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1 Introduction

Stereo correspondence has traditionally been, and continues to be, one of the most heavily inves-
tigated topics in computer vision. However, it is sometimes hard to gauge progress in the field,
as most researchers only report qualitative results on the performance of their algorithms. Fur-
thermore, a survey of stereo methodsislong overdue, with the last exhaustive surveys dating back
about a decade (Barnard and Fischler 1982, Dhond and Aggarwal 1989, Brown 1992). This paper
provides an update on the state of the art in the field, with particular emphasis on stereo methods
that (1) operate on two frames under known camera geometry, and (2) produce a densedisparity
map, i.e., adisparity estimate at each pixel.

Our goals are two-fold:

1. toprovideataxonomy of existing stereo algorithmsthat all owsthe dissection and comparison

of individual agorithm components design decisions, and

2. to provide atest bed for the quantitative evaluation of stereo algorithms. Towards this end,
we are placing sample implementations of correspondence algorithms along with test data
and results on the Web at ww. m ddl ebury. edu/ st er eo.

We emphasi ze calibrated two-frame methods in order to focus our analysis on the essential compo-
nents of stereo correspondence. However, it would be relatively straightforward to generalize our
approach to include many multi-frame methods, in particular multiple-baseline stereo (Okutomi
and Kanade 1993) and its plane-sweep generalizations (Collins 1996, Szeliski and Golland 1999).

The requirement of dense output is motivated by modern applications of stereo such as view
synthesis and image-based rendering, which require disparity estimates in all image regions, even
thosethat are occluded or without texture. Thus, sparseand feature-based stereo methodsareoutside
the scope of this paper, unless they are followed by a surface-fitting step, e.g., using triangulation,
splines, or seed-and-grow methods.

We begin this paper with areview of the goals and scope of this study, which include the need
for a coherent taxonomy and awell though-out evaluation methodology. We also review disparity
spacerepresentations, which play a central rolein this paper.

In Section 3, we present our taxonomy of densetwo-frame correspondencealgorithms. Section4
discusses our current test bed implementation in terms of the major algorithm components, their
interactions, and the parameters controlling their behavior. Section 5 describes our evaluation
methodol ogy, including the methods we used for acquiring calibrated data sets with known ground
truth. We present our experimentsand resultsin Section 6 and concludewith adiscussion of planned
future work.



2 Motivation and scope

Compiling acomplete survey of existing stereo methods, even restricted to dense two-frame meth-
ods, would be a formidable task, as alarge number of new methods are published every year. Itis
also arguable whether such a survey would be of much value to other stereo researchers, besides
being an obvious catch-all reference. Simply enumerating different approachesisunlikely to yield
new insights.

Clearly, a comparative evaluation is necessary to assess the performance of both established
and new algorithms and to gauge the progress of the field. The publication of a similar study by
Barron et al. (1994) has had a dramatic effect on the devel opment of optical flow algorithms. Not
only is the performance of commonly used agorithm better understood by researchers, but novel
publications have to improve in some way on the performance of previously published techniques
(Otte and Nagel 1994). A more recent study by Mitiche and Bouthemy (1996) reviews a large
number of methods for image flow computation and isolates central problems, but does not provide
any experimental results.

In stereo correspondence, two previous comparative papers have focused on the performance of
gparse feature matchers (Hsieh et al. 1992, Bolles et al. 1993). Two recent papers (Szeliski 1999,
Mulligan et al. 2001) have developed new criteria for evaluating the performance of dense stereo
matchers for image-based rendering and tele-presence applications. Our work is a continuation
of the investigations begun by Szeliski and Zabih (1999), which compared the performance of
severa popular algorithms, but did not provide a detailed taxonomy or as complete a coverage of
algorithms. A preliminary version of this paper appears in the CVPR 2001 Workshop on Stereo
and Multi-Baseline Vision (Scharstein et al. 2001).

An evaluation of competing agorithms has limited value if each method is treated as a “black
box” and only final results are compared. More insights can be gained by examining the individual
components of various algorithms. For example, suppose a method based on global energy mini-
mi zation outperforms other methods. |sthereason abetter energy function, or abetter minimization
technique? Could the technique be improved by substituting different matching costs?

In this paper we attempt to answer such questions by providing ataxonomy of stereo algorithms.
Thetaxonomy isdesigned to identify the individual components and design decisionsthat gointo a
published agorithm. We hope that the taxonomy will also serve to structure the field, and to guide
researchers in the development of new and better algorithms.



2.1 Computational theory

Any vision algorithm, explicitly or implicitly, makes assumptions about the physical world and the
image formation process. In other words, it has an underlying computationa theory (Marr and
Poggio 1979, Marr 1982). For example, how does the algorithm measure the evidence that points
in the two images match, i.e, that they are projections of the same scene point? One common
assumption is that of Lambertian surfaces, i.e., surfaces whose appearance does not vary with
viewpoint. Some algorithms also model specific kinds of camera noise, or differences in gain or
bias.

Equally important are assumptionsabout theworld or scene geometry, and the visual appearance
of objects. Starting from the fact that the physical world consists of piecewise-smooth surfaces,
algorithms have built-in smoothness assumptions (often implicit) without which the correspondence
problem would be underconstrained and ill-posed. Our taxonomy of stereo algorithms, presentedin
Section 3, examines both matching assumptions and smoothness assumptionsin order to categorize
existing stereo methods.

Finally, most algorithms make assumptions about camera calibration and epipolar geometry.
This is arguably the best-understood part of stereo vision; we therefore assume in this paper that
we are given a pair of rectified images as input. Recent references on stereo camera calibration
and rectification include (Zhang 1998, Loop and Zhang 1999, Zhang 2000, Hartley and Zisserman
2000, Faugeras and Luong 2001).

2.2 Representation

A critical issue in understanding an algorithm is the representation used internally and output
externally by the algorithm. Most stereo correspondence methods compute a univalued disparity
function d(z, y) with respect to a reference image, which could be one of the input images, or a
“cyclopian” view in between some of the images.

Other approaches, in particular multi-view stereo methods, use multi-valued (Szeliski and Gol-
land 1999), voxel-based (Seitz and Dyer 1999, Kutulakos and Seitz 2000, De Bonet and Viola 1999,
Culbertson et al. 1999, Broadhurst et al. 2001), or layer-based (Wang and Adelson 1993, Baker et
al. 1998) representations. Still other approaches use full 3D models such as deformable models
(Terzopoulos and Fleischer 1988, Terzopoulos and Metaxas 1991), triangulated meshes (Fua and
Leclerc 1995), or level-set methods (Faugeras and Keriven 1998).

Since our goal is to compare a large number of methods within one common framework, we
have chosen to focus on techniques that produce a univalued disparity mapd(x, y) astheir output.
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Central to such methods is the concept of a disparity space€z, y, d). The term disparity was first
introduced in the human vision literature to describe the difference in location of corresponding
features seen by the left and right eyes (Marr 1982). (Horizontal disparity is the most commonly
studied phenomenon, but vertical disparity ispossible if the eyes are verged.)

In computer vision, disparity is often treated as synonymous with inverse depth (Bolles et al.
1987, Okutomi and Kanade 1993). More recently, several researchers have defined disparity as a
three-dimensional projective transformation (collineation or homography) of 3-D space (X, Y, 7).
Theenumeration of all possible matchesin such ageneralized disparity space can be easily achieved
with aplane sweeplgorithm (Collins 1996, Szeliski and Golland 1999), which for every disparity
d projects all images onto a common plane using a perspective projection (homography). (Note
that thisis different from the meaning of plane sweep in computational geometry.)

Ingeneral, wefavor themoregeneralizedinterpretation of disparity, sinceit allowstheadaptation
of the search space to the geometry of the input cameras (Szeliski and Golland 1999, Saito and
Kanade 1999); we plan to use it in future extensions of this work to multiple images. (Note that
plane sweeps can a so be generalized to other sweep surfaces such as cylinders (Shum and Szeliski
1999).)

In this study, however, since all our images are taken on a linear path with the optical axis
perpendicular to the camera displacement, the classical inverse-depth interpretation will suffice
(Okutomi and Kanade 1993). The (z, y) coordinates of the disparity space are taken to be coincident
with the pixel coordinates of areference imagehosen from our input data set. The correspondence
between apixel (x,y) in reference image r and a pixel (z',y’) in matching image m is then given
by

¥ =x+sdxy), y=uv, @)
where s = +1 isasign chosen so that disparities are always positive. Note that since our images
are numbered from leftmost to rightmost, the pixels move from right to left.

Once the disparity space has been specified, we can introduce the concept of a disparity space
imageor DSl (Yang et al. 1993, Bobick and Intille 1999). Ingeneral, aDSl isany image or function
defined over a continuous or discretized version of disparity space (x,y,d). In practice, the DS
usually represents the confidence or log likelihood (i.e., cos) of a particular match implied by
d(x,y).

Thegoal of astereo correspondencea gorithmisthen to produceaunivalued functionin disparity
space d(z, y) that best describesthe shape of the surfacesin the scene. Thiscan beviewed asfinding
a surface embedded in the disparity space image that has some optimality property, such as lowest
cost and best (piecewise) smoothness (Yang et al. 1993). Figure 1 showsexamplesof slicesthrough
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Figure 1. Slices through a typical disparity space image (DSI): (a) original color image; (b) ground truth
depth map; (c—e) threér, y) slices ford = 10, 16, 21; (e) an(x, d) slice fory = 151 (the dashed line in
Figure (b)). Different dark (matching) regions are visible in Figures (c—e), e.g., the bookshelves, table and
cans, and head statue, while three different disparity levels can be seen as horizontal lineginijtsice
(Figure (f)). Note the dark bands in the various DSls, which indicate regions that match at this disparity.
(Smaller dark regions are often the result of textureless regions.)

atypical DSI. More figures of this kind can be found in (Bobick and Intille 1999).

3 A taxonomy of stereo algorithms

In order to support an informed comparison of stereo matching algorithms, we develop in this
section ataxonomy and categorization scheme for such algorithms. We present a set of algorithmic
“building blocks” from which a large set of existing algorithms can easily be constructed. Our
taxonomy is based on the observation that stereo algorithms generaly perform (subsets of) the
following four steps (Scharstein and Szeliski 1998, Scharstein 1999):

1. matching cost computation;

2. cost (support) aggregation;

3. digparity computation / optimization; and
4. disparity refinement.

The actual sequence of steps taken depends on the specific algorithm.
For example, local (window-based) algorithms, where the disparity computation at a given
point depends only on intensity values within a finite window, usually make implicit smoothness
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assumptions by aggregating support. Some of these algorithms can cleanly be broken down into
steps 1, 2, 3. For example, the traditional sum-of-squared-differences (SSD) algorithm can be
described as:

1. the matching cost is the squared difference of intensity values at a given disparity;
2. aggregation isdone by summing matching cost over square windows with constant disparity;

3. disparities are computed by selecting the minimal (winning) aggregated value at each pixel.

Some local algorithms, however, combine steps 1 and 2 and use a matching cost that is based
on a support region, e.g. normalized cross-correlation (Hannah 1974, Bolles et al. 1993) and the
rank transform (Zabih and Woodfill 1994). (This can also be viewed as a preprocessing step; see
Section 3.1.)

On the other hand, global algorithms make explicit smoothness assumptions and then solve an
optimization problem. Such algorithmstypically do not perform an aggregation step, but rather seek
adisparity assignment (step 3) that minimizesaglobal cost function that combines data (step 1) and
smoothness terms. The main distinction between these algorithms is the minimization procedure
used, e.g., smulated annealing (Marroquin et al. 1987, Barnard 1989), probabilistic (mean-field)
diffusion (Scharstein and Szeliski 1998), or graph cuts (Boykov et al. 1999).

In between these two broad classes are certain iterative algorithms that do not explicitly state
a global function that is to be minimized, but whose behavior mimics closely that of iterative
optimization algorithms (Marr and Poggio 1976, Scharstein and Szeliski 1998, Zitnick and Kanade
2000). Hierarchical (coarse-to-fine) algorithms resemble such iterative algorithms, but typically
operate on an image pyramid, where results from coarser levels are used to constrain amore local
search at finer levels (Witkin et al. 1987, Quam 1984, Bergen et al. 1992).

3.1 Matching cost computation

The most common pixel-based matching costs include squared intensity differenc€SD) (Hannah
1974, Anandan 1989, Matthieset al. 1989, Simoncelli et al.1991), and absolute intensity differences
(AD) (Kanade 1994). In the video processing community, these matching criteriaare referred to as
the mean-squared errofM SE) and mean absolute differen¢MAD) measures; the term displaced
frame differences also often used (Tekalp 1995).

More recently, robust measures, including truncated quadratics and contaminated Gaussians
have been proposed (Black and Anandan 1993, Black and Rangarajan 1996, Scharstein and Szeliski
1998). Thesemeasuresare useful becausethey limit theinfluence of mismatchesduring aggregation.
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Other traditional matching costsinclude normalized cross-correlation (Hannah 1974, Ryan et al.
1980, Bolles et al. 1993), which behaves similar to sum-of-squared-differences (SSD), and binary
matching costs (i.e., match / no match) (Marr and Poggio 1976), based on binary features such as
edges (Baker 1980, Grimson 1985, Canny 1986) or the sign of the Laplacian (Nishihara 1984).
Binary matching costs are not commonly used in dense stereo methods, however.

Some costs are insensitive to differences in camera gain or bias, for example gradient-based
measures (Seitz 1989, Scharstein 1994), and non-parametric measures, such as rank and census
transforms (Zabih and Woodfill 1994). Of course, it is also possible to correct for different camera
characteristics by performing apreprocessing step for bias-gain or histogram equalization (Gennert
1988, Cox et al. 1995). Other matching criteriainclude phase and filter-bank responses (Marr and
Poggio 1979, Kass 1988, Jenkin et al. 1991, Jonesand Malik 1992). Finally, Birchfield and Tomasi
have proposed a matching cost that isinsensitive to image sampling (Birchfield and Tomasi 1998b).
Rather than just comparing pixel values shifted by integral amounts (which may missavalid match),
they compare each pixel in the reference image against alinearly interpolated function of the other
image.

The matching cost valuesover all pixelsand all disparitiesformtheinitial disparity spaceimage
Co(x,y,d). While our study is currently restricted to two-frame methods, theinitial DS| can easily
incorporate information from more than two images by simply summing up the cost valuesfor each
matching image m, since the DSI is associated with afixed reference image » (Equation (1)). This
is the idea behind multiple-baseline SSSD and SSAD methods (Okutomi and Kanade 1993, Kang
et al. 1995, Nakamura et al. 1996). As mentioned in Section 2.2, this idea can be generalized to
arbitrary camera configurations using a plane sweep agorithm (Collins 1996, Szeliski and Golland
1999).

3.2 Aggregation of cost

Local and window-based methods aggregate the matching cost by summing or averaging over a
support regionin the DSl C'(x,y, d). A support region can be either two-dimensiona at a fixed
disparity (favoring fronto-parallel surfaces), or three-dimensional in z-y-d space (supporting slanted
surfaces). Two-dimensional evidence aggregation has been implemented using square windows or
Gaussian convolution (traditional), multiple windows anchored at different points, i.e., shiftable
windows (Arnold 1983, Bobick and Intille 1999), windows with adaptive sizes (Okutomi and
Kanade 1992, Kanade and Okutomi 1994, Veksler 2001, Kang et al. 2001), and windows based
on connected components of constant disparity (Boykov et al. 1998). Three-dimensional support



functions that have been proposed include limited disparity difference (Grimson 1985), limited
disparity gradient (Pollard et al. 1985), and Prazdny’s coherence principle (Prazdny 1985).
Aggregation with afixed support region can be performed using 2D or 3D convolution,

C(x,y, d) = w(:zc,y, d) * Co(:E,y, d)a (2

or, in the case of rectangular windows, using efficient (moving average) box-filters. Shiftable
windows can also be implemented efficiently using a separable sliding min-filter (Section 4.2). A
different method of aggregation isiterative diffusioni.e., an aggregation (or averaging) operation
that isimplemented by repeatedly adding to each pixel’s cost the weighted values of its neighboring
pixels costs (Szeliski and Hinton 1985, Shah 1993, Scharstein and Szeliski 1998).

3.3 Disparity computation and optimization

Local methods. Inloca methods, the emphasisis on the matching cost computation and on the
cost aggregation steps. Computing the final disparitiesistrivia: simply choose at each pixel the
disparity associated with the minimum cost value. Thus, these methods perform alocal “winner-
take-all” (WTA) optimization at each pixel. A limitation of this approach (and many other corre-
spondence algorithms) is that uniqueness of matchesis only enforced for one image (the reference
image, while pointsin the other image might get matched to multiple points.

Global optimization. In contrast, global methods perform almost all of their work during the
disparity computation phase, and often skip the aggregation step. Many global methods are formu-
lated in an energy-minimization framework (Terzopoulos 1986). The objectiveisto find adisparity
function d that minimizes a global energy,

E(d) = Egata(d) + AEsmoothd)- ©)

The dataterm, Eq5¢5(d), measures how well the disparity function d agrees with the input image
pair. Using the disparity space formulation,

Edata(d) = D_ C(z,y,d(z,y)), 4)
(z.y)
where C isthe (initial or aggregated) matching cost DSI.
The smoothnessterm Egmpoott @) €ncodesthe smoothness assumptions made by the algorithm.
To make the optimization computationally tractable, the smoothness term is often restricted to only



measuring the differences between neighboring pixels’ disparities,

Esmoothd) = >_ pld(z,y) —d(z+1,y)) +
o, y) — d(z, y+1)), 5)

where p is some monotonically increasing function of disparity difference. (An alternative to
smoothness functionals is to use a lower-dimensional representation such as splines (Szeliski and
Coughlan 1997).)

In regularization-based vision (Poggio et al. 1985), p is a quadratic function, which makes
d smooth everywhere, and may lead to poor results at object boundaries. Energy functions that
do not have this problem are called discontinuity-preservingand are based on robust p functions
(Terzopoulos 1986, Black and Rangarajan 1996, Scharstein and Szeliski 1998). Geman and Ge-
man’s seminal paper (Geman and Geman 1984) gave a Bayesian interpretation of these kinds of
energy functions (Szeliski 1989) and proposed a discontinuity-preserving energy function based on
Markov Random Fields (MRFs) and additional line processesBlack and Rangarajan (1996) show
how line processes can be often be subsumed by a robust regularization framework.

Thetermsin Egyqothcan aso be made to depend on the intensity differences, e.g.,

pald(z,y) — d(z+1,y)) - pr(|[1(z,y) — I(z+1y)[]), (6)

where p; issomemonotonically decreasindunction of intensity differencesthat |owers smoothness
costs at high intensity gradients. Thisidea (Gamble and Poggio 1987, Fua 1993, Bobick and Intille
1999, Boykov et al. 1999) encourages disparity discontinuities to coincide with intensity/color
edges, and appearsto account for some of the good performance of global optimization approaches.

Oncetheglobal energy hasbeen defined, avariety of agorithmscanbeusedtofinda(local) min-
imum. Traditional approaches associated with regularization and Markov Random Fields include
continuation (Blake and Zisserman 1987), simulated annealing (Geman and Geman 1984, Marro-
quin et al. 1987, Barnard 1989), highest confidence first (Chou and Brown 1990), and mean-field
annealing (Geiger and Girosi 1991).

More recently, max-flowand graph-cutmethods have been proposed to solve a specia class
of global optimization problems (Roy and Cox 1998, Ishikawa and Geiger 1998, Boykov et al.
1999, Veksler 1999, Kolmogorov and Zabih 2001). Such methods are more efficient than smulated
annealing, and have produced good results.

Dynamic programming. A different class of global optimization algorithms are those based on
dynamic programmingWhile the 2D-optimization of Equation (3) can be shown to be NP-hard
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Figure2: Stereo matching using dynamic programming. For each pair of corresponding scanlines, a minimiz-
ing path through the matrix of all pairwise matching costs is selected. Lowercase lettkysymbolize the
intensities along each scanline. Uppercase letters represent the selected path through the matrix. Matches
are indicated byM, while partially occluded points (which have a fixed cost) are indicatedl layd R,
corresponding to points only visible in the left and right image, respectively. Usually, only a limited disparity
range is considered, which is 0—4 in the figure (indicated by the non-shaded squares). Note that this diagram
shows an “unskewedi-d slice through the DSI.

for common classes of smoothness functions (Veksler 1999), dynamic programming can find the
globa minimum for independent scanlines in polynomial time. Dynamic programming was first
used for stereo vision in sparse, edge-based methods (Baker and Binford 1981, Ohta and Kanade
1985). More recent approaches have focused on the dense (intensity-based) scanline optimization
problem (Belhumeur and Mumford 1992, Belhumeur 1996, Geiger et al. 1992, Cox et al. 1996,
Bobick and Intille 1999, Birchfield and Tomasi 19984). These approaches work by computing the
minimum-cost path through the matrix of all pairwise matching costs between two corresponding
scanlines. Partial occlusion is handled explicitly by assigning a group of pixelsin oneimageto a
single pixel in the other image. Figure 2 shows one such example.

Problems with dynamic programming stereo include the selection of the right cost for occluded
pixels and the difficulty of enforcing inter-scanline consistency, although several methods propose
ways of addressing the latter (Ohta and Kanade 1985, Belhumeur 1996, Cox et al. 1996, Bobick
and Intille 1999, Birchfield and Tomasi 1998a). Anocther problem isthat the dynamic programming
approach requires enforcing the monotonicityor ordering constrain{Yuilleand Poggio 1984). This
constraint requires that the relative ordering of pixels on a scanline remain the same between the
two views, which may not be the case in scenes containing narrow foreground objects.
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Cooperative algorithms.  Finally, cooperativealgorithms, inspired by computational models of
human stereo vision, were among the earliest methods proposed for disparity computation (Dev
1974, Marr and Poggio 1976, Marroquin 1983, Szeliski and Hinton 1985). Such algorithms iter-
atively perform local computations, but use nonlinear operations that result in an overall behavior
similar to global optimization algorithms. In fact, for some of these algorithms, it is possible to
explicitly stateaglobal function that isbeing minimized (Scharstein and Szeliski 1998). Recently, a
promising variant of Marr and Poggio’s original cooperative algorithm has been devel oped (Zitnick
and Kanade 2000).

3.4 Refinement of disparities

Most stereo correspondence agorithms compute a set of disparity estimates in some discretized
space, e.g., for integer disparities (exceptions include continuous optimization techniques such as
optic flow (Bergen et al. 1992) or splines (Szeliski and Coughlan 1997)). For applications such as
robot navigation or people tracking, these may be perfectly adequate. However for image-based
rendering, such quantized maps lead to very unappealing view synthesis results (the scene appears
to be made up of many thin shearing layers). To remedy this situation, many algorithms apply
a sub-pixel refinement stage after the initial discrete correspondence stage. (An aternative is to
simply start with more discrete disparity levels.)

Sub-pixel disparity estimates can be computed in avariety of ways, including iterative gradient
descent and fitting a curve to the matching costs at discrete disparity levels (Ryan et al. 1980,
Lucas and Kanade 1981, Tian and Huhns 1986, Matthies et al. 1989, Kanade and Okutomi 1994).
This provides an easy way to increase the resolution of a stereo algorithm with little additional
computation. However, to work well, the intensities being matched must vary smoothly, and the
regions over which these estimates are computed must be on the same (correct) surface.

Recently, some guestions have been rai sed about the advisability of fitting correlation curvesto
integer-sampled matching costs (Shimizu and Okutomi 2001). This situation may even be worse
when sampling-insensitive dissimilarity measures are used (Birchfield and Tomasi 1998b). We
investigate thisissue in Section 6.4 below.

Besides sub-pixel computations, there are of course other ways of post-processing the computed
disparities. Occluded areas can be detected using cross-checking (comparing left-to-right and right-
to-left disparity maps) (Cochran and Medioni 1992, Fua 1993). A median filter can be applied to
“clean up” spurious mismatches, and holes due to occlusion can be filled by surface fitting or
by distributing neighboring disparity estimates (Birchfield and Tomasi 1998a, Scharstein 1999).
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In our implementation we are not performing such clean-up steps since we want to measure the
performance of the raw algorithm components.

3.5 Other methods

Not all dense two-frame stereo correspondence algorithms can be described in terms of our basic
taxonomy and representations. Here we briefly mention some additional algorithms and represen-
tations that are not covered by our framework.

Thea gorithmsdescribed in this paper first enumerate all possible matchesat al possible dispar-
ities, then select the best set of matchesin someway. Thisisauseful approach when alarge amount
of ambiguity may exist in the computed disparities. An alternative approach is to use methods
inspired by classic (infinitessmal) optic flow computation. Here, images are successively warped
and motion estimates incrementally updated until a satisfactory registration is achieved. These
techniques are most often implemented within a coarse-to-fine hierarchical refinement framework
(Quam 1984, Bergen et al. 1992, Barron et al. 1994, Szeliski and Coughlan 1997).

A univalued representation of the disparity map is also not essential. Multi-valued represen-
tations, which can represent several depth values along each line of sight, have been extensively
studied recently, especially for largemulti-view dataset. Many of thesetechniquesuseavoxel-based
representation to encode the reconstructed colors and spatial occupancies or opacities (Szeliski and
Golland 1999, Seitz and Dyer 1999, Kutulakos and Seitz 2000, De Bonet and Viola 1999, Culbert-
son et al. 1999, Broadhurst et al. 2001). Another way to represent a scene with more complexity
isto use multiple layers, each of which can be represented by a plane plus residual parallax (Baker
et al. 1998, Birchfield and Tomasi 1999, Tao et al. 2001). Finally, deformable surfaces of various
kinds have also been used to perform 3D shape reconstruction from multiple images (Terzopoul os
and Fleischer 1988, Terzopoulos and Metaxas 1991, Fua and Leclerc 1995, Faugeras and Keriven
1998).

3.6 Summary of methods

Table 1 givesasummary of some representative stereo matching algorithmsand their corresponding
taxonomy, i.e., the matching cost, aggregation, and optimization techniques used by each. The
methods are grouped to contrast different matching costs (top), aggregation methods (middle),
and optimization techniques (third section), while the last section lists some papers outside the
framework. As can be seen from this table, quite a large subset of the possible algorithm design
space has been explored over the years, albeit not very systematically.
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| Method Matching cost | Aggregation | Optimization
SSD (traditional) squared difference | sguare window WTA
Hannah (1974) cross-correlation (square window) WTA
Nishihara (1984) binarized filters square window WTA
Kass (1988) filter banks -none- WTA
Fleet et al. (1991) phase -none- phase-matching
Jones and Malik (1992) filter banks -none- WTA
Kanade (1994) absolute difference | square window WTA
Scharstein (1994) gradient-based Gaussian WTA
Zabih and Woodfill (1994) rank transform (square window) WTA
Cox et al. (1995) histogram eq. -none- DP
Frohlinghaus and Buhmann (1996) | wavelet phase -none- phase-matching
Birchfield and Tomasi (1998b) shifted abs. diff -none- DP
Marr and Poggio (1976) binary images iterative aggregation WTA
Prazdny (1985) binary images 3D aggregation WTA
Szeliski and Hinton (1985) binary images iterative 3D aggregation | WTA
Okutomi and Kanade (1992) squared difference | adaptive window WTA
Yang et al. (1993) cross-correlation non-linear filtering hier. WTA
Shah (1993) squared difference | non-linear diffusion regularization
Boykov et al. (1998) thresh. abs. diff. connected-component WTA
Scharstein and Szeliski (1998) robust sg. diff. iterative 3D aggregation | mean-field
Zitnick and Kanade (2000) squared difference | iterative aggregation WTA
Veksler (2001) abs. diff - avg. adaptive window WTA
Quam (1984) cross-correlation -none- hier. warp
Barnard (1989) sgquared difference | -none- SA
Geiger et al. (1992) squared difference | shiftable window DP
Belhumeur (1996) squared difference | -none- DP
Cox et al. (1996) squared difference | -none- DP
Ishikawa and Geiger (1998) squared difference | -none- graph cut
Roy and Cox (1998) squared difference | -none- graph cut
Bobick and Intille (1999) absolute difference | shiftable window DP
Boykov et al. (1999) squared difference | -none- graph cut
Kolmogorov and Zabih (2001) squared difference | -none- graph cut
Birchfield and Tomasi (1999) shifted abs. diff. -none- GC + planes
Tao et al. (2001) squared difference | (color segmentation) WTA + regions

Table 1: Summary taxonomy of several dense two-frame stereo correspondence methods. The methods
are grouped to contrast different matching costs (top), aggregation methods (middle), and optimization
techniques (third section). The last section lists some papers outside our framework. Key to abbreviations:
hier. — hierarchical (coarse-to-fine), WTA — winner-take-all, DP — dynamic programming, SA — simulated
annealing, GC — graph cut.
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4 Implementation

We have devel oped a stand-alone, portable C++ implementation of several stereo algorithms. The
implementation is closely tied to the taxonomy presented in Section 3, and currently includes
window-based agorithms, diffusion algorithms, as well as global optimization methods using dy-
namic programming, simulated annealing, and graph cuts. While many published methodsinclude
special features and post-processing steps to improve the results, we have chosen to implement the
basic versions of such agorithms, in order to assess their respective merits most directly.

The implementation is modular, and can easily be extended to include other algorithms or their
components. We plan to add several other algorithms in the near future, and we hope that other
authors will contribute their methods to our framework as well. Once a new algorithm has been
integrated, it can easily be compared with other algorithms using our evaluation module, which
can measure disparity error and reprojection error (Section 5.1). The implementation contains a
sophisticated mechanism for specifying parameter values that supports recursive script files for
exhaustive performance comparisons on multiple data sets.

We provide a high-level description of our code using the same division into four parts asin
our taxonomy. Within our code, these four sections are (optionally) executed in sequence, and the
performance/quality evaluator is then invoked. A list of the most important algorithm parameters
isgivenin Table 2.

4.1 Matching cost computation

The simpl est possible matching cost isthe squared or absolute differencein color / intensity between
corresponding pixels(mat ch_f n). To approximate the effect of arobust matching score (Black and
Rangarajan 1996, Scharstein and Szeliski 1998), we truncate the matching score to amaximal value
mat ch_max. When color images are being compared, we sum the squared or absolute intensity
difference in each channel before applying the clipping. If fractional disparity evaluation is being
performed (di sp_st ep < 1), each scanlineisfirstinterpolated up using either alinear or cubicin-
terpolationfilter (mat ch_i nt er p) (Matthieset al. 1989). We also optionally apply Birchfield and
Tomasi’s sampling insensitive interval-based matching criterion (mat ch_i nt er val ) (Birchfield
and Tomasi 1998b), i.e., we take the minimum of the pixel matching score and the score at j:%-step
displacements, or O if there isa sign changein either interval. We apply this criterion separately to
each color channel, which is not physically plausible (the sub-pixel shift must be consistent across
channels), but is easier to implement.
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Name Typical values Description

disp_min 0 smallest disparity

disp_max 15 largest disparity

disp_step 0.5 disparity step size

match_fn SD, AD matching function

match_interp Linear, Cubic interpolation function

match_max 20 maximum difference for truncated SAD/SSD
match_interval fase 1/2 disparity match (Birchfield and Tomasi 1998b)
aggr_fn Box, Binomial aggregation function

aggr_window _size 9 size of window

aggr_minfilter 9 spatial min-filter (shiftable window)

agor_iter 1 number of aggregation iterations

diff_lambda 0.15 parameter \ for regular and membrane diffusion
diff_beta 05 parameter 5 for membrane diffusion
diff_scale_cost 0.01 scale of cost values (needed for Bayesian diffusion)
diff_mu 0.5 parameter 1, for Bayesian diffusion

diff_sigmaP 0.4 parameter o p for robust prior of Bayesian diffusion
diff_epsP 0.01 parameter ¢p for robust prior of Bayesian diffusion
opt_fn WTA, DP, SA, GC | optimization function

opt_smoothness 1.0 weight of smoothnessterm ()

opt_grad_thresh 8.0 threshold for magnitude of intensity gradient
opt_grad_penalty 2.0 smoothness penalty factor if gradient is too small
opt_occlusion_cost 20 cost for occluded pixelsin DP agorithm

opt_sa.var Gibbs, Metropolis | simulated annealing update rule
opt_sa start T 10.0 starting temperature

opt_saend_T 0.01 ending temperature

opt_sa_schedule Linear annealing schedule

refine_subpix true fit sub-pixel valueto local correlation
eval _bad_thresh 1.0 acceptable disparity error

eval textureless width 3 box filter width applied to |V . ]|?
eval _textureless threshold | 4.0 threshold applied to filtered ||V, ||
eval _disp_gap 2.0 disparity jump threshold

eval _discont_width 9 width of discontinuity region

eval _partial _shuffle 0.2 analysisinterval for prediction error

Table 2: The most important stereo algorithm parameters of our implementation.
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Figure 3: Shiftable window. The effect of trying 8llx 3 shifted windows around the black pixel is the same
as taking the minimum matching score acrossafitered (non-shifted) windows in the same neighborhood.
(Only 3 of the neighboring shifted windows are shown here for clarity.)

4.2 Aggregation

The aggregation section of our test bed implements some commonly used aggregation methods
(aggr _f n):

e Box filter: use a separable moving average filter (add one right/bottom value, subtract one
left/top). This implementation trick makes such window-based aggregation insensitive to
window size in terms of computation time, and accounts for the fast performance seen in
real-time matchers (Kanade et al. 1996, Kimura et al. 1999).

e Binomial filter: use a separable FIR (finite impulse response) filter. We use the coefficients
Yhe{1,4,6,4, 1}, the same ones used in Burt and Adelson’s (1983) Laplacian pyramid.

Other convolution kernels could a so be added | ater, as could recursive (bi-directiona) 11 R filtering,
whichisavery efficient way to obtain large window sizes (Deriche 1990). The width of the box or
convolution kernel is controlled by aggr -wi ndow_si ze.

To simulate the effect of shiftable windows (Arnold 1983, Bobick and Intille 1999, Tao et al.
2001), we can follow this aggregation step with a separable square min-filter. The width of this
filter iscontrolled by the parameter aggr _m nf i | t er . The cascaded effect of abox-filter and an
equal-sized min-filter is the same as evaluating a complete set of shifted windows, since the value
of ashifted window isthe same as that of a centered window at some neighboring pixel (Figure 3).
This step adds very little additional computation, since a moving 1-D min-filter can be computed
efficiently by only recomputing the min when a minimum value leaves the window. The value of
aggr _m nfil t er canbelessthan that of aggr Wi ndow_si ze, which simulates the effect of
a partially shifted window. (The converse doesn’t make much sense, since the window then no
longer includes the reference pixel.)
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We have also implemented all of the diffusion methods developed in (Scharstein and Szeliski
1998) except for local stopping, i.e., regular diffusion, the membrane model, and Bayesian (mean-
field) diffusion. While this last algorithm can also be considered an optimization method, we
includeit inthe aggregation modulesinceit resemblesother iterative aggregation algorithmsclosely.
The maximum number of aggregation iterations is controlled by aggr _i t er . Other parameters
controlling the diffusion algorithms are listed in Table 2.

4.3 Optimization

Once we have computed the (optionally aggregated) costs, we need to determine which discrete set
of disparities best represents the scene surface. The agorithm used to determine thisis controlled
by opt _f n, and can be one of:

e winner-take-all (WTA);

e dynamic programming (DP);
e scanline optimization (SO);
e simulated annealing (SA);

e graph cut (GC).

The winner-take-all method simply picks the lowest (aggregated) matching cost as the selected
disparity at each pixel. The other methods require (in addition to the matching cost) the definition
of a smoothness cost. Prior to invoking one of the optimization algorithms, we set up tables
containing the values of p, in Equation (6) and precompute the spatially varying weights p;(z, y).
Thesetables are controlled by the parametersopt _snoot hness, which controlsthe overall scale
of the smoothness term (i.e., A in Equation (3)), and the parameters opt _gr ad_t hr esh and
opt _gr ad_penal t y, which control the gradient-dependent smoothness costs. We currently use
the smoothness terms defined by Veksler (1999):

opt _grad_penalty if Al <opt_grad_thresh

Al) = 7
pr(AD) { 1 if AI >opt_grad_thresh )

Thus, the smoothness cost is multiplied by opt _gr ad_penal ty for low intensity gradient to
encourage disparity jumps to coincide with intensity edges. All of the optimization algorithms
minimizethe sameobjectivefunction, enabling amore meani ngful comparison of their performance.
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Our first global optimization technique, DP, is a dynamic programming method similar to the
one proposed by Bobick and Intille (1999). The algorithm works by computing the minimum-cost
path through each z-d sliceinthe DSI (see Figure 2). Every point in this dlice can bein one of three
states: M (match), L (Ieft-visible only), or R (right-visible only). Assuming the ordering constraint
is being enforced, a valid path can take at most three directions at a point, each associated with a
deterministic state change. Using dynamic programming, the minimum cost of all paths to a point
can be accumulated efficiently. Pointsin state M are simply charged the matching cost at this point
inthe DSI. Pointsin states L and R are charged afixed occlusion cosfopt _occl usi on_cost).

The DP stereo algorithm isfairly sensitive to this parameter (see Section 6). Bobick and Intille
address this problem by precomputing ground control point§GCPs) that are then used to constrain
the paths through the DSI slice. GCPs are high-confidence matches that are computed using SAD
and shiftable windows. At this point we are not using GCPs in our implementation since we are
interested in comparing the basic version of different algorithms. However, GCPs are potentially
useful in other algorithms as well, and we plan to add them to our implementation in the future.

Our second global optimization technique, scanline optimizatior(SO), is a smple (and, to
our knowledge, novel) approach designed to assess different smoothness terms. Like the previous
method, it operates on individual z-d DSI slices and optimizes one scanline at atime. However,
the method is asymmetric and does not utilize visibility or ordering constraints. Instead, ad value
is assigned at each point = such that the overall cost along the scanline is minimized. (Note that
without a smoothness term, thiswould be equivalent to awinner-take-all optimization.) The global
minimum can again be computed using dynamic programming; however, unlike in traditional
(symmetric) DP agorithms, the ordering constraint does not need to be enforced, and no occlusion
cost parameter is necessary. Thus, the SO algorithm solves the same optimization problem as the
graph-cut algorithm described below, except that vertical smoothness terms are ignored.

Both DP and SO algorithms suffer from the well-known difficulty of enforcing inter-scanline
consistency, resulting in horizontal “streaks’ in the computed disparity map. Bobick and Intille's
approach to this problem is to detect edges in the DSl dlice, and to lower the occlusion cost for
paths along those edges. This has the effect of aligning depth discontinuities with intensity edges.
In our implementation, we achieve the same goal by using an intensity-dependent smoothness cost
(Equation (6)), which, in our DP algorithm, is charged at al L-M and R-M state transitions.

Our implementation of simulated annealing supports both the Metropolis variant (where down-
hill steps are always taken, and uphill steps are sometimes taken), and the Gibbs Sampler, which
chooses among several possible states according to the full marginal distribution (Geman and Ge-
man 1984). In the latter case, we can either select one new state (disparity) to flip to at random, or
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evaluate all possible disparities at agiven pixel. Our current annealing scheduleis linear, although
we plan to add alogarithmic annealing schedule in the future.

Our final global optimization method, GC, implementsthe «-3 swap move algorithm described
in (Boykov et al. 1999, Veksler 1999). (We plan to implement the a-expansion in the future.) We
randomize the -3 pairings at each (inner) iteration, and stop the algorithm when no further (local)
energy improvements are possible.

4.4 Refinement

The sub-pixel refinement of disparities is controlled by the boolean variable r ef i ne_subpi x.
When this is enabled, the three aggregated matching cost values around the winning disparity are
examined to compute the sub-pixel disparity estimate. (Notethat if theinitial DSI wasformed with
fractional disparity steps, these are really sub-sub-pixel values. A more appropriate name might be
floating point disparitywalues.) A parabolaisfit to these three values (the three ending values are
used if the winning disparity is either di sp_m n or di sp_max). If the curvature is positive and
the minimum of the parabolais within a half-step of the winning disparity (and within the search
limits), thisvalue is used as the final disparity estimate.

In future work, we would like to investigate whether initial or aggregated matching scores
should be used, or whether some other approach, such as L ucas-Kanade, might yield higher-quality
estimates (Tian and Huhns 1986).

5 Evaluation methodology

In this section, we describe the quality metrics we use for evaluating the performance of stereo
correspondence algorithms, and the techniques we used for acquiring our image data sets and
ground truth estimates.

5.1 Quality metrics

To evaluate the performance of a stereo algorithm or the effects of varying some of its parameters,
we need a quantitative way to estimate the quality of the computed correspondences. Two general
approaches to this are to compute error statistics with respect to some ground truth data (Barron et
al. 1994) and to evaluate the synthetic images obtained by warping the reference or unseen images
by the computed disparity map (Szeliski 1999).
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Figure4: Segmented region maps: (a) originalimage, (b) true depth map, (c) textureless regions, (d) occluded

regions (black), and depth discontinuities (gray).

In the current version of our software, we compute the following two quality measures based
on known ground truth data:

1. RMS (root-mean-squared) error (measured in disparity units) between the computed depth
map d¢(z,y) and the ground truth map dr(x,y), i.e.,

N[

R = (]1/ Z ‘do(l‘,y) - dT(xay>’2) ) (8)

(z,y)

where N isthe total number of pixels.

2. Percentage of bad matching pixels,

1

B = N Z (|dC’($7y) - dT(xvy” > 5d)7 (9)

(z,y)

where ¢, (eval _bad_t hr esh) isadisparity error tolerance. In our current set of experi-
ments, we use j; = 1.0, sincethis coincideswith some previously published studies (Szeliski
and Zabih 1999, Zitnick and Kanade 2000, Kolmogorov and Zabih 2001).

In addition to computing these statistics over the whole image, we a so focus on three different
kinds of regions. These regions are computed by pre-processing the reference image and ground
truth disparity map to yield the following three binary segmentations (Figure 4):

o texturelessregions7: regionswhere the squared horizontal intensity gradient averaged over
asquarewindow of agivensize(eval _t ext ur el ess_w dt h) isbelow agiven threshold
(eval _texturel ess_t hreshol d);

e occluded regions O: regionsthat are occluded in the matching image, i.e., where the forward-
mapped disparity lands at alocation with alarger (nearer) disparity; and
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Name ‘ Symbol ‘ Description ‘

rms_error_all R RMS disparity error
rms_error_nonocc R5 " (no occlusions)
rms_error_occ Ro " (at occlusions)
rms_error_textured Ry " (textured)

rms error textureless | R= " (textureless)
rms_error_discont Rp " (near discontinuities)
bad_pixels_all B bad pixel percentage
bad_pixels_nonocc Bs " (no occlusions)
bad_pixels_occ Bo " (at occlusions)
bad_pixels_textured By " (textured)
bad_pixels_textureless | Bz " (textureless)
bad_pixels_discont Bp " (near discontinuities)
predict_err_near P view extr. error (near)
predict_err_middle Py, view extr. error (mid)
predict_err_match P view extr. error (match)
predict_err_far Py view extr. error (far)

Table 3: Error (quality) statistics computed by our evaluator. See the notes in the text regarding the treatment
of occluded regions.

e depth discontinuity regions D: pixels whose neighboring disparities differ by more than
eval _di sp_gap, dilated by awindow of width eval _di scont _wi dt h.

These regions were selected to support the analysis of matching results in typical problem areas.
The statistics described above are computed for each of the three regions and their complements,

eg.,
Br= 3 (ldey) - dio.y)] < ),
(xy)eT
andsoonfor Ry, B+, ..., Rp.

Table 3 gives acomplete list of the statistics we collect. Note that for the textureless, textured,
and depth discontinuity statistics, we exclude pixelsthat arein occluded regions, on the assumption
that algorithms generally do not produce meaningful results in such occluded regions.

The second major approach to gauging the quality of reconstruction algorithms is to use the
color images and disparity maps to predict the appearance of other views (Szeliski 1999). Here

again there are two major flavors possible:
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Figure 5: Series of forward-warped reference images. The reference image is the middle one, the matching

image is the second from the right. Pixels that are invisible (gaps) are shown in light magenta.

Figure 6. Series of inverse-warped original images. The reference image is the middle one, the matching
image is the second from the right. Pixels that are invisible are shown in light magenta. Viewing this sequence
(available on our Web site) as an animation loop is a good way to check for correct rectification and other

misalignments.

1. Forward warp the reference image by the computed disparity map to a new unseen view (or
to the matching view), and compare it against this new image (Figure 5) to obtain aforward
prediction error.

2. Inverse warp anew view by the computed disparity map to generate a stabilizedimage, and
compare it against the reference image (Figure 6) to obtain an inverse prediction errar

There are pros and consto either approach.

Theforward warping algorithm hasto deal with tearing problems: if asingle-pixel splat isused,
gaps can arise even between adjacent pixels with similar disparities. One possible solution would
be to use atwo-pass renderer (Shade et al. 1998). Instead, we render each pair of neighboring pixel
asan interpolated color linein the destination image (i.e., we use Gouraud shading If neighboring
pixels differ by morethat adisparity of eval _di sp_gap, the segment isreplaced by single pixel
spats at both ends, which resultsin avisible tear (light magentaregionsin Figure 5).

For inverse warping, the problem of gaps does not occur. Instead, we get “ghosted” regions
when pixels in the reference image are not actually visible in the source We eliminate such pixels
by checking for visibility (occlusions) first, and then drawing these pixels in a special color (light
magenta in Figure 6). We have found that looking at the inverse warped sequence, based on
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the ground-truth disparities, is a very good way to determine if the original sequence is properly
calibrated and rectified.

In computing the prediction error, we need to decide how to treat gaps. Currently, we ignore
pixelsflagged as gapsin computing the statistics, and report the percentage of such missing pixels.
We can al so optionally compensatefor small misregistrations (Szeliski 1999). Todothis, weconvert
each pixel inthe original and predicted imageto aninterval, by blending the pixel’s value with some
fraction eval _parti al _shuf f| e of its neighboring pixels min and max values. Thisideais
a generalization of the sampling-insensitive dissimilarity measure (Birchfield and Tomasi 1998b)
and the shuffle transformation of (Kutulakos 2000). The reported difference is then the (signed)
distance between the two computed intervals. (A more systematic investigation of these issues
should be performed in the future.)

5.2 Test data

To quantitatively evaluate our correspondence algorithms, we require data sets that either have a
ground truth disparity map, or a set of additional viewsthat can be used for prediction error test (or
preferably both).

We have begun to collect such a database of images, building upon the methodol ogy introduced
in (Szeliski and Zabih 1999). Each image sequence consists of 9 images, taken at regular intervals
with a camera mounted on a horizontal translation stage, with the camera pointing perpendicularly
to the direction of motion. We use a digital high-resolution camera (Canon G1) set in manual
exposure and focus mode, and rectify theimages using tracked feature points. We then downsample
the original 2048 x 1536 imagesto 512 x 384 using a high-quality 8-tap filter, and finally crop the
images to normalize the motion of background objectsto afew pixels per frame.

All of the sequenceswe have captured are made up of piecewise planar objects (typically posters
or paintings, somewith cut-out edges). Before downsampling theimages, we hand-label eachimage
into its piecewise planar components (Figure 7). We then use adirect alignment technique on each
planar region (Baker et al. 1998) to estimate the affine motion of each patch. The horizontal
component of these motionsis then used to compute the ground truth disparity. In future work we
plan to extend our acquisition methodol ogy to handle scenes with quadric surfaces (e.g., cylinders,
cones, and spheres).

Of the six image sequences we acquired, all of which are available on our web page, we have
selected two (“ Sawtooth” and “Venus”) for the experimental study in this paper. We also use the
University of Tsukuba “head and lamp” data set (Nakamura et al. 1996), a5 x 5 array of images
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Sawtooth

Tsukuba

Figure 7. Stereo images with ground truth used in this study. The Sawtooth and Venus images are two of our
new 9-frame stereo sequences of planar objects. The figure shows the reference image, the planar region
labeling, and the ground-truth disparities. We also use the familiar Tsukuba “head and lamp” data set, and

the monochromatic Map image pair.
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together with hand-labeled integer ground-truth disparities for the center image. Finally, we use
the monochromatic “Map” data set first introduced by Szeliski and Zabih (1999), which was taken
with a Point Grey Research trinocular stereo camera, and whose ground-truth disparity map was
computed using the piecewise planar technique described above. Figure 7 shows the reference
image and the ground-truth disparities for each of these four sequences.

In the future, we hope to add further data sets to our collection of “standard” test images, in
particular other sequences from the University of Tsukuba, and the GRASP Laboratory’s “Buffalo
Bill” data set with registered laser range finder ground (Mulligan et al. 2001). There may also
be suitable images among the CMU Computer Vision Home Page data sets. Unfortunately, we
cannot use data sets for which only a sparse set of feature matches has been computed (Bolles et al.
1993, Hsieh et al. 1992). Synthetic images have been used extensively for qualitative evaluations
of stereo methods, but they are often restricted to simple geometries and textures (e.g., random-dot
stereograms). Furthermore, issues arrising with real cameras are seldomly modeled, e.g., aliasing,
dlight misalignment, noise, lens aberrations, and fluctuations in gain and bias. Consequently,
results on synthetic images usually do not extrapolate to images taken with real cameras. We
have experimented with the University of Bonn’'s synthetic “ Corridor” data set (Frohlinghaus and
Buhmann 1996), but have found that the clean, noise-free images are unrealistically easy to solve,
while the noise-contaminated versions are too difficult due to the complete lack of texture in much
of the scene. Thereis aclear need for synthetic, photo-realistic test imagery that properly models
real-world imperfections, while providing accurate ground truth.

6 Experimentsand results

Our experiments are designed to evaluate the individual building blocks of stereo algorithms. In
this section, we report a subset of our results. We start by examining the four main algorithm com-
ponents identified in Section 3 (matching cost, aggregation, optimization, and sub-pixel fitting),
and then perform an overall comparison of different algorithms. We use the Map, Tsukuba, Saw-
tooth, and Venus data sets throughout this section, and report results on subsets of these images.
The complete set of results (all experiments run on all data sets) is available on our web site at
www. m ddl ebury. edu/ st er eo.

Using the eval uation measures presented in Section 5.1, we focus on common problem areasfor
stereo algorithms. Of the 12 ground-truth statistics we collect (Table 3), we have chosen three as
the most important subset. First, as a measure of overall performance, we use B, the percentage
of bad pixelsin non-occluded areas. We exclude the occluded regions since none of the algorithms

25



in this study explicitly model occlusions (with the exception of DP), and all perform quite poorly
in these regions. The other two important measures are B+ and Bp, the percentage of bad pixels
in textureless areas, and in areas near depth discontinuities. These measures provide important
information about the performance of algorithms in two critical problem areas. The parameter
names for these three measuresare bad _pi xel s_nonocc, bad_pi xel s_t ext urel ess, and
bad_pi xel s_di scont , and they appear in most of the plots below. We prefer the percentage of
bad pixels over RM S disparity errors since they give a good indication of the overall performance
of an algorithm. For example, an algorithmis performing reasonably well if By < 10%. TheRMS
error figure, on the other hand, is contaminated by the (potentially large) disparity errors in those
poorly matched 10% of theimage. RM S errors become important once the percentage of bad pixels
drops to afew percent and the quality of a sub-pixel fit needs to be evaluated (see Section 6.4).

Notethat the algorithms alwaystake exactly two images asinput, even when more are available.
For example, with our 9-frame sequences, we use the third and seventh frame as input pair. (The
other frames are used to measure the prediction error.)

6.1 Matching cost

We start by comparing different matching costs, including absolute differences (AD), squared
differences (SD), truncated versions of both, and Birchfield and Tomasi’s (1998b) measure (BT).

An interesting issue when trying to assess a single algorithm component is how to fix the
parametersthat control the other components. We usually choose good val ues based on experiments
that assess the other algorithm components. (The inherent boot-strapping problem disappears after
afew rounds of experiments.) Since the best settings for many parameters vary depending on the
input image pair, we often have to compromise and select a value that works reasonably well for
several images.

Experiment 1. Inthisexperiment we compare the matching costsAD, SD, AD+BT, and SD+BT
using alocal algorithm. Weaggregatewith a9 x 9 window, followed by winner-take-all optimization
(i.e., we use the standard SAD and SSD algorithms). We do not compute sub-pixel estimates.
Truncation valuesused are 1, 2, 5, 10, 20, 50, and oo (no truncation); these values are squared when
truncating SD.

Results: Figure 8 shows plotsof thethree eval uation measures B, B, and By for each of thefour
matching costs as a function of truncation values, for the Sawtooth, Tsukuba, and Venus images.
Overadl, there is little difference between AD and SD. Truncation matters mostly for points near
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Figure 8: Experiment 1. Performance of different matching costs aggregated witlx & window as a
function of truncation valuesat ch_nax for three different image pairs. Intermediate truncation values
(5-20) yield the best results. Birchield-Tomasi (BT) helps when truncation values are low.
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discontinuities. The reason is that for windows containing mixed populations (both foreground
and background points), truncating the matching cost limits the influence of wrong matches. Good
truncation values range from 5 to 50, typically around 20. Once the truncation values drop below
thenoiselevel (e.g., 2and 1), the errors become very large. Using Birchfield/Tomasi (BT) helpsfor
these small truncation values, but yields little improvement for good truncation values. Theresults
are consistent across all data sets; however, the best truncation value varies. We have also tried a
window size of 21, with similar results.

Conclusion: Truncation can help for AD and SD, but the best truncation value depends on the
images signal-to-noise-ratio (SNR), since truncation should happen right above the noise level
present (see also the discussion in (Scharstein and Szeliski 1998)).

Experiment 2. This experiment isidentical to the previous one, except that we also usea 9 x 9
min-filter (in effect, we aggregate with shiftable windows).

Results: Figure 9 shows the plots for this experiment, again for Sawtooth, Tsukuba, and Venus
images. As before, there are negligible differences between AD and SD. Now, however, the non-
truncated versions perform consistently the best. In particular, for points near discontinuitieswe get
the lowest errors overal, but also the total errors are comparable to the best settings of truncation
in Experiment 1. BT helps bring down larger errors, but as before, does not significantly decrease
the best (non-truncated) errors. We again also tried awindow size of 21 with similar results.
Conclusion: The problem of selecting the best truncation value can be avoided by instead using a
shiftablewindow (min-filter). Thisisaninteresting result, as both robust matching costs (trunctated
functions) and shiftable windows have been proposed to deal with outliersin windowsthat straddle
object boundaries. The above experiments suggest that avoidingoutliers by shifting the window is
preferable to limiting their influence using truncated cost functions.

Experiment 3:  We now assess how matching costs affect global algorithms, using dynamic pro-
gramming (DP), scanline optimization (SO), and graph cuts (GC) as optimization techniques. A
problem with global techniquesthat minimize aweighted sum of dataand smoothnessterms (Equa-
tion (3)) is that the range of matching cost values affects the optimal value for ), i.e., the relative
weight of the smoothnessterm. For example, squared differences require much higher valuesfor A
than absolute differences. Similarly, truncated difference functions result in lower matching costs
and require lower values for A\. Thus, in trying to isolate the effect of the matching costs, we are
faced with the problem of how to choose A. The cleanest solution to this dilemmawould perhaps be
to find a (different) optimal A independently for each matching cost under consideration, and then
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Figure 9: Experiment 2. Performance of different matching costs aggregated With @ shiftable window
(min-filter) as a function of truncation valuesit ch_nmax for three different image pairs. Large truncation
values (no truncation) work best when using shiftable windows.
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Figure 10: Experiment 3. Performance of different matching costs for global algorithms as a function of
truncation valuesrat ch_max for three different image pairs. Intermediate truncation values2() can
sometimes improve the performance.
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to report which matching cost gives the overall best results. The optimal A\, however, would not
only differ across matching costs, but also across different images. Since in a practical matcher we
need to choose a constant \, we have done the same in this experiment. We use A = 20 (guided by
the results discussed in Section 6.3 below), and restrict the matching costs to absolute differences
(AD), truncated by varying amounts. For the DP algorithm we use a fixed occlusion cost of 20.
Results: Figure 10 shows plots of the bad pixel percentages B, B3, and Bp as a function of
truncation values for Sawtooth, Tsukuba, and Venusimages. Each plot has six curves, correspond-
ing to DP, DP+BT, SO, SO+BT, GC, GC+BT. It can be seen that the truncation value affects the
performance. Aswith the local algorithms, if the truncation value is too small (in the noise range),
theerrorsget very large. Intermediate truncation val ues of 50-5, depending on algorithm and image
pair, however, can sometimes improve the performance. The effect of Birchfield/Tomasi is mixed;
aswith the local algorithmsin Experiments 1 and 2, it limits the errorsiif the truncation values are
too small. It can be seenthat BT ismost beneficial for the SO algorithm, however, thisis dueto the
fact that SO really requires a higher value of A to work well (see Experiment 5), in which case the
positive effect of BT isless pronounced.

Conclusion: Using robust (truncated) matching costs can dighlty improve the performance of
global algorithms. The best truncation value, however, varies with each image pair. Setting this
parameter automatically based on an estimate of the image SNR may be possible and is a topic
for further research. Birchfield and Tomasi’s matching measure can improve results slightly. In-
tuitively, truncation should not be necessary for global agorithms that operate on unaggregated
matching costs, since the problem of outliersin awindow does not exist. Animportant problem for
global algorithms, however, isto find the correct balance between data and smoothness terms (see
Experiment 5 below). Truncation can be useful in this context since it limits the range of possible
cost values.

6.2 Aggregation

We now turn to comparing different aggregation methods used by local methods. While global
methodstypically operate on raw (unaggregated) costs, aggregation can be useful for those methods
aswell, for example to provide starting values for iterative algorithms, or a set of high-confidence
matches or ground control point§GCPs) (Bobick and Intille 1999) used to restrict the search of
dynamic-programming methods.

In this section we examine aggregation with square windows, shiftable windows (min-filter),
binomial filters, regular diffusion, and membranediffusion (Scharstein and Szeliski 1998). Wedelay
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discussing Bayesian diffusion, which combines aggregation and optimization, until Section 6.5.

Experiment 4: In this experiment we use (non-truncated) absolute differences as matching cost,
and perform awinner-take-all optimization after the aggregation step (no sub-pixel estimation). We
compare the following aggregation methods:

1. sguare windows with window sizes 3, 5, 7, ..., 29;

2. shiftable square windows (min-filter) with window sizes 3, 5, 7, .. . 29;

3. iterated binomia (1-4-6-4-1) filter, for 2, 4, 6, ..., 28 iterations,

4. regular diffusion (Scharstein and Szeliski 1998) for 10, 20, 30, ..., 150 iterations;

5. membrane diffusion (Scharstein and Szeliski 1998) for 150 iterations and 5 = 0.9, 0.8. 0.7,
..., 0.0.

Note that for each method we are varying the parameter that controls the spatial extent of the
aggregation (i.e., the equivalent of window size). In particular, for the binomial filter and regular
diffusion, this amounts to changing the number of iterations. The membrane model, however,
converges after sufficiently many iterations, and the spatial extent of the aggregation is controlled
by the parameter (3, the weight of the original cost valuesin the diffusion equation (Scharstein and
Szeliski 1998).

Results: Figure 11 shows plots of B, B+, and Bp as afunction of spatial extent of aggregation
for Sawtooth, Tsukuba, and Venus images. Each plot has five curves, corresponding to the five
aggregation methods listed above. The most striking feature of these curvesis the opposite trends
of errorsin textureless areas (B7) and at points near discontinuities (Bp). Not surprisingly, more
aggregation (larger window sizesor higher number of iterations) clearly helpsto recover textureless
areas (note especialy the Venusimages, which contain large untextured regions). At the sametime,
too much aggregation causes errors near object boundaries (depth discontinuities). The overal
error in non-occluded regions, B, exhibits a mixture of both trends. Depending on the image, the
best performance is usually achieved at an intermediate amount of aggregation. Among the five
aggregation methods, shiftablewindowsclearly perform best, most notably in discontinuity regions,
but also overall. The other four methods (square windows, binomial filter, regular diffusion, and
membrane model) perform very similarly, except for differences in the shape of the curves, which
are dueto our (somewhat arbitrary) definition of spatial extent for each method. Note however that
even for shiftable windows, the optimal window size for recovering discontinuities is small, while
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Figure 11: Experiment 4. Performance of different aggregation methods as a function of spatial extent
(window size, number of iterations, and diffusj@n Larger window extents do worse dear discontinuities,

but better in textureless areas, which tend to dominate the overall statistics. Near discontinuities, shiftable
windows have the best performance.
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much larger windows are necessary in untextured regions.

Discussion: Thisexperiment exposes some of the fundamental limitations of local methods. While
large windows are needed to avoid wrong matches in regions with little texture, window-based
stereo methods perform poorly near object boundaries (i.e., depth discontinuities). The reason is
that such methods implicitly assume that all points within a window have similar disparities. If a
window straddles a depth boundary, some pointsin the window match at the foreground disparity,
while others match at the background disparity. The (aggregated) cost function at a point near a
depth discontinuity isthusbimodal inthe d direction, and stronger of the two modeswill be selected
as the winning disparity. Which one of the two modes will win? This depends on the amount of
(horizontal) texture present in the two regions.

Consider first apurely horizontal depth discontinuity (top edge of the foreground squarein Fig-
ure 12). Whichever of the two regions has more horizontal texture will create a stronger mode, and
the computed disparities will thus “bleed” into the less-textured region. For non-horizontal depth
boundaries, however, the most prominent horizontal texture is usually the object boundary itself,
since different objects typically have different colors and intensities. Since the object boundary
is at the foreground disparity, a strong preference for the foreground disparity at points near the
boundary is created, even if the background istextured. Thisisthe explanation for the well-known
“foreground fattening” effect exhibited by window-based algorithms (right edge of the foreground
in Figure 12—the left edge is an occluded area, which can’t be recovered in any case).

Adaptive window methods have been devel oped to combat this problem. The simplest variant,
shiftable windows (min-filters) can be effective as is shown in the above experiment. Shiftable
windows can recover object boundaries quite accurately if both foreground and background regions
are textured, and as long as the window fits as a whole within the foreground object. The size of
the min-filter should be chosen to match the window size. As s the case with al local methods,
however, shiftable windows fail in textureless areas.

Conclusion: Local agorithmsthat aggregate support can performwell, especialy intextured (even
slanted) regions. Shiftable windows perform best, in particular near depth discontinuities. Large
amounts of aggregation are necessary in textureless regions.

6.3 Optimization

In this section we compare the four global optimization techniques we implemented: dynamic
programming (DP), scanline optimization (SO), graph cuts (GC), and simulated annealing (SA).



ririr

True disparities SAD+MF

Input image SAD error SAD+MF error

Figure 12: lllustration of the “foreground fattening” effect, using the Map image pair anilax 21 SAD
algorithm, with and without a min-filter. The error maps encode the signed disparity error, using gray for 0,
light for positive errors, and dark for negative errors. Note that without the min-filter (middle column) the
foreground region grows across the vertical depth discontinuity towards the right. With the min-filter (right
column), the object boundaries are recovered fairly well.

Experiment5:  Inthisexperiment weinvestigatetheroleof opt _snoot hness, thesmoothness
weight A\ in Equation (3). We compare the performance of DP, SO, GC, and SA for A = 5, 10,
20, 50, 100, 200, 500, and 1000. We use unaggregated absolute differences as the matching cost
(squared differences would require much higher values for \), and no sub-pixel estimation. The
number of iterations for simulated annealing (SA) is 500.

Results: Figure 13 showsplotsof B, B+, and Bp asafunction of A for Map, Tsukuba, and Venus
images. (To show more varied results, we use the Map images in this experiment.) Since DP has
an extra parameter, the occlusion cost, we include three runs, for opt _occl usi on_cost = 20,
50, and 80. Using as before B (bad_pi xel s_nonocc) as our measure of overall performance,
it can be seen that the graph-cut method (GC) consistently performs best, while the other three (DP,
SO, and SA) perform dlightly worse with no clear ranking among them. GC aso performs best
in textureless areas and near discontinuities. The best performance for each algorithm, however,
requires different values for \ depending on the image pair. For example, the Map images, which
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Figure 13: Experiment 5. Performance of global optimization techniques as a function of the smoothness
weight\ (opt _snoot hness) for Map, Tsukuba, and Venus images. Note that each image pair requires a
different value of\ for optimal performance.
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are well textured and only contain two planar regions, require high values (around 500), while the
Tsukuba images, which contain many objects at different depths, require smaller values (20-200,
also depending on the algorithm). The occlusion cost parameter for the DP agorithm, while not
changing the performance dramatically, also affects the optimal value for . Although GC is the
clear winner here, it is aso the slowest algorithm: DP and SO, which operate on each scanline
independently, typically run in less than 2 seconds, while GC and SA require 10-30 minutes.
Conclusion: The graph-cut method consistently outperforms the other optimization methods, al-
though at the cost of much higher running times. GC is clearly superior to simulated annealing,
which is consistent with other published results (Boykov et al. 1999, Szeliski and Zabih 1999).
When comparing GC and scanline methods (DP and SO), however, it should be noted that the | atter
solve adifferent (easier) optimization problem, since vertical smoothnesstermsareignored. While
this enables the use of highly-efficient dynamic programming techniques, it negatively affects the
performance, as exhibited in the characteristic “ streaking” in the disparity maps (see Figures 18
and 19 below). Several authors have proposed methods for increasing inter-scanline consistency in
dynamic-programming approaches, e.g., (Belhumeur 1996, Cox et al. 1996, Birchfield and Tomasi
1998a). We plan to investigate this area in future work.

Experiment 6: We now focus on the graph-cut optimization method to see whether the results
can beimproved. Wetry both Birchfield/Tomasi matching costs and asmoothness cost that depends
on the intensity gradients

Results: Figure 14 showsthe usua set of performance measures B, B+, and By for four different
experiments for Map, Tsukuba, Sawtooth, and Venus images. We use a smoothness weight of
A = 20, except for the Map images, where A = 50. The matching cost are (non-truncated) absolute
differences. The parametersfor the gradient-dependent smoothnesscostsareopt _gr ad_t hr esh
= 8 (samein all experiments), and opt _gr ad_penal ty =1, 2, or 4 (denoted pl, p2, and p4in
the plots). Recall that the smoothness cost is multiplied by opt _gr ad_penal t y if the intensity
gradient is below opt _gr ad_t hr esh to encourage disparity jumps to coincide with intensity
edges. Each plot in Figure 14 shows 4 runs. pl, p1+BT, p2+BT, and p4+BT. In the first run, the
penalty is1, i.e., thegradient dependency isturned off. Thisgivesthe sameresultsasin Experiment
5. In the second run, we add Birchfield/Tomasi, still without a penalty. We then add a penalty of
2 and 4 in the last two runs. It can be seen that the low-gradient penalty clearly helps recovering
the discontinuities, and also in the other regions. Which of the two penalties works better depends
on the image pair. Birchfield/Tomas also yields a dight improvement. We have also tried other
values for the threshold, with mixed results. In future work we plan to replace the simple gradient
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Figure 14. Experiment 6. Performance of the graph-cut optimization technique with different gradient-
dependent smoothness penalties (p1, p2, p4) and with and without Birchfield/Tomasi (BT).

threshold with an edge detector, which should improve edge localization. Theissue of selecting the
right penalty factor is closely related to selecting the right value for A, since it affects the overall
relation between data term and smoothness term. This also deserves more investigation.
Conclusion: Both Birchfield/Tomasi’s matching cost and using a gradi ent-based smoothness costs
improves the performance of the graph-cut algorithm. Choosing the right parameters (threshold
and penalty) remains difficult and image-specific.

We have performed these experimentsfor scanline-based optimization methods (DP and SO) as
well, with similar results. Gradient-based penalties usually increase performance, in particular for
the SO method. Birchfield/Tomasi always seemsto increase overall performance, but it sometimes
decreases performance in textureless areas. As before, the algorithms are highly sensitive to the
weight of the smoothness term A\ and the penalty factor.

6.4 Sub-pixel estimation

Experiment 7. To evaluatethe performance of the sub-pixel refinement stage, and also to evaluate
theinfluence of the matching criteriaand disparity sampling, we cropped asmall planar region from
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Figure 15: RMS disparity errors for cropped image sequence (planar region of newspaper). The reference
image is shown in row (a) in the “disp. error” column. The columns indicate the disparity step, the sub-pixel
refinement option, Birchfield/Tomasi’'s sampling-insensitive matching option, the optional initial blur, and
the RMS disparity error from ground truth. The first image column shows the computed disparity map, the
second shows the signed disparity error, and the last column shows a histogram of computed disparities.
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Figure 16: Plots of RMS disparity error and inverse prediction errors as a functiodiagp_st ep and
mat ch_i nt erval . The even data points are with sampling-insensitive matcheigch_i nt er val
turned on. The second set of plots in each figure is psitapr oc _bl ur enabled (1 blur iteration).

one of our image sequences (Figure 15a, second column of images). The image itself is a page of
newsprint mounted on cardboard, with high-frequency text and afew low-frequency white and dark
regions. (These textureless regions were excluded from the statistics we gathered). The disparities
in thisregion are in the order of 0.8-3.8 pixels, and are slanted both vertically and horizontally.
Results: Wefirst run asimple 9 x 9 SSD window (Figure 15b). One can clearly see the discrete
disparity levels computed. The disparity error map (second column of images) shows the staircase
error, and the histogram of disparities (third column) also shows the discretization. If we apply the
sub-pixel parabolic fit to refine the disparities, the disparity map becomes smoother (note the drop
in RMS error in Figure 15c), but still shows some soft staircasing, which is visible in the disparity
error map and histogram aswell. These results agree with those reported by Shimizu and Okutomi
(2001).

In Figure 15d, we investigate whether using the Birchfield-Tomasi sampling-invariant measure
(Birchfield and Tomasi 1998b) improves or degrades this behavior. For integral sampling, their
idea does help dightly, as can be seen by the reduced RMS value and the smoother histogram
in Figure 15d. In all other instances, it leads to poorer performance (see Figure 16a, where the
sampling-invariant results are the even data points).

In Figure 15e, we investigate whether lightly blurring the input images with a (1/a, 1/, Y/a)
kernel helps sub-pixel refinement, because the first order Taylor series expansion of the imaging
function becomes more valid. Blurring doesindeed slightly reduce the staircasing effect (compare
Figure 15e to Figure 15c), but the overall (RMS) performance degrades, probably because of loss
of high-frequency detail.
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Weasotried 1/> and /4 pixel disparity sampling at theinitial matching stages, with and without

later sub-pixel refinement. Sub-pixel refinement always helps to reduce the RM S disparity error,
although it has negligible effect on the inverse prediction error (Figure 16b). From these prediction
error plots, and also from visual inspection of the inverse warped (stabilized) image sequence, it
appears that using sub-pixel refinement after any original matching scheme is sufficient to reduce
the prediction error (and the appearance of “jitter” or “ shearing”) to negligiblelevels. Thisisdespite
the fact that the theoretical justification for sub-pixel refinement is based on a quadratic fit to an
adequately sampled quadratic energy function. At the moment, for global methods, werely on the
per-pixel costs that go into the optimization to do the sub-pixel disparity estimation. Alternative
approaches, such as using local plane fits (Baker et al. 1998, Birchfield and Tomasi 1999, Tao et
al. 2001) could also be used to get sub-pixel precision.
Conclusions: To eliminate “staircasing” in the computed disparity map, and to also eliminate the
appearance of “shearing” in reprojected sequences, it is necessary to initialy evaluate the matches
at afractional disparity (1/, pixel steps appear to be adequate). This should be followed by finding
the minima of local quadratic fits applied to the computed matching costs.

6.5 Overall comparison

We close our experimental investigation with an overall comparison of the following agorithms:

1. SSD (21 x 21 shiftable window SSD),
2. DP (dynamic programming),

3. SO (scanline optimization),

4. GC (graph-cut optimization), and

5. Bay (Bayesian diffusion).

We chose shiftable window SSD as best-performing representative of all local (aggregation-based)
algorithms. We are not including simulated annealing here, since GC solves the same optimization
problem better and more efficiently. For each algorithm, we have chosen fixed parameters that
yield reasonably good performance over avariety of input images (see Table 4). We do not perform
sub-pixel estimation in this comparison.

We have selected four image pairs for this comparison: Map, Sawtooth, Tsukuba, and Venus.
We hope that this set of stereo images with ground truth will form the basis of a standard set of test
images used to compare performance in the stereo vision community.
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SSD DP SO GC Bay
Matching cost
mat ch_f n SD AD AD AD AD
Truncation no no no no no
Birchfield / Tomasi no yes yes yes no
Aggregation
aggr .wi ndow.si ze 21 — — — —
aggr _mnfilter 21 — — — —
aggr _iter 1 — — — 1000
di ff_nmu — — — — 05
di ff _si gnaP — — — — 04
di ff_epsP — — — — 0.01
di ff _scal e_cost — — — — 0.01
Optimization
opt _fn WTA DP SO GC Bayesian
opt _snoot hness (\) — 20 50 20 —
opt _occl usi on_cost — 20 — — —
opt _grad_t hresh — 8 8 8 —
opt _grad_penal ty — 4 2 2 —

Table 4: Parameters for the five algorithms compared in this section.

Figure 17 and Table 5 summarize the results for the five selected methods on these images. As
before, we report B (bad_pi xel s_nonocc) as a measure of overall performance, as well as
B (bad_pi xel s_t ext ur el ess),and Bp (bad_pi xel s_di scont ). Thedisparity mapsfor
Tsukuba and Venus images are shown in Figures 18 and 19. The full set of performance measures
and disparity maps are available on our web site at ww. nmi ddl ebury. edu/ st er eo.

The graph-cut method is the clear winner in this comparison. It consistently performs best,
not only overall, but also in textureless and discontinuity regions. The one exception is the Map
image pair, where the Bayesian diffusion method performs best in all measures. It should be noted,
however, that the Map imagesrequire sightly different parameter settingsfor optimal performance,
while in the above experiment parameters are held constant across all images. Interestingly, the
(shiftable windows) SSD algorithms does very well, usualy competing for second rank with the
Bayesian diffusion method. DP and SO perform the worst with few exceptions. An examination of
thedisparity maps(Figures 18 and 19) reveal sthat theindividual methodsmakequitedifferent errors.
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Figure 17: Comparative performance of the five selected algorithms on four different image pairs.

Map Tsukuba Sawtooth Venus
Bs Bf Bp| B Bf Bp| B By DBp| B By Bp
SSD | 058 0.00 915|526 386 24.65|217 0.74 13.84| 3.67 6.89 12.56
DP | 479 625 1461|442 341 1446 | 517 342 15.17 | 8.79 12.24 20.35
SO | 558 1714 996|494 650 1194 | 447 276 1319 | 941 1439 1811
GC |029 000 42319 106 941|177 036 790|148 224 6.74
Bay | 018 0.00 239|649 11.62 1229|184 0.86 10.72 | 3.87 7.36 17.72

Table 5: Comparative performance of the five selected algorithms on four image pairs, using the three
performance measure85 (bad_pi xel s_nonocc), B (bad_pi xel s_texturel ess), and Bp
(bad_pi xel s_di scont).
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True disparities SSD

Bayesian diffusion

Figure 18: Best results on Tsukuba images.
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True disparities

DP SO

Bayesian diffusion

Figure 19: Best results on Venus images.
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Map Tsukuba Sawtooth Venus
fixed best | fixed best | fixed best | fixed best
SSD | 058 020| 526 526| 217 1.78| 3.67 2.96
DP | 479 150 | 442 442|517 402| 879 824
SO | 558 158|494 433 | 447 363| 941 836
GC [ 029 009| 19 19 | 177 092| 148 135
Bay | 018 0.18 | 649 6.49| 1.84 184 | 3.87 3.66

Table 6: Overall performanceBs (bad_pi xel s_nonocc), both for fixed parameters across all images,
and best parameters for each image. Note that significant performance gains are possible if parameters are
allowed to vary for each image.

In particular, the disparity maps produced by SSD are much less impressive than the quantitative
results, especially on the Tsukubaimages. Thelargewindow size (21 x 21) required for the method
to work well in textureless areas results in significant loss of detail. Bayesian diffusion behaves
similarly to the local SSD method; both make errorsin large untextured areas and tend to blur the
outlines of objects more than the other methods, but Bayesian diffusion is much better at preserving
detail (for example the handle of the lamp in the Tsukuba images). The disparity maps created by
the scanline-based algorithms (DP and SO) are promising and show alot of detail, but the larger
quantitative errorsare clearly aresult of the“streaking” dueto thelack of inter-scanline consistency.
GC performs best, but there is still room for further improvement.

To demonstrate the importance of the parameter settings, Table 6 compares the overall results
(Bp) for thefixed parameterslisted in Table 4 with the “best” results when parameters are allowed
tovary for eachimage. Note that we did not perform atrue optimization over all parametersvalues,
but rather simply chose the overall best results among the entire set of experiments we performed.
It can be seen that for some of the images the performance can be improved substantialy with
different parameters. In particular the Map image pair can virtually be “solved” using GC, Bay, or
SSD, since the images depict a simple geometry and are well textured. More challenging data sets
with many occlusions and textureless regions may be useful in future extensions of this study.

Finally, we take a brief look at the efficiency of the different methods. Table 7 lists the image
sizes and number of disparity levels for each image pair, and running times for each of the five
algorithms. Clearly, the local and scanline-based methods (SSD, DP, and SO) are quite fast, while
GC and Bayesian diffusion are several orders of magnitude slower. Some speed-up could be gained
by decreasing the number of iterations for those methods, but they remain inherently slower than
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Map Tsukuba Sawtooth Venus
width x height | 284 x 216 384 x 288 434 x 380 434 x 383
disparity levels 30 16 20 20
Running times:
SSD 0.8s 11s 15s 17s
DP 0.8s 10s 18s 19s
SO 13s 11s 22s 23s
GC 480 s 662 s 735s 829s
Bay 1236 s 1055s 2049s 2047 s

Table 7: Image sizes and disparity levels of the four image pairs, and running times of the five selected
algorithms.

the former three methods. If efficiency is an issue, it thus seems that a shiftable-window method
would beagood choice. Further researchisneededto fully exploit the potential of scanline methods
without sacrificing their efficiency.

In summary, the graph-cut method is the clear winner of this experimental study. Potential
avenues of further improvement include a better gradient-dependent smoothness cost, automatic
setting of parameters, and the proper computation of sub-pixel disparity estimates for non-local
methods.

7 Conclusion

In this paper, we have proposed ataxonomy for dense two-frame stereo correspondence algorithms.
We use this taxonomy to highlight the most important features of existing stereo algorithms and
to study important algorithmic components in isolation. We have implemented a suite of stereo
matching algorithm components and constructed a test harness that can be used to combine these,
to vary the algorithm parametersin a controlled way, and to test the performance of these algorithm
on interesting data sets. We have also produced some new calibrated multi-view stereo data sets
with hand-labeled ground truth. We have performed an extensive experimental investigation in
order to assess the impact of the different algorithmic components. The experiments reported here
have demonstrated the limitations of local methods, and have assessed the value of different global
techniques and their sensitivity to key parameters.

There are many other open questions we would like to address. How important is it to devise
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the right cost function in global optimization agorithms vs. how important is it to find a global
minimum? What kind of adaptive/shiftable windows work best? Also, is prediction error a useful
metric for gauging the quality of stereo algorithms? We would also like to try other existing data
sets, and to produce some labeled data sets that are not all piecewise planar.

By publishing thisstudy along with our sample code and data sets on the Web, we hopethat other
stereo researchers will run their algorithms on our data and report their comparative results. We
are planning to maintain an on-line version of Table 5 that lists the overall results of the currently
best-performing algorithms. We aso hope that some researchers will take the time to add their
algorithms to our framework for others to use and to build upon. Idealy, some set of data and
testing methodology will become an accepted standard in the stereo correspondence community,
so that new algorithms will have to pass a “litmus test” to demonstrate that they improve on the
state of the art.

Once this study has been completed, we plan to move on to study multi-frame stereo matching
with arbitrary camera geometry. There are many technical solutions possible to this problem,
including voxel representations, layered representations, and multi-view representations. Thismore
general version of the correspondence problem should also prove to be more useful for image-based
rendering applications,

By building on the framework and methodology developed in this paper, we will hopefully
reach a deeper understanding of the complex behavior of stereo correspondence agorithms.
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