3. Polarisation information

Similar to the intensity, the polarisation angle of the light
re�ected from the object surface provides information about
the rotation of an object relative to the camera. The advan-
tage of using intensity in combination with the polarisation
angle is the fact that these quantities contain complementary
information about surface orientation [3].

As the scene is illuminated with unpolarised light, the
polarisation properties of the re�ected light can be mea-
sured with a linear polarisation �lter mounted in front of the
camera lens. When the polarisation �lter is rotated around
the optical axis, the intensity of each pixel follows a sinu-
soidal function depending on the orientation angle! of the
�lter. We observe the scene at �ve different orientations of
the polarisation �lter and �t a function of the form

I (! ) = I c + I v cos [2(! � �)] (4)

to the observed pixel intensities. This procedure immedi-
ately yields the polarisation angle� and the polarisation
degreeD = I v =Ic.

The behaviour of the polarisation degree tends to vary
across the surface in a rather unpredictable, erratic manner.
This is especially true for the maximum observed amount
of polarisation. Such variations of the polarisation degree
are due to its strong dependence on the local microscopic
surface roughness. In contrast, the behaviour of the polar-
isation angle turns out to show a behaviour which is inde-
pendent of the location on the part surface for the materials
regarded in our experiments. The polarisation degree may
be a useful and well-de�ned cue for smooth dielectric sur-
faces but turned out to be an unreliable feature in the scenar-
ios regarded in this work. Hence, we will utilise intensity
and polarisation angle as photometric cues in our pose esti-
mation framework (cf. Fig. 1).

The polarisation angle is favourably described in terms
of the surface gradientsp andq in horizontal and vertical
image direction, respectively, where the coordinate system
is chosen such that the scene is illuminated from the right.
We now de�ne a re�ectance functionRΦ for the polarisa-
tion angle, for which we assume an incomplete third-order
polynomial of the form

RΦ(p; q) = aΦ + bΦpq+ cΦq + dΦp2q + gΦq3 (5)



(cf. [5]). The analytic form of the re�ectance functionRΦ is
antisymmetric inq as long as the polarisation angle only de-
pends on the azimuth difference between camera and light
source but not on the azimuth angles themselves. The pa-
rametersaΦ, bΦ, cΦ, dΦ, andgΦ depend on the direction to
the light source and the viewing direction. They are empiri-
cally determined by �tting Eq. (5) to orientation-dependent
polarisation data acquired with a goniometer. The renderer
is then able to predict the polarisation angle for each pixel.
The error termeΦ for the polarisation angle is de�ned by

eΦ =
X

u;v

[�( u; v) � RΦ (p(u; v); q(u; v))]2 ; (6)

where�( u; v) is the polarisation angle observed for pixel
(u; v) and RΦ (p(u; v); q(u; v)) the rendered polarisation
angle. Note that for the computation ofeΦ it is necessary to
account for the periodicity of the polarisation angle.

2.4. Depth from defocus

A point situated in front of the camera at a distancez =
z0 is well focused ifz0 is taken to de�ne a plane on which
the camera is focused. By deviating the value ofz from z0

the point appears more and more blurred. This behaviour
of real-aperture lens systems is exploited by the depth from
defocus approach (cf. [2] for an overview).

An exact description of the point spread function (PSF)
due to diffraction of light at a circular aperture is given by
the radially symmetric Airy patternA(r ) / [J1(r )=r]2,
whereJ1(r ) is a Bessel function of the �rst kind. For prac-
tical purposes, however, when a variety of additional lens-
speci�c in�uencing quantities (e. g. chromatic aberration) is
involved, the Gaussian function is a reasonable approxima-
tion to the PSF [2]. Accordingly, the amplitude spectrum of
the Fourier transform of the PSF is also of Gaussian shape,
displaying az-dependent width parameter� (z) which de-
creases with increasing amount of defocus.

Basically, we utilise the depth from defocus technique
described in [4] to estimate depth values from the amount
of defocus. This approach requires two pixel-synchronous
images, one of which is acquired with a small aperture, e. g.
f=8, while the second one is acquired with a large aper-
ture, e. g.f=2. This procedure may be automated using a
lens equipped with a motorised iris. For the �rst image we
assume that no perceivable amount of defocus is present.
The images are partitioned into windows of32� 32pixels
size. After Tukey windowing, the PSF width parameter�
in frequency space is computed by �tting a Gaussian to the
quotient of the amplitude spectra of the corresponding win-
dows of the �rst and the second image, respectively. Only
the range of intermediate spatial frequencies is regarded in
order to reduce the in�uence of noise on the resulting value
for � . This technique and alternative methods are described
in detail in [2].

(a) Sharp input image (f= 8). (b) Unsharp input image (f= 2).

Figure 3. Calibration rig for the depth from defocus method.
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Figure 4. Established relation between depth and defocus.

To calibrate the depth from defocus method we establish
the relation between the amount of defocus� (z) and the re-
lated absolute depth valuez. For this purpose we use the
calibration rig shown in Fig. 3, which displays on the left
a random noise pattern which is especially suitable for es-
timating the PSF, and on the right a chequerboard pattern
of known size to estimate absolute depth values, assuming
that the camera is calibrated. Plotting the estimated defocus
values� (z) over the determined absolute depth valuesz we
obtain the diagram shown in Fig. 4. For the relation between
the PSF width parameter� (z) in frequency space and the
object distancez, in [14] the so-called depth-defocus func-
tion

1
� (z)

=
1

� 1

e� 1
� 2

( fz
z � f � b)2

+ � 3 (7)

with the parameters� 1, � 2, and� 3 is derived. In Eq. (7),f
is the focal length of the camera andbthe distance between
the lens and the camera sensor determined by internal cam-
era calibration [13]. Eq. (7) is obtained based on the lens
law 1=z0 + 1 =b= 1 =f [14]. The red curve in Fig. 4 shows
the result of the �t of Eq. (7) to the measured� (z) data
points.

2.5. Total error optimisation

To start the optimisation process, an initital object pose
has to be provided. With this pose a �rst set of images (in-
tensity, polarisation angle, edges, and depth map) is ren-
dered. Each measured cue provides an error term, denoted
by eE , eI , eΦ, andeD , respectively. We use these error



(a) (b)

(c)
Figure 5. Example of a depth map obtained with the depth from
defocus method. (a) Sharp input image, acquired atf= 8. (b) Un-
sharp input image, acquired atf= 2. (c) Resulting depth map. For
the black pixels no depth value could be computed. The colour
map is scaled in metres.

terms to compute an overall erroreT which is minimised
in order to obtain the object pose. As the individual error
terms are of different orders of magnitudes, we introduce
the weight factors� E , � I , � Φ, and� D to appropriately take
into account the individual terms in the total erroreT :

eT = � E eE + � I eI + � ΦeΦ + � D eD : (8)

The values of the weight factors are chosen inversely pro-
portional to the typical relative measurement error, respec-
tively.

We found that the in�uence on the observed intensity,
polarisation, edge, and depth cues is different for small vari-
ations of each pose parameter (cf. Table 1). For example, a
slight lateral translation has a strong in�uence on the edges
in the image but may leave the observed intensity and po-
larisation angle largely unchanged. On the other hand, un-
der certain viewing conditions, rotations around small an-
gles are hardly visible in the edge image while having a
signi�cant effect on the observed intensity or polarisation

Intensity, Edges Depth
polarisation

Rotation angles strong weak weak
Lateral translation (x; y) weak strong weak
Translation inz weak weak strong

Table 1. In�uence of small changes of the pose parameters on the
observed photopolarimetric, geometric, and depth cues.

behaviour.
For minimisation of the overall erroreT we use an iter-

ative gradient descent approach. We have chosen this al-
gorithm because of its stable convergence behaviour, but
other optimisation methods are possible. Since it is im-
possible to calculate analytically the derivatives of the total
error term with respect to the pose parameters as the error
term is computed based on rendered images, the gradient is
evaluated numerically. If a certain cue does not provide use-
ful information (which may e. g. be the case for polarisation
data when the surface material only weakly polarises the re-
�ected light, or for edges in the presence of cluttered back-
ground), this cue can be neglected in the optimisation pro-
cedure by setting the corresponding weight factor in Eq. (8)
to zero. We will show experimentally in Section 3 that pose
estimation remains possible when relying on merely two or
three different cues.

Our framework requires a-priori information about the
object pose for initialisation of the nonlinear optimisation
routine, such that it is especially useful for the purpose
of pose re�nement. In comparison, the template matching
based approach in [24] yields �ve pose parameters without
a-priori knowledge (the distance to the object is assumed to
be exactly known). In the addressed application domain of
industrial quality inspection, a-priori information about the
pose is available from the CAD data of the part itself and the
workpiece to which it is attached. Here it is not necessary
to detect the part in an arbitrary pose but to measure small
differences between the true pose parameters and those de-
sired according to the CAD data. Hence, when applied
in the context of industrial quality inspection, our method
should be initialised with the pose given by the CAD data,
and depending on the tolerances stored in the CAD data, a
production fault is indicated when the deviation of one or
several pose parameters exceeds the tolerance value. The
experimental evaluation described in the next section will
show that our framework is able to detect small differences
between the true and the desired object pose.

3. Experimental results

To evaluate the performance of the presented approach
we estimated the pose of three different test objects and
compared the results to the independently derived ground
truth. In all experiments, the images were taken with a
Baumer industrial CCD camera of1032� 776pixels image
size, equipped with af = 25 mm lens. The approximate
distance to the object was0:5 m. To increase the signal-to-
noise ratio of the intensity and polarisation data, the images
were downscaled to258� 194 pixels, corresponding to a
lateral resolution of about0:4 mm per pixel. Depth from
defocus analysis was performed based on the full-resolution
images acquired at apertures off=8 andf=2, respectively.
The coordinate system was chosen such that thex and y



(a) Input image (pose 1) (b) Input image (pose 2)

Figure 6. Input intensity images for the rubber example.

axes correspond to the horizontal and vertical image axis,
respectively, while thez axis is parallel to the optical axis.
The scene was illuminated with a LED point light source
located at a known position. For each con�guration, the
algorithm was initialised with four poses, differing by sev-
eral degrees in the rotation angles and a few millimetres in
translation. As the result of pose estimation we adopted the
minimisation run yielding the lowest residual error accord-
ing to Eq. (8).

3.1. Rubber (toy example)

For our �rst test we have chosen an object with a simple
geometry, a cuboid-shaped rubber. The re�ectance function
RI was determined with a goniometer. At the same time
we found that the polarisation degree of the light re�ected
from the surface is so small that it cannot be reliably deter-
mined. Hence, the input data for pose estimation are limited
to intensity, edges, and depth.

For our evaluation, we attached the rubber with its lateral
surface to the goniometer table and oriented it in two dif-
ferent poses relative to the camera. The angular difference
between the two poses is only a few degrees (cf. Fig. 6).
For the determination of the ground truth, we replaced the
rubber for each pose by a chequerboard of known geome-
try. The chequerboard was attached to the goniometer table,
and its pose was estimated using the rig �nder algorithm de-
scribed in [13], which is based on a bundle adjustment ap-
proach for camera calibration purposes. Due to the simple
cuboid shape of the rubber the chequerboard pattern could
be aligned at high accuracy into the same direction as the
lateral surfaces of the rubber, such that the chequerboard
pose could be assumed to be identical with the pose of the
rubber.

The results of this �rst experiment are shown in Table 2.
The deviations for this rather simple object are only a few
tenths of a degree for the rotation angles and a few tenths
of a millimetre for the lateral translations. The translation
in z is determined at an accuracy of about4 mm (which is
about an order of magnitude lower than the lateral accuracy)
or 1 percent. This is a reasonable result, given that only
monocular image data are available.

(a) Input image (pose 1). (b) Input image (pose 2).

Figure 7. Input intensity images for the oil cap example.
Greylevels are displayed in logarithmic scale.

3.2. Oil cap

In the second experiment we regard an oil cap consisting
of plastic material. Since due to its complex shape this ob-
ject cannot be attached to the goniometer table in a reprod-
ucable manner, we determined the ground truth pose in this
experiment based on a stereoscopic bundle adjustment tool
which exploits manually established point correspondences
between a recti�ed stereo image pair and the CAD model
of the object. As in the �rst experiment, the goniometer
was used to determine the intensity and polarisation angle
re�ectance functionsRI andRΦ. The light re�ected by the
surface of the oil cap is partially polarised by10–20percent,
such that the polarisation angle can be used in our pose esti-
mation framework in addition to intensity, edges, and depth.
The intensity images of the two regarded poses are shown
in Fig. 7, illustrating that at some places especially near the
right image border the edges are not well-de�ned, such that
the pose estimation algorithm to a large extent has to rely
on intensity and polarisation information. The comparison
to the ground truth is shown in Table 3, demonstrating that
the object pose can be determined at an accuracy of1–2
degrees for the rotation angles, some tenths of a millime-
tre for the lateral translations, and several millimetres or
about1 percent for the object distance. We observed that
small deviations of the rotation angles can be compensated
by correspondingly adjusting the albedo factor� , leading
to a lower accuracy of the rotation angles, compared to the
rubber example. Due to the somewhat ill-de�ned edges the
pose estimation fails when only edge information is used,
as no convergence of the minimisation routine is achieved.

Parameter Pose 1 GT 1 Pose 2 GT 2
roll [ � ] 13:3 13:5 16:7 16:3
pitch [� ] � 18:2 � 18:9 � 18:6 � 19:7
yaw [� ] 59:4 58:6 59:2 58:5
tx [mm] � 3:6 � 3:2 � 2:8 2:5
ty [mm] 2:3 2:3 1:3 1:7
tz [mm] 451:5 454:3 457:5 453:9

Table 2. Estimated pose and ground truth (GT) for the rubber ex-
ample.



Parameter Pose 1 GT 1 Pose 2 GT 2
roll [ � ] 233:2 234:5 230:7 232:1
pitch [� ] 1:3 2:3 0:9 2:4
yaw [� ] 57:3 55:2 56:8 56:0
tx [mm] 14:7 14:7 15:0 14:8
ty [mm] 2:1 2:8 2:0 2:5
tz [mm] 512:9 509:2 512:7 509:2

Table 3. Estimated pose and ground truth (GT) for the oil cap ex-
ample.

For the oil cap example, it is possible to directly compare
our results to those of the monocular edge-based template
matching method proposed in [24], since in that work the
same object and the same CAD model are regarded. The
deviation of the rotation angles estimated in [24] from the
corresponding ground truth is typically around1–2 degrees
but may also become larger than3 degrees. In contrast to
the method described in this study, it is assumed in [24]
that the distance to the object is known, i. e. only �ve rather
than six degrees of freedom are estimated in [24]. On the
other hand, that method does not require a-priori informa-
tion about the object pose.

3.3. Hinge

In our third experiment we regard another automotive
part, a door hinge, consisting of cast metal with a rough
and strongly specular surface (cf. Fig. 8). For the pose
we have chosen for our experiment, the light from the
point light source is re�ected directly into the camera. The
Canny edge detector yields a very large number of edges
(cf. Fig. 2), thus providing no reliable information about the
object pose. As a consequence, our approach fails when we
attempt to perform a pose estimation of the hinge based on
the extracted edge information. Just like the rubber in our
�rst experiment, the surface of the hinge does not perceiv-
ably polarise the re�ected light. Hence, we only use inten-
sity and depth data as input information for our algorithm.
The obtained results illustrate that our algorithm also works
in the absence of some of the input cues and that it is suit-
able for pose estimation of objects with a strongly specular
surface.

In this experiment, the chequerboard method could not

Parameter difference Result GT
� roll [ � ] 4.15 4.23
� pitch [� ] 2.06 1.69
� yaw [� ] 0.22 0.58
� tx [mm] 0.71 0.06
� ty [mm] 1.88 2.33
� tz [mm] 3.82 0.16

Table 4. Estimated pose differences and ground truth for thedoor
hinge example.

(a) Input image (pose 1) (b) Input image (pose 2)

Figure 8. Input intensity images for the door hinge example.
Greylevels are displayed in logarithmic scale.

be used for determining the ground truth since the hinge
could not be attached to the goniometer in a reproducable
manner, such that it was not possible to place it in a known
position relative to the chequerboard and the goniometer.
Similarly, the bundle adjustment tool based on manually
established point correspondences could not be used since
unlike the oil cap, the hinge does not display well-de�ned
corner points. Hence, we compare the estimated poses to
the difference imposed by the two chosen goniometer set-
tings, values which are given at high accuracy. The esti-
mated pose differences and the corresponding ground truth
values are shown in Table 4. Although not all four geomet-
ric, photometric, and depth cues are available, the obtained
results are comparable to or better than those obtained in
the previous experiments (some tenths of a degree for the
rotation angles, some tenths of a millimetre for the lateral
translation, and some millimetres for the object distance).
Hence, our method behaves in a robust manner with respect
to a strongly specular object surface and cluttered edge in-
formation.

4. Summary and conclusion

In this study we have presented a monocular pose esti-
mation framework which is based on photometric, polari-
metric, edge, and defocus cues. A correspondingly de�ned
error function is minimised by comparing the observed data
to their rendered counterparts, where an accurate rendering
of intensity and polarisation images is performed based on
the material-speci�c re�ectance functions determined with
a goniometer. If a certain cue cannot be reliably measured
or does not yield useful information, it can be neglected in
the optimisation procedure.

The experimental evaluation, performed at an effective
pixel resolution of0:4 mm, has shown an accuracy of our
method of several tenths of a degree to1 degree for the rota-
tion angles,1 mm or better for the lateral object translation,
and several millimetres, corresponding to about1 percent,
for the distance to the object. This accuracy is comparable
to or higher than that of the monocular template matching
approach in [24] exclusively relying on edge information.
This result is achieved despite the fact that our method ad-



ditionally provides an estimate of the distance to the object,
while the method in [24] assumes that the object distance
is known. At this point it is interesting to compare the ac-
curacy of our monocular approach with that achieved by a
multiocular method. As an example, for the stereo-based
approach described in [25] a rotational accuracy of1:5 de-
grees and a translational accuracy of2:4 mm are reported
for an industrial part located at a distance of600–800mm1.

The depth from defocus method has turned out to be a
useful instrument for the estimation of object depth in the
close range at an accuracy of about1 percent. We have
demonstrated the usefulness of our method under condi-
tions typically encountered in industrial quality inspection
scenarios such as the assembly of complex parts, where the
desired pose of the whole workpiece or part of it is given by
the CAD data and the inspection system has to detect small
differences between the actual and the desired pose.

Beyond depth from defocus, our pose estimation frame-
work is open for depth data obtained e. g. by active range
measurement. Hence, future work will involve the inclu-
sion of such independently obtained depth data into the de-
scribed system.
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