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Abstract

A central issue in stereo algorithm design is the choice of matching cost. Many algorithms

simply use squared or absolute intensity differences based on integer disparity steps. In this

paper we address potential problems with such approaches. We begin with a careful analysis of

the properties of the continuous disparity space image (DSI) and propose several new matching

cost variants based on symmetrically matching interpolated image signals. Using stereo images

with ground truth, we empirically evaluate the performance of the different cost variants and

show that proper sampling can yield improved matching performance.



1 Introduction

The last few years have seen a dramatic improvement in the quality of dense stereo matching

algorithms [13]. A lot of this improvement can be attributed to better optimization algorithms and

better smoothness constraints [6, 4, 17]. However, a remarkable amount of the improvement has

also come from better matching metrics at the input [3]. In fact, Birchfield and Tomasi’s sampling-

insensitive dissimilarity measure is used by a number of today’s best performing algorithms [6, 4].

Using something better than just pixel-sampled intensity differences is not a new idea. For

example, Matthies et al. interpolated scanlines by a factor of 4 using a cubic interpolant before

computing the SSD score [10]. Tian and Huhns wrote an even earlier survey paper comparing

various algorithms for sub-pixel registration [18]. In fact, some stereo and motion algorithms have

always evaluated displacements on a half-pixel grid, but never mentioned this fact explicitly.

The set of initial matching costs that are fed into a stereo matcher’s optimization stage is often

called the disparity space image (DSI) [20, 5]. However, while the concept of stereo matching as

finding an optimal surface through this space has been around for a while [20, 2, 5], relatively little

attention has been paid to the proper sampling and treatment of the DSI itself.

In this paper, we take a more careful look at the structure of the DSI, including its frequency

characteristics and the effects of using different interpolators in sub-pixel registration. Among the

questions we ask are: What does the DSI look like? How finely do we need to sample it? Does it

matter what interpolator we use? We also propose a number of novel modifications to the matching

cost that produce a better set of initial high-quality matches, at least in textured, unoccluded areas.

It is our contention that filling in textureless and occluded areas is best left to a later stage of

processing [5, 6, 4, 17], which is why we do not consider global optimization techniques in this

paper.

The remainder of the paper is structured as follow. Section 2 presents our analysis of the DSI

and discusses minimal sampling requirements. Section 3 develops several novel matching costs

based on our analysis. The utility of these novel costs is validated experimentally in Section 4. We

conclude with some ideas for future research.

2 Matching costs

In this section, we look at how matching costs are formulated. In particular, we analyze the struc-

ture of the DSI and its sampling properties and propose some improvements to commonly used
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matching costs.

2.1 The continuous disparity space image

Given two input images, IL(x, y) and IR(x, y), we wish to find a disparity map dL(x, y) such that

the two images match as closely as possible

IL(x, y) ≈ IR(x − dL(x, y), y). (1)

In this paper we assume that the images have been rectified to have a horizontal epipolar geometry

[11, 8], i.e., that the images have been pre-warped so that corresponding pixels are on the same

scanline. Stereo correspondence can under such circumstances be reduced to one-dimensional

search. Note that our paper proposes interpolating images to a higher resolution after rectification.

However, these two steps could be combined into a single resampling operation to reduce aliasing

artifacts.

We define the 3D signed difference image (SDI) as the intensity (or color) difference between

the shifted left and right images,

SDIL(x, y, d) = IL(x, y) − IR(x − d, y). (2)

We also define the raw disparity space image (DSI) as the squared difference (summed over all the

color bands),

DSIL(x, y, d) = ‖SDIL(x, y, d)‖2. (3)

Alternate metrics such as absolute differences or robust functions are also possible. However,

the quadratic case is easiest to analyze and also corresponds to the case of Gaussian noise, as

we will discuss shortly. In the ideal (continuous, noise-free) case with no occlusions, we expect

DSIL(x, y, dL(x, y)) to be zero.

Unfortunately, we do not actually have access to continuous, noise-free versions of IL(x, y)

and IR(x, y). Instead, we have sampled noisy versions, ÎL(xi, yi) and ÎR(xi, yi),

ÎL(xi, yi) = [IL ∗ h](xi, yi) + nL(xi, yi) (4)

ÎR(xi, yi) = [IR ∗ h](xi, yi) + nR(xi, yi), (5)

where h(x, y) is the combined point-spread-function of the optics and sampling sensor (e.g., it

incorporates the CCD fill factor [19]), and nL is the (integrated) imaging noise.

Given that we usually only evaluate the DSI at the integral grid positions (xi, yi), we have

to ask whether this sampling of the DSI is adequate, or whether there is severe aliasing in the
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resulting signal. We cannot, of course, reconstruct the true DSI since we have already band-

limited, corrupted, and sampled the original images. However, we can (in principle) reconstruct

continuous signals from the noisy samples, and then compute their continuous DSI.

The reconstructed signal can be written as

IL(x, y) =
∑

i

ÎL(xi, yi)g(x − xi, y − yi) (6)

= ĨL(x, y) + ñL(x, y), (7)

where g(x, y) is a reconstruction filter, ĨL(x, y) is the sampled and reconstructed version of the

clean (original) signal, and ñL(x, y) is an interpolated version of the noise. This latter signal

is a band-limited version of continuous Gaussian noise (assuming that the discrete noise is i.i.d.

Gaussian).

We can then write the interpolated SDI and DSI as

SDIL(x, y, d) = IL(x, y) − IR(x − d, y) and (8)

DSIL(x, y, d) = ‖SDI(x, y, d)‖2. (9)

What can we say about the structure of these signals?

2.2 Frequency analysis and adequate sampling

The answer can be found by taking a Fourier transform of the SDI. Let us fix y for now and just

look at a single scanline,

F{SDI} = F
{
IL(x) − IR(x − d)

}
= HL(fx) − HR(fx)e

j2π(fx−fd), (10)

where HL and HR are the Fourier transforms of IL and IR, and fx and fd are the x and d frequen-

cies.

Figure 1 shows the SDIs and DSIs and their Fourier transforms for two scanlines taken from

the 38th and 148th row of a test image pair containg newsprint on a slanted surface. The first

term in (10) corresponds to the horizontal line in the SDI’s Fourier transform (second column of

Figure 1), while the second term, which involves the disparity, is the slanted line.

Squaring the SDI to obtain the DSI (third column in Figure 1) is equivalent to convolving

the Fourier transform with itself (fourth column in Figure 1). The resulting signal has twice the

bandwidth in x and d as the original SDI (which has the same bandwidth as the interpolated signal).

It is also interesting to look at the structure of the DSI itself. The thin diagonal stripes are spurious
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Figure 1: Sample SDIs and DSIs and their Fourier transforms. Top row: Original image with two selected
scanlines and intensity profiles of the first selected scanline (L38); notice how the sinc-interpolated signals
(solid) are more similar than the linearly interpolated ones (dashed). Bottom rows: Signed Difference Image
(SDI) and its transform, and Disparity Space Image (DSI) and its transform; first for L38 using perfect (sinc)
interpolation, then for L38 using piecewise linear interpolation, then for L148 using perfect interpolation.
The correct disparity in the DSI images is marked with an arrow.
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bad matches (dark-light transitions matching light-dark transitions), while the horizontal stripes

are good matching regions (the straighter and darker the better).

What can we infer from this analysis? First, the continuous DSI has significant frequency con-

tent above the frequencies present in the original intensity signal. Second, the amount of additional

content depends on the quality of the interpolator applied to the signal. Thus, when perfect band-

limited reconstruction (a sinc filter) is used, the resulting DSI signal only has twice the frequency

of the image. It is therefore adequate (in theory) to sample the DSI at 1/2 pixel intervals in x and d.

When a poorer interpolant such as piecewise linear interpolation is used, the sampling may have

to be much higher. The same is true when a different non-linearity is used to go from the SDI to

the DSI, e.g., when absolute differences or robust measures are used. This is one of the reasons

we prefer to use squared difference measures. Other reasons include the statistical optimality of

the DSI as the log likelihood measure under Gaussian noise, and the ability to fit quadratics to the

locally linearized expansion of the DSI (see Section 3.3).

We can summarize these observations in the following Lemma:

Lemma 1: To properly reconstruct a Disparity Space Image (DSI), it must be sampled at at

least twice the horizontal and disparity frequency as the original image (i.e., we must use at least

1/2 pixel samples and disparity steps).

It is interesting to note that if a piecewise linear interpolant is applied between image samples

before differencing and squaring, the resulting DSI is piecewise quadratic. Therefore, it suffices

in principle to simply compute one additional squared difference between pixels, and to then fit a

piecewise quadratic model. While this does reconstruct a continuous DSI, there is no guarantee

that this DSI will have the same behavior near true matches as a more properly reconstructed DSI.

Also, the resulting minima will be sensitive to the original placement of samples, i.e., a significant

bias towards integral disparities will exist [14].

For example, if the original signal is a fairly high-frequency chirp (Figure 2a), applying a

piecewise linear interpolant will fail to correctly match the signal with a fractionally shifted ver-

sion. Figure 2b and c show the results of aggregating the original raw DSIs with a 7-pixel filter

(see Section 3). Clearly, using the linear interpolant will result in the wrong disparity minimum

being selected in the central portion (where the central horizontal line is weak). One might ask

whether such high-frequency signals really exist in practice, but it should be clear from Figure 1

that they do.
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Figure 2: Chirp signal matching: (a) a continuous signal and its shifted and discretely sampled versions;
(b) Disparity Space Image (DSI) for linear interpolation; (c) horizontally aggregated DSI for sinc interpola-
tion, showing the correct minimum; (d) horizontally aggregated DSI for linear interpolation, with incorrect
minima near the center. The correct disparity in the DSI images is marked with an arrow.

3 Improved matching costs

Given the above analysis, how can we design a better initial matching cost? Birchfield and Tomasi

[3] and Shimizu and Okutomi [14] have both observed problems with integral DSI sampling and

have proposed different methods to overcome this problem.

Birchfield and Tomasi’s sampling-insensitive dissimilarity measure compares each pixel in the

reference image against the linearly interpolated signal in the matching image, and takes the min-

imum squared error as the matching cost. It then reverses the role of the reference and matching

images, and takes the minimum of the resulting two cost measures. In terms of our continuous

DSI analysis, this is equivalent to sampling the DSI at integral x locations, and computing the

minimum value vertically and diagonally around each integral d value, based on a piecewise linear

reconstruction of the DSI from integral samples.

Shimizu and Okutomi [14] compute “cancellation costs” using half-pixel interpolated signals,

and add these to the original cost measure to reduce the bias towards integral estimates (which they

call “pixel locking”).
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Figure 3: Interval analysis: (a–b) two signals with their corresponding half-sample intervals; (c) three
intervals being compared (differenced). The difference between the first two intervals is d = 0 because their
ranges overlap. The difference between the second two intervals is d > 0, i.e., the difference between the
nearest two points in the two intervals.

In this paper, we define a family of improved matching costs including generalizations of Birch-

field and Tomasi’s matching measure.

3.1 Symmetric matching of interpolated signals

First, we interpolate both signals up by a factor s using an arbitrary interpolation filter. In this

paper, we study linear (o = 1) and cubic (o = 3) interpolants. (The cubic interpolant is a compact

approximation to a sinc filter [15] and is often used as the standard high-quality interpolant in

many image-processing applications.) We then compute the squared differences between all of

the interpolated and shifted samples, as opposed to just between the original left (reference) image

pixels and the interpolated and shifted right (matching) image samples. This difference signal is

then reduced back to the original horizontal image sampling rate (i.e., to a single value per original

pixel) using a symmetric box (moving average) filter of width s and then downsampling. A higher-

order filter could potentially be used, but we wish to keep discontinuities in depth sharp in the DSI,

so we prefer a simple box filter.

3.2 Interval matching

If we wish to apply the idea of a sampling-insensitive dissimilarity measure [3], we can still do

this on the interpolated signals before downsampling. However, rather than treating the reference

and matching images asymmetrically and then reversing the roles of reference and matching (as in

[3]), we have developed the following related variant that is based on interval analysis.

Figure 3 shows two signals that have been interpolated to yield the set of discrete intensity

samples shown as vertical lines. (A piecewise linear interpolant is used here since we expect the

original interpolation stage to take care of aliasing.) The original Birchfield-Tomasi measure com-
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pares a pixel in the reference image with the interval in the matching image defined by the center

pixel and its two 1/2-sample interpolated values (rectangular boxes in Figure 3a–b). (This differ-

ence is 0 if the pixel falls within the intervals, else it is the smaller of the differences from the two

endpoints.) It then performs this same computation switching the reference and matching images,

and takes the minimum of the resulting two costs. Our version of the algorithm simply compares

the two intervals, one from the left scanline, the other from the right, rather than comparing values

against intervals. The unsigned difference between two intervals is trivial to compute: it is 0 if the

intervals overlap (Figure 3c), else it is the gap between the two intervals. A signed difference could

also be obtained by keeping track of which interval is higher, but in our case this is unnecessary

since we square the differences after computing them. When working with color images, we cur-

rently apply this interval analysis to each color band separately. In principle, the same sub-pixel

offset should be used for all three channels, but the problem then becomes a more complicated

quadratic minimization problem instead of simple interval analysis.

3.3 Local minimum finding (quadratic fit)

An alternative to doing such interval analysis is to directly compute the squared differences, and

to then fit a parabola to the resulting sampled DSI. This is a classic approach for obtaining sub-

pixel disparity estimates [18, 1, 10], although applying it directly to integer-valued displacements

(disparities) can lead to severe biases [14].

When the DSI has been adequately sampled, however, this is a useful alternative for estimating

the analytic minimum from the (fractionally) sampled DSI. Note that we use the parabola fit here

not to obtain sub-pixel disparities, but rather to reconstruct the minimum DSI value, i.e., the actual

smallest matching cost in the vicinity of the sampled value.

In order to reduce the noise in the DSI before fitting, we apply spatial aggregation (averaging

with neighbors) first. In this paper, we use fixed uniformly weighted square windows (i.e., box

filters) , which perform well in textured areas, as long as the window does not straddle a depth

boundary. While the use of shiftable windows (windows offset from the center pixel) [13] can im-

prove the performance of matching near depth discontinuities, it makes the analysis more difficult,

and is not the main focus of our paper.
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3.4 Collapsing the DSI

Finally, once the local minima in the DSI at all pixels have been adequately modeled, we can

collapse the DSI back to an integral sampling of disparities. This step is often not necessary, as

many stereo matchers do their optimization at sub-pixel disparities. It does, however, have several

potential advantages:

• For optimization algorithms like graph cuts [6] where the computation complexity is propor-

tional to the square of the number of disparity levels, this can lead to significant performance

improvements.

• Certain symmetric matching algorithm (e.g., dynamic programming) require an integral sam-

pling of disparity to establish two-way optima.

To collapse the DSI, we find the lowest matching score within a 1
2

disparity from each integral

disparity, using the results of the parabolic fitting, if it was used. We also store the relative offset

of this minimum from the integral disparity for future processing and for outputting a final high-

accuracy disparity map, as well as the local certainty in the match, which can be determined from

the parabolic fit [1, 10]. Alternately, sub-pixel estimates could be recomputed at the end around

each winning disparity using one of the techniques described in [18], e.g., using a Lucas-Kanade

gradient-based fit [9] to nearby pixels at the same disparity.

4 Experimental evaluation of matching costs

Since there are so many alternatives possible for computing the DSI, how do we choose among

them? From theoretical arguments, we know that it is better to sample the DSI at fractional dispar-

ities and to interpolate the resulting surface when looking for local minima. However, real images

have noise and other artifacts such as aliasing and depth discontinuities. We therefore evaluate

our new techniques using the Sawtooth, Tsukuba, and Venus stereo test sequences with ground

truth from [13], which are available at http://www.middlebury.edu/stereo. Two of these sequences

are shown in Figure 4a. We should note that the Sawtooth and Venus data sets have high-quality

sub-pixel accurate ground-truth estimates (computed using piecewise planar surface fitting), while

the Tsukuba ground truth has only integer disparities. We are not using the Map data set, which

can be solved almost perfectly, making it ill-suited for comparing different matching costs.

In this paper, we focus on the accuracy of these techniques in unoccluded textured areas. The

effect of different matching costs in textureless areas is harder to evaluate, since the results depend
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(a): Tsukuba Venus

(b): ground truth disparity maps and textured maps

(c): traditional integer-disparity SSD disparities and errors (s=1, i=0, SD)

(d): Birchfield-Tomasi disparities and errors (s=1, i=0, BT)

(e): half-pixel symmetric interval-difference results (s=2, i=1, ID)

Figure 4: Test images and selected results: (a) input images; (b) true disparity maps and textured nonoc-
cluded regions (shown in black) in which errors are being evaluated; (c) traditional SSD results (disparity
maps and error maps); (d) Birchfield-Tomasi results; (e) fractional disparities with symmetric matching and
interval difference. The error maps in (c–e) show in black the “bad” matches in textured, nonoccluded
regions, i.e., pixels whose floating point disparity differs from the ground truth by more than 1.
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strongly on the aggregation or global optimization algorithm. We therefore restrict our analysis

to textured areas and use a simple window-based correspondence algorithm. Untextured areas

can be handled in many ways; for example, after establishing “certain” matches in textured areas,

untextured areas can be filled in using diffusion [12], aggregation with successively larger windows

[16], or global optimization methods [6]. We also exclude pixels near depth discontinuities, which

present problems for window-based methods.

For our analysis, we select textured pixels by computing the squared horizontal gradient at each

pixel (averaging the left and right values to remain symmetrical). These values are then averaged

in a 3×3 neighborhood and thresholded, using a threshold of 6 gray levels squared. Occluded

pixels are found by forward-warping the true disparity maps, and depth discontinuity regions are

selected by dilating the locations of strong disparity jumps and occlusion [13]. The resulting

textured unoccluded pixels are shown as black pixels in Figure 4b.

The parameters that we vary in our experiments are as follows:

• s = 1, 2, 4: interpolation rate (inverse of fractional disparity);

• o = 1, 3: interpolation order – linear or cubic;

• i = 1, 0: symmetric matching of interpolated scanlines (Section 3.1) – on or off;

• d = SD, ID, BT: dissimilarity metric (Section 3.2) – squared differences, interval differences,

or Birchfield-Tomasi measure;

• f = 1, 0: parabola fit for minimum cost estimation (Section 3.3) – on or off.

We have also varied other parameters, including window size (which is 7×7 in all experiments

reported here), and using absolute (rather than squared) differences. The effect of changing these

parameters is discussed below. In order to be able to evaluate subpixel disparity performance, we

do not collapse the DSI to an integer sampling in this study. The statistics we gather for each

experiment are the RMS disparity errors and the percentage of “bad” matches, i.e., pixels whose

floating point disparity differs from the ground truth by more than 1.

Table 1 shows the numerical results of some of our experiments. The top three rows list the

different values of parameters s, i, and d; the other parameters are held constant at o = 3 (cubic

interpolation), f = 0 (no cost fitting), and a window size of 7×7. Each of the remaining five

rows compares the matching performance under the different parameter settings in the textured,

unoccluded regions of a given data set. The lowest score for each data set is highlighted in boldface.

While there is no single setting that consistently outperforms the others, our new cost variants

generally do better than the original costs. We now evaluate the effect of the different parameters,

11



Interpolation rate s : s = 1 s = 2 s = 4

Symmetric matching i : 0 0 1 0 1

Dissimilarity metric d : SD ID BT SD ID SD ID SD ID SD ID

Bad Sawtooth 2.55 3.19 2.96 1.81 1.94 1.78 2.15 1.66 1.75 1.65 1.74

pixel Tsukuba 1.07 0.82 0.87 1.25 1.01 1.07 0.71 1.55 1.44 1.39 1.09

% Venus 1.68 1.37 1.30 0.91 0.88 0.86 0.88 0.93 0.88 0.82 0.79

RMS Venus 0.85 0.73 0.68 0.62 0.55 0.62 0.59 0.62 0.58 0.59 0.55

error Venus / subpix 0.80 0.68 0.62 0.60 0.53 0.60 0.56 0.61 0.57 0.58 0.55

Table 1: Matching performance as a function of parameters s, i, and d. (SD=squared differences,
ID=interval differences, BT=Birchfield-Tomasi.) Parameters o and f are held constant at o = 3 (cubic
interpolation) and f = 0 (no cost fitting). The middle three rows show the percentages of bad matching
pixels for the three data sets tested; the last two rows show the RMS disparity errors for the Venus data set
without and with a final subpixel fitting step. The lowest number in each row is highlighted in boldface. The
underlined numbers correspond to the results shown in Figure 4.

focusing first on the bad pixel percentages, which give a good indication of the overall performance

of the different cost variants.

• SD vs. ID — Interval differences outperform squared differences on the Tsukuba and Venus

data sets accross other parameter variations. On the Sawtooth images, however, they result

in decreased performance. Careful analysis of the images and the error maps reveals that

there is a small vertical misregistration present in the original images, and that the errors

occur in areas with near-horizontal lines. This suggest that interval differences are a good

idea, but may amplify aliasing problems caused by misaligned images. For comparison,

we have included the results for the Birchfield-Tomasi measure (BT, third column). Given

integer sampling (s = 1), BT and ID yield similar results; using interpolation (discussed

next), however, we can clearly improve upon BT’s performance.

• Interpolation rate s — Interpolating the images (s = 2 and s = 4) yields an obvious im-

provement over integer-based costs (s=1), verifying our theoretical results from Sections 2

and 3. Quarter-pixel steps (s = 4) perform similar to half-pixel steps (s = 2); the numbers

are slightly better on Sawtooth and Venus images, but worse on Tsukuba (reasons for this

anomaly are discussed below). This suggests that for most practical applications half-pixel

steps are sufficient, as long as a good interpolant (e.g., cubic) is used.

• Symmetry (i = 1 vs. i = 0) — Symmetric matching (i = 1) yields slightly better results in

most cases.
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Figure 4c–e shows the results corresponding to the underlined numbers in the first (s=1, SD),

third (s = 1, BT), and seventh (s = 2, i = 1, ID) column of Table 1. Note that the seventh column

consistently outperforms columns 1–3.

Given the small differences in the numerical scores, the question arises whether the results are

statistically significant. Careful examination of the error maps for the different parameter settings

(including those in Figure 4c–e) shows that our new costs do indeed result in a significant reduction

of errors in high-frequency image regions, as predicted by our theoretical analysis. This is most

apparent for the Venus images, which contain many such regions. Errors are also reduced in other

areas affected by aliasing, such as strong intensity discontinuities or near-horizontal edges. Other

errors, however, are not a direct result of the matching cost, and can obscure the numerical results.

The Tsukuba images in particular contain fewer high-requency regions, but several areas with

repetitive patterns and fine disparity variations that are challenging for a window-based method,

and thus result in spurious errors that are not directly a function of the matching cost used.

Although not shown in Table 1, we have also analyzed the effect of changing other parameters:

• Using linear interpolation (o=1) gives clearly inferior results than cubic interpolation, again

validating our observations from Section 3.

• Refining the cost values by local fitting (f = 1) results in minor differences, and does not

yield a clear improvement.

• Using absolute differences rather than squared differences yields comparable results, and in

some cases even small improvements.

• Decreasing the window size increases the errors overall, but does not significantly change

the relative performance of the different matching cost variants.

An interesting question is to what extent the new cost variants improve the quality of subpixel

disparity estimation. The last two rows of Table 1 show that the RMS disparity errors on the Venus

data set decrease slightly when subpixel (floating-point) disparity estimation is turned on (using a

standard parabola fit around the winning cost values). Note that the RMS numbers are contami-

nated by gross errors; visual inspection of the disparity maps shows an obvious improvement over

the typical “stair-casing effect” exhibited by our discrete matching algorithm (which is noticeable

even at quarter-pixel steps).

In summary, it can be seen that symmetric interpolated matching (i = 1 and s = 2 or s =

4) usually outperforms traditional, integer-based matching, in particular in high-frequency image
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regions. Cubic interpolation should always be used. Interval differences help as well, but seem less

tolerant to calibration errors. The benefit of interval matching also depends on the winner selection

strategy (for example, it can cause problems for algorithms that analyze cost distributions, because

good matches often yield a matching cost of 0). Cost refinement by parabola fitting does not seem

to increase matching performance. However, using the same fitting technique to refine the winning

(half or quarter-pixel) disparities into true floating-point disparities generally further reduces the

remaining disparity errors and results in smoother disparity maps.

5 Conclusion

In this paper we have presented novel matching costs based on interpolated image signals. The

need for such costs was motivated by a frequency analysis of the continuous disparity space im-

age (DSI). We have explored several symmetric cost variants, including a generalized version of

Birchfield and Tomasi’s matching criterion [3]. While there is no clear winner among the differ-

ent variants, we have demonstrated that our new matching costs result in improved performance,

particularly in high-frequency image regions, and that they also yield improved subpixel disparity

estimates.

An interesting generalization of our approach is to use a smaller interval from each image, e.g.,

to only interpolate ±1
4

pixel away (or in general ε away). This could be used to compensate for

small unmodeled shifts in the images, e.g., residual vertical parallax. We call this dilation of a

pixel value to an interval determined by its neighbors’ values a partial shuffle, since it is related to

Kutulakos’ shuffle transform [7].

Another major direction for future work is to determine which pixels can be matched with

high certainty (negligible error), and to use these matches as a set of anchors points for resolving

the remaining ambiguous matching regions [5, 16, 17]. It is our hope that this approach could be

used to produce high-quality correspondence maps without the higher computational requirements

of global optimization methods. In general, we believe that paying close attention to the quality

of local evidence (matching costs) will play a significant role in computing high-quality stereo

reconstructions.
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