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We want accurate answers to PDEs using numerical simulations.

783% error in drag
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"The number of wings designed and wind tunnel tested has steadily decreased." [Johnson, 2005]
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Mesh adaptation is useful for obtaining accurate solutions.
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How to solve problems with time-dependent features?

[Song, 2014]
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Time-marching approach is computationally expensive.
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Time-marching approach is computationally expensive.
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Spacetime uniform refinement requires O(δ–2) elements.

[Bangerth, 1999]
[Hartmann, 2001]

[Yano, 2012]
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Spacetime tensor-product approach requires O(δ–1) elements.

[Bangerth, 1999]
[Hartmann, 2001]

[Yano, 2012]
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Spacetime unstructured approach requires O(1) elements.

[Bangerth, 1999]
[Hartmann, 2001]

[Yano, 2012]
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Spacetime unstructured approach demonstrated in 1d + t and 2d + t .

[Yano, 2012] [Jayasinghe, 2018](a) Non-wetting phase pressure pn (b) Wetting phase saturation Sw

(c) Non-wetting phase pressure pn (cross-
section)

(d) Wetting phase saturation Sw (cross-
section)

Figure 5-23: Piecewise linear (P1) solutions from the space-time adaptive DG method
using a distributed well model with m = 6 and R = 100 ft, on a fully unstructured,
tetrahedral space-time mesh adapted to 250,000 DOF

using the distributed well model. This method has a second-order accuracy in both

space and time, and hence its output errors show a second-order convergence rate.

Similarly, the solid purple line represents solutions from a piecewise quadratic (P2)

DG method with a BDF3 time-marching scheme, where the output errors exhibit a

third-order convergence rate. Lastly, the solid red and green lines represent the results

134

We need unstructured anisotropic 4d meshes
for unsteady 3d problems.
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for unsteady 3d problems.
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Anisotropic meshes can be obtained using a metric field.

Optimize mesh?

M: mesh

M∗ = arg min
M

E(M)︸ ︷︷ ︸
error

such that C(M)︸ ︷︷ ︸
cost

≤ ct
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Optimize metric field? [Loseille, 2011]
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Anisotropic meshes can be obtained from a metric-conforming mesher.
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Previous attempts at anisotropic 4d meshing were not successful.

[Coupez, 2000] & [Gruau, 2005]

• Star operator for local mesh operations,

• Minimum volume principle,

• Uniform metric fields.

h time (s) # vertices # elements
1/2 4 126 946
1/3 41 451 4573
1/4 179 1192 14887
1/5 547 2588 35894

[Tremblay, 2007]

• Simulated edge swapping,

• Poor metric-conformity (aspect ratio 10:1),

• Heat equation in 3d +t with isotropic meshes.
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Thesis objectives & contributions

Main objective:
Develop an anisotropic four-dimensional meshing capability for adaptive numerical simulations.

Approach:

• Simplex meshes (triangles, tetrahedra, pentatopes).

• Local cavity operator framework.

• Mesh Optimization via Error Sampling and Synthesis.

Contributions:
(1) Develop an algorithm and software for 4d metric-conforming mesh adaptation.

(2) Validate the adaptive algorithm on 4d problems.

(3) Demonstrate first PDE-driven anisotropic unstructured adaptation for unsteady 3d problems.

Introduction 9
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Metric-conforming mesher strives to create unit n-simplices.

Goals for a meshM = (V , T ) of Ω ⊂ Rn

• Edge lengths are 1:

`m(e) = 1, ∀e ∈ E(T )

• Quality is that of equilateral simplex:

qm(κ) =
1

q∆

v2/n
m (κ)∑

e∈E(κ)
`2m(e)

= 1, ∀κ ∈ T

• # simplices matches metric field complexity:

nsv∆ =
∫
M

√
det m dx

κ

q0

h0 = 1/
√
λ0

q1

h1 = 1/
√
λ1

0.5 1 1.5 2

√
2

2

√
2

`m(e)

quasi-unit
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Metric-conforming mesher strives to create unit n-simplices.

Goals for a meshM = (V , T ) of Ω ⊂ Rn

• Edge lengths are close to 1:

1/
√

2 ≤ `m(e) ≤
√

2, ∀e ∈ E(T )

• Quality is close to that of equilateral simplex:

qm(κ) =
1

q∆

v2/n
m (κ)∑

e∈E(κ)
`2m(e)

∈ [0.8, 1], ∀κ ∈ T

• # simplices matches metric field complexity:

nsv∆ ≈
∫
M

√
det m dx

κ
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√
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Local operators modify an existing mesh to meet target criteria.
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→

Collapse

→

Smoothing
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Swap

→

Mesh adaptation algorithm 11



Local operators modify an existing mesh to meet target criteria.

Split

→

Collapse

→

Smoothing

→

Swap

→

Mesh adaptation algorithm 11



Local operators modify an existing mesh to meet target criteria.

Split

→

Collapse

→

Smoothing

→

Swap

→

Mesh adaptation algorithm 11



Local operators modify an existing mesh to meet target criteria.

Split

→

Collapse

→

Smoothing

→

Swap

→

Mesh adaptation algorithm 11



Local operators modify an existing mesh to meet target criteria.

Split

→

Collapse

→

Smoothing

→

Swap

→

Mesh adaptation algorithm 11



Local operators can be viewed in a dimension-independent way.

Application of mesh modification operator: [Coupez, 2000],[Loseille, 2017]

T k+1 = T k \ C(f )︸︷︷︸
cavity

∪ B(p, ∂Ck )︸ ︷︷ ︸
insertion

v
p

q

v
p

q
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Operator schedule progressively tries to improve metric conformity.

adaptMesh

input: Min = (Vin, Tin), m
output: Mout (modified)

� stage 1: target edges longer than 2
M← collapseEdges(M, m)
M← splitEdges(M, m, 2)
M← swapEdges(M, m)
M← smoothVertices(M, m)

u

v

w

p

u

v

w

p q

Highlights:

• do not create short edges during splits

• check number of pentatopes matches
metric volume in 4d

Mesh adaptation algorithm 13
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The meshing algorithm performs well on 3d benchmark cases.

Benchmarks of the Unstructured Grid Adaptation Working Group (UGAWG) [Ibanez et al., 2017]:

X
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feflo.a EPIC-ICSM Omega_h avro
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Assessment of metric-conformity.

% quasi-unit edge lengths

1/
√

2 ≤ `m(e) ≤
√

2

% quasi-unit simplices

qm(κ) > 0.8

# simplices

nsv∆ ≈
∫ √

det m dx

Demonstration with analytic metrics 15



Length and quality histograms will be plotted on logarithmic scales.
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Expect 39k tetrahedra for the Cube Linear case.

0 1 2
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%`unit %qunit # simplices
avro 99.10 % 92.15 % 38.30k

feflo.a 98.28 % 74.28 % 45.16k
EPIC-ICSM 93.04 % 59.52 % 47.55k
Omega_h 93.00 % 47.15 % 51.67k
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Expect 31.7k tetrahedra for the Cube-Cylinder Linear case.
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Expect 36.4k tetrahedra for the Cube-Cylinder Polar 2 case.
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%`unit %qunit # simplices
avro 95.76 % 78.76 % 34.20k

feflo.a 93.83 % 55.92 % 53.12k
EPIC-ICSM 91.77 % 58.52 % 44.28k
Omega_h 92.19 % 44.96 % 49.15k
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Let’s look at some 4d metric-conforming cases in a tesseract.

Tesseract Linear

m(x) = diag
(

h–2
x , h–2

y , h–2
z , h–2

t

)
hx = hy = hz = h = constant
ht increases away from t = 0.5.

TL1 (h = 0.25) TL2 (h = 0.125)

Y

ZT

Y

ZT

Refine hyperplanes at non-constant t .

Tesseract Wave

m(x) = Q diag
(

h–2
r , h–2

θ , h–2
φ , h–2

t

)
Qt

Wave radius increases at R(t) = R0 + vw t
hr increases away from R(t), ht = constant
hφ, hθ similar to Cube-Cylinder Polar 2 case

R(t)

r

t

t = 0

t = 1

r = R0

r = Rf

α
|

Refine spheres at constant t and
cones at non-constant t .
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We will look at boundaries of the tesseract meshes.
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Expected hyperplanes are refined for the Tesseract Linear cases.
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Expected spheres and cones are refined for the Tesseract Wave case.
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Good metric-conformity is observed for the 4d benchmark cases.

0 1 2 3

length

10
-6

10
-5
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% edges

Linear 1

Linear 2

Wave

0 0.4 0.8 1

quality

10
-6

10
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10
-4

10
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10
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% simplices

%`unit %qunit # simplices expected
Linear 1 96.46 % 56.35 % 55.66k 51k
Linear 2 97.27 % 70.00 % 814.50k 818k

Wave 88.96 % 26.89 % 347.19k n/a
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Metric fields obtained from MOESS [Yano, 2012].

• PDE
• Geometry
• Output
• Cost

Compute
solution

Estimate
error

?
• Output
• Error

Optimize
metric field

Metric-conforming
mesher

Demonstration within adaptive framework 24



Metric fields obtained from MOESS [Yano, 2012].

• PDE
• Geometry
• Output
• Cost

Compute
solution

Estimate
error

?
• Output
• Error

Optimize
metric field

avro

Demonstration within adaptive framework 24



Metric fields obtained from MOESS [Yano, 2012].
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Metric fields obtained from MOESS [Yano, 2012].

Mesh Optimization via Error Sampling and Synthesis

Original

m0 η0
Edge split 1 m1 η1
Edge split 2 m2 η2
Edge split 3 m3 η3

Error model: η(s) = η0 exp(tr(r s))
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Adapt to the exact L2 error.

• Geometry
• Output
• Cost

Compute
solution

Estimate
error

? • Output

MOESSavro

u(x , y , z, t) = exp(–x /ε) +
(2y )p+1

(p + 1)!
+

(4z)p+1

(p + 1)!
+

(6t)p+1

(p + 1)!
ε = 0.01

using p = 1 and p = 2 discontinuous Galerkin solution spaces

Optimal mesh size & aspect ratios
[Yano, 2012]

hx = hx ,0 exp(khx x)

ai = ai ,0 exp(kax), i = y , z, t
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L2 error control for boundary layer: DOF overshoot ≈ 35%.
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p = 1 512k DOF optimized meshes show expected refinement.
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p = 2 512k DOF optimized meshes show expected refinement.
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Analytic mesh distributions achieved.
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Adapt to the exact L2 error of a spherical wave function.

u(x, t) = exp(–t) exp
(

–200(R(t) – ||x||)2
)

with R(t) = 0.4 + 0.7t
R(t)

x
t

;

δ
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T
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DOF overshoot complemented by slight rise in error.
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p = 1 512k DOF optimized meshes show expected refinement.
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p = 2 512k DOF optimized meshes show expected refinement.
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Metric conformity is good.
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p = 1, 64k DOF
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p = 1, 512k DOF
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p = 2, 64k DOF

Y
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p = 2, 512k DOF

%`unit %qunit # simplices % overshoot
p = 1, 64k 97.72 % 53.31 % 14.83k 15.84 %
p = 1, 512k 97.57 % 51.76 % 116.86k 14.12 %
p = 2, 64k 98.71 % 50.15 % 4.87k 14.12 %
p = 2, 512k 97.40 % 49.63 % 39.76k 16.47 %
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Large aspect ratios are obtained.
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p = 1, 512k DOF
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p = 2, 512k DOF

Order / DOF 64k 128k 256k 512k
p = 1 2.07e+02 5.07e+02 8.32e+02 2.12e+03
p = 2 6.53e+01 1.26e+02 2.60e+02 5.88e+02
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Unsteady advection-diffusion with a boundary layer.

• Geometry
• Output
• Cost

Compute
solution

Estimate
error

? • Output

MOESSavro

∂u
∂t

+∇ · (c u –∇u) = s(x, t) c = (0.5, 0.5, 0.5)t

u(x , y , z, t) = exp(–x /ε) +
(2y )p+1

(p + 1)!
+

(4z)p+1

(p + 1)!
+

(6t)p+1

(p + 1)!
ε = 0.01
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Unsteady advection-diffusion with a boundary layer.
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∫
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DOF overshoot as high as 43%.

0 20 40 60 80 100

adaptation

0

0.5

1

1.5

% DOF

p = 1, dof = 64k

p = 1, dof = 128k

p = 1, dof = 256k

p = 1, dof = 512k

p = 2, dof = 64k

p = 2, dof = 128k

p = 2, dof = 256k

p = 2, dof = 512k

0 20 40 60 80 100

adaptation

10
-3

10
-2

10
-1

10
0

10
1

error indicator

Demonstration within adaptive framework 37



p = 2 512k DOF optimized meshes show expected refinement.
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Unsteady advection-diffusion with an expanding spherical wave.

• Geometry
• Output
• Cost
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Estimate
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? • Output

MOESSavro
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+∇ · (c u – ν∇u) = s(x, t) c = 0.5er , ν = 0.01
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Unsteady advection-diffusion with an expanding spherical wave.
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DOF overshoot as high as 38%.
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p = 1 512k DOF optimized meshes show expected refinement.
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Need more DOF to fully refine solution.
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Spherical wave at t = 1 is captured.
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Summary

Main objective:
Develop an anisotropic four-dimensional meshing capability for adaptive numerical simulations.

Contributions:
(1) Develop an algorithm and software for 4d metric-conforming mesh adaptation.

(2) Validate the adaptive algorithm on 4d problems.

(3) Demonstrate first PDE-driven anisotropic unstructured adaptation for unsteady 3d problems.
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Future work

• Parallelization of the mesh adaptation algorithm,

• Adaptation of curvilinear meshes,

• Applications of the framework to other PDEs,

• Investigating continuous Galerkin discretization,

• Mesh adaptation for higher-dimensional parameter spaces.

boundary

interior
before (linear)

after (cubic)

Conclusions 45
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Why the giraffe?
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Why the
√

2?

[Frey and George, 2008]: The coefficient
√

2 is related to the fact that an edge can be split if the
lengths of the two sub-edges minimize the error distance to the unit length as compared with the initial
length.

In other words:

• We want to minimize `split:

`split = arg min
α

α such that g(α) = 2
(α

2
– 1
)2

– (α – 1)2 ≤ 0

Applying the KKT conditions leads to g(α) = 0→ `split =
√

2.

• We want to maximize `collapse but if we make it too big, then we will cycle between splitting and
collapsing because splitting can create edges with length `split/2. We can avoid this by setting
`collapse =

√
2/2.
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Study of mesh adaptation components
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Study of mesh adaptation components

Variant 1 Variant 2 Variant 3 Variant 4 Variant 5
Property Current

Same Length No Swapout No Limit No Smoothing Single Stage
`min 0.67 0.57 0.64 0.06 0.58 0.55
`max 1.77 1.66 1.69 1.62 2.50 1.72
`avg 1.06 1.03 1.06 0.95 1.03 1.02

%`unit 99.10 % 99.92 % 99.06 % 89.60 % 96.48 % 99.74 %
qmin 0.47 0.09 0.46 0.10 0.09 0.17
qavg 0.90 0.90 0.90 0.80 0.83 0.90

%qunit 92.15 % 93.46 % 92.08 % 62.45 % 67.44 % 92.25 %
# simplices 38.30k 42.67k 38.20k 58.62k 47.65k 43.60k
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Visualizing slices of a 4d mesh
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4d mesh
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Why so much overshoot?

Valency statistics

0 50 100 150 200 250

vertex valency

Linear 1

Linear 2

Wave

0 5 10 15 20 25 30 35

edge valency

Linear 1

Linear 2

Wave

Packing fraction
Packing fraction (φ) defined as volume fraction of space covered by particles.

Best known packing fractions of unit-length equilateral simplices [Kallus, 2011]:

φ3 = 100/117 ≈ 85.47%

φ4 = 128/219 ≈ 58.45%
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Maintaining a valid mesh

Theory
Definition of a mesh topology:
Let V be a set of vertices in some domain Ω and T be a set of n-polytopes with vertices in V . Let F be
the set of faces (n – 1)-facets of T . T is called a mesh topology if

(1) card(f ∩ T ) ≤ 2, ∀f ∈ F ,

(2) (V , ∂T ) is a mesh of ∂Ω.

Practice
(1) Close the mesh by connecting boundary to a ghost ver-

tex.

(2) Check inserted elements do not already exist in T .

(3) Use neighbour relations to ensure every facet touches
two elements.

B(p, ∂C) p
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Convergence of the L2 error for simple problem.

Adapting to L2 error in solution:

u(x , y , z, t) = exp(–5t) sin 2πx sin 2πy sin 2πz
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Geometry metadata is important to determine validity of operators.

• Collapse edge e = (p, q): gq � gp,

• Insert vertex p along edge e: gp ← ge,

• Swap edge e with re-insertion vertex p:
gp � ge,

• Smooth vertex p: driven by lengths of edges
(p, q) surrounding p such that gq � gp.
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Difference in 4d benchmarks with or without DOF control.

Linear 1 Linear 2 Wave Linear 1 Linear 2 Wave
Property

(no control) (no control) (no control) (control) (control) (control)
`min 0.50 0.40 0.20 0.53 0.47 0.23
`max 1.91 1.86 2.71 1.78 1.96 2.99
`avg 1.08 1.08 1.08 1.10 1.11 1.12

%`unit 97.29 % 98.01 % 92.48 % 96.46 % 97.27 % 88.96 %
qmin 0.16 0.02 0.02 0.23 0.11 0.08
qavg 0.80 0.83 0.72 0.80 0.83 0.72

%qunit 56.67 % 67.13 % 28.75 % 56.35 % 70.00 % 26.89 %
# simplices 59.56k 915.30k 394.07k 55.66k 814.50k 347.19k
expected 51.00k 818.00k n/a 51.00k 818.00k n/a
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Mesh size and aspect ratio distributions for L2 boundary layer case

Coefficient Analytic 64k 128k 256k 512k
hx ,0 h∗x ,0 0.0155 0.0121 0.0095 0.0076
h∗x ,0 - 0.0090 0.0075 0.0063 0.0053
khx 43.75 25.14 28.39 31.29 33.74
ay ,0 50.00 25.52 29.46 32.15 33.76
kay -50.00 -26.57 -31.14 -35.22 -38.05
az,0 25.00 14.32 16.02 17.09 18.18
kaz -50.00 -26.84 -31.79 -35.92 -38.92
at ,0 16.67 9.59 10.75 11.76 12.47
kat -50.00 -26.11 -31.44 -35.58 -39.25

p = 1

Coefficient Analytic 64k 128k 256k 512k
hx ,0 h∗x ,0 0.0146 0.0119 0.0100 0.0081
h∗x ,0 - 0.0125 0.0105 0.0088 0.0074
khx 30.00 25.46 24.56 27.36 28.00
ay ,0 50.00 38.06 42.92 40.45 44.13
kay -33.33 -24.69 -28.12 -29.80 -31.04
az,0 25.00 22.41 21.51 22.11 22.06
kaz -33.33 -25.96 -27.69 -30.55 -30.68
at ,0 16.67 15.39 14.55 14.64 15.22
kat -33.33 -26.60 -28.50 -30.14 -31.74

p = 2
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Advection-diffusion boundary layer convergence rates
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Boundary layer (advection-diffusion) p = 2 meshes.
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Spherical wave (advection-diffusion) p = 2 meshes.
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