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Abstract

This paper presents a quantitative comparison of several

multi-view stereo reconstruction algorithms. Until now, the

lack of suitable calibrated multi-view image datasets with

known ground truth (3D shape models) has prevented such

direct comparisons. In this paper, we first survey multi-view

stereo algorithms and compare them qualitatively using a

taxonomy that differentiates their key properties. We then

describe our process for acquiring and calibrating multi-

view image datasets with high-accuracy ground truth and

introduce our evaluation methodology. Finally, we present

the results of our quantitative comparison of state-of-the-art

multi-view stereo reconstruction algorithms on six bench-

mark datasets. The datasets, evaluation details, and in-

structions for submitting new models are available online

at http://vision.middlebury.edu/mview.

1. Introduction

The goal of multi-view stereo is to reconstruct a com-

plete 3D object model from a collection of images taken

from known camera viewpoints. Over the last few years,

a number of high-quality algorithms have been developed,

and the state of the art is improving rapidly. Unfortunately,

the lack of benchmark datasets makes it difficult to quan-

titatively compare the performance of these algorithms and

to therefore focus research on the most needed areas of de-

velopment.

The situation in binocular stereo, where the goal is to

produce a dense depth map from a pair of images, was until

recently similar. Here, however, a database of images with

ground-truth results has made the comparison of algorithms

possible and hence stimulated an even faster increase in al-

gorithm performance [1].

In this paper, we aim to rectify this imbalance by pro-

viding, for the first time, a collection of high-quality cal-

ibrated multi-view stereo images registered with ground-

truth 3D models and an evaluation methodology for com-

paring multi-view algorithms.

Our paper’s contributions include a taxonomy of multi-

view stereo reconstruction algorithms inspired by [1] (Sec-

tion 2), the acquisition and dissemination of a set of

calibrated multi-view image datasets with high-accuracy

ground-truth 3D surface models (Section 3), an evalua-

tion methodology that measures reconstruction accuracy

and completeness (Section 4), and a quantitative evaluation

of some of the currently best-performing algorithms (Sec-

tion 5). While the current evaluation only includes meth-

ods whose authors were able to provide us their results by

CVPR final submission time, our datasets and evaluation

results are publicly available [2] and open to the general

community. We plan to regularly update the results, and

publish a more comprehensive comparative evaluation as a

full-length journal publication.

We limit the scope of this paper to algorithms that re-

construct dense object models from calibrated views. Our

evaluation therefore does not include traditional binocular,

trinocular, and multi-baseline stereo methods, which seek

to reconstruct a single depth map, or structure-from-motion

and sparse stereo methods that compute a sparse set of fea-

ture points. Furthermore, we restrict the current evaluation

to objects that are nearly Lambertian, which is assumed by

most algorithms. However, we also captured and plan to

provide datasets of specular scenes and plan to extend our

study to include such scenes in the future.

This paper is not the first to survey multi-view stereo

algorithms; we refer readers to nice surveys by Dyer [3]

and Slabaugh et al. [4] of algorithms up to 2001. How-

ever, the state of the art has changed dramatically in the last

five years, warranting a new overview of the field. In addi-

tion, this paper provides the first quantitative evaluation of

a broad range of multi-view stereo algorithms.

2. A multi-view stereo taxonomy

One of the challenges in comparing and evaluating

multi-view stereo algorithms is that existing techniques

vary significantly in their underlying assumptions, operat-

ing ranges, and behavior. Similar in spirit to the binoc-

ular stereo taxonomy [1], we categorize existing meth-

ods according to six fundamental properties that differen-

tiate the major algorithms: the scene representation, photo-

consistency measure, visibility model, shape prior, recon-

struction algorithm, and initialization requirements.



2.1. Scene representation

The geometry of an object or scene can be represented

in numerous ways; the vast majority of multi-view algo-

rithms use voxels, level-sets, polygon meshes, or depth

maps. While some algorithms adopt a single representation,

others employ different representations for various steps in

the reconstruction pipeline. In this section we give a very

brief overview of these representations and in Section 2.5

we discuss how they are used in the reconstruction process.

Many techniques represent geometry on a regularly sam-

pled 3D grid (volume), either as a discrete occupancy func-

tion (e.g., voxels [5–19]), or as a function encoding distance

to the closest surface (e.g., level-sets [20–26]). 3D grids are

popular for their simplicity, uniformity, and ability to ap-

proximate any surface.

Polygon meshes represent a surface as a set of connected

planar facets. They are efficient to store and render and

are therefore a popular output format for multi-view algo-

rithms. Meshes are also particularly well-suited for visibil-

ity computations and are also used as the central represen-

tation in some algorithms [27–32].

Some methods represent the scene as a set of depth

maps, one for each input view [33–38]. This multi-depth-

map representation avoids resampling the geometry on a 3D

domain, and the 2D representation is convenient particu-

larly for smaller datasets. An alternative is to define the

depth maps relative to scene surfaces to form a relief sur-

face [39, 40].

2.2. Photo-consistency measure

Numerous measures have been proposed for evaluating

the visual compatibility of a reconstruction with a set of in-

put images. The vast majority of these measures operate by

comparing pixels in one image to pixels in other images to

see how well they correlate. For this reason, they are often

called photo-consistency measures [11]. The choice of mea-

sure is not necessarily intrinsic to a particular algorithm—it

is often possible to take a measure from one method and

substitute it in another. We categorize photo-consistency

measures based on whether they are defined in scene space

or image space [22].

Scene space measures work by taking a point, patch, or

volume of geometry, projecting it into the input images, and

evaluating the amount of mutual agreement between those

projections. A simple measure of agreement is the variance

of the projected pixels in the input images [8, 11]. Other

methods compare images two at a time, and use window-

matching metrics such as sum of squared differences or nor-

malized cross correlation [20, 23, 31]. An interesting fea-

ture of scene-space window-based methods is that the cur-

rent estimate of the geometry can inform the size and shape

of the window [20]. A number of other photo-consistency

measures have been proposed to provide robustness to small

shifts and other effects [12, 18].

Image space methods use an estimate of scene geometry

to warp an image from one viewpoint to predict a different

view. Comparing the predicted and measured images yields

a photo-consistency measure known as prediction error [26,

41]. While prediction error is conceptually very similar to

scene space measures, an important difference is the domain

of integration. Scene space error functions are integrated

over a surface and thus often tend to prefer smaller surfaces,

whereas prediction error is integrated over the set of images

of a scene and thus ascribe more weight to parts of the scene

that appear frequently or occupy a large image area.

While most stereo algorithms have traditionally assumed

approximately view-independent intensities, i.e., Lamber-

tian scenes, a number of new photo-consistency metrics

have been devised that seek to model more general reflec-

tion functions (BRDFs) [15–17, 22, 23, 32]. Some methods

also utilize silhouettes [27, 30, 31] or shadows [17, 42].

2.3. Visibility model

Visibility models specify which views to consider when

evaluating photo-consistency measures. Because scene vis-

ibility can change dramatically with viewpoint, almost all

modern multi-view stereo algorithms account for occlu-

sions in some way or another. Early algorithms that did not

model visibility [6,27,43] have trouble scaling to large dis-

tributions of viewpoints. Techniques for handling visibility

include geometric, quasi-geometric, and outlier-based ap-

proaches.

Geometric techniques seek to explicitly model the image

formation process and the shape of the scene to determine

which scene structures are visible in which images. A com-

mon approach in surface evolution approaches is to use the

current estimate of the geometry to predict visibility for ev-

ery point on that surface [5, 11, 12, 19, 20, 29, 30, 40]. Fur-

thermore, if the surface evolution begins with a surface that

encloses the scene volume and evolves by carving away that

volume, this visibility approach can be shown to be conser-

vative [11, 18]; i.e., the set of cameras for which a scene

point is predicted to be visible is a subset of the set of cam-

eras in which that point is truly visible.

Visibility computations can be simplified by constrain-

ing the allowable distribution of camera viewpoints. If the

scene lies outside the convex hull of the camera centers,

the occlusion ordering of points in the scene is same for

all cameras [8], enabling a number of more efficient algo-

rithms [8, 10, 13, 35, 44].

Quasi-geometric techniques use approximate geometric

reasoning to infer visibility relationships. For example, a

popular heuristic for minimizing the effects of occlusions is

to limit the photo-consistency analysis to clusters of nearby

cameras [31, 45]. This approach is often used in combi-



nation with other forms of geometric reasoning to avoid

oblique views and to minimize computations [5,11,26]. An-

other common quasi-geometric technique is to use a rough

estimate of the surface such as the visual hull [46] to guess

visibility for neighboring points [19, 47, 48].

The third type of method is to avoid explicit geometric

reasoning and instead treat occlusions as outliers [31, 34,

37, 38]. Especially in cases where scene points are visible

more often than they are occluded, simple outlier rejection

techniques [49] can be used to select the good views. A

heuristic often used in tandem with outlier rejection is to

avoid comparing views that are far apart, thereby increasing

the likely percentage of inliers [31, 34, 37, 38].

2.4. Shape prior

Photo-consistency measures alone are not always suf-

ficient to recover precise geometry, particularly in low-

textured scene regions [11, 50]. It can therefore be helpful

to impose shape priors that bias the reconstruction to have

desired characteristics. While priors are essential for binoc-

ular stereo, they play a less important role in multi-view

stereo where the constraints from many views are stronger.

Techniques that minimize scene-based photo-

consistency measures naturally seek minimal surfaces

with small overall surface area. This bias is what enables

many level-set algorithms to converge from a gross initial

shape [20]. The preference for minimal surfaces can also

result in a tendency to smooth over points of high curvature

(see [51, 52] for ways to address this problem). Recent

approaches based on volumetric min-cut [19, 47] also

have a bias for minimum surfaces. A number of mesh-

based algorithms incorporate terms that cause triangles to

shrink [29, 31] or prefer reference shapes such as a sphere

or a plane [27].

Many methods based on voxel coloring and space carv-

ing [5, 8, 9, 11, 12, 16, 18, 53] instead prefer maximal sur-

faces. Since these methods operate by removing voxels

only when they are not photo-consistent, they produce the

largest photo-consistent scene reconstruction, known as the

“photo hull.” Because they do not assume that the surface

is smooth, these techniques are good at reconstructing high

curvature or thin structures. However, the surface tends to

bulge out in regions of low surface texture [8, 11].

Rather than impose global priors on the overall size of

the surface, other methods employ shape priors that en-

courage local smoothness. Approaches that represent the

scene with depth maps typically optimize an image-based

smoothness term [33–37,45] that seeks to give neighboring

pixels the same depth value. This kind of prior fits nicely

into a 2D Markov Random Field (MRF) framework, and

can therefore take advantage of efficient MRF solvers [35].

A disadvantage is that there is a bias toward fronto-parallel

surfaces. This bias can be avoided by enforcing surface-

based priors, as in [27, 29–32, 40, 47, 48].

2.5. Reconstruction algorithm

Multi-view stereo algorithms can be roughly categorized

into four classes.

The first class operates by first computing a cost function

on a 3D volume, and then extracting a surface from this

volume. A simple example of this approach is the voxel

coloring algorithm and its variants [8, 17], which make a

single sweep through the volume, computing costs and re-

constructing voxels with costs below a threshold in the same

pass (note that [13] avoids the need for a threshold). Other

algorithms differ in the definition of the cost function and

the surface extraction method. A number of methods de-

fine a volumetric MRF and use max-flow [6, 19, 47, 48] or

multi-way graph cut [35] to extract an optimal surface.

The second class of techniques works by iteratively

evolving a surface to decrease or minimize a cost func-

tion. This class includes methods based on voxels, level

sets, and surface meshes. Space carving [5, 11] and its

variants [9, 11, 12, 14, 18, 40, 53] progressively remove in-

consistent voxels from an initial volume. Other variants of

this approach enable adding as well as deleting voxels to

minimize an energy function [15, 54]. Level-set techniques

minimize a set of partial differential equations defined on

a volume. Like space carving methods, level-set methods

typically start from a large initial volume and shrink in-

ward; unlike most space carving methods, however, they

can also locally expand if needed to minimize an energy

function. Other approaches represent the scene as an evolv-

ing mesh [27–32] that moves as a function of internal and

external forces.

In the third class are image-space methods that com-

pute a set of depth maps. To ensure a single consistent

3D scene interpretation, these methods enforce consistency

constraints between depth maps [33, 35–37], or merge the

set of depth maps into a 3D scene as a post process [45].

The final class consists of algorithms that first extract

and match a set of feature points and then fit a surface to the

reconstructed features [55–58].

2.6. Initialization requirements

In addition to a set of calibrated images, all multi-view

stereo algorithms assume or require as input some informa-

tion about the geometric extent of the object or scene being

reconstructed. Providing some constraints on scene geom-

etry is in fact necessary to rule out trivial shapes, such as a

different postcard placed in front of each camera lens.

Many algorithms require only a rough bounding box

or volume (e.g., space carving variants [8, 9, 11, 12, 14,

18, 40, 53] and level-set algorithms [20–26]). Some algo-

rithms require a foreground/background segmentation (i.e.,

silhouette) for each input image and reconstruct a visual
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bird dogs
Figure 1. Multi-view datasets with laser-scanned 3D models.

Figure 2. The 317 camera positions and orientations for the temple

dataset. The gaps are due to shadows. The 47 cameras correspond-

ing to the ring dataset are shown in blue and red, and the 16 sparse

ring cameras only in red.

hull [46] that serves as an initial estimate of scene geom-

etry [5, 19, 31, 47, 48].

Image-space algorithms [33, 35–37] typically enforce

constraints on the allowable range of disparity or depth val-

ues, thereby constraining scene geometry to lie within a

near and far depth plane for each camera viewpoint.

3. Multi-view data sets

To enable a quantitative evaluation of multi-view stereo

reconstruction algorithms, we collected several calibrated

multi-view image sets and corresponding ground truth 3D

mesh models. Similar data are available for surface light-

field studies [59, 60]; we have followed similar procedures

for acquiring the images and models and for registering

them to one another (although we add a step to automati-

cally refine the alignment of the ground truth to the image

sets based on minimizing photo-consistency). The surface

lightfield data sets themselves are not, however, suitable for

this evaluation due to the highly specular nature of the ob-

jects selected for those studies. We note that a number of

other high quality multi-view datasets are publicly available

(without registered ground truth models), and we provide

links to many of these through our web site.

The target objects for this study were selected to have

a variety of characteristics that are challenging for typi-

cal multi-view stereo reconstruction algorithms. We sought

objects that broadly sample the space of these character-

istics by including both sharp and smooth features, com-

plex topologies, strong concavities, and both strongly and

weakly textured surfaces (see Figure 1).

The images were captured using the Stanford spherical

gantry, a robotic arm that can be positioned on a one-meter

radius sphere to an accuracy of approximately 0.01 degrees.

Images were captured using a CCD camera with a resolu-

tion of 640 × 480 pixels attached to the tip of the gantry

arm. At this resolution, a pixel in the image spans roughly

0.25mm on the surface of the object (the temple object is

10cm× 16cm× 8cm, and the dino is 7cm× 9cm× 7cm).

The system was calibrated by imaging a planar calibra-

tion grid from 68 viewpoints over the hemisphere and using

[61] to compute intrinsic and extrinsic parameters. From

these parameters, we computed the camera’s translational

and rotational offset relative to the tip of the gantry arm, en-

abling us to determine the camera’s position and orientation

as a function of any desired arm position.

The target object sits on a stationary platform near the

center of the gantry sphere and is lit by three external spot-

lights. Because the gantry casts shadows on the object in

certain viewpoints, we double-covered the hemisphere with

two different arm configurations, capturing a total of 790

images. After shadowed images were manually removed,

we obtained roughly 80% coverage of the sphere. From the

resulting images, we created three datasets for each object,

corresponding to a full hemisphere, a single ring around the

object, and a sparsely sampled ring (Figure 2).

The reference 3D model was captured using a Cyber-

ware Model 15 laser stripe scanner. This unit has a single-

scan resolution of 0.25mm and an accuracy of 0.05mm

to 0.2mm, depending on the surface characteristics and

the viewing angle. For each object, roughly 200 individ-

ual scans were captured, aligned and merged on a 0.25mm

grid, with the resulting mesh extracted with sub-voxel preci-

sion [62]; the accuracy of the combined scans is appreciably



greater than the individual scans. The procedure also pro-

duces per-vertex confidence information, which we use in

the evaluation procedure.

The reference models were aligned to their image sets

using an iterative optimization approach that minimizes a

photo-consistency function between the reference mesh and

the images. The alignment parameters consist of a trans-

lation, rotation, and uniform scale. The scale factor was

introduced to compensate for small differences in calibra-

tion between the laser scanner and each image set. The

photo-consistency function for each vertex of the mesh is

the variance of the color of all rays impinging on that ver-

tex, times the number of images in which that vertex is vis-

ible, times the confidence of that vertex. This function is

summed over all vertices in the mesh, and minimized using

a coordinate descent method with a bounded finite differ-

ence Newton line search. The size of the finite difference

increment is reduced between successive iterations by a fac-

tor of two until a minimum value is reached. After every

step, a check is made to ensure that the objective function

strictly decreases. The optimization was initialized with

the output of an iterative closest point (ICP) alignment be-

tween the reference mesh and one of the submitted recon-

structions. It was found that the result of the optimization

was invariant to which sample reconstruction was selected

for the ICP alignment. The quality of these alignments was

validated by manually inspecting the reprojection of the full

images; maximum reprojection errors were found to be on

the order of 1 pixel, and usually substantially less.

4. Evaluation methodology

We now describe how we evaluate reconstructions by ge-

ometric comparison to the ground truth model.

Let us denote the ground truth model as G and the sub-

mitted reconstruction result to be evaluated as R. The goal

of our evaluation is to assess both the accuracy of R (how

close R is to G), and the completeness of R (how much of

G is modeled by R). For the purposes of this paper, we

assume that R is itself a triangle mesh.

To measure the accuracy of a reconstruction, we compute

the distance between the points in R and the nearest points

on G. Since R is a surface, in theory, we should construct

measures that entail integration over R although in practice

we simply sample R at its vertices.

A problem arises where G is incomplete. In this case,

for a given point on R in an area where G is incomplete,

the nearest point on G could be on its boundary or possibly

on a distant part of the mesh. Rather than try to detect and

remove such errors we instead compute nearest distances

to G′, a hole-filled version of G, and discount points in

R whose nearest points on G′ are closest to the hole-filled

regions. Figure 3(b) illustrates this approach. While this

solution is itself imperfect, if the hole fills are reasonably

R
G

(a)

G'

(b) (c)

Figure 3. Evaluation of reconstruction R relative to ground truth

model G. (a) R and G are represented as meshes, each shown here

to be incomplete at different parts of the surface. (b) To compute

accuracy, for each vertex on R, we find the nearest point on G.

We augment G with a hole filled region (solid red) to give a mesh

G
′. Vertices (shown in red) that project to the hole filled region

are not used in the accuracy metric. (c) To measure completeness,

for each vertex on G, we find the nearest points on R (where the

dotted lines terminate on R). Vertices (shown in red) that map to

the boundary of R or are beyond an “inlier distance” from R to G

are treated as not covered by R.

“tight,” this approach will avoid penalizing accurate points

in R at the cost of discarding some possibly less accurate

points that happen to match to the hole fill. In practice, we

use the hole-filled surfaces generated by space carving [62]

during surface reconstruction from range scans, and we per-

form many scans (approximately 200 per object), so that

these hole fills are fairly close to the actual surface and con-

stitute a small portion of the surface of the model. In addi-

tion, the mesh G has per-vertex confidence values indicat-

ing how well it was sampled by the scanner [62]; we ignore

points on R that map to low confidence regions of G.

After determining the nearest valid points on G from R,

we compute the distances between them. We compute the

signed distances to get a sense of whether a reconstruction

tends to under- or over-estimate the true shape. We set the

sign of each distance equal to the sign of the dot product

between the outward facing normal at the nearest point on

G and the vector from that point to the query point on R.

Given the sampling of signed distances from the vertices

of R to G (less the distances for points that project to hole

fills of G′), we can now visualize their distribution and com-

pute summary statistics useful in comparing the accuracy of

the reconstruction algorithms. One useful example of such

a statistic is to compute the distance d such that X% of the

points on R are within distance d of G. When X = 50 for

instance, this gives median distance from R to G. One such

statistic is presented in Section 5.

To measure completeness, we compute the distances

from G to R, i.e., the opposite of what we do for mea-

suring accuracy. Intuitively, points on G that have no suit-

able nearest points on R will be considered “not covered”.

Again, while we could measure the covered area by integra-

tion, we instead sample using the vertices of G, which are

fairly uniformly distributed over G for our models. Unfor-



tunately, we cannot use the same idea for rejecting nearest

points that we use for the accuracy metric, since, generally,

a hole-filled R′ is not available.

Instead, we propose an alternative completeness measure

that simply reports the fraction of points of G that are within

an allowable distance d of R 1. The parameter d should be

chosen to be large enough to accommodate “reasonable”

errors in the reconstructions. A consequence of this mea-

sure is that unusually noisy reconstructions will tend to have

lower completeness scores. Figure 3(c) illustrates the prin-

ciple of the completeness measure.

5. Results

In this section, we present the results of our quantita-

tive evaluation of six multi-view stereo reconstruction algo-

rithms on the temple and dino datasets shown in Figure 1.

First, we briefly describe each algorithm. In an effort

to cover the current state of the art, we sought to include

new, recently published algorithms rather than evaluating

classic methods from a few years ago. In addition to the six

reported here, three other groups tried out the data but were

not able to produce reasonable results and are therefore not

included in the study.

Furukawa et al. [48] use wide-baseline stereo matching

to recover the 3D coordinates of salient feature points, then

shrink a visual hull model so that the recovered points lie

on its surface, then refine the result using energy minimiza-

tion. Goesele et al. [63] compute a depth map from each

camera viewpoint (similar to [31]) and merge the results

using VRIP [62]. Hernandez and Schmitt [31] first com-

pute a depth map from each camera viewpoint and merge

the results into a cost volume. They then iteratively de-

form a mesh, initialized at the visual hull, to find a mini-

mum cost surface in this volume, also incorporating terms

to fit silhouettes. Kolmogorov and Zabih [35] compute a set

of depth maps using multi-baseline stereo with graph cuts,

then merge the results into a voxel volume by computing

the intersections of the occluded volumes from each view-

point. Pons, Keriven, and Faugeras [26] compute a mini-

mum cost surface by evolving a surface in a level-set frame-

work, using a prediction-error measure. Vogiatzis, Torr, and

Cipolla [19] compute a correlation cost volume in the neigh-

borhood of the visual hull. A minimum-cost surface is then

computed using volumetric min-cut.

We found that the different multi-view stereo reconstruc-

tions have sub-millimeter translational offsets with respect

to each other. Relative to the accuracies of the best models,

these offsets are quite significant. We postulate that these

shifts are due in part to small errors in calibration, as shifts

1Points on G that map to the boundary of R do not have a well-defined

signed distance. We therefore treat half of those points as positive, and half

as negative.

in the gantry can cause small offsets at different latitudes,

but also reflect intrinsic differences between the algorithms.

To compensate for these shifts, we first aligned the ground

truth mesh (GTM) to each reconstruction using ICP, before

computing the accuracy and completeness measures.

Table 1 summarizes the results of running our accuracy

and completeness metrics on the aligned models that these

six participants submitted. We used an accuracy threshold

of 90%, i.e., an accuracy of 1.0mm means that 90% of the

points are within one mm of the GTM. For completeness,

we used an inlier threshold of 1.25mm, i.e., a completeness

of 95% means that 95% of the points are within 1.25mm

of the GTM. We found that the accuracy and completeness

rankings among the algorithms were relatively stable (see

our web page [2] for results with other thresholds).

The accuracy of many of these methods is remark-

able. Most methods consistently get sub-millimeter accu-

racy with very few outliers—and this is from images cap-

tured only at video resolution. Hernandez had the best ac-

curacy on the temple datasets, with 90% of its points being

within 0.36mm of the GTM on the full temple set. How-

ever, Hernandez consistently had one of the largest transla-

tional offsets among the algorithms (e.g., a shift of 0.6mm

on the temple set)—if we had not normalized for such off-

sets the results would have changed significantly.

We were surprised how well methods did on the dino

set, given that the only texture was due to subtle shading

variations on the surface. Visual inspection of the recon-

structions does show that even the best multi-view stereo

results are noisier than the laser scanned GTM, indicating

that there is potentially still room for improvement.

While accuracy numbers decreased with fewer images

on the temple datasets, the dino results surprisingly show

the opposite trend, with most methods doing better on the

Ring than on the Full dino set. Due to the lack of texture on

the dino, regularization likely plays a more central role.

Since most of the algorithms in this survey generate com-

plete object models, the completeness numbers were not

very discriminative. The primary exception is Goesele,

whose reconstructions contain holes in low-confidence re-

gions, and cause the lower completeness numbers for tem-

pleSparseRing (due to sparse view sampling) and the dino

sets (due to areas with low texture).

Almost all of these algorithms exploited the fact that rea-

sonable silhouettes were easily available via background

thresholding on these data sets (Hernandez, Vogiatzis, and

Furukawa require silhouettes to operate). An exception is

Pons, which does not use silhouettes. Also, Goesele used

silhouettes on the temple but not the dino datasets. We

found these latter results encouraging, since silhouettes are

not always available (e.g., the other datasets in Table 1).

We also note that the run-times of these algorithms var-

ied dramatically, with Pons consistently the fastest (31 min-



Temple Dino

Full (317) Ring (47) SparseR. (16) Full (363) Ring (48) SparseR. (16)

Furukawa [48] 0.65, 98.7% 0.58, 98.5% 0.82, 94.3% 0.52, 99.2% 0.42, 98.8% 0.58, 96.9%

Goesele [63] 0.42, 98.0% 0.61, 86.2% 0.87, 56.6% 0.56, 80.0% 0.46, 57.8% 0.56, 26.0%

Hernandez [31] 0.36, 99.7% 0.52, 99.5% 0.75, 95.3% 0.49, 99.6% 0.45, 97.9% 0.60, 98.5%

Kolmogorov [35] 1.86, 90.4% 2.80, 85.7%

Pons [26] 0.60, 99.5% 0.90, 95.4% 0.55, 99.0% 0.71, 97.7%

Vogiatzis [19] 1.07, 90.7% 0.76, 96.2% 2.77, 79.4% 0.42, 99.0% 0.49, 96.7% 1.18, 90.8%

Table 1. Accuracy and Completeness results. The first number 0.xx measures accuracy: the distance d (in mm) such that 90% of the

reconstruction is within d of the ground truth mesh (GTM). The second number xx.x% specifies completeness: the percent of points on

the GTM that are within 1.25mm of the reconstruction. The number of views in each dataset is shown in parentheses in the table header.

utes on templeRing) and Goesele by far the slowest (more

than a day on templeRing).

Our web page [2] contains many other statistics on these

experiments, including run-times, unsigned and signed his-

tograms of distances from reconstruction to ground truth

model (and vice versa), cumulative histograms of distances,

RMS error measures, and alignment offsets between the

models and the GTM. While we lack space to show views of

the reconstructions here, we strongly encourage readers to

look at these renderings on our web pages; we feel that the

accuracy numbers in Table 1 match quite well to the visual

quality of the reconstructions.

6. Conclusions

This paper presented a taxonomy of multi-view stereo

algorithms, new multi-view datasets registered with laser-

scanned surface models, an evaluation methodology that

measures accuracy and completeness, and a quantitative

evaluation of some of the best-performing algorithms.

We are now preparing more challenging datasets with

specularities, no silhouettes, etc., that we hope will help fur-

ther advance the state of the art. We also plan to capture data

at higher resolution and are investigating techniques such

as industrial CT scanning to obtain higher accuracy ground

truth. Finally, we are now opening the evaluation to allow

other researchers to benchmark their algorithms against the

best of breed techniques.
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