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ForewordOver the past few years the �elds of computer vision and computer graph-ics, two well-established but distinct areas of computer science, have begunto investigate some common problems. As computer vision techniques havematured they have found applications to problems in many areas, includ-ing computer graphics. At the same time, the �eld of computer graphics hasbecome more concerned with the use of image data for producing realistic,synthetic images.The area of overlap between graphics and vision, now commonly termedimage-based rendering, uses computer vision techniques to aid in synthesizingnew views of scenes. Image-based rendering methods are having a substan-tial impact on the �eld of computer graphics, and also play an importantrole in the related �eld of multimedia systems, for applications such as tele-conferencing, remote instruction and surgery, virtual reality and entertain-ment.The recent interest in image-based rendering methods has brought with ita renewed investigation of some well-established computer vision techniques,in particular stereo vision and structure from motion. Using these computervision techniques in the context of rendering new views creates new require-ments that are just beginning to be understood. This book, which grew out ofDaniel Scharstein's doctoral thesis, provides a rigorous introduction to someof these new requirements, and develops new computer vision techniques toaddress them.In this book, Daniel Scharstein provides an introduction to the �eld ofimage-based rendering, including a broad survey of the state-of-the-art lit-erature. Besides providing a well-written introduction to this area, this textmakes several important research contributions. First, it develops a novel wayof formalizing the view synthesis problem under the full perspective model,yielding a clean, linear warping equation. Second, it provides new techniquesfor dealing with visibility issues such as partial occlusion and \holes", prob-lems that have received little attention in the literature. In addition, it pro-vides a thorough re-evaluation of the requirements that view synthesis placeson stereo algorithms. Finally, the book introduces two novel stereo algorithmsspeci�cally tailored to the application of view synthesis.



VIII ForewordImage-based rendering has become an important research area only fairlyrecently. From the beginning, however, Daniel was �rmly convinced that thenew application area of image synthesis would result in a substantially dif-ferent formulation of the stereo problem, which would then require new solu-tions. His insight was certainly right on. Moreover, Daniel sought out collab-orators such as Richard Szeliski, who had established themselves as leadersat the boundary of computer vision and computer graphics. Students likeDaniel really lead their faculty advisors, rather than the other way around.December 1998 Daniel P. HuttenlocherAssociate Professor of Computer Scienceand Weiss Presidential FellowCornell University



PrefaceThe topic of this volume is an investigation of the use of stereo vision forthe application of view synthesis. View synthesis { the problem of creatingimages of a scene as it would appear from novel viewpoints { has traditionallybeen approached using methods from computer graphics. These methods,however, su�er from low rendering speed, limited achievable realism, and,most severely, their dependence on a global scene model, which typicallyneeds to be constructed manually.Motivated by the shortcomings of traditional computer graphics methods,we present a new approach to view synthesis that avoids the above problemsby synthesizing new views from existing images of a scene. Using an image-based representation of scene geometry computed by stereo vision methods,a global model can be avoided, and realistic new views can be synthesizedquickly using image warping.The �rst part of this book focuses on the view synthesis problem. Chap-ter 1 introduces and motivates the problem, and provides a brief review ofstereo vision. Chapter 2 contains an in-depth survey of related work in image-based rendering and stereo vision. In Chapter 3, we formalize the view syn-thesis problem under the full perspective model and derive a linear warpingequation using a special recti�cation step. We discuss how to resolve visibil-ity, and how \holes" resulting from partially occluded areas can be �lled. Wealso discuss how the view synthesis method can be used in a larger frameworkfor image-based scene representations, and present experiments demonstrat-ing that it is possible to e�ciently synthesize realistic new views even frominaccurate and incomplete depth information.The new application of stereo for view synthesis makes it necessary tore-evaluate the requirements on stereo algorithms. In Chapter 4, we compareview synthesis to several traditional applications of stereo and conclude thatstereo vision is better suited for view synthesis than for applications requiringexplicit 3D reconstruction. In particular, limited achievable depth resolutionand matching ambiguities due to lack of texture are less of a problem forview synthesis. Other issues become more important, such as the correct re-covery of depth discontinuities. We also discuss ways of dealing with partiallyoccluded regions of unknown depth and with completely occluded regions ofunknown texture.



X PrefaceThe second part of the book presents several novel stereo algorithms thatare motivated by the speci�c requirements imposed by view synthesis. InChapter 5, we introduce a new evidence measure based on intensity gradi-ents for establishing correspondences between images. This measure combinesthe notions of similarity and con�dence, and allows stable matching and easyassigning of canonical depth interpretations in image regions of insu�cientinformation. In Chapter 6, we present new di�usion-based stereo algorithmsthat are motivated by the need to correctly recover object boundaries. Ouralgorithms are based on iteratively di�using support at di�erent disparity hy-potheses and locally controlling the amount of di�usion based on the currentquality of the disparity estimate. In particular, we develop a novel Bayesianestimation technique that signi�cantly outperforms area-based algorithms us-ing �xed-sized windows. We provide experimental results for all algorithmson both synthetic and real images.Chapter 7 concludes the volume with a summary and a discussion ofpossible directions for future work.This book is based on my Ph.D. thesis, which was submitted to CornellUniversity in January of 1997. The original document has been revised andupdated thoroughly; in particular, Chapter 2 now provides a comprehen-sive review of related work through December 1998. Some of the materialin this volume is based on work that has been published previously. Theview-synthesis method in Chapter 3 and some of the material in Chapter 4was �rst presented in Scharstein [1996]. The stereo method in Chapter 5 is anextension of work described in Scharstein [1994a, b]. Finally, the material pre-sented in Chapter 6 is based on joint work with Richard Szeliski [Scharsteinand Szeliski, 1996; Scharstein and Szeliski, 1998].AcknowledgementsI would �rst like to thank Dan Huttenlocher, who has been a great friendand advisor. He gave me a lot of support and freedom while I was trying to�nd my own path as a researcher, and did not mind when I picked a di�erentarea of research from his own. (And I did eventually manage to convince himthat stereo is an interesting problem.) Many thanks to Sheila Hemami, NickTrefethen, and Ramin Zabih, all of whom served on my Ph.D. committeeand gave many valuable comments, suggestions, and corrections. Thanks es-pecially to Ramin, who got me interested in the problem of synthesizing newviews from real images in the �rst place. He also contributed many valuableideas and insights during numerous interesting research discussions. I wouldalso like to thank Amy Briggs for tirelessly reading and correcting countlessdrafts of this document, and for �nding (hopefully) all the typos. (She alsodeserves the credit for the good English.)I am indebted to Rick Szeliski, who has had a tremendous in
uence on mycareer as a researcher and has taught me a lot about e�ectively conducting



Preface XIresearch. Thanks to Rick for a wonderful collaboration, which started with aweek-long visit at DEC's Cambridge Research Lab in June, 1995, and whichhas contributed an important part to the work presented here.Thanks to everyone who helped me during my last two years of working onmy dissertation \remotely" from Vermont, including Karl B�ohringer, MarkHayden, and Nikos Pitsianis, and also the members of the great support sta�at Cornell. I would also like to thank my colleagues in the Department ofMathematics and Computer Science at Middlebury College, for their supportand friendship.Finally, I would especially like to thank my family for their love, support,and con�dence, and for putting up with my \emigration" in such a good-natured way. It is nice to know that someone is happy about me being happy.And, most important of all, I thank my wife, Amy, who has made my lifeso wonderful. This book is dedicated to her.Middlebury, January 1999 Daniel Scharstein
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1. IntroductionView synthesis is the problem of generating images of a scene as it wouldappear from certain viewpoints. Stereo vision is the problem of inferringscene structure from two images taken from slightly di�erent viewpoints. Inmany ways these are complementary problems: the former derives imagesfrom a scene description, while the latter derives a scene description fromimages.Although closely related, the two problems have traditionally been studiedby two di�erent research communities. View synthesis is considered a com-puter graphics problem, while stereo vision is a problem in computer vision.In general, the �eld of computer graphics is concerned with creating two-dimensional images from three-dimensional scene models, while computervision is concerned with extracting information about the three-dimensionalworld from two-dimensional images.Both view synthesis and stereo vision are hard problems. The basic limita-tion of images created by computer graphics methods is the degree of realismthat can be achieved. In stereo vision, on the other hand, the computed scenestructure is inherently uncertain and noisy, and has only limited accuracy.In this volume we examine the two problems in combination: we use stereovision to synthesize new views. Surprisingly, we will see that both problemsbecome easier when considered in combination than they are in isolation.The key insight is that the di�culties of either problem are intimately re-lated to the dependence on a global scene model. By synthesizing new viewsfrom stereo data directly, using an image-based representation of scene struc-ture, an explicit model of scene geometry can be avoided. In other words, wepropose deriving new images from existing images without ever recovering acomplete scene description.Image-based scene representations have received much recent interest. Inthe last several years, other methods for synthesizing new views from existingimages have also been proposed, contributing to the emerging �eld of image-based rendering (a term coined by McMillan and Bishop [1995b]). This textmakes several new contributions:First, making use of a special recti�cation step, a purely two-dimensionalway of phrasing view synthesis as local image warping is presented. This en-ables the e�cient generation of exact views under the full perspective model,



2 1. Introductionwhile in many other approaches only an approximation of the new view isachieved.Second, possible ways of dealing with insu�cient information in the im-ages are proposed. Occlusion and ambiguities in the stereo matching processcan make the accurate prediction of new views impossible. While other au-thors have proposed adding more cameras and using more images (which isnot always possible and creates other problems), we investigate what can bedone in the basic case where only two images are available as input.Third, the assumptions underlying traditional approaches to view synthe-sis and stereo vision are examined critically, and the requirements on stereovision in light of the application of view synthesis are re-evaluated.Finally, two new stereo methods that are motivated by these new require-ments are presented.1.1 The problemThe basic problem considered is the following: \Given a number of images ofa scene, can we predict the appearance of the scene from a new viewpoint?"For example, consider the two images in Figure 1.1, showing a man and twochildren playing in a courtyard. These two images were taken simultaneouslyby two cameras from two slightly di�erent viewpoints. The top image wastaken from a viewpoint on the left; the bottom image was taken from aviewpoint on the right. Given these images, can we predict the view froma new viewpoint? Can we create a synthetic view corresponding to, say, aviewpoint lying above the original left view, or one lying halfway in betweenthe original two views? The answer is yes { although with certain limitations.How this can be achieved is the topic of a large part of this volume. Fornow, to prove the point, Figure 1.2 shows a synthetic view corresponding tothe center viewpoint. Before discussing how new views can be synthesized,however, we will brie
y motivate why this is an important problem.1.1.1 ApplicationsThe problem of synthesizing new views from existing images is motivated byapplications in tele-reality (a term coined by Szeliski [1994]). The conceptof tele-reality is similar to that of virtual reality. In virtual reality, the ideais to convey the impression of a di�erent reality to an observer, who canactively explore a (virtual) environment. This can be achieved with a head-mounted display that displays new views of a scene in accordance with thehead movements of the user, thereby providing the illusion of immersion inthe scene. In contrast with virtual reality, tele-reality communicates real,existing scenes (which can be remote either in space or time), while virtualreality typically refers to synthetic, nonexistent environments (e.g., videogames and simulation).



1.1 The problem 3

Fig. 1.1. The kids image pair. The �gure shows two images taken simultaneouslyby two cameras from slightly di�erent viewpoints.



4 1. Introduction
Fig. 1.2. A synthetic center view from a new viewpoint lying halfway in betweenthe two views from Figure 1.1. This view has been synthesized only from the twoexisting views, without any additional knowledge about the scene geometry.The emphasis in tele-reality is on realism: the synthetic views shouldresemble as closely as possible the real views of the existing scene. Such real-ism is not easily achieved with existing techniques from computer graphics,which are often restricted to simple environments composed from geometricprimitives such as polyhedra or cylinders. It is possible to achieve higher re-alism using texture-mapping, i.e., by projecting pieces of real images ontothe geometric model. The approach proposed here goes yet a step further, byconstructing the synthetic views solely from the set of existing views withoutrequiring any scene model.Tele-reality, i.e., virtual presence in real scenes, has many applications.Some applications require real-time presence at remote sites, for exam-ple, teleconferencing, remote instruction, and remote medical diagnosis andsurgery. Other applications require virtual presence in previously \recorded"environments, for purposes ranging from training in the use of expensiveequipment (e.g., 
ight simulation) to remote shopping (e.g., purchase of anew house in a di�erent country) to entertainment.Fast methods for view synthesis are essential for tele-reality applications.These will become increasingly important in the next decade, following theshift from passive consumption of information (such as from conventionaltelevision) to interactive media. Besides the full immersion into a virtualenvironment via a head-mounted display, simpler forms of active explorationare also possible. This might include, for example, \low-cost virtual reality"



1.1 The problem 5capability on home TV sets equipped with a tracker that senses the positionof the viewer's head. (To facilitate this task, the viewer could wear a smallinfrared transmitter.) Depending on the viewer's position, new views canthen be synthesized to simulate a three-dimensional impression. This hasbeen termed \�sh-tank VR", as the virtual world is observed through the\window" of the screen in much the same way as one observes the �sh in anaquarium.1.1.2 The computer graphics approachThe synthesis of new views, in particular for virtual reality applications, hastraditionally been a topic of the computer graphics community. Computergraphics is concerned with creating synthetic images from a 3D scene modelby simulating the physics of light. Besides an explicit model of the scenegeometry (e.g., a CAD model), this also requires models of illumination andsurface re
ectance properties. Given these models, synthetic images can thenbe rendered by tracing single rays of light (ray tracing), or by estimatingthe illumination distribution of all surface patches in parallel (radiosity).These processes are computationally very expensive, and, depending on thecomplexity of the scene, might take minutes or even hours for a single image,even when specialized hardware is employed.For images of man-made objects, such as the interiors of buildings, theachieved realism is often quite impressive. The synthetic nature of images ofpeople and of outdoor scenes, however, is usually obvious. Since the render-ing time depends on scene complexity, this \synthetic look" is even worsefor images generated by the relatively simple models and methods neces-sary to achieve real-time performance. As mentioned above, a partial remedyis texture-mapping, i.e., projecting real images onto the model surfaces. By\painting" parts of synthetic images with real textures, realism can be im-proved to some extent (which demonstrates the importance of real imagesfor synthesizing realistic views).Even if we gloss over the problems of low rendering speed and limitedrealism, the central problem with the computer graphics approach is its de-pendence on a global scene model. Acquiring such a model is non-trivial:how can one achieve accurate measurements of all the 3D coordinates in thescene? Yet another problem is that modeling techniques need to be updatedwhenever a new type of object or surface is encountered.In many cases, scene models are constructed manually,1 although con-siderable e�ort has been directed towards automating the process. For man-made scenes or objects, this is often referred to as \reverse engineering". Itinvolves taking measurements with passive methods such as cameras (whichis the subject of much work in computer vision and photogrammetry), or1 The modeling for the computer-animated movie \Toy Story" took over 10 person-years [Lasseter and Daly, 1995].



6 1. Introductionactive methods such as laser-range �nders. For some objects, such as treesor waterfalls, however, it can be infeasible or even impossible to construct anexplicit model.1.1.3 Avoiding the modelThe discussion above illustrates that the traditional computer graphics ap-proach has several shortcomings. Ideally, for tele-reality applications, a viewsynthesis method should be fast (independent of scene geometry), yield highrealism, and should avoid the problems associated with acquiring global mod-els. This motivates the approach taken in this volume. The key idea is to usea set of images to represent a scene or an object. Between pairs of images,correspondence maps can be computed with stereo vision techniques. Suchcorrespondence maps give direct information about the relative depth of thevisible scene points. Thus, each map constitutes an image-based represen-tation of scene geometry; its information can be used to warp the existingimages into new images corresponding to new viewpoints. Warping refers toa (not necessarily continuous) transformation of image coordinates, i.e., eachimage point (or pixel) is mapped to a new position. Figure 1.1.3 illustratesthis idea.Synthesizing new views from a single stereo pair is the basic building blockof a larger framework for view synthesis, in which a scene is represented bya graph consisting of images and correspondence maps. The vertices in thisgraph are views from physical locations in the scene, while the edges in thegraph are the correspondence maps between adjacent views. This approachhas the advantage that a global model is not necessary, as new views canbe synthesized from two nearby reference images and their correspondencemap. Also, warping can be performed much faster than image rendering, andthe warping time is largely independent of scene complexity. An additionaladvantage of using only a small number of local images to synthesize newviews is that we only need to know the relative con�gurations between adja-cent views, which do not need to be globally consistent. For example, imagescould be acquired with a hand-held camera and be labeled with rough globalcoordinates.A disadvantage of the approach is that stereo provides only limited in-formation about the scene, in particular due to occlusion. A view synthesismethod based on stereo must be able to deal with previously invisible scenepoints, and also with partially occluded points, i.e., with points that are onlyvisible in one reference view, and whose depth is unknown. Missing informa-tion due to occlusion can make it impossible to synthesize the correct view,but, using heuristics, it is often possible to synthesize a plausible view thatlooks convincing to an observer. To avoid visual artifacts (i.e., noticeablerendering errors such as single miscolored pixels), the sampling of reference
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Stereo

WarpingFig. 1.3. View synthesis using stereo and warping. Two real cameras (shown ingray) observe a scene. Their images together with a depth map computed by stereovision techniques constitute an image-based scene representation, from which a newview corresponding to a hypothetical camera (shown in black) can be synthesizedby image warping.



8 1. Introductionimages needs to be reasonably dense, so that only small changes in viewpointare required.2Another problem is that stereo su�ers from certain well-known problems:it only yields limited depth resolution, and the matching process is proneto errors, in particular in the presence of repetitive patterns and uniformregions. It turns out, however, that many of these traditional shortcomingsof stereo have less signi�cance in view synthesis. The reason is that the outputof stereo is not used to create an explicit three-dimensional scene model, butonly to predict the local image changes between the existing reference viewsand the new synthetic views. For example, the geometry of a uniform imageregion can not be recovered, but a new view can usually be predicted. Thus,by avoiding a global model, both stereo vision and view synthesis becomeeasier. This makes view synthesis an interesting new application for stereo.1.2 A review of stereo visionFor readers not familiar with computer vision, we now give a brief review ofstereo. A more detailed discussion can be found in the books by Nalwa [1993]and by Faugeras [1993].1.2.1 Camera model and image formationThroughout this text, we use perspective projection as our geometric modelof image formation: an image is formed by projecting each scene point alonga straight line through the center of projection onto an image plane. Thisis commonly referred to as the pinhole camera model (see Figure 1.4): lightoriginating from the scene passes through a pinhole in the front of an opaquebox onto a transparent surface at the rear of the box, where it creates areversed image of the scene. The pinhole camera is a powerful model thatresembles very closely the operation of real cameras. The only principal dif-ferences are that real cameras have a lens instead of a simple hole, and theimaging surface is an array of sensors. Geometric distortions introduced bythe lens are not accounted for by the pinhole model, but can be correctedby an initial image transform. Also not modeled are blurring due to limiteddepth of �eld and lens aberrations.Mathematically, perspective projection is most easily described using ho-mogeneous coordinates (also called projective coordinates). In homogeneouscoordinates, each point is extended by a dummy coordinate w 6= 0 that mapsthe point to a line through the origin in a space whose dimension is one higherthan that of the original space. For example, a two-dimensional (image) point2 A denser sampling, while requiring that more views be stored, also allows ahigher degree of compression [Levoy and Hanrahan, 1996].
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Fig. 1.4. The pinhole camera model. A 2D image of a 3D object is formed by per-spective projection: each ray of light passes through a common center of projectionand intersects the image plane at a unique position.(x; y) is represented by the set of vectors [wx wy w]T ; w 6= 0 in homoge-neous coordinates. Similarly, a three-dimensional (scene) point (X;Y; Z) isrepresented by the set of vectors [wX wY wZ w]T ; w 6= 0.3 Although ho-mogeneous coordinates are redundant, they are very useful as they allow usto express otherwise non-linear transformations linearly. In particular, theperspective projection of a 3D scene point onto a 2D image plane can bewritten with the following linear equation using homogeneous coordinates:24 uvw35 = 264 P 3752664XYZ1 3775 : (1.1)In this equation, (X;Y; Z) are the coordinates of a scene point (in an arbi-trary 3D coordinate system), and (x; y) = (u=w; v=w) are the coordinates ofits projection (in an arbitrary 2D image coordinate system). The projectionmatrix P is a 3�4 matrix de�ned up to a scalar factor that captures both theextrinsic and intrinsic camera parameters. The extrinsic parameters specifythe position and orientation of the camera with respect to the scene coor-dinate system, while the intrinsic parameters specify the focal length, the3 We use upper and lowercase letters for scene and image quantities, respec-tively. Matrices and vector quantities (including points and lines) are typesetin boldface.



10 1. Introductionaspect ratio, and the position of the origin of the image coordinate system.(If the camera is moved to a new position, only the extrinsic parameterschange.) If all parameters (and thus also P) are known, we speak of a cal-ibrated camera. Camera calibration can be achieved by observing a specialcalibration object, whose dimensions and position are known.To transform the optical, analog image into an electrical, digital one, thecontinuous intensity distribution on the image plane is both sampled spatiallyon a rectangular grid, and quantized into integer values. This yields the typicalrepresentation of an image as a 2D array of discrete intensity values, usuallycalled pixels (short for picture element). See Figure 1.5 for an example. Colorimages can be encoded by three such intensity images, each representing oneof three color components (usually red, green, and blue). In this case, eachpixel is a triplet of integers.1.2.2 Stereo geometryStereo vision (or stereopsis) is the process of estimating the depth of scenepoints from their change in position between two images. This is done e�ort-lessly by the human visual system, which translates the di�erences betweenthe views from the two eyes into a three-dimensional impression of the scene.Figure 1.6 illustrates how the disparity, or change of image location, of apoint is related to its depth for two identical parallel cameras. The �gureshows a scene point P and its two images pL and pR in the left and rightimages, respectively. Let us denote the focal length (i.e., the distance of thecenter of projection to the image plane) by f and the baseline (i.e., the dis-tance between the two cameras) by b. Then, given that the scene point Phas distance Z and lateral o�set X (with respect to the left camera), andgiven further that P's images pL and pR have coordinates xL and xR, wecan conclude from consideration of similar triangles thatxLf = XZ and xRf = X + bZ :The disparity d, i.e., the change in image location isd = xR � xL = fbZ : (1.2)Note that the disparity of a point is proportional to focal length and baseline,and inversely proportional to its depth. Since focal length and baseline areconstant over the entire image, the disparity map provides a direct (butinverse) encoding of scene depth. The following simple experiment illustratesthis inverse relationship between disparity and depth: hold up one �ngerand blink between the left and right eyes while �xing the gaze on a distantobject. The closer the �nger is held to the eyes (i.e., the smaller the depth),the further the image of the �nger jumps (i.e., the higher the disparity).
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Fig. 1.6. Stereo geometry. The �gure shows a top-down view of two identicalparallel cameras with focal length f and at distance b to each other. The disparityof a scene point P of depth Z is d = xR � xL = fb=Z.



1.2 A review of stereo vision 131.2.3 The correspondence problemHow do we know that pL and pR correspond, that is, that they are reallythe projections of the same scene point P? Solving this correspondence prob-lem, i.e., �nding for each point in one image the matching point in the otherimage, is the hard part of stereo. Di�culties include matching ambiguitiesdue to repetitive patterns and locally uniform intensities, as well as uncer-tain intensity values due to noise introduced by the imaging process. Also,we are implicitly assuming that corresponding points have the same inten-sity in both images. In technical terms, this is equivalent to assuming thatthe scene is composed of Lambertian surfaces, i.e., perfectly matte surfaceswhose brightness depends only on the angle of incident light (which remainsconstant for two images taken simultaneously) and not on the angle of ob-servation. Obviously, this need not be true, and specularities or re
ectionstypically present problems for stereo algorithms (as do semi-transparent sur-faces). Even when the Lambertian assumption holds, matching points canhave di�erent intensities if the cameras di�er in bias or gain (i.e., constantadditive or multiplicative intensity factors), or due to vignetting (i.e., an un-even brightness distribution in the image, yielding darker corners).Yet another problem are partially occluded points (i.e., points visible fromonly one camera) that can not be matched. Correctly identifying and dealingwith partially occluded points is especially important in the context of viewsynthesis, and will be discussed in detail in Chapter 4. Excluding occlusionfrom our discussion for now, the main reason that establishing correspon-dences is di�cult is that the amount of information available at a single pixel(i.e., its intensity, which is typically corrupted by noise) is usually not enoughfor �nding an unambiguous match. Since matching of single pixels is an un-stable process, it is necessary to consider small local neighborhoods aroundeach pixel to reduce the ambiguity. Even so, often only image locations witha large amount of information, such as intensity edges or corners, can bematched unambiguously.There are two common approaches to this dilemma. The �rst approach isto deal only with points that can be matched unambiguously. This is the ideabehind feature-based stereo algorithms, which �rst extract points of high localinformation (e.g., using an edge detector), and then restrict the correspon-dence search to those pre-selected features. This has the obvious drawback ofyielding only a sparse disparity map, and disparity estimates for non-featurepoints have to be interpolated.A di�erent possibility is to consider larger image regions (or areas) thatcontain enough information to yield unambiguous matches. This second ap-proach is usually called area-based stereo matching, and has the advantageof yielding a dense disparity map. It relies on the assumption, however, thatmost points in the area under consideration have the same disparity, whichis not necessarily the case. Still, as the application of view synthesis requiresa disparity estimate at every pixel, the focus of this volume is on area-based
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?CL pL CRL RFig. 1.7. Searching for correspondences. Given two cameras (CL; L) and (CR;R)and an observed point pL, where do we search for the corresponding point pR?stereo methods. We present several new area-based approaches in Chapters 5and 6. These have been motivated by shortcomings of previous methods,and also by the particular requirements imposed by the application of viewsynthesis.1.2.4 The epipolar constraintSo far we have discussed how matching image locations can be found. We nowturn to the question of where to look for potential matches. This problemis illustrated in Figure 1.7: Suppose we have two cameras, speci�ed by theircenters of projection CL and CR and their image planes L and R. Giventhat we observe the image pL of a scene point in the left image, where do wesearch in the right image for its corresponding point pR? It turns out thatinstead of having to search the entire image, we can restrict the search to asingle line, the epipolar line eR corresponding to pL. This reduces the searchfrom 2D to 1D, which is an enormous help in establishing correspondences.To see why the corresponding point pR must lie on a line, observe thatany scene point P projecting to pL has to lie on the projection ray de�nedby pL, i.e., the line through CL and pL. Assuming for a moment that thisray is visible from the right camera, pR must lie on the image of this rayin the right image plane. We call this image the epipolar line eR de�ned bypL. In other words, the epipolar line eR is the image (in the right camera) ofall possible locations of a scene point P that would project to pL in the left
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L eRCR RCL pLFig. 1.8. The epipolar constraint. The point corresponding to pL must lie on pL'sepipolar line eR, the image of the projection ray de�ned by pL.camera. This is illustrated in Figure 1.8. Note that, geometrically, eR is theintersection of the plane de�ned by pL, CL, and CR with the right imageplane R.The epipolar geometry, that is, the relationship between points in oneimage and their corresponding epipolar lines in the other, can easily be com-puted if the con�gurations of both cameras (the positions of centers of pro-jection CL and CR and image planes L and R) are known (in some globalcoordinate system). This is called a fully calibrated stereo setup, and the 3Dcoordinates of a scene point P can be computed from the coordinates of itstwo images pL and pR.To establish correspondences between the two images, however, it is suf-�cient to know only the epipolar geometry, which can be characterized con-cisely with the fundamental matrix F, a 3 � 3 matrix de�ned up to a scalarfactor. This matrix F relates a point p (in homogeneous coordinates) in oneimage with its corresponding epipolar line e in the other image via the equa-tion



16 1. Introduction Fp = e: (1.3)Recall that a point p = [u v w]T in homogeneous coordinates describes thepoint (x; y) = (u=w; v=w). We de�ne a line e = [a b c]T in homogeneouscoordinates to describe the line with the equation ax+ by + c = 0.4The fundamental matrix can be computed from the two images directly,by establishing a small number of point-to-point correspondences [Luong andFaugeras, 1996; Zhang, 1998a]. If we know only the epipolar geometry (i.e.,the fundamentalmatrix), but not the explicit camera con�gurations, we speakof a weakly calibrated setup.1.2.5 A simple stereo geometryA particularly simple epipolar geometry results from two identical, paral-lel cameras whose image planes coincide and whose x-axes are parallel tothe baseline (the line connecting their centers of projection). In this case,corresponding epipolar lines are horizontal and have the same y-coordinate(i.e., they are corresponding scanlines). In fact, this is the situation that wasdepicted in Figure 1.6.The stereo matching problem is much easier in this simple geometry, be-cause matching points must have identical y-coordinates (and the explicitcomputation of epipolar lines is not required). Furthermore, rectangular im-age regions (or regions of any shape) can be compared directly, whereas inthe general case (for example, with verging cameras), a rectangular region inone image can correspond to any quadrilateral in the other image.For these reasons, most stereo algorithms assume the simple stereo geom-etry of parallel identical cameras with coinciding image planes. The funda-mental matrix describing this scenario (up to a scalar multiplier) isFsimple = 24 0 0 00 0 10 �1 035 : (1.4)(One can easily verify that this matrix maps a point [wpx wpy w]T to theline [0 w �wpy]T , i.e., the line with the equation y = py.)Note that our de�nitions of depth and disparity as well as the inverserelationship between them only apply in this simple geometry. In particular,the depth of a (scene) point is its distance to the plane through the two camera4 Using this representation for points and lines has several advantages. It requiresno special cases for vertical lines or points at in�nity, and allows easy checks:for example, a point p lies on a line e if and only if their dot-product pT e iszero. The notation also captures the duality between points and lines in theplane in an elegant way: the line g de�ned by two points p and q is simply theircross-product g = p� q; analogously, the point p de�ned by the intersection oftwo lines g and h is p = g � h. Note that in equations involving homogeneousvectors, we use the equal sign \=" to denote equality up to a scalar factor.
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Fig. 1.9. A stereo rig with two identical, parallel cameras.centers parallel to the (common) image plane, and the disparity of a pointis its di�erence in image coordinates (using two identical image coordinatesystems o�set in x-direction by a baseline of length b).In the general case with di�erent, non-parallel cameras, there is no longera single obvious direction with respect to which depth can be de�ned. It isalso more di�cult to de�ne disparity given two independent image coordinatesystems in general position to each other.Instead of trying to extend our de�nitions to the general case, we go adi�erent way: we only consider the simple geometry. Obviously, one way ofachieving the simple camera geometry is to mount and carefully adjust twocameras in such a way that they are perfectly parallel. Such a stereo rig withtwo parallel cameras is shown in Figure 1.9. However, even for two camerasin general position, the simple geometry can be achieved by recti�cation.1.2.6 Recti�cationRecti�cation is the process of reprojecting the two images onto a commonimage plane that is parallel to the baseline. This is illustrated in Figure 1.10.Note that no knowledge of scene geometry is required in order to reprojectan image, since only the image plane changes position, while the center ofprojection and all projection rays remain stationary. Mathematically, any
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Fig. 1.10. Recti�cation. The simple stereo geometry can be derived from a generalcon�guration by reprojecting the two images onto a plane parallel to the baseline.such reprojection onto a new plane can be described by a 3 � 3 projectionmatrix (or homography) H, again de�ned up to a scalar factor. This matrixconstitutes a coordinate transform (in homogeneous coordinates) from theoriginal image to the reprojected image:24 u0v0w0 35 = H24 uvw35 : (1.5)Thus, recti�cation of a stereo pair can be achieved by applying two appro-priate homographies HL and HR to the two images. In a calibrated setup,HL and HR can easily be derived from the known position and orienta-tion of the two cameras. Recti�cation is also possible in a weakly calibratedsetup, i.e., if only the fundamental matrix F is known [Robert et al., 1995;Seitz and Dyer, 1996a].Note that the only requirement for the new common image plane is that itmust be parallel to the baseline. This leaves two free parameters: its distanceand its orientation (i.e., angle of rotation). The distance is less interesting,since it only amounts to globally scaling the coordinates. The rotation an-gle, on the other hand, a�ects the distortion of the recti�ed images. Thisparameter plays an important role in the view synthesis procedure presentedin Chapter 3. For traditional stereo applications it is often chosen so as tominimize some measure of overall image distortion.Finally, explicit recti�cation requires the re-sampling of the images, usu-ally using backward mapping. For each pixel (x0; y0) in the recti�ed image,the corresponding image position (x; y) in the original image is computedusing H�1. Since these coordinates are real-valued, an intensity value must



1.2 A review of stereo vision 19be interpolated from the four nearest pixels (at integer-valued coordinates).Bi-linear interpolation is the simplest choice, but more complicated meth-ods such as cubic spline interpolation are also possible. More information onimage transforms can be found in the book by Wolberg [1990].1.2.7 Example: SSDWe �nish our brief review of stereo with an example: the classic sum-of-squared di�erences (SSD) algorithm.This is a very simple example of an area-based stereo algorithm. Assuming recti�ed images, the best match for a pointin one image is found by comparing a square window centered at this pointagainst windows of equal size centered at points that lie on the correspondingscanline in the other image. The sum of the squared intensity di�erencesacross the window is used as a measure of dissimilarity. The location thatminimizes this measure is selected as the best match, and the disparity, i.e.,the horizontal o�set between the matching locations, is stored. Figure 1.11shows pseudocode for the SSD algorithm.Note that the algorithm in the �gure does not handle the image bound-aries: it is assumed that the images extend su�ciently beyond the area overwhich the disparity map is computed. A real implementation needs to makesure that the window does not extend beyond the image boundaries. Also,assuming a window size of w � w, the running time of the algorithm canbe improved by a factor of w2, by accumulating the squared di�erences byconvolution with two one-dimensional box �lters.Figure 1.12 shows disparity maps computed by the SSD algorithm. Thetop half of the �gure shows the stereo pair used as input. These are images 18and 24 from the Stanford tree sequence (provided by Harlyn Baker and BobBolles at SRI), which was taken by a single camera mounted on a horizontalmotion stage (yielding the simple stereo geometry). The bottom half showstwo disparity maps using two di�erent window sizes: 3 � 3 (left) and 7 � 7(right). The disparities are displayed using a graylevel encoding. Close points(large disparities) are shown light; far points (small disparities) are showndark.The �gure illustrates the basic trade-o� involved in selecting the best win-dow size, which is a problem for all window-based techniques. A small windowresults in many wrong matches due to ambiguities and noise, but preservesobject shapes in relatively �ne detail. A large window cuts down on the wrongmatches, but also starts to blur the object boundaries. This problem of select-ing the best window size is the motivation behind the di�usion-based stereotechniques in Chapter 6.



20 1. IntroductionSSDInput: two intensity images ImL[x, y], ImR[x, y]Output: disparity map Disp[x, y] w.r.t. the left imageParameters: disparity range dmin..dmaxwindow size wsizefor x := xmin to xmax dofor y := ymin to ymax dobest ssd := MAXINT;for d := dmin to dmax dossd := 0;for xx := x�wsize/2 to x+wsize/2 dofor yy := y�wsize/2 to y+wsize/2 dodiff := ImL[xx, yy] � ImR[xx+d, yy];ssd := ssd + diff*diffend for yyend for xx;if (ssd < best ssd) thenbest ssd := ssd;best d := dend ifend for d;Disp[x, y] := best dend for yend for xFig. 1.11. Pseudocode for the SSD algorithm.
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Left image Right image

Disparities

SSD, 3x3 SSD, 7x7

d = 0
(far)

d = 11
(close)Fig. 1.12. Disparity maps computed by the SSD algorithm. The image pair isshown at the top; two disparity maps computed with di�erent window sizes areshown at the bottom. Disparities are encoded with graylevels: dark represents far,light represents close.



22 1. Introduction1.3 Contributions and outlineIn this volume, we show that stereo vision is well-suited for the applicationof view synthesis, and demonstrate that it is possible to e�ciently synthe-size realistic new views from existing images using stereo data. The maincontributions with respect to view synthesis are:{ a purely two-dimensional way of formalizing view synthesis under the fullperspective model as recti�cation, linear warping, and derecti�cation;{ possible ways of dealing with regions of unknown geometry due to partialocclusion and regions of unknown intensities due to total occlusion;{ a re-evaluation of the requirements on stereo algorithms in light of the newapplication of view synthesis.Additional contributions are several novel stereo algorithms that are moti-vated by the requirements imposed by view synthesis, including:{ a new gradient-based stereo method combining the notions of similarityand con�dence, o�ering an easy way to deal with image regions of uniformintensity;{ several new di�usion-based stereo algorithms motivated by the problem ofboundary blurring, including a Bayesian estimation technique that signi�-cantly outperforms traditional window-based techniques such as SSD.After a review of related work in Chapter 2, the main focus of this text ison two topics: view synthesis (Chapters 3 and 4), and actual stereo algorithms(Chapters 5 and 6).Chapter 3 presents the algorithm used to synthesize new views from astereo pair. Chapter 4 contains an evaluation of stereo in light of the require-ments imposed by the application of view synthesis, including possible waysof dealing with occlusion. Chapter 5 introduces a new stereo method basedon comparing image gradients. In Chapter 6 we explore di�erent stereo al-gorithms based on di�usion, including an algorithm derived from a Bayesianmodel of stereo matching. We conclude in Chapter 7 with a summary and adiscussion of possible directions for future work.



2. A Survey of Image-Based Rendering andStereoThe purpose of this chapter is to provide a compact overview of work doneby others relating to the topics presented in this volume. We �rst discusswork relating to the topic of view synthesis from real images (image-basedrendering). We then give a broader overview of related work in stereo vision.The chapter concludes by providing a list of books on computer vision andrelated areas.While much of the discussion in this chapter is at a general level, there areseveral passages that make reference to concepts that will not be explaineduntil later chapters. These sections are aimed at readers who are familiarwith computer vision, and may safely be skipped by others.2.1 Image-based renderingView synthesis from real images is a topic that has received much recent inter-est. Creating new views without a scene model is also an emerging �eld in thecomputer graphics community, where it is called image-based rendering. Re-cent surveys of image-based rendering methods are provided by Kang [1997]and Zhang [1998b]. An overview of recent developments from a computergraphics perspective is given by Lengyel [1998].In discussing work related to the view synthesis problem, we distinguishbetween three di�erent approaches. The �rst { the one pursued in this volume{ is to synthesize new views from few reference images using stereo visiontechniques. The aimof methods following this approach is to construct correctsynthetic views for a wide range of viewpoints (in the vicinity of the originalviews). These methods can be further subdivided into those that constructnew views directly from the given images, and those that �rst build an explicit3D model from which new views can be rendered using traditional computergraphics techniques (e.g., texture mapping).The second approach is called view interpolation. The idea is to synthesizeonly those views lying on the straight line connecting two reference views.Many view interpolation methods do not solve the exact reconstruction prob-lem (under perspective projection), but only approximate the intermediateview. Furthermore, depth discontinuities and occlusion are often not consid-ered by these methods.



24 2. A Survey of Image-Based Rendering and StereoThe third approach is to utilize the information from many images, typ-ically an image sequence taken with a video camera. Example applicationsinclude constructing a layered representation of scene structure, or combiningall images into a single 3D-corrected mosaic.We consider each approach in turn.2.1.1 View synthesis based on stereoThe earliest papers that describe methods for synthesizing new views usingstereo data are motivated by the application of 3D teleconferencing and thecreation of \virtual eye contact". Skerjanc and Liu [1991] use a calibratedtrinocular setup and an edge-based stereo algorithm to synthesize interme-diate views. Ott et al. [1993] create a virtual center view from two o�-centerviews provided by cameras mounted on either side of a teleconferencing mon-itor using a dynamic-programming stereo method [Cox et al., 1992a].Laveau and Faugeras [1994] describe a method for constructing a new viewdirectly from weakly calibrated images, without any reconstruction in threedimensions. A new viewing con�guration is speci�ed by manually selectingfour points in each of the existing images. These points correspond to theimages of the focal point and of three points de�ning the retinal plane of thevirtual camera. Assuming a given disparity map, the authors then presenttwo ways of constructing the new view using either forward or backwardremapping of pixels.McMillan and Bishop [1995b] introduce the term image-based rendering(now widely used for the �eld of view synthesis from real images). They de-scribe a method for synthesizing new views from two cylindrical panoramicviews created by mosaicing (see also McMillan [1995a]). Image-based ren-dering is characterized as \reconstructing a continuous representation of theplenoptic function from a set of discrete samples of that function."1 Dis-parity maps are computed between adjacent cylindrical panoramas using acylindrical variant of the epipolar constraint, and new views are synthesizedby warping (forward-mapping) the existing panoramas based on the dispari-ties. The method does not deal with partially occluded points, and holes inthe new view are simply �lled by interpolation. More information about thismethod can be found in McMillan's dissertation [McMillan, 1997].In other work [McMillan and Bishop, 1995a], the authors describe an im-plementation of (almost) real-time viewpoint generation in a head-mounteddisplay using image warping based on a generalized depth map (which is as-sumed to be given). The authors also present a simple algorithm for visibilityresolution based on forward mapping (given parallel viewing planes), whichis employed in the view synthesis method described in Chapter 3.1 The plenoptic function [Adelson and Bergen, 1991] describes the (visual) infor-mation available to an observer at any possible viewpoint.



2.1 Image-based rendering 25Fuchs et al. [1994] describe the concept of teleconferencing using \a sea ofcameras," in which a user wearing a head-mounted display observes syntheticviews of a scene that are generated in real time corresponding to the motionof the user. The authors describe a prototype system based on multiple-baseline stereo [Okutomi and Kanade, 1993]. Images are mapped onto thepolygonally-meshed depth map and re-rendered using standard computergraphics techniques.Kanade et al. [1995] describe a similar system for \virtualized reality,"also based on re-rendering real images that have been mapped onto polygo-nal meshes. The meshes are computed from hand-edited depth maps acquiredby multiple-baseline stereo. Both Fuchs et al. and Kanade et al. describe thevision of a complete tele-reality scenario using a large number of referenceviews, and give preliminary results to show the feasibility of the proposedframework. Using a real-time stereo machine [Kanade et al., 1996], anotherproposed application is Z keying : merging the real image with a virtual (com-puter graphics) image. The two images are combined, and visibility is resolvedby comparing their depths in real time.Satoh et al. [1996] present a 3D imaging system with motion parallax.Correct new views are generated depending on the position of the viewer'shead, both for �xed and head-mounted screens. The 3D scene informationis derived using a 3 � 3 camera matrix, which allows robust detection ofocclusion and precise localization of object boundaries [Nakamura et al., 1996;Satoh and Ohta, 1996].The approaches discussed above represented the state of the art whenthe view synthesis method presented in this volume was �rst published[Scharstein, 1996]. Many of these approaches do not deal with problems re-lated to depth discontinuities and occlusion, and few recognize the importanceof the changed requirements on stereo algorithms, issues that are addressedin Chapters 3 and 4. Discussed below are more recent methods, several ofwhich have made signi�cant progress on these issues.Kanade, Narayana, and Rander [Kanade et al., 1997; Rander et al., 1997;Narayanan et al., 1998] present several new results in the context of their vir-tualized reality project. The input data are synchronized video streams takenin the \3D Dome", a spherical studio with 51 calibrated cameras. New imagesequences of dynamic scenes can be generated from two di�erent scene repre-sentations: either from local visible surface models, which are purely image-based, or from a global texture-mapped polygonal complete scene model.They also present experiments in which virtual objects are introduced intothe synthesized images.Chang and Zakhor [1997] build an image-based scene representation froman image sequence acquired with a hand-held camcorder. Similar to the ap-proach presented here, new views are generated from dense depth maps as-sociated with selected reference viewpoints along the camera trajectory. Thedepth maps are constructed from multiple images with a stereo algorithm



26 2. A Survey of Image-Based Rendering and Stereothat uses variable-sized support regions and cubic spline interpolation inlow-con�dence image regions. New views are generated from the three closestviews by rendering each pixel as a rectangular patch. Holes in the resultingview are �lled by interpolation.Avidan and Shashua [1997] present a new algorithm for view synthesisbased on Shashua's trilinear tensor framework [Shashua, 1995]. In contrastto methods based on epipolar line intersection [Laveau and Faugeras, 1994;Faugeras and Robert, 1996], the tensor approach does not su�er from singularcon�gurations that arise when the camera centers are collinear. Avidan etal. [1997] apply their method to the synthesis of novel views of 
exible 3Dobjects, in particular human faces, using the learning techniques developedby Beymer and Poggio [1993; 1996].Chen, Medioni, Havaldar, and Lee [Chen and Medioni, 1997; Havaldar etal., 1996; Havaldar et al., 1997] present a system for generating new viewsfrom uncalibrated existing images based on projective reprojection of texture-mapped scenes. With human assistance, corners and edges are �rst extractedand put into correspondence. The scene (assumed to be polygonal) is thentriangulated, and each triangle is reprojected based on its projective depth[Shashua, 1993].Genc and Ponce [1998] describe a novel method for image synthesis underan a�ne projection model. Taking Euclidean constraints under consideration,it is possible to construct correct new views of a sparse set of feature pointsthat were tracked through a sequence of images. New images can then besynthesized using triangulation and texture mapping.In the remainder of this section we describe approaches that explicitlyrecover 3D scene structure by integrating stereo data from one or more im-age pairs. These methods can be considered hybrid image- and model-basedapproaches.Koch [1995] describes a system that builds texture-mapped 3D surfacemodels using stereo, segmentation, and interpolation. New views can be syn-thesized with computer graphics methods.Kang and Szeliski [1996; 1997] present a system to recover 3D scene struc-ture from a sequence of images spanning a 360� �eld of view. Similar tothe approach by McMillan and Bishop [1995b], they �rst create cylindricalpanoramas from image streams taken with cameras rotating about a verticalaxis. The 3D scene structure is then recovered from several such cylindricalpanoramas using a structure-from-motion algorithm and multiple-baselinestereo. Using texture mapping, new views of the recovered scene can be gen-erated with standard computer graphics methods.Kang and Desikan [1998] describe a method for virtual navigation of com-plex environments using clusters of panoramic images. New views are gen-erated using forward-mapping based on geometric information derived froma spline-based registration of the di�erent mosaics [Szeliski and Coughlan,1994].



2.1 Image-based rendering 27Debevec et al. [1996] describe a hybrid geometry- and image-based ap-proach for modeling and rendering existing architectural scenes from a sparseset of images. A geometric model is �rst constructed manually by a humanoperator using a photogrammetric modeling system. A model-based stereoalgorithm then computes the deviation of the real scene from the model.Using the model, the images can be reprojected, which enables the stereomatcher to process widely-spaced image pairs. This has the advantage thata scene can be modeled from only few reference images. In subsequent work,Debevec [1998] shows how synthetic objects can be rendered into real scenesusing a high dynamic range light model.Izquierdo and Kruse [1998] present a system for synthesizing new viewsfor video-conferencing applications. They employ a stereo algorithm that in-terleaves matching with object segmentation. New views are rendered froma texture-mapped wire frame model.Zhang et al. [1998] use domain knowledge to recover Euclidean structurefrom uncalibrated images (see also Faugeras et al. [1995]). The technique isapplied to the synthesis of new facial images.A voxel-based approach to view synthesis is presented by Seitz and Dyer[1997a]. Proceeding frommany calibrated input images (on the order of 20), acolored 3D model is constructed, from which new views can be synthesized. Insubsequent work, Seitz and Kutulakos [1998] show how such a representationallows manual editing of an image while simultaneously maintaining three-dimensional consistency with other images of the same scene.A related approach is the one by Moezzi et al. [1997], who create new viewsfrom multiple video sequences of a dynamic scene using a volume occupancymethod.2.1.2 View interpolationIn contrast to view synthesis methods, which can handle arbitrary new view-points, view interpolation methods (also called image interpolation methods)require the new viewpoint to lie on the straight line connecting two refer-ence views. While this may seem restrictive, it is su�cient for applications inwhich the new viewpoint follows a �xed (piecewise straight) trajectory. Givenmany images of a scene, it is also possible to generate arbitrary new viewsusing a sequence of interpolation steps. For example, the view from a pointin the interior of a triangle de�ned by three reference views can be generatedwith two interpolation steps. Similarly, generating a new view in the interiorof a tetrahedron de�ned by four reference views requires three interpolationsteps.Chen and Williams [1993] introduce image interpolation in the context ofe�cient image rendering in computer graphics. They assume that the depthof points is known from an available 3D scene model, and focus on ways toimprove rendering speed. Although their framework extends to real images,they only present experiments using synthetic images. They discuss a simple



28 2. A Survey of Image-Based Rendering and Stereoway of �lling holes in the synthesized views without giving special treatmentto depth boundaries. Chen and Williams also note that linear image inter-polation only produces the correct perspective view if the baseline is parallelto the image planes. For general viewing con�gurations, image interpolationthus only results in an approximation of the intermediate view.Also in the computer graphics domain, Mark et al. [1997] describe a simi-lar technique for speeding up rendering by warping pre-rendered images usingMcMillan and Bishop's warping algorithm. This technique extends Chen andWilliams' work in that the images are rendered correctly for all viewpoints,and holes are �lled using more than two reference images.Skerjanc [1994] describes a stereo algorithm for a multiview 3D TV sys-tem using a specialized calibrated rig with �ve cameras. New views can begenerated for intermediate viewpoints.Katayama et al. [1995] describe view generation based on the interpolationof epipolar-plane images. Epipolar-plane image analysis [Bolles et al., 1987]uses multiple images taken along a common baseline (as in multiple-baselinestereo) and computes disparities by �tting lines in x-d space. The paperdescribes a way of synthesizing new views along the baseline by interpolatingthe detected lines. The authors also discuss how new views corresponding to aforward motion of the camera can be synthesized. The vertical pixel motion,however, is only approximated.Werner et al. [1995] use view interpolation to generate new views of anobject on a turntable. Matching points between reference views are estab-lished using the stereo method by Cox et al. [1992a], and new intermediateviews are synthesized by interpolating the motion �eld. Partially occludedpoints can not be tolerated, and the method is restricted to purely interme-diate views. The authors have also investigated how a small set of referenceviews can be selected from a larger initial set of images so as to minimizethe error for interpolated views [Hlav�a�c et al., 1996]. They propose an opti-mization procedure based on the number of occluded pixels detected by thestereo algorithm.Seitz and Dyer [1995], under an a�ne projection model, derive criteria un-der which image interpolation yields the correct synthetic view. They showthat a particular range of views can be synthesized correctly if the referenceimages are �rst recti�ed. They also show that the view synthesis problemis theoretically well-posed under the additional assumption of monotonicity(which basically excludes occlusion). They propose a view interpolation al-gorithm that matches and shifts uniform patches of intensity as a whole. Insubsequent work [Seitz and Dyer, 1996a], they extend the method to per-spective projection, and also to more than two images using a sequence ofinterpolation operations. They also propose a method called view morphingthat combines geometric image interpolation and user speci�ed image mor-phing [Seitz and Dyer, 1996b; Seitz and Dyer, 1997b]. For a summary of allof this work see Seitz' dissertation [Seitz, 1997].



2.1 Image-based rendering 29The view synthesis method proposed by Seitz and Dyer consists of threesteps: recti�cation, linear disparity interpolation, and derecti�cation. Thisis conceptually very similar to our view synthesis algorithm (presented inthe next chapter), which was developed independently. The main di�erencebetween the two approaches is that Seitz and Dyer only consider purelyintermediate views, while our method allows arbitrary new viewpoints. Fur-thermore, they employ a di�erent model of stereo matching that relies onmonotonicity, while our method imposes fewer constraints. This is discussedin more detail in Chapter 4.Two recent approaches in the computer graphics community, the \lumi-graph" [Gortler et al., 1996] and \light �eld rendering" [Levoy and Hanrahan,1996], phrase view synthesis as sampling and reconstructing the plenopticfunction. As opposed to McMillan and Bishop [1995b], who introduced theconcept of plenoptic modeling, both approaches construct an explicit 4D datastructure containing a subset of the plenoptic function that captures the com-plete 
ow of light in a bounded region of space. This data structure containsthe intensity (and color) for all lines of sight intersecting a closed volume(e.g., a cube) around an object. New views of this object can be synthesizedby reconstructing the light rays passing through the new (virtual) cameracenter from a set of discrete samples. Both the lumigraph and the light �eldare constructed from a large number of images (with known parameters) ofthe object. The approaches rely solely on resampling the visual information,without the need to establish correspondences. Thus, they can be charac-terized as interpolation methods. Since a discontinuous function can not bereconstructed from sparse samples, depth discontinuities and occlusion canyield artifacts in the synthesized views.View synthesis and interpolation have also been used in the context ofrecognition. Ullman and Basri [1991] show that, under orthographic projec-tion, a new view can be expressed as a linear combination of other views.This property is used in a recognition system to test whether a viewed ob-ject is a linear combination of views of di�erent models. Beymer and Poggio[1995; 1996] describe learning networks that can analyze pose and expres-sion parameters of facial views. New views corresponding to novel parametersettings can then be synthesized and used to recognize other faces (see alsoVetter and Poggio [1997]).Another way of incorporating new parameters (other than just the view-point) into a view synthesis framework has been proposed by J�agersand[1997], who describes a method for image-based view synthesis of articulatedagents, such as a human arm or a robot arm.2.1.3 Mosaics and layered representationsMultiple overlapping images of the same scene can be combined into a singlelarger image, a so-calledmosaic. Before the images can be combined, it is nec-essary to apply transforms to the original images that bring the overlapping



30 2. A Survey of Image-Based Rendering and Stereoparts into alignment. Finding such a transform is referred to as image regis-tration. Brown [1992] gives a survey of image registration techniques; see also[Kuglin and Hines, 1975; Tian and Huhns, 1986]. Image registration is also acentral problem in the �eld of photogrammetry [Mo�tt and Mikhail, 1980;Slama, 1980; Wolf, 1983].The di�culty of registering two images depends on the number of pa-rameters that need to be estimated. If two images are taken from the sameviewpoint (i.e., only under di�erent rotation and zoom), they are related bya single projective transform, which depends on at most 8 parameters. Thesame is true if a planar scene is observed from di�erent viewpoints. A globaloptimization (e.g., Levenberg-Marquardt minimization [Press et al., 1992])can be used to compute these parameters such that the residual between theregistered images is minimized. Since the number of parameters to be esti-mated (i.e., 8) is much smaller than the number of input variables (i.e., thenumber of pixels), panoramic mosaics from a single viewpoint can be con-structed robustly [Szeliski, 1994; Szeliski, 1996; McMillan and Bishop, 1995b;Kang and Szeliski, 1997]. This is also the basic idea behind Apple's Quick-Time VR [Chen, 1995]. Note that no knowledge of the scene geometry isrequired to register di�erent images taken from the same viewpoint.It is also possible to create mosaics from video sequences. Such videostills can be used to represent the information contained in a whole sequenceof images in a single frame [Teodosio and Bender, 1993; Mann and Picard,1994]. Other applications of mosaicing include image stabilization [Burt andAnandan, 1994; Hansen et al., 1994], improving image resolution [Irani andPeleg, 1991], and image compression and video enhancement [Irani et al.,1995].The problem of registering two views is much harder if a (non-planar)scene is observed from two di�erent viewpoints. The number of parametersto be estimated is now of the same order as the number of input variables:besides the 8 parameters specifying the relative camera con�gurations, itis necessary to estimate the depth at every pixel. To be able to solve thisunderconstrained problem, either additional constraints need to be imposed,or the number of input variables needs to be increased by utilizing manyimages.2 Szeliski and Coughlan [1994] reduce the number of parameters tobe estimated by representing the depth map using a tensor-product spline,and only estimate the depth of the spline control vertices.The second approach, increasing the number of input variables by utilizinga whole image sequence, has recently been taken by several authors. The keyidea is to represent the depth of the scene in a way that is independent ofthe viewpoint.Kumar et al. [Kumar, 1994; Kumar et al., 1994; Kumar et al., 1995]use a global optimization to recover the parameters of a virtual reference2 Stereo algorithms take the former approach by imposing smoothness or orderingconstraints.



2.1 Image-based rendering 31plane and the parallax �eld describing the residual parallax with respect tothis plane. This has also been termed estimating projective depth [Shashua,1993; Shashua and Navab, 1994]. The method is an extension to the directestimation framework introduced by Hanna [1991] and by Bergen et al. [1992].Once the parameters have been estimated, new views can be synthesized fromthis representation, and multiple views can be combined into a 3D-correctedmosaic.A similar approach has been taken by Sawhney et al. [Sawhney, 1994b;Sawhney, 1994a; Sawhney et al., 1995; Sawhney and Ayer, 1996]. As in Ku-mar's work, the parameters of a reference plane and of a parallax �eld aredirectly estimated. Using robust estimators, motion outliers (correspondingto independently moving objects) can be tolerated and detected.Yet another approach is to decompose the scene into components withdi�erent motions. Adelson [1995] describes how such a layered represen-tation of video sequences can be computed using the motion segmenta-tion method by Wang and Adelson [1993; 1994]. Starting with an imagesequence, the scene is divided into layers containing independent motionsthat can be described by a�ne motion models. The idea is similar to thework by Sawhney and Ayer on dominant motion detection [Sawhney et al.,1995] and on layered representations of video [Ayer and Sawhney, 1995;Sawhney and Ayer, 1996]. Using a whole image sequence as input has the ad-vantage that deciding which pixel belongs to which layer is relatively robust,yielding sharp object boundaries. The disadvantage is that these methodsonly work well for scenes that can be decomposed into few layers, each ofwhich has a globally consistent motion.More recent work in mosaicing includes the work by Szeliski and Shum[Szeliski and Shum, 1997; Shum and Szeliski, 1998], who present a system forcreating and displaying panoramic mosaics constructed from images takenwith a hand-held camera. Employing a novel \deghosting" technique, slightchanges in viewpoint can be tolerated without resulting in visual artifacts.Shum et al. [1998] show how texture-mapped 3D models can be constructedinteractively from one or more such mosaics.Sawhney and Kumar [1997] present a technique for mosaicing with simul-taneous estimation and correction of radial lens distortion. Zoghiami et al.[1997] present a method for aligning images that di�er signi�cantly in rota-tion and zoom. A di�erent mosaicing technique with super-resolution zoom ispresented by Capel and Zisserman [1998]. Panoramic mosaics can also be con-structed using few images taken with a �sh-eye lens [Xiong and Turkowski,1997], or using manifold projection by simulating a sweeping strip camera[Peleg and Herman, 1997].The latter approach is related to a new image-based scene representa-tion, proposed by Rademacher and Bishop [1998], termed \multiple-center-of-projection images". This representation allows arbitrary views of a sceneto be combined into a single image, by sweeping a strip camera along a con-



32 2. A Survey of Image-Based Rendering and Stereotinuous path. The technique is better suited for synthetic than real images,due to the di�culty of obtaining accurate depth measurements and cameracalibration data.Shade et al. [1998] describe a di�erent representation for image-based ren-dering, termed \layered depth images". They also propose e�cient forward-rendering methods based on splatting [Westover, 1990] to avoid samplinggaps.2.2 StereoStereo vision { inferring scene geometry from two or more images taken si-multaneously from slightly di�erent viewpoints { is the other central topicof this text. Stereo vision is one of the earliest and most thoroughly investi-gated topics in the computer vision community, and an exhaustive discussionof related work in stereo vision is beyond the scope of this volume. For gen-eral (though slightly dated) surveys of the stereo literature, see Dhond andAggarwal [1989], and Barnard and Fischler [1982].In the rest of this section we discuss stereo methods that are relevant tothe methods presented in this volume in the context of view synthesis. Westart by outlining a framework for stereo, in order to better categorize theexisting related work.2.2.1 A framework for stereoAll stereo methods must address the correspondence problem, that is, theproblem of �nding matching points in two images of the same scene. Twoimage points match if they result from the projection of the same point in thescene. The desired output of a stereo correspondence algorithm is a disparitymap, specifying the relative displacement of matching points between images.The stereo correspondence problem is inherently underconstrained andfurther complicated by the fact that the images typically contain noise. Tra-ditional approaches thus either recover only a subset of matches, or makeadditional assumptions. Feature-based approaches, belonging to the formercategory, only match points with a certain amount of local information (suchas intensity edges). Area-based approaches match small image patches as awhole, relying on the assumption that nearby points usually have similardisplacements. The disadvantage of feature-based methods is that they onlyyield sparse disparity maps, and that disparities at locations between fea-tures need to be estimated by interpolation. The disadvantage of area-basedmethods is that the computed disparity map is more likely to contain er-rors, in particular near depth discontinuities (where not all nearby pointshave the same displacement). Since the application of view synthesis requiresdense depth maps, however, we will focus on area-based approaches, whichcompute disparity estimates at every pixel.



2.2 Stereo 33A typical area-based stereo matching algorithm proceeds in the followingway: An optional preprocessing step (e.g., band-�ltering) can be used toaccommodate global intensity changes, or to extract dense feature vectors.Then, for each location in one image, the displacement is found that alignsthis location with the best matching location in the other image. The qualityof a match is measured by comparing windows centered at the two locations,for example, using the sum of squared intensity di�erences (SSD).A more general, displacement-oriented, way of characterizing area-basedalgorithms is the following:1. Preprocess images (optional)2. For each disparity under consideration, compute a per-pixel matchingcost (e.g., squared intensity di�erence)3. Aggregate support spatially (e.g., by summing over a window, or by dif-fusion)4. Across all disparities, �nd the best match5. Compute a sub-pixel disparity estimate (optional)We now discuss the related work using this characterization of the di�erentprocessing stages of area-based algorithms.2.2.2 PreprocessingThe reason that a preprocessing step is often necessary is that images containhigh-frequency noise introduced by the imaging process, and low-frequencyvariations due to di�erent camera characteristics, such as di�erences in biasand gain, and vignetting (uneven intensity distributions). These undesirablefrequency components can be �ltered out using low-pass and band-pass imagetransforms [O'Gorman and Sanderson, 1987]. Such �ltering operations are im-age processing tasks [Pratt, 1992]. (Generally, in image processing the focus ison transforming images, while in computer vision the focus is on extracting in-formation from images.) Other examples for preprocessing include the compu-tation of binary features such as edges [Canny, 1986] or the sign of the Lapla-cian [Nishihara, 1984], the computation of high-dimensional feature vectors[Jones and Malik, 1992a], and the rank and census transforms [Zabih, 1994;Zabih and Wood�ll, 1994].2.2.3 Matching costAt the base of any matching algorithm is a matching cost that measures the(dis-)similarity of a pair of locations, one in each image.Matching costs can bede�ned locally (at the pixel level), or over a certain area of support. Examplesof local costs are absolute intensity di�erences [Kanade, 1994; Kanade et al.,1996], squared intensity di�erences [Hannah, 1974; Anandan, 1989; Matthieset al., 1989; Simoncelli et al., 1991], �lter-bank responses [Marr and Poggio,



34 2. A Survey of Image-Based Rendering and Stereo1979; Kass, 1988; Jenkin et al., 1991; Jones and Malik, 1992a], and measuresbased on gradients [Seitz, 1989] (see also Chapter 5). Binary matching \costs"(i.e., match / no match) are also possible [Marr and Poggio, 1976], based onbinary features such as edges [Baker, 1980; Grimson, 1985; Canny, 1986] orthe sign of the Laplacian [Nishihara, 1984]. Matching costs that are de�nedover a certain area of support include correlation [Ryan et al., 1980] and non-parametric measures [Zabih and Wood�ll, 1994]. These can be viewed as acombination of the matching cost and aggregation stages.Assuming only Gaussian noise, using intensity di�erences as a cost tominimize is optimal [Anandan, 1989; Matthies et al., 1989; Simoncelli et al.,1991]. As mentioned in the previous section, however, this assumption iseasily violated: two cameras can di�er in bias and gain, and intensities candepend on the position in the image due to vignetting. Gradient-based costs(see Chapter 5) are less sensitive to these problems. Non-parametric measuresas used by Zabih and Wood�ll [1994] are a di�erent way of addressing theseproblems. Another possibility is using methods from robust statistics [Blackand Anandan, 1993; Black and Rangarajan, 1994; Black and Rangarajan,1996].2.2.4 Evidence aggregationAggregating support is necessary for stable matching. A support region canbe either two-dimensional at a �xed disparity (favoring fronto-parallel sur-faces), or three-dimensional in x-y-d space (supporting slanted surfaces).Two-dimensional evidence aggregation has been implemented using squarewindows or Gaussian convolution (traditional), multiple windows anchoredat di�erent points [Intille and Bobick, 1994], and windows with adaptive sizes[Arnold, 1983; Okutomi and Kanade, 1992; Kanade and Okutomi, 1994].Three-dimensional support functions that have been proposed include lim-ited disparity di�erence [Grimson, 1985], limited disparity gradient [Pollardet al., 1985], and Prazdny's coherence principle [Prazdny, 1985], which canbe implemented using two di�usion processes [Szeliski and Hinton, 1985].As mentioned above, measures de�ned over a �xed support region, suchas correlation and rank statistics, combine the cost and aggregation steps intoone. Measures that can be accumulated in a separate step have the followingadvantages:{ e�ciency: the measure can be aggregated with a single convolution (orbox-�lter) operation [Kanade, 1994];{ parallelizability: the aggregation step can be implemented by local itera-tive di�usion, making the algorithm suited for highly parallel architectures[Szeliski and Hinton, 1985];{ adaptability: the measure can be aggregated over locally di�erent supportregions using either adjustably-sized windows [Kanade and Okutomi, 1994]or a non-uniform di�usion process (see Chapter 6).



2.2 Stereo 35Instead of collecting support for all di�erent disparities, it might also bedesirable to only �nd points at the depth of �xation (the so-called horopter),for example in the context of active vision. This is similar to Marr's modelof the human stereo system involving a set of disparity pools [Marr, 1982].Coombs and Brown [1993] describe an active stereo vision system that �ndssuch points by means of a feature-based zero-disparity �lter (see also Coombset al. [1992]). Olson and Lockwood [1992] describe a di�erent way of dispar-ity �ltering using a multi-scale correlation method to extract points at zerodisparity.2.2.5 Disparity selectionThe easiest way to choose the best disparity is to select at each pixel theminimumaggregated cost across all disparities under consideration (\winner-take-all"). A problem with this is that uniqueness of matches is only en-forced for one image (the reference image), while points in the other im-age might get matched to multiple points. Cooperative algorithms employ-ing symmetric uniqueness constraints are one attempt to solve this prob-lem [Marr and Poggio, 1976]. Using dynamic-programming techniques isanother way of selecting unique and consistent disparities [Arnold, 1983;Ohta and Kanade, 1985; Belhumeur and Mumford, 1992; Cox et al., 1992a;Cox et al., 1992b; Geiger et al., 1992; Cox, 1994; Intille and Bobick, 1994].Dynamic-programming approaches to stereo work by computing the mini-mizing path through the matrix of all pairwise matching costs between twocorresponding scanlines. Partial occlusion is handled explicitly by assigninga group of pixels in one image to a single pixel in the other image (see Fig-ure 2.1 for an example). Problems with dynamic-programming stereo includethe selection of the right cost for occluded pixels and the di�culty of en-forcing inter-scanline consistency. In addition, dynamic-programming stereorequires the strict enforcement of the monotonicity or ordering constraints[Yuille and Poggio, 1984]. This constraint requires that the relative orderingof pixels on the scanline remains the same between the two views, which isusually not the case in real scenes containing narrow occluding objects.2.2.6 Sub-pixel disparity computationSub-pixel disparity estimates can be computed in a variety of ways, includingby iterative gradient descent, or by �tting a curve to the matching costs atthe discrete disparity levels [Lucas and Kanade, 1981; Tian and Huhns, 1986;Matthies et al., 1989; Kanade and Okutomi, 1994]. This provides an easyway to increase the resolution of a stereo algorithm with little additionalcomputation. However, to work well, the intensities being matched must varysmoothly.
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Fig. 2.1. Stereo matching using dynamic programming. For each pair of corre-sponding scanlines, a minimizing path through the matrix of all pairwise matchingcosts is selected. Lowercase letters (a{k) symbolize the intensities along each scan-line. Uppercase letters represent the selected path through the matrix. Matchesare indicated by M, while partially occluded points (which have a �xed cost) areindicated by L and R, corresponding to points only visible in the left and rightimage, respectively. Usually, only a limited disparity range is considered, which is0{4 in the �gure (indicated by the squares that are not shaded).2.2.7 Di�usion-based techniquesIn Chapter 6 we introduce several di�usion-based stereo algorithms. Di�u-sion refers to an aggregating (or averaging) operation that is implementedby repeatedly adding to each pixel the (weighted) values of its neighboringpixels. Non-linear and anisotropic di�usion has been proposed for a vari-ety of early vision tasks, including edge detection [Perona and Malik, 1990;Nordstr�om, 1990]. Proesmans et al. [1994] detect discontinuities in optical
ow by comparing forward and backward 
ow estimates and then using adi�usion process to smooth the discontinuity maps. (Similar ideas of com-paring left-to-right and right-to-left estimates in stereo have also been usedby Fua [1993] and others.) Proesman et al. and Fua also use an anisotropicdi�usion process (mediated by intensity gradients) to smooth out the 
owor disparity estimates. Shah [1993] has also used non-linear di�usion in con-junction with a gradient descent algorithm for stereo matching.



2.2 Stereo 372.2.8 Other techniquesOther stereo techniques include hybrid and iterative techniques, such asstochastic search [Marroquin et al., 1987; Barnard, 1989] and joint matchingand surface reconstruction [Ho� and Ahuja, 1989; Olsen, 1990; Stewart etal., 1996; Fua, 1997]. Jones and Malik [1992b] propose the recovery of surfaceorientation from the di�erence in local texture distortion directly, instead ofestimating surface orientation from the disparity map (see also Robert andH�ebert [1994]). Hierarchical (coarse-to-�ne) matching is another importanttechnique that allows for a larger range of disparities to be matched withoutexcessive search [Quam, 1984; Witkin et al., 1987]. An implementation ofa hybrid method utilizing both area-based and feature-based approaches isdescribed by Cochran and Medioni [1992].More than two images are used in multiframe stereo to increase stabil-ity of the algorithm [Bolles et al., 1987; Matthies et al., 1989; Kang et al.,1995]. A special case is multiple-baseline stereo, where all images have iden-tical epipolar lines [Okutomi and Kanade, 1993]. In this case, the similaritymeasures between the reference image and all other images can be combinedby summation into a single measure before the aggregation step.Finally, occlusion is an important issue. Many approaches ignore the ef-fects of occlusion; others try to minimize them using a cyclopean disparityrepresentation [Barnard, 1989], or try to recover occluded regions after thematching by cross-checking [Cochran and Medioni, 1992; Fua, 1993]. Severalauthors have developed methods for dealing with occlusion explicitly, usingBayesian models and dynamic programming [Belhumeur and Mumford, 1992;Belhumeur, 1996; Cox et al., 1992a; Cox, 1994; Geiger et al., 1992; Intille andBobick, 1994].2.2.9 Promising recent approachesIn the last few years, several new stereo algorithms have been proposed thatare potentially well-suited for use in view synthesis applications.Boykov et al. [1997] propose a new way of implementing variable supportregions: using a maximumlikelihood argument, the plausible matches at eachdisparity level are grouped into connected components. The disparity at eachpixel is then selected to be the one with the largest connected component ofsupport.Birch�eld and Tomasi [1998a] present a stereo algorithm designed to re-cover depth discontinuities precisely. A dynamic programming algorithm isused in conjunction with a dissimilarity measure that is insensitive to im-age sampling [Birch�eld and Tomasi, 1998b]. The method can deal with un-textured objects and backgrounds and employs a postprocessing step thatpropagates highly reliable matches into neighboring regions. Sharp objectboundaries are recovered, although at the price of diminished accuracy of therecovered scene depth.



38 2. A Survey of Image-Based Rendering and StereoSzeliski and Golland [1998] describe a new multiframe stereo algorithmthat simultaneously recovers the disparity, true color, and opacity at eachpixel. Similar to the method described in Chapter 6, an initial set of matches iscomputed by iteratively di�using support in a disparity space. These matchesare then validated by reprojection into the original images, resulting in avisibilitymap, fromwhich color and opacity estimates can be derived. Finally,these estimates are re�ned using global minimization.Along similar lines, Baker et al. [1998] propose a layered approach tostereo reconstruction. Using techniques from parametric motion estimation,the scene is divided into planar layers. Each layer consists of a plane equation,a color image with opacity (a sprite [Torborg and Kajiva, 1996]), and aresidual depth at each pixel. Similar to the work by Szeliski and Golland,opacity and color estimates are re�ned by taking into account occlusion usingre-synthesis.Roy and Cox [1998] phrase stereo correspondence as a maximum-
owproblem. An algorithm that �nds the corresponding minimum cut, can beviewed as a generalization of dynamic programming algorithms with betterinter-scanline coherence. A di�erent minimum-cut approach to stereo is pre-sented by Boykov et al. [1998], who model the stereo correspondence problemwith a Markov Random Field.Wei et al. [1998] present a new stereo algorithm based on minimizing aglobal cost function that uses both intensity and gradient constraints. Dis-parities are parameterized using a hierarchy of Gaussians, and di�erences incamera parameters are compensated for during the iterative minimizationprocess.Lee and Medioni [1998] present a stereo algorithm that directly computesa segmented surface description.2.3 Computer vision booksA number of good books on computer vision are available for readers whowish to learn more about the �eld.A Guided Tour of Computer Vision by Nalwa [1993] is an excellent in-troduction to computer vision. Three-Dimensional Computer Vision: A Geo-metric Viewpoint by Faugeras [1993] provides an in-depth coverage of the useof projective geometry in computer vision. The book chapter \Computer Vi-sion" by Huttenlocher in the Handbook of Computer Science and Engineeringprovides a compact overview of the state of the art in the �eld [Huttenlocher,1996].Classic texts in computer vision include Robot Vision by Horn [1986],Vision by Marr [1982], and Computer Vision by Ballard and Brown [1982].Readings in Computer Vision, a collection of important papers in computervision, has been published by Fischler and Firschein [1987].



2.3 Computer vision books 39A treatment of Bayesian techniques in computer vision can be found inBayesian Modeling of Uncertainty in Low-Level Vision by Szeliski [1989].Digital Image Warping by Wolberg [1990] provides a good overview of tech-niques related to image synthesis. Computer Graphics: Principles and Prac-tice by Foley et al. [1990] is the classic text in computer graphics. Finally,Foundations of Vision by Wandell [1995] is a nice recent introduction to thehuman visual system.
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3. View SynthesisWe are now ready to discuss our proposed method for view synthesis. In thischapter we assume that the stereo problem is solved, and that precomputeddisparity maps are available for our experiments. In the next chapter weevaluate what is required from a stereo algorithm whose output is to be usedfor view synthesis. Actual stereo algorithms used for the results presented inthis chapter will then be discussed in Chapters 5 and 6.The proposed application of view synthesis using stereo data has the goalof generating realistic new views with minimal visual artifacts. This restrictsthe new viewpoints to be reasonably close to the existing reference views.Even so, we will have to deal explicitly with regions of unknown geometry ortexture, since \black holes" in the new views can not be tolerated. To supportreal-time applications such as tele-reality, new views need to be synthesizede�ciently.Our new method for view synthesis addresses these issues by warping theexisting images based on local depth information. The method is based onthree-view recti�cation, a special recti�cation step that both aids in stereomatching and allows an easy formulation of fast exact view synthesis. Themethod also incorporates ways of dealing with partially occluded regions ofunknown depth and with completely occluded regions of unknown texture,which are issues not addressed in most previous approaches.In Section 3.1 we introduce the three-view recti�cation step, and derivethe linear warping equation. Section 3.2 describes in detail the various stepsof the view synthesis algorithm, which include rectifying the original images,warping the recti�ed images into the new view, adjusting the intensities andcombining the warped images, �lling holes, and derectifying the combined im-age into the �nal view. In Section 3.3 we present experiments demonstratingthe viability of our method. In Section 3.4 we outline how our method for viewsynthesis from two reference images can be used in the larger framework ofimage-based scene representations. We summarize the chapter in Section 3.5.3.1 GeometryIn this section we develop the geometric foundations that will allow us tosynthesize a new, virtual view from two existing reference views. Let I1 and I2



42 3. View Synthesisdenote the existing images (left and right respectively), and let I3 denote thenew image to be synthesized. We develop coordinate transforms that enableus to formulate view synthesis as linear disparity interpolation, allowing fastgeneration of new views by a local warping algorithm. Note that we solvethe exact view synthesis problem as opposed to other work in which the term\view interpolation" refers to an approximation of the correct synthetic view.We assume that the geometry of the two existing views is known, eitherby explicit calibration or by self-calibration [Deriche et al., 1994], and thatthe desired con�guration of the third (virtual) camera is speci�ed relative tothe existing two.In the case of \pure" weak calibration, i.e., where we only know the fun-damental matrix F relating the epipolar geometries, specifying the new view-point presents a problem [Laveau and Faugeras, 1994]. We therefore assumethat we have at least a rough estimate of the full (external) calibration (seealso Section 3.4).3.1.1 Three-view recti�cationUsing three-view recti�cation, we achieve a simple geometry allowing the syn-thesis of a new view by a linear warping algorithm. The key step is choosinga convenient global coordinate system. See Figure 3.1 for an illustration ofthe recti�cation process.We choose our global coordinate system in such a way that all threefocal points C1, C2, C3 lie in the plane Z = 0. In particular, we let the�rst camera center de�ne the origin of this coordinate system, and we letthe second camera center lie on the x-axis at unit distance from the origin(i.e., at (1; 0; 0)). This de�nes the position, scale and orientation of the newcoordinate system, except for the angle of rotation around the x-axis. Wecan choose this rotation such that the plane Z = 0 contains the syntheticcamera center. This de�nes the coordinates of the synthetic view (XS ; YS) inthe new coordinate system (the subscripts S indicate the synthetic view). Insummary, the three camera centers have the coordinatesC1 = 24 00035 ; C2 = 2410035 ; C3 = 24XSYS0 35 : (3.1)We use homographies (i.e., projective coordinate transforms)Hi; (i = 1; 2; 3),to project the original images Ii onto the plane Z = 1, the plane at unitdistance from the tri-focal plane Z = 0 containing the three camera centers.This yields the recti�ed images I 0i. The homographies Hi are 3� 3 matricesdescribing coordinate transforms in homogeneous image coordinates. That is,a point qi = (ui; vi) in image Ii is projected to q0i = (u0i=w0i; v0i=w0i), with
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(b)(c)
(d)

I3C1 C2Z = 0Z = 1 I03C3 = (XS ; YS ; 0)
Z = 0I 01

(a)

Z = 1I 01 I03 I02I02
I1 C2 = (1; 0; 0)I2C1 = (0; 0; 0)

Fig. 3.1. Illustration of the recti�cation process: existing views (a), synthetic view(b), and reprojection onto plane Z = 1 (c). To achieve equal image sizes, largeractual image areas can be chosen to contain the reprojected images (d).



44 3. View Synthesis 24 u0iv0iw0i35 = Hi 24uivi1 35 : (3.2)In the resulting recti�ed geometry, all three cameras have identical parame-ters, all image planes coincide, and all three coordinate systems are orientedthe same way. In order to achieve equal image sizes, the image areas canbe expanded to a common \bounding box" that is large enough to encloseeach of the three recti�ed images. This is illustrated in Figure 3.1 (d). Thereprojection of Ii to I 0i based onHi can be done using a fast projective imagewarping algorithm [Wolberg, 1990].Note that the recti�cation presented here is an extension of the \two-view" recti�cation commonly done in traditional stereo vision algorithms. Toyield coinciding epipolar lines, the rectifying plane must be parallel to thebaseline, but its orientation can be arbitrary. We have taken advantage of thisfact and have chosen a plane that is parallel to all three baselines, yieldingpairwise coinciding epipolar lines between all three images.3.1.2 The linear warping equationSo far we have only recti�ed the original images and simpli�ed the geometryin which the new view is to be synthesized. We now derive the linear warpingequation specifying how each pixel needs to be displaced to generate thenew view I 03. The �nal step then consists of simply computing the derecti�edimage I3 from I 03 using the inverse transform H�13 .In images I 01, I 02, I 03, a scene point P = (XP ; YP ; ZP ) has the coordinatesp1 = " XPZPYPZP # ; p2 = " XP�1ZPYPZP # ; p3 = " XP�XSZPYP�YSZP # ; (3.3)respectively. The positional o�sets of pointP in the new image I 03 with respectto images I 01 and I 02 arep3 � p1 = "�XSZP� YSZP # and p3 � p2 = "�XS�1ZP� YSZP # : (3.4)Using a stereo algorithm,we get the point's disparity, i.e., its o�set in positionbetween images I 01 and I 02:d12 = [p2 � p1]x = �1=ZP ;and, symmetrically, between images I 02 and I 01:d21 = [p1 � p2]x = 1=ZP :(We use the notation [v]x to refer to the x-component of a vector v. Notethat the y-component in the above equations is zero due to recti�cation.)



3.1 Geometry 45Given the disparity, we can specify p3, the image coordinates of P in thevirtual view, as a linear combination of its disparity and the position of thevirtual camera (XS ; YS). This yields the linear warping equationp3 = p1 + d12 �XSYS � ;p3 = p2 � d21 �XS � 1YS � : (3.5)3.1.3 Computing the rectifying homographiesWe have yet to explain how to compute the rectifying homographiesHi; (i =1; 2; 3). Let Oi be the origin, and let Ri, Si be the unit vectors of the orig-inal image coordinate system of Ii, speci�ed with respect to the new globalcoordinate system. That is, a point (ui; vi) in the original image Ii has 3Dcoordinates Pi = uiRi + viSi +Oi:Using the fact that Equation (3.3) can be rewrittenpi = P�Ci (3.6)(where pi is expressed in homogeneous coordinates, while P and Ci are not),the projection of Pi in image I 0i ispi = Pi �Ci= uiRi + viSi +Oi �Ci= 264Ri Si Oi �Ci 37524uivi1 35 : (3.7)Thus, the rectifying homographiesHi are simply composed from the originalimage unit vectors Ri, Si and the o�set between camera center Ci to oldimage origin Oi: Hi = 264Ri Si Oi �Ci 375 : (3.8)For illustration, Figure 3.2 shows the vectors de�ning the homography H2.
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I2 I02 (ui; vi)

C2 = (1; 0; 0)p2
R2S2 P2

C1 = (0; 0; 0)O2 O2 �C2
H2 =264R2S2O2�C2375

Fig. 3.2. The construction of the rectifying homographies. The �gure shows thevectors O2, R2, S2 de�ning the original image I2, which are used to construct therectifying homography H2.



3.2 Synthesizing a new view 473.2 Synthesizing a new viewWe assume in this chapter that a stereo algorithm has provided us with densedisparity maps d12(i; j) and d21(i; j) between the recti�ed images I 01 and I 02.1While many authors assume that the disparity maps are given, the problemof computing them is obviously not an easy one. In fact, it will be the topic ofmuch of the remainder of this volume. In the next chapter, we will discuss thespeci�c requirements that the application of view synthesis imposes on stereoalgorithms, and we will then present our new stereo algorithms in Chapters 5and 6.Given a disparity map d12 or d21, Equation (3.5) yields a fast way ofsynthesizing any new view at (XS ; YS) based on forward mapping [Wolberg,1990]. That is, the existing image is warped into the synthetic view by shiftingeach pixel by the correct displacement. There are two issues that need to bedealt with: visibility and holes.3.2.1 Resolving visibilityA visibility decision needs to be made whenever two di�erent points map tothe same location in the new view. A key advantage of the recti�ed geometryis that visibility resolution is easy, since the front-to-back ordering of thescene points is the same for all three views. In fact, visibility can be resolvedautomatically by ordered forward mapping, i.e., by simply mapping the pixelsto their new positions in the correct sequence. The correct mapping sequencedepends only on image coordinates and not on the depth values. This hasthe e�ect that closer pixels are mapped later, thus automatically overwritingpixels further away. For example, for a new viewpoint with XS > 0; YS > 0,the correct order of mapping (for the left image) is left-to-right and bottom-to-top.Visibility can still be resolved in this way for more general camera con-�gurations, as long as the image planes stay parallel. The correct order inthis case depends on the position of the epipole in the new image [McMillan,1995b].3.2.2 Holes and sampling gapsHoles in the new view occur if the new viewpoint uncovers previously invisi-ble scene points. We have to distinguish carefully between sampling gaps dueto the forward-mapping process, and real holes caused by occlusion bound-aries in the disparity map. Sampling gaps occur when the (small) disparity1 Recall that a disparity map is dense if it assigns a disparity to every pixel (i; j).We assume that we have disparity estimates even for partially occluded pixels(i.e., pixels only visible in one image). How such estimates can be computed willbe discussed in Section 4.6.



48 3. View Synthesisdi�erence between adjacent pixels is ampli�ed in the remapping process. Thesame is true for holes, except that the disparity di�erence that causes thehole corresponds to a depth discontinuity. Since depth maps are discrete, dis-tinguishing between the two cases can present a problem. One possibility isto impose a disparity gradient limit that acts as a threshold. For example, agradient limit of 1 would mean that if two neighboring disparity values di�erby an amount d � 1, then they are considered to belong to the same object(and forward mapping can create a sampling gap which needs to be �lled).If they di�er by d > 1, on the other hand, they would be considered to beseparated by an occlusion boundary (and thus forward mapping can createa hole).Given that we have distinguished between depth discontinuities and smalldisparity di�erences, we can counteract sampling gaps by increasing the sam-pling rate proportionally to the distance of the new camera to the referencecamera. (Recall from Equation (3.5) that the disparities are multiplied bythis distance.) Note that sampling gaps occur in areas that are viewed lessobliquely from the new viewpoint than from the old one, and are there-fore subject to less perspective foreshortening in the new view. We have to\stretch" the visual surface in these areas in order to avoid sampling gaps. Adi�erent approach is necessary to deal with holes, however, since we do notwant to stretch surfaces across depth discontinuities.3.2.3 Combining information from both imagesBefore addressing how holes can be �lled explicitly, we will discuss how thesize and number of holes can be reduced by combining the information fromboth reference images. Using two symmetric disparity maps d12 and d21, wecan warp each image I 01; I 02 separately, yielding two synthetic images I 03;1, I 03;2for the same new viewpoint. Although displaying the identical view, thesetwo images can di�er in the following ways:1. The global intensities can be di�erent due to di�erent camera character-istics of the original two cameras;2. The quality can be di�erent due to the di�erent distortions created bythe two warps;3. The holes (i.e., locations of previously invisible scene points) are at dif-ferent positions.To compensate for the �rst two e�ects, it is useful to blend the intensitiesof the two images, possibly weighting the less-distorted image more (i.e., theone that is closer to the new viewpoint). For example, the weights could beproportional to the distance between the virtual viewpoint and the (respectiveother) reference viewpoint. This is discussed in more detail in Section 3.2.4below. Similar approaches to blending images have recently been proposed,termed view-dependent or depth-corrected texture mapping [Debevec et al.,1996; Gortler et al., 1996].



3.2 Synthesizing a new view 49The third way in which the warped images can di�er, namely in theposition of holes, deserves special attention. Given that both synthetic imagesare based on the same geometry, how can the holes be at di�erent positions atall? The answer is that, if the new views are synthesized by remapping onlythose pixels whose depth is known (i.e., those that are visible in both images),then the holes will indeed be at the same positions in both new views. If wewant to utilize the total intensity information available, however, we need toinclude areas that are only visible in one image (and whose depth is thusunknown). In Section 4.6 we will discuss ways of estimating disparities ofsuch partially occluded regions. Given a disparity estimate for these regions,it is possible to �ll some of the holes in one image with intensities of partiallyoccluded (unmatched) regions of the other image. It is still possible, however,for both images to have a hole at the same position, which needs to be �lledexplicitly. This will be discussed in Section 3.2.5.3.2.4 Adjusting intensitiesFilling holes from one image can create visual artifacts, in particular if thetwo images have strong global intensity di�erences. The reason is that the�lled hole has the intensity of a single image, while the surrounding has ablended intensity. Thus, it is advisable to perform a global intensity correc-tion before the images are combined. There are two possibilities for intensitycorrections. The �rst is to adjust the global intensities before any new viewsare synthesized. This has the advantage that the intensity stays constant ifmultiple views from di�erent viewpoints are generated. The other possibil-ity is to adjust the intensities depending on the new viewpoint, for exampleto achieve a smooth transition of views between the original (unadjusted)reference images.In our implementation, the intensity correction is performed by comput-ing a linear regression of image intensities using the warped views. Since thewarped images are spatially consistent, a linear regression of intensity val-ues corrects for cameras with di�erent bias and gain. The idea is to �t theintensity values IL = flig and IR = frig to a straight-line model:2IR = a + bIL: (3.9)The regression coe�cients a and b can be computed using the following equa-tions [Press et al., 1992]:a = SllSr � SlSlrSSll � (Sl)2 ; b = SSlr � SlSrSSll � (Sl)2 ; (3.10)where2 For simplicity, we will use the symbols IL and IR instead of I 03;1 and I 03;2 in thissection.



50 3. View SynthesisS =X 1; Sl =X li; Sr =X ri;Slr =X liri; Sll =X l2i ; Srr =X r2i ; (3.11)and all summations range over all pixels that are de�ned in both images (i.e.,excluding locations for which there is a hole in one or both images).Given the coe�cients a and b, we can combine the intensities using ablending weight � and an intensity weight 
:Isum = �[
IL + (1� 
)(a + bIL)]+(1 � �)[
((IR � a)=b) + (1 � 
)IR]: (3.12)What is the di�erence between the two weights? The blending weight � con-trols the \mixture" of the two images: If � = 1, only the left image is used;if � = 0, only the right image is used. These are the settings used at loca-tions of single holes. At other locations, � should have a value between 0and 1. According to the discussion above, one possibility is to choose � and(1 � �) to be proportional to the distances between the new viewpoint andthe reference viewpoints (so that the less-distorted image is weighted more),i.e., � = dRdL + dR ; (3.13)where dL and dR are the distancesdL = jC3 �C1j =qX2S + Y 2S ;dR = jC3 �C2j =q(XS � 1)2 + Y 2S : (3.14)The second weight, 
, controls whether the intensity of IR is adjusted towardsthat of IL (
 = 1), or whether the intensity of IL is adjust towards that ofIR (
 = 0). If several di�erent views need to be synthesized, it is usuallybest to use a constant weight (e.g., 
 = 0:5). However, if a smooth transitionbetween the original views is desired, one can choose 
 = � (referring toEquation (3.13)). This way, if we synthesize a new view close to the left view,we mostly change the intensity of the right view, and vice versa.3.2.5 Filling holesHoles in the synthesized view occur when the new viewpoint reveals pre-viously invisible scene points. We have seen that only holes occurring atthe same position in both images need to be �lled explicitly. Such coincidingholes correspond to scene points invisible from both cameras. These are quitelikely observed from \extrapolated" viewpoints outside the original baseline,but are unlikely for \interpolated" viewpoints in between the reference view-points. The reason is illustrated in Figure 3.3: two di�erent objects have to
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L R L R

(a) (b)

S SFig. 3.3. The generation of holes. The illustration shows a top-down view of twocameras L and R observing a scene that contains occluding objects. A synthetic viewS has holes due to the exposure of previously invisible scene points. Single objectscan cause holes only for views outside the original baseline (a), while multipleobjects can conspire to create holes even in intermediate views (b).\conspire" in order for coinciding holes to occur in intermediate views. Wecan not exclude this case in natural environments, and thus holes can neverbe avoided completely.Dealing with this situation involves synthesizing texture for the newlyvisible areas. An easy way to �ll these holes is to spread the intensities of theneighboring pixels, but this often yields \blurry" regions. A di�erent possi-bility is to mirror the intensities in the scanline adjacent to the hole, whichgives noticeably better results than simple intensity spreading. It is very im-portant to prevent intensities from being spread across occlusion boundaries,since holes are usually created by a close object that has uncovered part ofthe scene, and now bounds the hole on one side. The new texture should bebased only on existing intensities on the close side of these boundaries, toavoid \smearing" of foreground and background. More sophisticated texturesynthesis methods based on neighboring intensity distributions (again takinginto account occlusion boundaries) are clearly possible, for example thosedeveloped in the context of image restoration [Hirani and Totsuka, 1996;Kokaram and Godsill, 1996].3.2.6 The view synthesis algorithmIn summary, we can synthesize a new view I3 from images I1; I2 using thefollowing algorithm:1. Compute recti�ed images I 01, I 02 using homographies H1, H2.



52 3. View Synthesis2. Using a stereo algorithm tailored to view synthesis,3 compute dense dis-parity maps d12(i; j) and d21(i; j) between images I 01(i; j) and I 02(i; j).3. Compute new images I 03;1 and I 03;2 by mapping pointsI01(i; j)! I 03;1(i+XSd12(i; j); j + YSd12(i; j))I02(i; j)! I 03;2(i� (XS � 1)d21(i; j); j � YSd21(i; j))4. Adjust the intensities of images I 03;1 and I 03;2, and combine them intoimage I 03, �lling single holes in the process.5. Fill the remaining holes in I 03 using texture synthesis.6. Compute the �nal derecti�ed image I3 from I 03 using inverse homographyH�13 .Note that if many views need to be synthesized from the same originalimage pair, the �rst two steps of the algorithm, i.e., recti�cation and stereomatching, only need to be performed once. Even if the new views lie indi�erent planes, which requires a new recti�cation step, the disparity mapdoes not need to be recomputed, but can be reprojected using the appropriatehomography (the disparity values need to be rescaled accordingly also).Stereo matching is the most time-intensive step of the algorithm. A typ-ical area-based stereo algorithm needs to perform a substantial number ofoperations per pixel. Depending on disparity range, size of the support re-gion, and the desired quality, this number can range from a few hundred toseveral thousand. Recti�cation and view generation, in comparison, can beaccomplished much faster, since only a few operations per pixel are necessary.To give some actual running times, the computation of the disparity mapsused for the synthetic view shown in Figure 1.2 using the stereo methoddescribed in Chapter 5 takes 38 seconds on a SPARCstation 5. The image sizeis 350�236, and the number of disparity levels is 45. Creating a new view (i.e.,warping, adjusting intensities, �lling holes, and combining the images) takesonly 1.1 seconds. The reported times were obtained using an experimentalimplementation that was not optimized for speed.This enables interesting applications, such as \low-cost virtual reality",where a single server with high computing power provides images and dis-parities in real time, and a large number of clients with less computing powercould generate di�erent viewpoints.3.2.7 Limitations of the approachThe proposed method of view synthesis based on explicit recti�cation, warp-ing, and derecti�cation has certain drawbacks. First, each of the three stepsinvolves resampling the image, which introduces blur. Second, the approachbecomes impractical for viewing directions close to parallel to the tri-focal3 The speci�c requirements on such a stereo algorithm will be discussed in thenext chapter.



3.3 Experiments 53plane, the plane containing the three camera centers. The reason is that ex-plicit recti�cation for these directions results in distortions and large imagesizes. If the tri-focal plane intersects the scene (caused, for example, by a pureforward or backward motion of the virtual camera), recti�cation becomes im-possible.4Blurring due to repeated resampling can be counteracted with more so-phisticated interpolation techniques, or by super-sampling the intermediateimages [Wolberg, 1990]. A di�erent idea is to aggregate the three steps intoa single warping operation. This has the e�ect that the image is resampledonly once. Furthermore, as the image is never explicitly reprojected, large(or even in�nite) intermediate image sizes are no longer a problem. Bothideas have also been proposed by Seitz and Dyer [Seitz and Dyer, 1996b;Seitz and Dyer, 1996a] in the context of their view morphing method. An ag-gregated warping step, however, can no longer be implemented using simplescanline operations. In particular, automatic visibility resolution by orderedforward mapping is no longer possible, and it is di�cult to counteract sam-pling gaps. For these reasons, it would be preferable to implement a combinedwarping step using backward mapping, resulting in an algorithm similar tothe \ray-tracing like" algorithm proposed by Laveau and Faugeras [1994].3.3 ExperimentsIn this section we demonstrate the viability of our proposed method withexperimental results. We synthesize new views from the kids image pair usedby Intille and Bobick [1994] and the birch image pair from the JISCT data set[Bolles et al., 1993]. Both image pairs are already recti�ed, making explicitrecti�cation unnecessary.Figure 3.4 shows (from top to bottom) the left and right image of thekids pair and the disparity maps d12 and d21. The image pair is identicalto the one in Figure 1.1, except that the images have been scaled verticallyby 1=2.5 The disparity maps shown in the �gure are computed using thestereo method presented in Chapter 5. Also, as will be discussed in the nextchapter, the disparities of unmatched image regions due to partial occlusionand uniform intensities have been estimated.Given these correspondence maps, new views can be generated very e�-ciently. Figure 3.5 shows synthesized views from di�erent positions along thebaseline. The distance between adjacent views is half the baseline. The sec-ond and fourth image from the top are the left and right original image. The�rst, third, and �fth image from the top are synthesized views correspondingto viewpoints to the left of, in between, and to the right of the original view-points respectively. The holes corresponding to previously invisible points are4 Laveau and Faugeras [1994] report the same problem for their forward-mappingalgorithm.5 This is the width-to-height ratio of the original images used by Intille and Bobick.
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Fig. 3.4. The left and right image of the kids pair, and the disparity maps d12and d21. The disparities are encoded with gray-levels: dark represents far, lightrepresents close.



3.3 Experiments 55shown in black. As expected, the center view has many fewer holes than thetwo extreme views, since in the center view most scene points are visible fromat least one of the original views.In Figure 3.6, the holes have been �lled by mirroring the intensities of theadjacent scanlines. As can be observed in the �gure, �lling the holes intro-duces some noticeable artifacts. The outline of the �lled hole is sometimesvisible, in particular at locations where the stereo algorithm did not recovera depth discontinuity correctly. In other cases, the synthesized texture is notconsistent with the surrounding texture, in particular where strong lines arepresent in the image (e.g., the tiling of the ground). The latter problem couldbe avoided using a texture synthesis method that matches the frequency andphase information of the surrounding texture, such as the one by Hirani andTotsuka [1996].Other artifacts are caused by wrongly estimated disparities. One suchproblem is apparent in the bottom left quarter of the images, where therepeating pattern of the tiles on the ground causes severe matching errors.(This can also be noticed in Figure 3.4.) The stereo algorithm also fails torecover the correct structure of the arms of the man in the background. Othernoticeable artifacts occur along the outline of the child in the foreground, inparticular in the bottom image. It can be seen that the correct recovery ofocclusion boundaries is critical.The second experiment demonstrates that realistic views can be synthe-sized even from poor stereo data. Figure 3.7 shows the birch image pair, andFigure 3.8 shows the disparity maps d12 and d21. Figure 3.9 shows a syn-thesized center view for the birch image pair. Although the disparity mapscontain many errors, the synthesized view looks fairly realistic. (It would beimpossible, however, to construct an even remotely accurate 3D scene modelfrom these disparity maps.)It is easier to evaluate the performance of the method when the synthe-sized views are displayed in an animated movie sequence. A movie createsa quite striking impression of depth, even if it contains noticeable errors. Amovie of the birch image pair with a virtual viewpoint moving smoothly be-tween the two original views is especially impressive: although the quality ofthe underlying disparity map is not very good, the movie communicates ahigh amount of scene structure. This clearly demonstrates the potential ofview synthesis from stereo data for tele-reality applications.Most of the visual artifacts created by our current implementation arecaused by incorrect stereo data. The strongest artifacts are usually causedby occlusion boundaries that are recovered incorrectly (especially in \extrap-olated" views). Mismatched points due to uniform intensities, on the otherhand, usually do not cause problems.
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Fig. 3.5. Synthesized views for the kids image pair from di�erent positions alongthe baseline. The second and fourth row contain the original images. The holes areshown in black.
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Fig. 3.6. Synthesized views for the kids image pair. The �gure is identical to theprevious one, except that the holes (in the �rst, third, and �fth images) have been�lled by mirroring the intensities of the adjacent scanlines.
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Fig. 3.7. The left and right image of the birch pair.
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Fig. 3.8. The disparity maps d12 and d21 for the birch pair. The disparities areencoded with gray-levels: dark represents far, light represents close.
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Fig. 3.9. A synthesized center view for the birch image pair.3.4 Image-based scene representationsAs mentioned in the introduction, the problem of synthesizing new viewsfrom a stereo pair can be seen as part of a larger framework, in which ascene is represented by a graph consisting of images and correspondencemaps. Similar image-based scene representations have recently been proposedby several authors [Chen and Williams, 1993; Laveau and Faugeras, 1994;Fuchs et al., 1994; Szeliski, 1994; Kanade et al., 1995; McMillan and Bishop,1995b; Kang and Szeliski, 1997]. Each vertex in such a graph correspondsto a view from a physical location in the scene: either a single image, ora mosaic composed from several images [Irani et al., 1995; McMillan andBishop, 1995b; Sawhney and Ayer, 1996; Szeliski and Kang, 1995]. The edgesin the graph represent the correspondences between adjacent views in theform of dense disparity maps, computed by a stereo matching algorithm.This graph constitutes a local view-based representation of the scene ge-ometry, and new views can be generated e�ciently from two nearby existingviews using the techniques discussed above. Such an image-based represen-tation avoids the problems associated with global models, but it requiresdealing with regions of unknown depth or even of unknown texture causedby occlusion in the scene. If the sampling of reference images is reasonably



3.5 Summary 61dense, however, the instabilities of the image-based method have a relativelysmall e�ect, since we only need to deal with small changes in viewpoint.Using only a small number of local images for view synthesis has theadvantage that we only need to know the relative con�gurations betweenadjacent views, which do not need to be globally consistent. For example,images could be acquired with a hand-held camera and labeled with roughglobal coordinates. Then, for each pair of adjacent images, the epipolar ge-ometry could be recovered by self-calibration. Compared to methods that tryto combine image data from a wide range of viewing con�gurations, anotheradvantage of using a small set of images is that common assumptions (suchas Lambertian surfaces) are less commonly violated.3.5 SummaryIn this chapter we have presented a new method for synthesizing new viewsfrom a stereo pair. The method is based on three-view recti�cation, i.e., repro-jecting the images onto a plane parallel to the tri-focal plane. In the recti�edgeometry, pixel displacements in the synthetic view are linear in disparity,which allows fast generation of new views by warping the existing images.Visibility can be resolved automatically using ordered forward mapping, butspecial care needs to be taken to avoid sampling gaps. We have also outlinedpossible ways of �lling holes in the synthetic views which are unavoidabledue to the limited information present in the reference views. Finally, wehave presented experiments demonstrating the viability of the method.
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4. Re-evaluating StereoIn the previous chapter we presented a method for e�ciently generating newviews from two existing images. The method requires a stereo correspon-dence map relating the two recti�ed images. In this chapter we discuss therequirements imposed on stereo algorithms whose output is to be used forview synthesis.In Section 4.1 we examine the requirements imposed by traditional appli-cations of stereo. We then compare these requirements with the ones imposedby view synthesis in Section 4.2. We show that the achievable accuracy ofstereo is su�cient for synthesizing nearby views in Section 4.3, and discuss thedi�erent criteria of correct and realistic views in Section 4.4. In Section 4.5we show that regions of uniform intensity present less of a problem for viewsynthesis than for other applications of stereo. Finally, we present ways ofdealing with partial occlusion in Section 4.6, and close with a summary inSection 4.7.4.1 Traditional applications of stereoGrimson has argued that the requirements on a stereo algorithm should beconsidered in light of the needs of the task that uses its output [Grimson,1993]. He demonstrates that exact 3D distance measurements can only beachieved with very accurately calibrated cameras, and argues that stereomight be more useful for tasks other than 3D reconstruction (for example,�gure-ground separation). Our new application, view synthesis, imposes yetanother set of requirements on stereo. We will discuss the requirements forseveral di�erent applications of stereo. We will see that limited accuracy (aswell as other well-known limitations of stereo) is not as problematic whenstereo is used for view synthesis.Traditional applications of stereo include the following:{ Computation of elevation maps from aerial images{ Obstacle detection for robot navigation{ Reconstruction of 3D objects{ Recognition of 3D objects{ Visual servoing and hand-eye coordination



64 4. Re-evaluating StereoWe will consider each of these applications in turn, and discuss their speci�crequirements on input, output, accuracy, and speed.4.1.1 Automated cartographyStereo algorithms can be used to automate the computation of digital eleva-tion maps from aerial images taken from a plane or from a satellite. This is aclassic problem in the �eld of photogrammetry, the science of \obtaining re-liable measurements from photographic images" [Mo�tt and Mikhail, 1980;Slama, 1980; Wolf, 1983]. Using metric cameras practically free of distortion,an accurate global frame is �rst established by matching a number of groundcontrol points with known coordinates. Topographic maps containing eleva-tion information can then be constructed by matching corresponding pointsacross two images. Traditionally, matching points are established manuallyusing specialized equipment that enables the operator to take measurementswhile stereoscopically fusing the two images.The matching process can be automated using stereo algorithms. Com-mercial systems can compute highly accurate elevation maps (on the order ofa few meters), due to precisely calibrated cameras and long baselines [ISTAR,1993]. The correspondence problem is not too di�cult in this case since aerialimages are typically highly textured and rarely contain occlusion. The desiredoutput is a dense and accurate displacement map. Real time performance isnot required, and the stereo matching process is typically guided by humaninteraction.4.1.2 Robot navigationA stereo algorithm to be used for robot navigation must operate in real time.A dense depth map is usually not required, as the knowledge of the distanceto a sparse set of feature points is often su�cient.In the context of navigation of autonomous robots and unmanned plane-tary rovers, stereo has been proposed for obstacle detection [Horswill, 1992;Matthies, 1992]. The idea is to detect objects that extend from the groundplane ahead of the robot, and to adjust the steering angle such that a colli-sion with these objects is avoided. To perform this task, a rough localizationof close objects is su�cient, which can be achieved in a variety of ways. Onepossibility is to use a disparity �lter tuned to a certain distance to detectclose obstacles [Coombs et al., 1992]. As a dense depth representation is un-necessary, it is su�cient to estimate the distance to a sparse set of features,e.g., intensity edges that can be matched reliably.It is also possible to use an area-based stereo method, but to restrict theestimation of disparities to a sparse set of sample points arranged on a regulargrid. This approach has been taken by Robert et al. [1995], who show thatnavigation decisions can be made even in a weakly-calibrated system (i.e.,



4.1 Traditional applications of stereo 65without metric calibration), by comparing the relative heights of the featurepoints over the ground plane.An easy method for obstacle detection for indoor robot navigation is toglobally transform the images using a homography that explicitly aligns the(
at) ground plane. Objects that extend from the ground plane can then bedetected by directly comparing the transformed images (e.g., by di�erencing).4.1.3 3D ReconstructionThe most natural output to expect from a stereo algorithm is an accuratethree-dimensional description of the observed scene, since this is what our ownvisual system seems to provide. It is dangerous, however, to try to evaluate astereo algorithm in isolation (i.e., independent of the proposed application).One is often tempted to judge the quality of a stereo algorithm by observ-ing, say, a gray-level encoding of the computed disparity map, and to checkwhether it \looks good." The fact that humans feel competent to judge thequality of a disparity map by simply comparing it with a single input im-age clearly demonstrates that our 3D perception is aided by monocular cues,which stereo algorithms generally do not have at their disposal.Still, stereo algorithms have been implemented that perform reasonablywell according to the \looks good" criterion (given that the input images havea certain amount of local texture). For example, the system by Cochran andMedioni [1992] is fairly successful in recovering local surface structure suchas depth discontinuities and creases. The detection of depth discontinuitiesis aided by the heuristic that object boundaries usually coincide with strongintensity gradients (see also Section 5.6).It is possible to build explicit 3D models of observed objects from stereodata, but usually only in restricted environments (or with human assistance).Computing elevationmaps from aerial images as described in Section 4.1.1 is agood example. In this case, the accuracy is su�cient due to a highly calibratedsetup, and matching is facilitated by textured scenes and smoothly varyingdisparities. Another example is the automatic modeling of objects with rel-atively simple geometries (e.g., piecewise-planar surfaces). Such stereo-basedmodeling systems are described by Koch [1995] and by Debevec et al. [1996].In the system by Koch, planar surface patches are found using a segmen-tation of surface normals estimated from the disparity map. The recoveredobject is modeled using a texture-mapped 3D triangulation. Koch uses awhole sequence of stereo images and combines the di�erent depth measure-ments into a single model using a Kalman �lter. The system by Debevec et al.is a hybrid geometry- and image-based approach for modeling and renderingarchitectural scenes from a sparse set of images. Using a photogrammetricmodeling interface, a human operator �rst constructs a polyhedral model ofthe scene. A model-based stereo algorithm then computes the deviation ofthe real scene from the model.



66 4. Re-evaluating StereoTo recover scene structure with high accuracy (and without human as-sistance), it is generally necessary to use the information from a whole se-quence of images. This approach is usually referred to as recovering structurefrom motion; an example is the factorization method by Tomasi and Kanade[1992]. Methods such as the one by Tomasi and Kanade require the track-ing of points throughout the whole sequence, which is usually only possiblefor image locations with large local intensity variation, i.e., a sparse set offeatures. The geometry of other points needs to be interpolated, e.g., usinga 3D triangulation of the feature points. Applications of automatic objectmodeling that require dense, accurate 3D descriptions (such as virtual real-ity and telepresence), thus usually resort to other techniques, for exampleusing range images [Shum et al., 1995].In summary, it is di�cult to compute accurate three-dimensional descrip-tions of general objects observed by a stereo rig. The achievable accuracyis limited by the small baseline required for reliable matching. This can bereadily observed if the recovered object is rendered from a di�erent angle, asis often done in the \results" section of stereo papers.4.1.4 3D RecognitionStereo can be used for recognition by extracting the three-dimensional coordi-nates and orientation of (typically sparse) features, which are then comparedto a database of objects.Since it is hard to maintain the precise calibration required for accurate 3Dmeasurements [Grimson, 1993], it has also been proposed to only reconstructthe observed objects up to an a�ne or projective transform, and to basethe recognition algorithm on a�ne or projective invariants (see Section 4.1.6below).Another possibility is to use stereo vision to compute a 212D sketch of ascene [Marr, 1982], i.e., surface depth and orientation, and use this informa-tion to recognize 3D objects by the structure of their visible surfaces [Mayhewand Frisby, 1991].The requirements on a stereo algorithm used for recognition are thusthe following: the input can be a general scene, the output can be sparse(features) or dense (surfaces). Global calibration is not always necessary, butthe disparities of the features need to be computed with high accuracy. Real-time performance is usually not an issue.4.1.5 Visual servoingIf two cameras are mounted on a robot head that supports panning, tilting,and verging motions, stereo vision can be used to actively �xate on a movingobject [Clark and Ferrier, 1992]. This is important in active vision, where theemphasis is on the reactive behavior to visual input, rather than on the (o�-line) processing of a pair of static images. Real-time performance is critical



4.1 Traditional applications of stereo 67in this context. Coombs and Brown [1993] describe such an active visionsystem, which is capable of holding gaze �xed upon a moving object. As insome obstacle-detection applications, stereo is used here as a disparity �lterto localize objects at the horopter, i.e., the distance of �xation. The purposeof �xation is two-fold: it serves to separate the target from its surroundings,and it counteracts motion-blur by keeping the target's location in the image�xed.4.1.6 Full vs. weak calibrationThe role of calibration in stereo deserves separate attention. While manystereo vision tasks have traditionally relied on a fully (metrically) calibratedsetup, recent work has investigated the extent to which the dependence onfull calibration can be lessened. Among the �rst papers pursuing this idea arethe ones by Koenderink and van Doorn [1991], Faugeras [1992], and Hartleyet al. [1992]. The basic observation for stereo is that weak calibration, i.e.,knowing only the epipolar geometry, is su�cient for the matching process, andthat full metric calibration is not necessary. Furthermore, weak calibrationcan be achieved from the two images alone, by establishing a number ofcorresponding points between them.It is possible to compute this calibration from �ve pairs of correspond-ing points, but it involves the iterative solution of �ve simultaneous third-order equations. This has been known by photogrammetrists for quite a while[Thompson, 1959; Slama, 1980]. A linear algorithm using eight pairs of pointswas proposed by Longuet-Higgins [1981]. For a robust solution, however, itis best to utilize as many point correspondences as possible.Recall from the introduction that the epipolar geometry can be charac-terized concisely with the fundamental matrix F, a 3 � 3 matrix relating apoint p (in homogeneous coordinates) in one image with its correspondingepipolar line e in the other image via the equationFp = e:A robust system that automatically extracts many corresponding points froma given input pair and computes the fundamental matrix from them has beenmade available by Zhang et al. [1995].Weakly calibrated stereo and a�ne and projective structure from motionhas been shown to have applications in reconstruction, recognition, naviga-tion, and view synthesis [Shashua and Navab, 1994; Zeller and Faugeras, 1994;Robert et al., 1995; Laveau and Faugeras, 1994]. Depending on the context,the three-dimensional scene structure is often reconstructed up to an un-known a�ne or projective transformation, and a scale factor. If necessary, thenumber of free parameters in the transformation can then be recovered byutilizing additional knowledge about the observed scene. This can be done,for example, by identifying parallel or orthogonal lines on houses or other



68 4. Re-evaluating Stereoman-made objects. To establish the overall scale, it is necessary to use ascene feature with known dimension [Faugeras et al., 1995].4.1.7 Comparison of requirementsTable 4.1 summarizes the comparisons of the �ve applications of stereo dis-cussed above: cartography, navigation, 3D reconstruction, recognition, andvisual servoing. It can be seen that 3D reconstruction is among the hard-est of the traditional applications of stereo: the input is unconstrained, andthe output has to comply with the most requirements. We now turn to therequirements for view synthesis, which are listed in the last column of thetable.Table 4.1. A comparison of requirements for di�erent stereo applicationsCartog- Navi- Recon- Recog- Visual Viewraphy gation struction nition servoing synthesisInput:constrained yesa no no no yesb noalways textured yes yesc no no no noocclusion present nod yes yes yes yes yesRequirements:dense output yes no yes (no)e no yeshandle occlusion no no yes no no yesfull calibration yes nof yes no yes nogaccurate depth yes no yes yes yes nohcorrect geometry yes yes yes yes yes noireal time no yes no no yes noa Aerial images.b Usually in a laboratory setting.c Except for indoor navigation.d Except for occlusion caused by tall buildings or bridges.e Depends on the approach.f Except to allow projection of steering directions into image.g Except for rough estimation of reference view parameters.h See Section 4.3.i See Section 4.5.4.2 Stereo for view synthesisCompared to the applications discussed above, the requirements for view syn-thesis are most similar to the requirements for reconstruction. The similaritiesinclude that we need a dense disparity map with an accurate description ofdepth discontinuities and occluded areas. As we discuss below, it will even



4.3 Accuracy 69be necessary to estimate the depth of partially occluded areas to maximallyutilize the available intensity information in synthesizing new views. (In re-construction, such areas are ignored.)In Section 4.1.3, however, we saw that general 3D reconstruction is themost di�cult task for stereo, and that 3Dmodeling is usually done using morereliable sources, such as range images.Why should stereo be any better suitedfor the task of view synthesis? We answer this question in the remainder ofthis chapter, and show that stereo is indeed very well suited for view synthesis.The two main reasons for this revolve around the required accuracy in depth,and the di�erence between correct geometry and correct view.4.3 AccuracyThere is a well known trade-o� between ease of matching and accuracy ofreconstruction: the smaller the baseline (i.e., the distance between the twoviewpoints), the easier it is to establish correspondences across the two im-ages. A small baseline, however, severely limits the achievable depth resolu-tion, as the �nite resolution of digital images causes discrete discernible depthlevels whose spacing increases with distance.Figure 4.1 shows a geometric construction of the non-uniform spacing ofdiscrete depth levels for two parallel cameras with focal length f and a spatialresolution of �. Usually � = 1 pixel, but sub-pixel disparity estimation mightyield � = 0:1 pixel. Given a baseline of length b, we can derive from similartriangles the following relationship between the distance Z and the spacingof depth intervals �Z: �Z = �fbZ(Z +�Z): (4.1)Since �Z is small compared to Z, we have�Z � �fbZ2: (4.2)Thus, the spacing is roughly proportional to the square of the distance.To give a concrete example, suppose we have two CCD cameras with asensor width of 640 pixels, and a horizontal �eld of view of 50�. The focallength is f = 640 pixels=2tan(50�=2) = 686 pixels:Given a resolution of � = 1 pixel, and a baseline of b = 50mm, the depthresolution at a distance of Z = 0:5m is�Z � �fbZ2 = 7:3mm;while at a distance of Z = 5m it is only
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Fig. 4.1. The non-uniform spacing of discrete depth levels. Two parallel cameraswith spatial resolution � yield a depth resolution at discrete depth levels whosespacing �Z increases with distance Z.



4.4 Correct vs. realistic views 71�Z � 0:73m:Thus, the depth resolution at this distance would not be adequate at all for3D reconstruction. Neither would it be adequate if we wanted to synthesizethe view from a very di�erent viewing direction, for example, from above theobserved scene.In our proposed framework of many reference views, however, we onlyneed to synthesize views that are reasonably close to the reference views.More precisely, we require the distance between the new viewpoint and thereference viewpoints to be of a magnitude similar to the length of the baseline.For those viewpoints, the accuracy provided by a disparity map is not onlyadequate, but also well-matched across the depth range (i.e., neither too highnor too low). Remember that the view synthesis technique from the previouschapter uses three-view recti�cation to keep the virtual image plane coplanarwith the existing image planes, and that the pixel motion from the old tothe new views is proportional to the motion between the two original views(i.e., the disparity). Thus, errors in the computed disparities are uniformlyampli�ed for all possible disparities, depending only on the magnitude of theo�set vector to the new view. Since disparities are never explicitly convertedinto depth, the error associated with depth does not a�ect the synthesizedview.Thus, the disparities provide a compact, uniform, view-based encoding ofthe scene geometry, which is ideally suited for the task of view synthesis. Incontrast, a uniform global encoding of the scene, such as a voxel representa-tion,1 would be ill-matched for view synthesis, as points far away would berepresented with too much detail, while the resolution might not be adequatefor close points. Even worse, the overrepresentation of far objects can actuallyimpede fast rendering. This can only be avoided using a (more complicated)hierarchical representation, in which the scene geometry is stored at multiplelevels of resolution.4.4 Correct vs. realistic viewsThe second reason why stereo is better suited for view synthesis than forreconstruction has to do with the desired output. In reconstruction, the de-sired output is a 3D description of the observed scene. In view synthesis,the desired output are realistic-looking images of the scene as it would ap-pear from novel viewpoints. This criterion has both a \hard" and a \soft"interpretation. The former requires the synthetic image to be correct, i.e.,equivalent to the view that a real camera at this position would provide. Thelatter re
ects the goal of view synthesis: to provide a human observer with a1 A voxel is the three-dimensional equivalent of a pixel: a small uniform volumeelement in 3-space, encoding color information.



72 4. Re-evaluating Stereoconvincing three-dimensional impression. According to this \soft" criterion,the synthetic view does not need to be correct, but rather realistic.Even if we want the correct view, view synthesis is easier than 3D recon-struction. This is true in terms of accuracy, as was discussed in the previoussection. In addition, there are common scenarios in which the correct viewcan be synthesized even if the underlying geometry is wrong or unknown.This is true in particular for image regions of uniform intensities, which arediscussed in the next section.In practice, however, it will hardly ever be possible to synthesize thecorrect view, because most real scenes contain occlusion. A new viewpointwill, more often than not, contain partially occluded areas of unknown depthand totally occluded (previously invisible) areas of unknown intensities. Thus,we will have to fall back on the \soft" criterion, i.e., trying to create a realisticimpression.To provide a convincing impression, it is necessary to estimate depthand to synthesize texture in areas with insu�cient information. Ideally, theseestimates should result in minimal visual artifacts, so that the synthetic viewslook realistic and also convey a consistent three-dimensional impression. Thiswould satisfy the \soft" criterion, even though the views might neither becorrect, nor represent the correct geometry. Obviously, it is harder to evaluatethe success of a view synthesis method according to this subjective criterion.Instead of measuring the similarity between the synthetic view and a realreference view, we have to evaluate the impression on a human observer.A thorough evaluation would need to rely on methods from experimentalpsychology, which is beyond the scope of this volume. Instead, we have totry to judge the quality of the synthesized images as objectively as possible.An excellent way of testing for three-dimensional coherence is to watch a\movie" of views from a trajectory of closely-spaced viewpoints. It is mucheasier to spot visual artifacts and 3D incoherencies in an animated sequence,than in a single image. We can not tolerate 
aws that are unnoticeable onlyin still images, however, since most applications of view synthesis do presentanimated sequences of views to the observer.4.5 Areas of uniform intensitiesView synthesis (as opposed to many other applications of stereo) requires adense depth map that assigns depth to every pixel. During the mapping step,we can utilize information neither about certainties of depth estimates norabout unmatched points, since every pixel in the image needs to be mappedto a new position. This has two consequences: we want the stereo algorithm topick canonical solutions that create minimal artifacts where there are multipleor ambiguous depth interpretations, and we have to make extra assumptionsabout the disparities of unmatched points. We �rst address ambiguous depthinterpretations.



4.5 Areas of uniform intensities 73Whenever a local area in one image matches multiple areas in the otherimage (along the corresponding epipolar line), the matching problem is am-biguous. This is usually caused either by an area of locally constant intensity,or by a repetitive pattern, such as a brick wall or a patterned wallpaper.2Mismatches due to repetitive intensity patterns are hard to avoid, since, lo-cally, matches have high certainty. Often a third view (from another cam-era) would be necessary to disambiguate the matches [Okutomi and Kanade,1993]. Thus, repetitive patterns are problematic for view synthesis, since thesynthetic view can reveal matching errors to the observer.The situation is di�erent for areas of uniform intensities. Ambiguous depthinterpretations caused by areas of uniform intensities have been a traditionalproblem for stereo methods that compute dense disparity maps. The key ob-servation for view synthesis is that these regions yield the same views largelyindependent of the underlying depth interpretation. In contrast to the case ofrepetitive intensity patterns, more views provided by extra cameras usuallydo not contribute any new information about uniform areas, and would notsubstantially decrease the ambiguity of the geometry in these regions either.Intuitively, this illustrates that the correct view of these areas can often besynthesized even though the underlying geometry may be unknown (and un-knowable from visual data). Even if the correct view can not be guaranteed,it is possible to create a plausible view corresponding to a canonical depthinterpretation.4.5.1 Geometric constraintsTo make these ideas more precise, let us consider the scenario shown in Fig-ure 4.2. Two cameras L and R observe a textured scene containing a regionof uniform intensity. The �gure shows a cross section of the scene taken alongan epipolar plane. The textured parts of the scene (to the left and the rightof the uniform patch) can be matched unambiguously, and thus their geome-try is known. Similarly, the positions of the endpoints of the uniform line areknown, too. The geometry of the interior of the uniform line is unknown, how-ever, since any point on this line matches any other point equally well. Notethat while the shape of the uniform surface is unknown, it must lie within theshaded area in Figure 4.2 due to visibility constraints. If we further assumea continuous surface connecting the two endpoints that is completely visiblefrom both L and R (i.e., there is no occlusion), the shape is constrained tolie within the central, darkly shaded region.To aid the discussion below, we de�ne several terms: A camera's visibilitycone is the angular region anchored at the camera and subtended by theuniform region. The two half planes separated by the line through the twoendpoints of the uniform region are the protruding half plane and recedinghalf plane. The protruding half plane is the one containing the two cameras.2 Wallpapers with a regular pattern often fool the human visual system as well.
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L RFig. 4.2. An area of uniform intensity: The �gure shows a top-down view of twocameras observing a textured scene (crisscrossed line) containing a region of uniformintensity (solid line). The geometry is constrained by the combined shaded regionsin the general case, and by the darkly shaded region if no occlusion is allowed.We can now de�ne the strong and weak shape constraint regions. Thestrong shape constraint region is simply the intersection of the two cameras'visibility cones. The weak shape constraint region has a protruding and areceding part : its protruding part is the intersection of the two visibility cones(in the protruding half plane), while its receding part is the union of the twovisibility cones (in the receding half plane).According to these de�nitions, the darkly shaded area in Figure 4.2 is thestrong shape constraint region, and the combined darkly and lightly shadedareas are the weak shape constraint region. The uniform surface has to liewithin the weak shape constraint region in general, and within the strongshape constraint region under the assumption of complete visibility.Uniform (or nearly-uniform) intensity regions abound in real images, inparticular in images of indoor scenes and of arti�cial objects. Under the right(though perhaps unlikely) conditions of lighting and albedo (i.e., surface colorand re
ectiveness), almost any shape can appear uniform. This is true evenunder the assumption of Lambertian surfaces3 which is commonly employedby intensity-based stereo algorithms. Examples of di�erent geometries (be-3 Recall that a Lambertian surface is a perfectly matte surface whose brightnessdepends only on the angle of incident light and not on the angle of observation.
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L RFig. 4.3. Ambiguous geometries due to uniform intensities. The �gure shows astraight, a curved, and a piecewise straight surface, all of which could give rise toa uniform intensity area. Note that even under a Lambertian surface model, anyshape { although this is unlikely { could physically result in uniform intensities(given a perhaps non-uniform albedo).sides the straight line connecting the endpoints) that could result in a uniformimage are shown in Figure 4.3.4.5.2 Interpolated viewsNow, let us consider synthesizing a new view from a viewpoint in the sameepipolar plane. Figure 4.4 depicts this situation for a synthetic viewpointS in between the two reference views. It can be seen that any continuous,non-occluded surface yielding uniform views from L and R will also appearuniform from the new viewpoint S (assuming Lambertian surfaces). This isthe case since the viewing cone from the synthetic view completely containsthe strong shape constraint region. Thus, the new view does not impose anyadditional constraints on the geometry.The situation is di�erent if occlusion is allowed, since the new view coulduncover previously occluded scene points (shown hatched in the �gure). Ifthis is the case, and the newly visible points have di�erent intensities, thenew view can not be predicted. Geometrically, the newly visible points liewithin the receding part of the viewing cone from S, but not within the weakshape constraint region. Note that this situation is rather unlikely to occur,since it corresponds to observing a remote surface through a narrow gap.
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L RSFig. 4.4. An intermediate view (in between the reference views) does not constrainthe unknown geometry of a uniform region, and can usually be synthesized, unlessthe new view uncovers previously invisible scene points (shown hatched).Usually, the true surface will lie within the weak shape constraint region,and will appear uniform from the new viewpoint.The observation that intermediate views of uniform areas can usually besynthesized without any knowledge of the underlying geometry is in agree-ment with similar results by Seitz and Dyer, who consider the problem ofview interpolation under a�ne [Seitz and Dyer, 1995] and perspective [Seitzand Dyer, 1996a] projection. They propose a view interpolation algorithmthat matches and shifts uniform patches of intensity as a whole (based onthe dynamic-programming stereo method by Ohta and Kanade [1985]). Seitzand Dyer come to the conclusion that pure interpolation of views yields phys-ically valid views if the images are �rst recti�ed. They also argue that, underthe additional assumption of monotonicity, view interpolation is a well-posedproblem (as opposed to 3D reconstruction). The monotonicity constraint isthe basic assumption made by dynamic-programming stereo methods, andrequires that the relative ordering of points along epipolar lines is preservedin all views.Seitz and Dyer derive a complete visibility constraint from the mono-tonicity constraint, i.e., they require that all points need to remain visible inall intermediate views (which excludes any occlusion). They conclude thatcomplete visibility is required for view synthesis. However, this conclusion isoverly restrictive. As discussed above, complete visibility (across all views)



4.5 Areas of uniform intensities 77is certainly a su�cient condition for the synthesis of correct views (which,geometrically, requires the surface to lie within the strong shape constraintregion). It is not a necessary condition, however, as there are many moregeometries (within the weak shape constraint region) that can yield the cor-rect (uniform) image. It is not necessary to exclude occlusion, which is quitecommon in natural scenes. In fact, the unknown geometry could consist ofmultiple occluding surfaces.In summary, most surface geometries that appear uniform from L andR will also appear uniform from an intermediate view S. It is not necessaryto exclude occlusion (i.e., to require complete visibility), but it is harderto characterize precisely the set of surfaces that will appear uniform onceocclusion is allowed.In order to render the uniform area from a di�erent viewpoint, we needan (arbitrary) depth interpretation for the inside of the region. The easiestsuch interpretation is the straight line connecting the two endpoints of knowndepth, which we call the canonical depth interpretation. Note that even whenthe correct view can not be predicted (i.e., if there are newly visible scenepoints), this depth interpretation results in a plausible view, because theobserver (usually) has no way of predicting the appearance of the newlyvisible points either.4.5.3 Extrapolated viewsWe now consider the case of a new view outside the original baseline, but stillon the line through the two reference viewpoints (see Figure 4.5). That is, wewant to synthesize an extrapolated view (as opposed to an interpolated one).In this case, the correct view can only be synthesized for some geometries,even if the surface is completely visible from both reference views. The reasonis that if the uniform surface extends towards the front, it could occlude someof the textured background in the new view, which would be impossible topredict. For example, this happens if the surface extends into the regionshown in black in Figure 4.5. The new view now constrains the geometry, asits viewing cone no longer completely contains the strong shape constraintregion.A new viewpoint outside the original baseline can also uncover previouslyoccluded scene points. This is only possible if occlusion is present and thesurface extends into a previously invisible region, for example, the area shownhatched in Figure 4.5. Since the intensity of the newly visible points is un-known, the new view can not be predicted. As in the previous section, thegeometric interpretation is that the receding part of the viewing cone fromthe new viewpoint is not completely contained in the weak shape constraintregion.Both of the above problems make the synthesis of extrapolated viewsmore di�cult than the synthesis of interpolated views. The �rst problem (theconstraint in the protruding part of the plane) implies that the synthetic view
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L R SFig. 4.5. An extrapolated view (outside the original baseline) constrains the geom-etry of a uniform region, and can only be synthesized correctly if the true surfacedoes not extend into the black and hatched areas. (If the surface does extend intothe black area, unpredictable occlusion can occur along the line of sight showndashed.) A plausible view can always be synthesized, however, by assuming thecanonical depth interpretation along the straight line connecting the endpoints ofthe uniform region.



4.5 Areas of uniform intensities 79can no longer be guaranteed to be correct, even if we assume a continuoussurface completely visible from the original views. This was not the case forinterpolated views. In addition, the second problem (that of newly visiblepoints in the receding part of the plane), is more likely to occur, as it canbe caused by any occlusion boundary. In interpolated views, on the otherhand, it requires the presence of a remote surface visible through a narrowgap. As before, however, a plausible view can be synthesized by assumingthe canonical depth interpretation along the straight line connecting the twopoints of known depth.4.5.4 General views and the aperture problemRecall that we have parameterized the position of the new viewpoint withthe coordinates (XS ; YS), while the two reference views have the coordinates(0; 0) and (1; 0). So far we have investigated interpolated views (with 0 <XS < 1), and extrapolated views (with XS < 0 or XS > 1). In both cases wehad YS = 0. We now consider the case where YS 6= 0.Such views from a point not on the original baseline are a�ected by theaperture problem, i.e., the fact that the local displacements can only be recov-ered in the direction of the intensity gradient. In the context of stereo, theaperture problem has the consequence that vertical intensity edges can bematched unambiguously (unless they are part of a repetitive pattern), whilehorizontal intensity edges are impossible to match at a local level, becauseeach match looks (locally) equally good. In fact, if we only consider a single(horizontal) epipolar line, a horizontal intensity edge appears uniform alongthis line. Thus, for new viewpoints on the original baseline, the discussionfrom the previous two sections extends to horizontal intensity edges. As be-fore, the image of such edges will be correct in the new view independentof the underlying depth interpretation. We can conclude (in agreement withSeitz and Dyer [1995; 1996a]) that the aperture problem is nonexistent andthat the view synthesis problem is well-posed in this case.The situation is di�erent for a new view with YS 6= 0. This case corre-sponds to observing the scene from a viewpoint either above or below theoriginal viewpoints. A horizontal intensity edge in the original views will nowhave a di�erent shape and position in the new view as a direct consequence ofits estimated depth. This makes the synthesis of a correct view much harder.The main di�erence from the previous case is that uncertainties in depthestimation and view synthesis no longer \cancel each other out". These uncer-tainties correspond to an intensity gradient whose component in the directionof the epipolar line is zero. Before, the epipolar lines for depth estimation andview synthesis were identical. Now, their direction di�ers: the epipolar linesbetween the two reference views are horizontal, while the epipolar lines be-tween each reference view and the synthetic view are not.It is still possible to avoid most visual artifacts by assigning a canonicaldepth interpretation, but this interpretation must now be consistent across



80 4. Re-evaluating Stereoscanlines. In the case of a uniform region within a textured area, this can beachieved by interpolating the disparities from the boundaries. The problemis harder, however, for areas where the intensity gradients have mostly verti-cal components (i.e., in the presence of horizontal stripes). In this case, thecanonical depth interpretation needs to be consistent over a larger area.4.5.5 Assigning canonical depth interpretationsThe above discussion has shown that uniform patches usually do not createvisual artifacts in the new view as long as their boundaries are matchedcorrectly. We now discuss how the canonical depth assignments of the interiorof uniform regions can be achieved by interpolating the disparities of theboundaries. The explicit assignment of disparities to the interior of uniformregions is necessary since dense disparity maps are required by the imagewarping step.There are several possibilities for how the interpolation can be performed.One possibility is to use dynamic-programming stereo methods, which ef-�ciently interpolate across uniform areas on each scanline by relying onthe monotonicity constraint [Ohta and Kanade, 1985; Cox et al., 1992a;Intille and Bobick, 1994; Birch�eld and Tomasi, 1998a]. This is the ap-proach taken by Seitz and Dyer [1995; 1996a]. The disadvantages are thatthe monotonicity constraint limits the allowable scene geometry, and thatinter-scanline consistency is harder to enforce in a dynamic-programmingmethod.A second possibility is to use iterative stereo methods, which graduallydistribute matches of high certainty (such as the boundaries) into ambiguousareas (i.e., the interior of uniform regions). Examples are the di�usion-basedmethods that are discussed in Chapter 6.Finally, a third possibility is to compute explicit certainties for all matches,and to assign a \don't know" status to all points whose certainty is below agiven threshold. The resulting holes in the computed disparity map can thenbe �lled, for example using thin-plate spline interpolation [Grimson, 1981],or by simply interpolating the values along each scanline. Filling holes dueto matches of low certainty can then be combined with �lling holes due topartial occlusion (which is discussed in Section 4.6). This is the approachthat has been taken for the results presented in this volume.In Chapter 5 we discuss a stereo method that incorporates the computa-tion of certainties into the matching process.4.5.6 Does adding more cameras help?For unrestricted scenes, there can always be viewpoints for which incorrectviews will be generated, even if the underlying disparity map is a canonicalinterpretation of an ambiguity. In general, this is true for any viewpoint



4.6 Partial occlusion 81from which an additional (real) camera could be used to disambiguate thepossible depth interpretation. In other words, if an error in the computeddisparities could be detected with an additional camera, then the view fromthis point can reveal the error. As mentioned in the beginning of this section,this includes not only ambiguities due to uniform regions, but also repetitiveintensity patterns.Multiple-camera stereo has been proposed to deal with precisely theseambiguities [Ito and Ishii, 1986; Pietik�ainen and Harwood, 1986; Bolles etal., 1987; Ayache and Lustman, 1991]. In this volume, however, we focus onthe two-camera case. The reason is that adding more cameras makes a simul-taneous global recti�cation for all views impossible (since a recti�cation planeparallel to all baselines does not exist in general). Thus, a more complicatedimage warping procedure would be required to allow the fusion of more thantwo reference images into the combined new view. An exception is the caseof multiple-baseline stereo [Okutomi and Kanade, 1993], where all cameracenters lie on a straight line. In this case, global recti�cation is still possible,and the stereo matching process is very similar to the two-view case.To summarize, for view synthesis it is often not necessary to resolve am-biguities that arise during the stereo matching process. In many situations,assuming the canonical depth interpretation yields either the correct view, ora plausible view, which, while being incorrect, represents a consistent geom-etry and contains no apparent errors. That is, even though adding an extracamera would yield a di�erent depth map (and di�erent synthetic views),this is not necessary to convey a convincing three-dimensional structure. Asimilar argument can be made for the problem of �lling holes in the �nal syn-thesized images, which was discussed in Section 3.2.5. The number and sizesof holes (corresponding to previously invisible scene points) can be decreasedby adding extra cameras. If there are fewer holes, less \guessing" of texturesis required, which increases the accuracy of the synthesized view. However,there is a trade-o� involved, since adding extra cameras can require a morecomplicated calibration procedure, and precludes the use of the fast viewsynthesis method presented in the previous chapter. Unless the quality of thesynthetic view could be improved substantially, adding extra cameras is thusnot economical.4.6 Partial occlusionBesides regions of uniform intensity, we also have to deal with partially oc-cluded regions that are visible from only one camera. Figure 4.6 shows anexample of such a case. Note that we have intensity information but no depthinformation for the points that are visible only from one camera. To be ableto generate new views of these half-occluded points, we have to make assump-tions about their depth. A di�erent possibility is to ignore these points com-pletely. This approach has been taken by Ott et al. [1993] in their proposed
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������RLFig. 4.6. An example of partial occlusion. The illustration shows a top-down viewof two cameras L and R observing a scene in which a wedge-shaped object in theforeground partially occludes a curved background. The lightly-shaded region isonly visible from the left camera, while the striped region is completely occluded.The surfaces with known intensity and geometry are marked with a solid line. Thepartially occluded surface, whose texture is known but whose geometry is unknown,is marked with a dashed line.application of view synthesis for creating a center view for teleconferencing.Ignoring the partially occluded points in the image warping step results inmore holes in the �nal image, which eventually need to be �lled. We maintainthat better results can usually be achieved by utilizing the intensity informa-tion provided by the partially occluded regions, instead of discarding it. Todo this, we must assign explicit depth to these points.Just as with �lling holes in the �nal image, assigning depth has to rely onheuristics, as there are an in�nite number of possible depth interpretations.Any surface spanning the lightly shaded region in Figure 4.6 could result inthe observed intensities. Given the known depth of points P and Q boundingthe partially occluded region, however, there are a number of reasonablegeneric assumptions: (a) interpolating the depth values between the pointsof known depth, (b) assuming constant depth, or (c) assuming constant depthgradient. These choices are illustrated in Figure 4.7.Assuming interpolated depth values (a) is almost certainly the wrong in-terpretation, since it relies on an unlikely viewing position of the right camera.
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Fig. 4.7. Some possible depth interpretations under partial occlusion. Using theknown depth of the boundaries P and Q of the partially occluded region, threepossible depth hypotheses (among the in�nitely many) include (a) interpolatingdepth; (b) assuming constant depth; and (c) assuming constant depth gradient.



84 4. Re-evaluating StereoThat is, if (a) would be the correct depth interpretation, then the right cam-era would be looking straight along a surface. Thus, the camera would notbe in a general position with respect to the scene, and a slight perturbationof the camera position would yield a di�erent geometric con�guration. Ona related note, Nakayama and Shimojo [1990; 1992] have argued that thehuman visual system interprets many underconstrained visual scenarios byassuming a general viewpoint as well. Thus, we will discard choice (a) fromconsideration. (This is di�erent from the case of uniform regions, where thecanonical depth interpretation does require an interpolation of depth values.)Assuming a general viewpoint, the most likely cause for a partially visiblearea is the occlusion of a surface by a (di�erent) object at a closer distance.The depth estimate of the partially occluded region should therefore notdepend on the depth of the near boundary of the region (i.e., point Q inthe �gure), but only on the depth of the far boundary (i.e., point P). Thismotivates the choices (b) and (c).Assuming a constant slope of the background (c) seems like a good idea.A continuous surface orientation at point P would also be implied by theassumption of a general viewpoint. In practice, however, it is di�cult to re-liably estimate the depth gradient from a discrete noisy disparity map. Theeasiest and most stable solution turns out to be the constant-depth hypoth-esis (b). In our experiments we found that this strategy usually producesgood results. Also, since the half-occluded regions are fairly narrow in mostcases, the di�erence between constant-slope and constant-depth assumptionsare usually small.From the above discussion we can conclude that it is crucial that the stereoalgorithm detects and correctly labels partially occluded points, rather thanassigning random disparities in these areas. Recall that the view synthesisalgorithm requires symmetric disparity maps d12 and d21. An easy way ofdetecting occluded regions is to compute the two disparity maps separately,and then perform a consistency check. Points whose disparities disagree arelabeled occluded. This \two-pass" approach to dealing with occlusion, usingtwo symmetricalmatching processes (left-to-right and right-to-left) and cross-checking after matching is used in our current implementation.One can argue that it would be preferable to use a concurrent stereomatching process that computes consistent symmetric disparities while alsodetecting occluded regions. Stereo algorithms based on dynamic program-ming are examples of such processes [Belhumeur and Mumford, 1992; Cox etal., 1992a; Geiger et al., 1992; Intille and Bobick, 1994], but they su�er froma number of inherent problems. First, stereo methods based on dynamic pro-gramming require assigning a cost to unmatched pixels. Choosing the rightcost is di�cult, even if it is based on an a priori assumption about the like-lihood of occlusion in the scene, as is done in some approaches. The secondproblem is that these approaches do not yield an easy way of enforcing inter-scanline consistency. Finally, dynamic-programming algorithms rely on the



4.7 Summary 85ordering constraint (or monotonicity), which is usually not satis�ed in realscenes.There are also other ways to detect occluded areas, or other areas thatare unlikely to be matched correctly. A method based on binary matchingthat explicitly computes the probability of a false match is described byHuttenlocher and Jaquith [1995].As discussed in Section 2.2.9, several promising stereo algorithms havebeen proposed recently that make progress towards the goals outlined above.In particular, the algorithm by Birch�eld and Tomasi [1998a] is designed torecover depth discontinuities precisely, although at the price of an increasedsensitivity to noise, and of diminished accuracy of the recovered scene depth.The methods by Szeliski and Golland [1998] and Baker et al. [1998] constructlayered representations of a scene, including estimates for disparity, true color,and opacity at each pixel. Such representations are ideal for view-synthesisapplications, because they allow the assignment of depth hypotheses to beintegrated into the matching process.4.7 SummaryIn summary, a stereo algorithm whose output is to be used for view synthesishas to satisfy many of the requirements demanded by the task of 3D recon-struction. While it can be argued that stereo is not particularly well suitedfor 3D reconstruction, we have seen that this is not the case for view syn-thesis. The parallels between the two tasks include that the stereo algorithmmust be able to perform in general, unconstrained environments containingboth textured and textureless objects, and occlusion. Further, a dense dis-parity map with high spatial accuracy is required as output. It is particularlyimportant that object boundaries (i.e., depth discontinuities) and partiallyoccluded areas are accurately localized.The two main problems for 3D reconstruction from stereo data, limitedaccuracy and unknown geometry in textureless areas, do not apply to theapplication of view synthesis, however.The depth resolution achievable from stereo is often inadequate for ac-curate 3D modeling. It is su�cient, however, for the synthesis of views fromnearby viewpoints, as the depths of points at greater distances need to beknown with less precision. In other words, the disparity maps constitute arepresentation of the scene geometry well-suited for the task of synthesizingnearby views, as the achievable accuracy for remapping a point (in imagecoordinates) is independent of the point's depth.Textureless areas (whose geometries are unknown) are another source oftrouble for 3D reconstruction methods. In view synthesis, however, a plausible(and in many cases correct) view can be synthesized by assuming a canonicaldepth interpretation. This interpretation can be achieved by interpolatingthe depth of featureless areas from their boundaries.



86 4. Re-evaluating StereoFinally, for performing accurate 3D measurements, full (and exact) cali-bration is required, which is di�cult to achieve and to maintain. View syn-thesis, on the other hand, can proceed from pairwise recti�ed stereo pairs,which can be achieved by weak calibration (without knowledge of the exter-nal camera parameters). In order to specify a synthetic viewpoint, a roughknowledge of the reference view parameters can be su�cient.



5. Gradient-Based StereoThis chapter begins the second major part of this volume: the discussion ofactual stereo algorithms. So far we have discussed how new views can be syn-thesized and what requirements view synthesis imposes on stereo algorithms.Given this background, we are now ready to examine several di�erent stereomethods, and to evaluate their performance in the context of view synthesis.The topic of this chapter is a stereo method whose similarity measureis based on comparing intensity gradients. In Chapter 6 we discuss di�er-ent stereo methods that operate by iteratively di�using support for di�erentdisparity hypotheses.The method presented in this chapter is a continuation of previous work,which was originally motivated by the need for a robust matching techniquefor the computation of visual correspondence [Scharstein, 1994b]. As we willdiscuss in more detail below, the advantages of the method include that itis insensitive to absolute intensity di�erences between images (it can thustolerate cameras with di�erent bias), and that it allows easy integration ofthe concept of con�dence (or certainty) into the matching process. The latterproperty makes the method very well suited for view synthesis applications:the fact that the certainty of a computed match can be evaluated easilyis useful for assigning canonical depth interpretations in areas of uniformintensities (as was discussed in Section 4.5).The di�usion-based methods of the next chapter, on the other hand, aremotivated by the problem of boundary blurring, since poorly localized bound-aries can yield strong artifacts in synthesized views.To put the di�erent stereo methods of this and the next chapter intocontext, recall the framework from Section 2.2.1, which categorizes stereoalgorithms according to the following tasks:1. Preprocessing (optional)2. Computation of a local matching cost3. Aggregation of spatial support4. Selecting the best match5. Sub-pixel disparity estimation (optional)The main emphasis of the method in this chapter is on the matching cost.In particular, we will discuss a way of measuring the evidence for or against



88 5. Gradient-Based Stereomatches under a given displacement. The emphasis in the following chapter,in contrast, will be on the aggregation of support.We start by discussing the notions of similarity and con�dence in Sec-tion 5.1, and the di�erence between point-oriented and displacement-orientedcontrol strategies in Section 5.2. We introduce our new gradient-based evi-dence measure in Section 5.3, and discuss the accumulation of the measurein Section 5.4. In Section 5.5 we present experimental results, both for thecomputation of stereo and of general motion. We then discuss in Section 5.6the detection of half-occluded regions and other post-processing steps nec-essary for the application of view synthesis. We discuss e�ciency issues inSection 5.7, and close with a discussion in Section 5.8 and a summary inSection 5.9.5.1 Similarity and con�denceComparing locations in two images involves a matching criterion: a measureof goodness of a proposed match. A key observation is that most methodsfor computing correspondences have two underlying criteria:{ a similarity criterion that re
ects how well two locations in the two imagesresemble each other;{ a con�dence criterion that re
ects the likelihood that a match is correct.Existing methods often treat these two criteria separately. The methodpresented here uses a single measure, which { given a certain displacement {gives a (strong) positive response where points match with (high) con�dence,a negative response where there is a clear mismatch, and zero response inregions where there is neither evidence for a match nor evidence against amatch. The measure is based on comparing the gradient �elds of the images.There are several reasons why combining the criteria of similarity and cer-tainty is a good idea. By introducing a con�dence value early in the matchingprocess, both similarity and con�dence in
uence the aggregation of supportfor a match. This causes the aggregation to proceed in a non-uniform way,as matches with higher con�dence receive more weight. Thus, when it comesto selecting the best match, matches with high certainty have already in
u-enced neighboring areas. In addition, the certainty of each selected match ispreserved, and areas where no clear match has been achieved can be detectedlater. This allows the detection of both unmatched areas due to partial oc-clusion (i.e., areas visible from only one camera), and of low-con�dence areasdue to regions of uniform intensity. As was discussed in the previous chapter,both properties are critical for the application of view synthesis.The gradient-based approach has the following additional advantages,each of which will be discussed in more detail below.{ The evidence measure, which is only based on the local gradients, can becomputed quickly and in parallel.



5.2 Displacement-oriented stereo 89{ For a given displacement, the measure can be accumulated by simply av-eraging over a certain area. The average value represents evidence for oragainst a match. This enables the use of a displacement-oriented controlstrategy, which is the topic of the next section.{ Finding maxima in the accumulated measure is a stable way of computingcorrespondences without smoothing across motion boundaries.{ Dominant displacements can be detected by accumulating the measureover large regions. This can be used to automatically select interestingdisplacement ranges, and also as attention cues in the context of activevision.5.2 Displacement-oriented stereoA stereo algorithm can proceed according to a point-oriented or a displace-ment-oriented control strategy. Informally, the point-oriented strategy is \Foreach location in one image, �nd the displacement that aligns this locationwith the best matching location in the other image," while the displacement-oriented control strategy is \Given a certain displacement, �nd all the loca-tions that match well." This can be characterized more precisely by examiningthe loop structure of a stereo algorithm, as discussed below.Conceptually, a stereo algorithm contains two nested loops, \for allpoints" and \for all disparities," which can be nested in two di�erent ways.The outer loop of a point-oriented algorithm is \for all points." For eachpoint in one image, the point is then compared (\for all disparities") withpoints in the other image to select the best match. Each comparison involvesthe aggregation of a similarity measure over a certain neighborhood (using athird loop, \for each location in the neighborhood of the point"). Thus, thetotal number of operations is O(Ndw2), where N is the number of points, dis the number of disparity levels, and w is the size of the (typically square)neighborhood of aggregation. The number of pixels N usually ranges from70,000 to 300,000; the number of disparity levels d is usually between 10 and100. The window size w is typically between 5 and 15.In a displacement-oriented algorithm, the nesting of the loops is reversed.The outer loop is now \for each disparity." For each �xed disparity (i.e.,a �xed translational o�set between the two images), the similarity measureis then computed (\for all points") and subsequently aggregated (\for allneighborhoods of all points"). Finally, the best match across all disparities isselected for each point.Obviously, simply switching the order of the loops does not a�ect thecomplexity at all, which is still O(Ndw2) for the naive implementation of thedisplacement-oriented algorithm outlined above. However, the aggregationstep at each disparity level (which corresponds to a convolution with a �nite



90 5. Gradient-Based Stereokernel of size w�w) can usually be performed faster. If this kernel is separable1{ as is the case for a Gaussian kernel, for example { the convolution can beperformed in O(Nw) instead of O(Nw2) time. For a constant kernel (i.e.,a box �lter), the convolution can be performed with a constant number ofoperations per pixel, so that the time further decreases to O(N ). It is possibleto approximate non-constant kernels such as the Gaussian by a sequence ofbox-�lter operations [Wells, 1986]. In practice, the total running time of thedisplacement-oriented algorithm is therefore only O(Nd).A drawback of the displacement-oriented algorithm is that its space re-quirements are higher, since it is necessary to store the current best match forall points, instead of only for one point. If the procedure for picking the bestmatch is more complex than a simple minimization and needs to examine allmatch values, the space requirements for the displacement-oriented algorithmare O(Nd), as compared to O(N + d) for the point-oriented algorithm.Recall from Section 2.2.1 that stereo algorithms can be divided into twogroups, according to whether the computation of matching cost and the spa-tial aggregation can be separated or not. Some matching costs (for example,correlation) are de�ned over a �xed support region, and thus combine costcomputation and aggregation into one step. In such cases, the displacement-oriented control strategy o�ers no advantages over the point-oriented controlstrategy. The point-oriented strategy is also the right choice if the disparityestimation of a sparse subset of points is su�cient for the application. Thisapproach has been taken in the context of rover navigation [Robert et al.,1995].If a dense disparity map needs to be computed, however, it is usually bet-ter to use a displacement-oriented algorithm. This includes the application ofview synthesis. Besides the faster performance, a displacement-oriented algo-rithm is also more easily parallelizable. (In the next chapter we will discussa highly parallel aggregation method based on iterative di�usion.) Thus, ameasure for which cost computation and aggregation can be performed inseparate steps is preferable.5.3 The evidence measureWe will now describe the gradient-based evidence measure in detail. Theparticular measure we introduce has proven to work quite well, and is anexample of a measure that can be used in a displacement-oriented controlstrategy. In the following, we will treat an image as a continuous intensityfunction I(x; y); we will discuss dealing with discrete images in Section 5.3.3.1 A two-dimensional convolution kernel is separable if it can be expressed as theconvolution of two one-dimensional kernels.



5.3 The evidence measure 915.3.1 Comparing two gradient vectorsAs mentioned in Section 5.1, the method combines the notions of similarityand con�dence (or distinctiveness) into a single measure of evidence for oragainst a match at a certain location under a certain displacement. The basicidea is to compare the two intensity gradients at this location. In particular,if gL and gR are the two gradient vectors to be compared, we use the averagegradient magnitude m = (jgLj+ jgRj)=2 (5.1)to represent con�dence, and the (negated) magnitude of the di�erence of thetwo gradients �d = �jgL � gRj (5.2)to represent similarity.We de�ne the evidence for a match to be the weightedsum of these two terms:e = m� �d (5.3)= jgLj+ jgRj2 � � jgL � gRj:To achieve a symmetric range [�m;m] of values for e when comparing twovectors of equal length m, we choose a weight parameter of � = 1. (Evidencee = m if the two vectors have the same direction, and e = �m if the twovectors have opposite directions.) See Figure 5.1 for an illustration of thevalues of e for di�erent pairs of gradient vectors.If both gradients are zero, there is neither local evidence for nor againsta match, and consequently e = 0. Note that the measure ignores the originalintensities, although one can argue that comparing the intensity values di-rectly can provide additional information (in particular, evidence against amatch, in case the intensities are very di�erent). In practice, however, com-paring absolute intensity values is not very stable, since individual camerasoften di�er by global additive and multiplicative intensity factors (i.e., biasand gain).2The evidence value e can also be zero for two non-zero gradient vectors, forexample, in the case of two vectors of equal length subtending an angle of 60�.Intuitively, this re
ects the situation where the directions of the gradients aretoo di�erent to consider it a match, but not di�erent enough to count it as amismatch. Of course, the right value for this \angle of zero evidence" mightdepend on the application, in particular on how much rotation is possiblein the motion between two images. By choosing a higher weight � for the2 Other approaches for dealing with global intensity changes include �ltering theimages [O'Gorman and Sanderson, 1987], using non-parametric measures [Zabih,1994], and utilizing explicit models of image brightness [Gennert, 1988; Fuh andMaragos, 1991; Negahdaripour and Yu, 1993].



92 5. Gradient-Based Stereo
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e = (1 �p2)mm m e = �mFig. 5.1. The evidence measure e for di�erent pairs of gradient vectors. The illus-tration shows the value of the evidence measure e = m � d for di�erent pairs ofgradient vectors of length m (represented by an arrow) and of length 0 (representedby a dot).
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 -0.5 -0.75 -1 -1.25 -1.5Fig. 5.2. Contour lines of the evidence measure e for a match with the unit vector(1; 0). The unit vector at angle 60� is shown as an example; note that its endpointlies on the e = 0 curve.gradient di�erence, one can reduce the angle for which e = 0. Our experimentshave indicated, however, that changing the weight is not critical, and that� = 1 is a reasonable general choice.Figure 5.2 shows a contour plot of e for comparing any vector (x; y) tothe unit vector (1; 0). The contour lines are the locations of the endpoints ofall vectors that yield the same value e.5.3.2 Comparing gradient �eldsWe now extend the measure to entire images. Let IL(x; y), IR(x; y) be thetwo images, and let rIL, rIR be their gradient vector �elds. That is,rIL = 24 @IL@x@IL@y 35 ; rIR = 24 @IR@x@IR@y 35 : (5.4)For a given displacement � = (�x; �y), the evidence E� for a match at (x; y)under this displacement is



94 5. Gradient-Based StereoE�(x; y) = jrIL(x; y)j+ jrIR(x+�x; y+�y)j2 (5.5)� � jrIL(x; y) �rIR(x+�x; y+�y)j:As before, we will use a weight � = 1 unless noted otherwise.Note that we have speci�ed the displacement as a general vector, withboth x and y components. In the context of stereo on recti�ed images, it issu�cient to only consider a scalar (horizontal) disparity d = �x. The evidencemeasure can also be used in a broader context to compute general imagemotion. For example, the two images could be taken sequentially by a singlecamera observing a dynamic environment (and possibly moving itself). Inthis case, a two-dimensional displacement range needs to be considered (seeSection 5.5.3).Yet a di�erent possibility in the context of stereo is not to explicitly rectifythe images, but to fold recti�cation and disparity into one instead. That is,the displacement function � could be a continuous transformation acting onthe original images that keeps the epipolar lines aligned.5.3.3 Computing gradients of discrete imagesIn order to apply the method to discrete images, we need to approximate thederivatives by �nite di�erences:@I@x (x; y) � �xI(x; y) = I[x+ 1; y]� I[x; y]; (5.6)@I@y (x; y) � �yI(x; y) = I[x; y + 1]� I[x; y]: (5.7)These equations can be characterized by simply specifying the convolutionkernels �x = ��1 1 � ; �y = � 1�1 � : (5.8)The above kernels estimate the gradients at locations between the pixels. Toavoid this positional o�set of 1/2 pixel, symmetric kernels can be used, whichare derived by convolving the di�erencing kernel with an averaging kernel:��1 0 1 � = ��1 1 �
 � 1 1 � ; 24 10�135 = � 1�1 �
 � 11� (5.9)(where 
 denotes the convolution operator).In practice, it is more stable to use square kernels that average not onlyin the direction of the gradient, but also in the direction orthogonal to it.This yields the well know Sobel operator :



5.3 The evidence measure 9524�1 0 1�2 0 2�1 0 135 = ��1 1�1 1�
 � 1 11 1 � ; 24 1 2 10 0 0�1 �2 �135 = � 1 1�1 �1 �
 � 1 11 1 � :A di�erent set of gradient operators has been proposed by Simoncelli[1994] in a paper on the design of multi-dimensional derivative �lters. Simon-celli argues that the estimation of gradients by simple di�erencing can givehighly inaccurate results, and proposes an alternate set of small derivativekernels with sizes ranging from 2 � 2 to 5 � 5. These kernels are separableinto two one-dimensional kernels: a symmetric pre�lter kernel pk, and ananti-symmetric derivative kernel dk. The key idea underlying the design isthat the pre�lter and the derivative �lter are matched, which means thatthe derivative �lter should be a good approximation of the derivative of thepre�lter. The �lter pairs of size 3 and size 5 arep3 = [ 0:2242 0:5516 0:2242 ];d3 = [ �0:4553 0:0 0:4553 ];p5 = [ 0:0357 0:2489 0:4308 0:2489 0:0357 ];d5 = [ 0:1077 �0:2827 0:0 0:2827 0:1077 ]:The horizontal gradient is computed by convolution with the vertical pre�lterand the horizontal derivative �lter, while the vertical gradient is computedby convolution with the horizontal pre�lter and the vertical derivative �lter.In our implementation we have experimented with both the simple 3 �1 kernels from Equation (5.9), and Simoncelli's �lters of size 3 and 5. Wefound no noticeable di�erence in performance, except that Simoncelli's �ltersperform a higher degree of smoothing (in particular the 5 � 5 �lter), whichresults in loss of detail. This demonstrates that our method is robust, andinsensitive to the particular choice of gradient computation. A small amountof smoothing is often necessary to compensate for quantization error andnoise, however, and we have used a Gaussian �lter with � = 0:5 pixels inconjunction with the 3� 1 kernels from Equation (5.9) for the experimentalresults reported here.In computing the displacement �elds, we only consider displacements � =(�x; �y) whose components are multiples of whole pixels. If sub-pixel accuracyis required, it is possible to compute E� for non-integer displacements byinterpolating the gradients. An alternative is to increase the resolution byinterpolating the images before the gradients are computed.For a given displacement, E� can be computed very fast, since only a few
oating point operations and a single square root is needed at each pixel. Thesquare root is necessary to compute the magnitude of the gradient di�erences.The two magnitudes of gradients jrILj and jrIRj, which do not depend onthe displacement �, only need to be computed once. The local nature of thecomputations makes the method ideally suited for a parallel implementation.In Section 5.7 we will discuss performance issues in more detail.



96 5. Gradient-Based Stereo5.4 Accumulating the measureRecall that area-based stereo methods involve the aggregation of a similaritymeasure over local neighborhoods. The reason is that the amount of localinformation at each point is insu�cient to solve the underconstrained match-ing problem, in particular in the presence of noise. That is, if we were tomaximize E� (across all �) for each point in isolation, we would be left witha noisy and inconsistent displacement �eld.To avoid these instabilities, we aggregate E� for each �, using thedisplacement-oriented control strategy discussed in Section 5.2. The under-lying assumption validating the aggregation step is that, almost everywhere,nearby points have similar displacements. This assumption is made by moststereo and motion methods that compute a dense displacement �eld (i.e., adense depth map, or a dense motion �eld). It is based on the observation thatmost natural scenes are composed of solid objects with continuous surfaces.A slight change in viewpoint will usually yield very similar visual motions ofneighboring points, except if the points belong to two di�erent objects (i.e.,lie on di�erent sides of an occlusion boundary). Since discontinuities in thevisual motion (or disparity) �eld caused by occlusion boundaries violate the\smooth motion" assumption, occlusion boundaries present the biggest prob-lem for aggregation-based algorithms. This is the topic of the next chapter.In this chapter we will use a uniform aggregation procedure, for eachdisplacement � independently (i.e., we will not aggregate across neighboringdisplacements). This corresponds to the assumption that the visual motionof neighboring points can be described locally by pure translation, or, inother words, that the surface geometry can be approximated by small fronto-parallel patches. The assumption is reasonable for small neighborhoods, inwhich the e�ects of surface slant and of perspective foreshortening are small.For the computation of general motion, this also restricts the allowable rota-tional component of the visual motion between corresponding image patches(although the gradient measure itself tolerates a certain amount of local ro-tation as was discussed above).Some point-oriented motion methods utilize the assumption of a smoothmotion �eld after computing initial matches by smoothing the displacement�eld, often employing some con�dence measure associated with each match toconstrain the smoothing process [Horn and Schunck, 1981; Anandan, 1989].The problem is that this tends to smooth over motion discontinuities, whichcontain important information about the scene geometry.In contrast, our displacement-oriented method uses the assumption of asmooth motion �eld while �nding the matches. The idea is that if a certaindisplacement � aligns two matching objects, E� will have a strong positiveresponse at the location of the match. By aggregating E� over a certain area(i.e., computing the average or smoothing with a Gaussian �lter), dominantmotions can be detected. Only the correct displacement E� will yield support



5.5 Experiments 97for a match over a larger area, thereby creating a maximumamong all � underconsideration.Note that our method does not smooth over motion boundaries, since itis not assumed that all close pixels have the same disparity. A point on amotion boundary will give rise to a positive response for two di�erent dis-placements, corresponding to the two di�erent motions. Depending on theamount of support for each of the two candidate displacements, however, itis possible that the point be \co-opted" into the wrong displacement. In-stead of smoothing over the disparity values, this has the e�ect of boundaryblurring. (A more detailed discussion of this phenomenon can be found inSection 6.2.) Ideally, the local response at the point could help in decidingbetween the two candidate displacements. If the two neighboring regions withdi�erent displacements also have di�erent amounts of texture, however, themore strongly textured region will tend to dominate the estimated motion ofthe less textured region.To accumulate E�, a simple convolution can be performed for each dis-placement �. A box �lter (i.e., averaging over a rectangular window) can beperformed most quickly, but in our implementation we found that a convolu-tion with a Gaussian kernel produces superior results. Using a Gaussian �lterfor accumulation, the in
uence of neighboring points decreases gradually withtheir distance. Another advantage is rotational symmetry. In practice, we usean approximation of a true Gaussian kernel by a sequence of three or fourbox-�lter operations, as proposed by Wells [1986].Since our measure represents evidence (instead of just similarity), theaggregated measure yields a meaningful way of comparing matches of largerareas, such as a quarter of an image or even an entire image. By accumulatingE� over very large areas, it is possible to �nd an initial set of interestingdisplacements. Most displacements will only align a small subset of features,yielding a negative value for the accumulatedE�. Only the displacements thatalign larger parts of the image will yield an above-average response, whichcan serve to select an initial set of displacements for which the matching withsmaller windows is undertaken. In the next section we present experimentsthat demonstrate this discriminating property of the accumulated evidencemeasure. To speed up the initial selection of interesting displacements, a scale-space approach could be used. Peaks in the accumulated E� as a function of� can also serve as attention cues for active vision systems.5.5 ExperimentsIn this section we undertake several experiments to support the ideas pre-sented so far. The �rst experiments demonstrate the ideas discussed in theprevious section. We will then use the evidence measure to compute the dis-parities of a recti�ed stereo pair (with a 1D search). Finally, we will testthe suitability of the measure for computing general image motion (using a



98 5. Gradient-Based Stereo2D search). We will also demonstrate how the magnitude of the maximalresponse can be used as a con�dence measure, which is important in thecontext of view synthesis.5.5.1 Observing E� for interesting displacementsAn interesting experiment is to observe a gray-level rendering of E� for di�er-ent displacements �. As test data we use a stereo pair from the street imagesequence depicting a woman crossing a street, which is shown in Figure 5.3.The street images were provided by Wilfried Enkelmann, Fraunhofer Institutf�ur Informations- und Datenverarbeitung IITB, Karlsruhe, Germany. Thisimage pair is a challenging example because it contains large regions withlittle texture, and the absolute intensities are quite di�erent between the twoimages.To illustrate the power of using maxima in the accumulated measure E� asattention cues, we have selected the displacements that yield the strongest re-sponse (maximalPE�) in each of the four quadrants of the image. Figure 5.4shows plots of E� for the resulting four displacements �. Gray correspondsto a value of zero, light to positive values, and dark to negative values. Notethat these displacements align the dominant features in each quadrant, andalso that the measure is insensitive to the brightness di�erence between theoriginal images.Figure 5.5 shows a surface plot of the cumulative response PE� over theentire image for a large range of displacements (�x = �40 : : :50, and �y =�20 : : :20). For comparison, Figure 5.6 shows a surface plot of the (negated)root-mean-square di�erences of the entire image under the di�erent o�sets.While both measures peak at roughly the same displacement of � = (0; 0),the evidence measure is clearly more discriminatory.5.5.2 Stereo: 1D search rangeWe now show disparity maps computed by a stereo matcher that uses theevidence measure to select matches. We use recti�ed images with purely hor-izontal displacements. After precomputing the gradients and gradient mag-nitudes, we compute E� for a range of di�erent �. The measure is then accu-mulated by smoothing each E� with a Gaussian �lter G�:Ê� = G� 
E�: (5.10)In the experiments reported here, we use � = 2. The disparity D(x; y) at eachpoint (x; y) is taken to be the displacement that maximizes the accumulatedmeasure: D = argmax� Ê�: (5.11)In the �rst experiment, we use the tree image pair shown in Figure 5.7.These are two images from the Stanford tree sequence (provided by Harlyn
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Fig. 5.3. The left and right images of the street pair used as test data for thegradient-based stereo method. The image pair is challenging in that it containslarge untextured areas and global intensity di�erences due to di�erent camera char-acteristics.



100 5. Gradient-Based Stereo
�x = �1; �y = 1 �x = 3; �y = �2

�x = 11; �y = �2�x = 15; �y = �1Fig. 5.4. Gray-level plots of E� for maximizing displacements. The four plots cor-respond to the displacements � that maximize PE� in each of the four quadrants.Gray corresponds to a value of zero, light to positive values, and dark to negativevalues. Thus, light image regions indicate image features in alignment, while darkregions indicate mismatches. Most image regions are gray, indicating that there isneither evidence for nor against a match.
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�y �xPE�

Fig. 5.5. Surface plot of the cumulative response PE� over the entire image fora displacement range of �x = �40 : : : 50, and �y = �20 : : : 20. The strongest peakis located at roughly � = (0; 0). Note that the distinct ridge of high responses cor-responds to purely horizontal displacements, which keep the epipolar lines aligned.
�y �x�pSSD

Fig. 5.6. Surface plot of the negated root-mean-square di�erence over the entireimage for the same displacement range as in Figure 5.5. The sum of squared di�er-ences is clearly less discriminatory than the cumulative response PE�.
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Fig. 5.7. The left and right images of the tree pair.
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Fig. 5.8. Disparities for the tree image pair. Gray levels correspond to disparities:lighter is closer, darker is farther away.Baker and Bob Bolles at SRI), which was taken sequentially with a cameramounted on a horizontal motion stage. We use images 18 and 24 as right andleft images respectively. The images depict an outdoor scene and are highlytextured, and thus well suited for an area-based method.Figure 5.8 shows a gray-level plot of the computed disparities. Lightershades of gray correspond to closer points, darker shades correspond to pointsfarther away. The considered disparity range is �x = 0 : : :12.In the next experiment we show how con�dence can be incorporated intothe matcher. We use the street image pair from Figure 5.3 above. The im-age pair has been recti�ed manually, so that the search range can again berestricted to displacements with �y = 0. The con�dence information is im-portant for dealing with images containing untextured areas, which can leadto matching ambiguities. An advantage of the evidence measure is that thevalue M of the achieved maximum is related to the gradient magnitude atthat point, and thus represents the con�dence that the match is correct.Formally, M = max� Ê�: (5.12)Unreliable matches can be suppressed by setting a threshold for the actualachieved maximum at each point. Figure 5.9 shows two gray-level plots ofthe computed disparities. The �rst image shows all computed disparities.Note the erroneous matches in untextured areas (e.g., the sky), and in areas
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Fig. 5.9. Disparities for the street image pair. Gray levels correspond to disparities:lighter is closer, darker is farther away. In the bottom image, uncertain matches aredisplayed in black.



5.6 Computing disparity maps for view synthesis 105that can not be matched (e.g., the lower left corner). The second imageshows only the disparities at locations for which M > 2 (i.e., the points withhigh con�dence), while all other (unreliable) matches are displayed in black.The considered range of disparities is �x = �3 : : :21. As opposed to feature-based matchers, which try to decide beforehand which locations to match,our method allows the selection of reliable points after the matching process.35.5.3 General motion: 2D search rangeTo test the method on general motion, we use frames 1 and 5 from the catimage sequence (provided by John Wood�ll). The images are shown in Fig-ure 5.10. The sequence depicts a cat walking on a lawn in front of somebushes. The camera follows the cat, so that the visual motion of the cat isalmost only caused by its (non-rigid) change of shape, whereas the back-ground moves by more than 10 pixels to the left. As the displacements areno longer constrained to occur along epipolar lines, we now have to con-sider a two-dimensional displacement range. Here, the considered ranges are�x = �15 : : :4, �y = �2 : : :1. Accumulation is done as before with a Gaussian�lter G� with � = 2.Figure 5.11 shows the x-components of the displacements that maximizethe accumulated measure. Like the tree images, the cat images are well tex-tured, so we do not display the con�dence information here.5.6 Computing disparity maps for view synthesisRecall from Chapters 3 and 4 that we need two symmetric disparity maps d12and d21 for our view synthesis method. Furthermore, these disparity mapsshould satisfy the following requirements:1. The occlusion boundaries need to be recovered accurately;2. Partially occluded points need to be detected, and a disparity estimateneeds to be computed for them (see Section 4.6);3. Uncertain disparity estimates (in areas of uniform intensities) need to bereplaced with a canonical depth interpretation (see Section 4.5).We have implemented several extensions to our gradient-based method todeal with these requirements. We start by computing two disparity maps (left-to-right and right-to-left) independently using the method described above,and then perform several post-processing steps, which are explained in detailbelow. Figure 5.12 illustrates the post-processing of the disparity maps forthe right image of the kids image pair.3 A con�dence value can also be derived for other similarity measures (such asSSD) by examining the distribution of values for all disparities at each pixel[Matthies et al., 1989].
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Fig. 5.10. The cat image pair. The two images are frames 1 and 5 from a sequenceof images containing camera motion as well as independent object motion.
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Fig. 5.11. Horizontal components of the maximizing displacements for the catimages. Dark shades correspond to motions to the left, light shades correspond tomotions to the right.5.6.1 Occlusion boundariesIn synthesized views, incorrectly recovered object boundaries can cause no-ticeable artifacts. Object boundaries typically correspond to coinciding in-tensity discontinuities and depth discontinuities. Our basic gradient-basedmethod has the disadvantage that intensity discontinuities are not consid-ered during the estimation of depth. (The same is true for any stereo methodthat uses a uniform aggregation process.) In particular, strongly texturedobjects in front of a fairly uniform background are often found too large,since the in
uence of matches with high certainty (within the object) ex-tends past the objects' boundaries. Similarly, uniform objects in front of atextured background tend to be found too small.To counteract this undesirable e�ect, we adjust the depth discontinuitiesin the computed disparity maps. We �rst compute intensity edges with theedge detector by Canny [1986], using the following parameters: � = 1 forsmoothing, lo = 6, and hi = 10. We then adjust depth discontinuities thatare at most 4 pixels away from an edge such that they coincide with the edge.The �rst three images from the top in Figure 5.12 illustrate this process.Although this post-processing step performs reasonably well in practice,it would be preferable to use a stereo method that recovers the location of
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Fig. 5.12. Post-processing of the computed disparities for the right image of thekids pair. The �gure shows from top to bottom the original disparities, the orig-inal disparities with edges overlaid, the adjusted disparities with edges overlaid,the disparities with partially occluded points detected, and the �nal extrapolateddisparities.



5.7 E�ciency 109depth discontinuities correctly in the �rst place. This is the motivation forthe method presented in the next chapter.5.6.2 Detecting partially occluded points and uniform regionsAfter the depth discontinuities have been adjusted, we detect partially oc-cluded points by cross-checking. That is, we perform a consistency checkbetween the two disparity maps, and mark every point whose left-to-rightand right-to-left disparities disagree by more than a �xed amount t. That is,we mark all points (i; j) for whichjd12(i; j) + d21(i+ d12(i; j); j)j � t: (5.13)(Recall that d12 and d21 have di�erent signs.) The allowable disparity di�er-ence t should be chosen proportional to the disparity range of the image pair.We use a value of t = 3 for the images in Figure 5.12, which have a disparityrange of 4{48.To deal with regions of uniform intensities, we also mark all points withinsu�cient con�dence in the correctness of the match. Referring to Equation(5.12), we mark those points (i; j) for whichM (i; j) � 0: (5.14)Note that it is di�cult to distinguish between partial occlusion and uncertainmatches after the disparities have been computed, because partially occludedpoints often also match with low certainty, while uniform regions usually alsoresult in disagreeing matches. We therefore use a single \unmatched" statusfor both cases. The fourth image in Figure 5.12 shows these unmatched pointsin black.5.6.3 Extrapolating the disparitiesWe use the constant-depth hypothesis described in Section 4.6 to �ll theunmatched regions in both disparity maps. In particular, we process eachscanline and assign to all unmatched pixels the disparity of the adjacentbackground pixel. Note that this means that the holes in d12 are �lled fromthe left, while the holes in d21 are �lled from the right. (The unmatchedpixels at the border of each image need to be �lled from the other side, sincethey only have one neighboring disparity value.) The result of this disparityextrapolation process is shown in the bottom image in Figure 5.12.5.7 E�ciencyAs stated before, the computation of E� can be carried out very quickly,using precomputed gradients. In addition, the computation is easily paral-lelizable. A sequential implementation on a SPARCstation 5 takes 1.2 secondsto compute E� for a 512� 512 pixel image.



110 5. Gradient-Based StereoDepending on the hardware, additional speed can be gained by approxi-mating the Euclidean norm L2, which involves the computation of a squareroot, by simpler norms such as the L1 or the L1 norm.These norms are not rotationally invariant; their relative error with re-spect to the Euclidean norm depends on the orientation of the vector. Onecan visualize this by comparing the unit circles of the di�erent norms, whichare a diamond, a circle, and a square for L1, L2, and L1, respectively. Amuch better approximation to the circle is given by an octagon, and the cor-responding norm is only slightly more complicated. It can be expressed as aweighted sum of the L1 and the L1 norm:Loct = �(�L1 + (1� �)L1): (5.15)A weight � = p2 � 1 yields a regular octagon; together with the optimalscaling factor � = 2=(1+p4�p8) the relative error (L2�Loct)=L2 alwaysremains below 4%. Thus, the best weighted sum is given byLoct = f1L1 + f1L1; (5.16)with f1 = (p2� 1) 21 +p4�p8 � 0:3978; (5.17)f1 = (2�p2) 21 +p4�p8 � 0:5626:Using Loct instead of the Euclidean norm in the computation of E� canyield a speedup of 30%, depending on the hardware. This can be particularlyinteresting for highly parallel architectures where single processors have onlylimited arithmetic capabilities.Experiments indicate that the results of the matching process are usuallynot a�ected by this change, and depend mainly on the qualitative \shape"of the evidence function e. This is further indication of the robustness of ourmethod.5.8 Discussion and possible extensionsA problem with the measure discussed here is that partially aligned intensityedges yield a positive response, which can make it hard to �nd the componentof the displacement that is parallel to these edges. For example, in Figure 5.9one can observe errors in the computed disparities of the street marks in theforeground of the scene. This is due to the so-called aperture problem, whichstates that, locally, only the component of displacement in the direction ofthe intensity gradient can be recovered. Thus, edges that are aligned with the



5.9 Summary 111epipolar lines present a problem for all stereo algorithms, since their disparitycan not be estimated locally.An important observation is that derivatives of all orders can contributeto evidence against a match, while evidence for a match is harder to cap-ture. That is, di�erent absolute intensities as well as di�erent gradients areindicators for a mismatch, while (purely local) identical intensities are notevidence for a match, and identical gradients only tell us about a match in thedirection of the gradient. Other information needs to be taken into accountto avoid these false positives. For example, in a calibrated stereo system inwhich the epipolar lines coincide with the scanlines, only the gradient in thex direction should be counted as evidence for a match (but the gradient inthe y direction can still tell us about mismatches).As mentioned earlier, an obvious extension to the current method wouldbe to incorporate it into a scale-space approach, and thereby make the evi-dence measure sensitive to a larger pool of displacements. Multiple scales canalso be used in accumulating E�, to allow for varying levels of detail of imagefeatures.5.9 SummaryIn this chapter we have presented a simple yet powerful method to performpoint-to-point matching between two images. The method uses an evidencemeasure that is based on the gradient �elds of the images and that combinesthe notions of similarity between two locations, and con�dence for a correctmatch. The computation of the measure is simple and highly parallelizable.Furthermore, the method is robust with respect to the computation of theintensity gradients, the choice of the weight parameter �, and approximationsto the Euclidean norm.For a given displacement, the measure can be accumulated over a largerarea, to collect evidence for or against a match at this location. Using adisplacement-oriented control strategy that accumulates evidence for a rangeof di�erent displacements, dominantmotions can be detected, which can serveas attention cues in an active vision system.Finding maxima in the accumulated measure is a stable way of computingcorrespondences without smoothing across motion boundaries. The methodworks well both on highly textured images and on images containing regionsof uniform intensities, and can be used for a variety of applications, includingstereo vision, motion segmentation, object tracking, and active vision.



112 5. Gradient-Based Stereo



6. Stereo Using Di�usionThe topic of this chapter is di�usion-based stereo. The methods presentedhere are motivated by the problem of boundary blurring inherent in mostarea-based approaches. As we have seen, poorly localized boundaries canyield strong visual artifacts in synthesized views. Thus, the correct recoveryof object boundaries by the stereo algorithm is critical.Boundary blurring in area-based stereo is caused by the presence of mul-tiple points at di�erent depths in the supporting area around a point. Thatis, the underlying assumption that all points in the supporting area havethe same displacement is violated. This can be caused by perspective fore-shortening, by partially occluded points, and if the supporting region spansa depth boundary. Thus, the estimated disparities of points close to objectboundaries are often wrong.The central problem is to �nd the optimal size and shape of the supportregion. If the region is too small, a wrong match might be found due to am-biguities and noise. If the region is too big, it can no longer be matched asa whole. Ideally, we would like the support region to be as large as possi-ble without crossing object boundaries. To �nd the boundaries, however, wewould need to run a stereo algorithm �rst.Jones and Malik [1992a] have proposed an iterative solution to this \re-cursive" problem. An initial run of a stereo algorithm yields estimates ofthe location of depth boundaries, which are then used to control the size ofsupport regions in subsequent runs.Kanade and Okutomi have addressed the problem of choosing the rightsupport region with adaptive windows [Okutomi and Kanade, 1992; Kanadeand Okutomi, 1994]. At each point, a rectangular window is grown to anoptimal size based on an estimate of disparity uncertainty in the currentwindow. A greedy algorithm (gradient descent) is used to select the best ofthe four possible directions to grow the window at each step.A di�erent way of implementing variable support regions is proposed byBoykov et al. [1997]: using a maximum likelihood argument, the plausiblematches at each disparity level are grouped into connected components. Thedisparity at each pixel is then selected to be the one with the largest connectedcomponent of support.



114 6. Stereo Using Di�usionThe approach taken in this chapter avoids the problem of explicitly select-ing the optimal size and shape of the support region. Instead of using �xedwindows, we aggregate support using non-uniform and non-linear di�usion.Recall from Section 2.2.1 that area-based stereo algorithms typically per-form four tasks: computing a local matching cost, aggregating support spa-tially, �nding the best disparity, and computing a sub-pixel disparity esti-mate. This framework allows us to compare di�erent approaches that havebeen taken for each task in isolation, without being distracted by how theother tasks are being solved. In the previous chapter, we focussed on a newmatching cost; in this chapter, we focus mainly on the second task: aggregat-ing support. We discuss various kinds of local di�usion, including a membranemodel and a Bayesian model, and contrast them with existing approaches,such as SSD and adaptive windows.The other three tasks, although important, are not the central issue ofthis chapter. Unless noted otherwise, we use squared intensity di�erences as amatching cost, and, after the aggregation step, simply select the best dispar-ity locally at each pixel. In the cases where we compute sub-pixel disparityestimates, we �t a parabola to the three cost values centered around thebest disparity. It is important to keep in mind that the algorithms presentedhere are independent of these choices and apply also to more sophisticatedmatching costs and disparity selection strategies.We start by introducing the concept of disparity space, which is used byall our di�usion algorithms. We then review the traditional SSD algorithm,and discuss the need for spatially-adaptive support regions. In Sections 6.3and 6.4 we introduce aggregation by di�usion, and discuss a non-uniformdi�usion process using local stopping. We then develop a Bayesian model ofstereo using explicit disparity distributions, and a novel iterative supportaggregation algorithm based on this model in Section 6.5. We present a com-parative experimental evaluation of our algorithms in Section 6.6, and closewith a discussion of the results.6.1 Disparity spaceAs was discussed in Section 5.2, the control strategy of a stereo algorithmcan be point-oriented or displacement-oriented. For a square, �xed-size sup-port region, a point-oriented algorithm would compare a square window inone image with several windows on the corresponding scanline.1 This is il-lustrated in Figure 6.1 (a). The same computation can be performed moree�ciently by a displacement-oriented algorithm in a 3D data volume thatwe call disparity space (Figure 6.1 (b)): for each displacement, the matchingcost can be aggregated at all points by convolution with the window. Thebest match can then be selected in each vertical disparity column.1 Throughout this chapter we assume recti�ed images.
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Fig. 6.1. Comparing windows in disparity space. (a) A point-oriented stereo algo-rithm compares a window in one image with several windows in the other image.(b) The same computation in disparity space. After convolving each layer with asquare window, the best match is selected in a vertical disparity column.



116 6. Stereo Using Di�usionFormally, we de�ne the initial (not yet aggregated) disparity space E0 asE0(x; y; d) = �(IL(x+ d; y)� IR(x; y)); (6.1)where IL, IR, are the intensity functions of the left and right images respec-tively, and � measures the similarity between two intensities, e.g.,�(l � r) = (l � r)2: (6.2)This formulation uses IR as the reference image. After aggregating supportinto a �nal space E(x; y; d), we can compute a disparity functiond(x; y) = argmind2DE(x; y; d) (6.3)that represents the matches as o�sets to the points in the right image. Inpractice, we will use the discrete disparity space E(i; j; d) = E(xi; yj; d) anddi;j = d(xi; yj): (6.4)E is a skewed version of the symmetric disparity space Ê [Marr and Poggio,1976], Ê(xR; xL; y) = �(IR(xR; y)� IL(xL; y)); (6.5)which is not biased towards either eye. In a symmetric setting, however, itis more di�cult to enforce uniqueness for each pixel and to de�ne the �naldisparity map. (See Section 6.7 for a discussion.) Figure 6.2 illustrates theshape of slices through E and Ê for a given y and a limited disparity rangeD = [dmin; dmax].6.2 The SSD algorithm and boundary blurringThe standard sum-of-squared-di�erences algorithm (SSD) uses square win-dows to aggregate the evidence at each disparity. As mentioned before, choos-ing the right window size involves a trade-o� between a noisy disparity mapand blurring of depth boundaries. We will illustrate this using two syntheticimage pairs. Both pairs have the same disparity pattern (see Figure 6.3): acentral square 
oating in front of a background with constant disparity. Fig-ure 6.3 (c) includes the occlusion information: the area displayed in white cannot be matched due to occlusion, and thus algorithms will assign arbitrarydisparities in this region.Figure 6.4 shows the two synthetic image pairs based on this disparitypattern. The �rst pair, ramp, is similar to the image pair in Figure 5 in thepaper by Kanade and Okutomi [1994], which we will use as a benchmark forour results. The image pair is based on a linear intensity ramp in the directionof the baseline; Gaussian noise has been added to each image independently.
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Fig. 6.2. Slices through (skewed) disparity space E and symmetric disparity spaceÊ for a �xed y. The lines of sight are shown as dashed lines for a given point indisparity space. The vertical dashed line corresponds to the right line of sight inboth representations.
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Fig. 6.3. The disparity pattern for the ramp and rds pairs: (a) isometric plot; (b)gray-level encoding; (c) gray-level encoding with occlusion information.
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L R

L RFig. 6.4. Synthetic stereo pairs ramp (top) and rds (bottom). The left and rightimages of both pairs di�er in that a central square region is o�set horizontally.The second image pair, rds, is based on a binary random dot pattern usingtwo gray levels with equal probability. No noise has been added to this imagepair.The two image pairs are quite di�erent. The ramp pair has no local tex-ture variation and constant gradients everywhere, except for the boundariesof the central square. The two images can only be matched by comparing ab-solute intensities, and any algorithm based on band-pass �ltered intensitiesor gradients will fail (as will the human visual system). The rds pair, on theother hand, has strong local texture variation, but is highly ambiguous sincepixels not in correspondence still have a 50% chance of matching.Figure 6.5 shows the performance of the simple SSD algorithm on thesetwo image pairs using two di�erent window sizes, w = 3 and w = 7. Ascan be seen, the bigger window size yields a disparity map with less noise,but results in an overall blurring of the features. (The \bumpiness" in therecovered disparities is due to sub-pixel disparity estimation, which is done by�tting a parabola to the three SSD values centered around the best match.)The e�ect on the two image pairs is quite di�erent: in the ramp pair, thedisparities are smoothed across the boundaries, while in the rds pair only theoutlines of the square are blurred, i.e., the corners are rounded, while the twodisparity levels of foreground and background are clearly recovered.
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ramp

ramp

rds

rdsw = 7w = 3
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Fig. 6.5. Performance of the SSD algorithm using square windows with sizes w = 3and w = 7 on the ramp and rds image pairs.
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d = db d = df ba

Fig. 6.6. Support for the two disparities df and db of foreground and backgroundfor two points a and b close to the boundary of the central square.The latter e�ect, smoothing of object boundaries, is more common in realimage pairs than the smoothing of disparities. The smoothing of disparitieswe observed in the ramp pair is a direct result of the ramp intensity patternand the small local variations in intensity.Let us brie
y discuss the reasons for boundary blurring by consideringthe support for two points a and b inside the central square, but close toits boundary (see Figure 6.6). Both points receive partial support for thetwo disparities df and db of foreground and background respectively, andlittle support for other disparities. Point a, lying next to one of the sides ofthe square, receives slightly more support from the inside of the square, andis thus correctly found to be at disparity df . Point b, lying in the corner,however, receives more support for db, since almost 3=4 of its support regioncovers the background, and thus is erroneously found to be at disparity db.The overall e�ect is that corners get rounded since points close to cornersare \co-opted" into the wrong disparity. Straight object boundaries are nota�ected. Note also that no smoothing of the disparity values takes place.6.3 Aggregating support by di�usionInstead of using a �xed window, support can also be aggregated with aweighted support function such as a Gaussian. A convolution with a Gaus-



122 6. Stereo Using Di�usionsian can be implemented using local iterative di�usion [Szeliski and Hinton,1985] de�ned by the equation @E@t = r2E: (6.6)In a discrete system, this yields the update ruleE(i; j; d) (1�4�)E(i; j; d) + �X(k;l)2N4E(i+k; j+l; d); (6.7)where N4 = f(�1; 0); (1; 0); (0;�1); (0;1)g is the local neighborhood contain-ing the four direct neighbors, and � controls the speed of the di�usion. Avalue of � < 0:25 is needed to ensure convergence; we use � = 0:15 for theexperiments reported in this chapter.Aggregation using a �nite number of simple di�usion steps yields resultsfairly similar to using square windows. Advantages include the rotationalsymmetry of the support kernel and the fact that points further away havegradually less in
uence. The problem of boundary blurring still exists, how-ever.6.3.1 The membrane modelA problem with simple di�usion is that the size of the support region increaseswith the number of iterations. In other words, while the di�usion would even-tually converge to a uniform support covering the whole image, we are inter-ested in an intermediate time step in which the di�usion has only progressedto a certain degree. We can change this behavior by adding a term to thedi�usion equation that measures the amount each current value has divergedfrom its original value, yielding the membrane equation [Terzopoulos, 1986;Szeliski and Hinton, 1985].@E@t = r2E + �(E0 �E): (6.8)In the discrete implementation we useE(i; j; d) [1� �(� + 4)]E(i; j; d) + �24�E0(i; j; d) +X(k;l)2N4E(i+k; j+l; d)35 :(6.9)Unless noted otherwise, we use the parameters � = 0:15 and � = 0:5 inthe experimental results shown in this chapter. The �-term ensures that thedi�usion converges to a stable solution not too far from the original values.Figure 6.7 shows the results of applying our di�usion process to the rdsimage pair. The amount of support at each discrete disparity level is shownbefore di�usion (E0), after one iteration, and after 10 iterations. Light regions
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E; n = 10E; n = 1E0
Fig. 6.7. Sections through the disparity space of the rds image pair during di�usionusing the membrane model. The initial disparity space E0 is displayed at the top.The di�used disparity space E is shown after one iteration (middle) and after 10iterations (bottom). Light regions correspond to little support, dark regions indicatestrong support.correspond to little support, dark regions indicate strong support. Figure 6.8shows the results for accumulating support using the membrane model forthe ramp and rds pairs. The number of di�usion iterations is n = 10 (theresults are almost identical at n = 5).Using the membrane model alleviates the contour blurring problem tosome extent, since the �-term \ties" the center of each support region to itsoriginal value. For very noisy images, however, � needs to be chosen quitesmall to produce enough smoothing for stable matching, making the processmore similar to regular di�usion.6.3.2 Support function for the membrane modelAnalyzing the shape of the support function for the membrane model yieldsadditional intuition. A solution for the support function can be derived usingFourier analysis as follows. The support function (i.e., impulse response orkernel) for the membrane model (6.8) is a function that can be convolvedwith the original input data E0 to yield the �nal value of E. This functioncan be computed by setting E0 to a unit impulse E(i; j) = �(i)�(j), andsetting the right-hand side of Equation (6.8) to 0.For the discrete case, this involves solving the coupled set of equations� (�(i)�(j) � f(i; j)) + X(k;l)2N4 (f(i + k; j + l) � f(i; j)) = 0 (6.10)
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ramp

rdsFig. 6.8. Performance of the membrane model on the ramp and rds image pairs(gray level images and isometric plots).



6.4 Di�usion with local stopping 125(the support function is the same for all disparity levels d). Re-writing thesein the Fourier domain, we obtain� (1� F (!x; !y)) + X(k;l)2N4 �F (!x; !y)ej(k!x+l!y ) � F (!x; !y)� = 0 (6.11)or F (!x; !y) = �� + 4� 2 cos!x � 2 cos!y : (6.12)While the inverse transform of F (!x; !y) has no closed-form solution, it canbe computed numerically. Figure 6.9 shows plots of the support function. Itcan be seen that the kernel is cone-shaped, as opposed to the rounded shapeof a Gaussian kernel. This matches our intuition of assigning more weight tothe center pixel. However, both regular di�usion and the membrane modelyield identical, rotationally symmetric support regions at every location. Wenow turn to non-uniform di�usion methods to achieve adaptive support.6.4 Di�usion with local stoppingThe �rst non-uniform di�usion strategy for preventing both corner co-optingand di�usion to uniformity is to locally stop the di�usion process dependingon the distribution of values in each disparity column. To do this, we associatea measure of certainty C(i; j) with each location. Intuitively, this measureshould re
ect how \clear" a minimum there is among the values E(i; j; d) forall d. Given such a measure C, we can aggregate support using non-uniformdi�usion:For each (i; j), compute certainties C and C 0 before and after a singleiteration of di�usion. If C(i; j) > C 0(i; j), do not di�use, i.e., restorethe old values E(i; j; d) for all d.The idea is that di�usion takes place only at locations of ambiguous matches.Also, certainties never decrease, thus guaranteeing convergence.We have experimented with several di�erent certainty measures. The twomeasures that worked best are the winner margin and the entropy. The win-ner margin Cm is the normalized di�erence between the minimum and thesecond minimum in a disparity column:Cm(i; j) = Emin 2 � EminPdE(i; j; d) ; (6.13)with Emin = mind E(i; j; d); Emin 2 = mind;E(i;j;d)6=Emin E(i; j; d): (6.14)
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Fig. 6.9. Shape of the membrane support function for � = 0:7: 3D plot (top) andcontour plot (bottom).



6.5 A Bayesian model of stereo matching 127The second measure Ce is the negative entropy of the probability distributionin the disparity column. We convert to probabilities by taking the inverseexponent and normalizing2:Ce(i; j) = �Xd p(d) logp(d); with p(d) = e�E(i;j;d)Pd0 e�E(i;j;d0) : (6.15)Figure 6.10 shows disparity maps for the ramp pair computed with four kindsof di�usion and increasing iterations. The �rst row shows regular di�usion,the second and third row show di�usion with local stopping based on Cm andCe. The fourth row shows di�usion using the membrane model for compari-son. It is clearly visible that regular di�usion keeps blurring the features asthe number of iterations increases, while the other three di�usion processesconverge quickly to a stable solution. Which of the three performs best ishard to tell by looking at the disparity maps. In Section 6.6 we analyze theirrespective performance based on errors in the computed disparities.6.5 A Bayesian model of stereo matchingIn this section, we develop a Bayesian model for stereo matching that in-cludes both a measurement model corresponding to the matching criterionand a prior Markov Random Field model corresponding to the aggregationfunction. Our model uses robust (non-Gaussian) statistics to handle grosserrors and discontinuities in the surface. We also develop a novel approxima-tion algorithm that results in a non-linear di�usion process, and show howthis produces better results than standard di�usion.As before, stereo reconstruction is speci�ed as the estimation of a discretedisparity �eld di;j = d(xi; yj) given two input images IL(x; y) and IR(x; y).Using a Bayesian framework, we �rst specify a model of image formation,and then derive estimation algorithms from this model.6.5.1 The prior modelThe Bayesian model of stereo image formation consists of two parts. The�rst part, a prior model for the disparity surface, uses a traditional MarkovRandom Field (MRF) to encode preferences for smooth surfaces [Gemanand Geman, 1984]. This model is speci�ed as a Gibbs distribution pP , theexponential of a potential function EP :pP (d) = 1ZP exp (�EP (d)) ; (6.16)where d is the vector of all disparities di;j and ZP is a normalizing factor.The potential function itself is the sum of clique potentials2 We will develop the idea of converting to probabilities further in the next section.
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Membrane modelLocal stopping (entropy)Local stopping (winner margin)Regular di�usion

Fig. 6.10. Disparities of the ramp image pair based on di�usion with local stoppingcompared to regular di�usion and the membrane model. The number of iterationranges from 1 to 100.
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Fig. 6.11. Shape of the robust penalty function �P for � = 0:01 and � = 1EP (d) =Xc2CEc(d) (6.17)which only involve neighboring sites in the �eld. Here, we study only �rst-order �elds, whereEP (d) =Xi;j �P (di+1;j � di;j) + �P (di;j+1 � di;j) (6.18)(see [Terzopoulos, 1986; Szeliski, 1989] for generalizations to higher order�elds).When �(x) is a quadratic, �(x) = x2, the �eld is a Gauss-MRF, andcorresponds in a probabilistic sense to a �rst-order regularized (membrane)surface model [Terzopoulos, 1986; Szeliski, 1989]. When �(x) is a unit im-pulse, �(x) = 1 � �(x), it corresponds to a MRF that favors fronto-parallelsurfaces [Geman and Geman, 1984; Marroquin et al., 1987]. In betweenthese two extremes are functions derived from robust statistics [Huber,1981], which behave much like surface models with discontinuities [Blakeand Zisserman, 1987; Geiger and Girosi, 1991; Black and Rangarajan, 1994;Black and Rangarajan, 1996]. A wide variety of robust penalty functions arepossible. Here, we use a contaminated Gaussian model,�P (x) = � log �(1� �P ) exp(�x2=2�2P ) + �P � : (6.19)Figure 6.11 shows the shape of this function for � = 0:01 and � = 1.6.5.2 The measurement modelThe second part of our Bayesian model is the data or measurement modelwhich accounts for di�erences in intensities between left and right images.This model assumes independent, identically distributed measurement errors,



130 6. Stereo Using Di�usionpM (IL; IRjd) =Yi;j pM(IL(xi + di;j; yj)� IR(xi; yj)): (6.20)This distribution does not fully specify the distributions of IL and IR, only thedistribution of their intensity di�erences at matching pixels.3 As mentionedbefore, traditional stereo matching methods use either a squared intensityerror metric (Gaussian noise), �M (x) = log pM(x) = x2, or an exact binarymatching criterion (e.g., for random-dot stereograms or binary features suchas edges or the sign of the Laplacian), �M (x) = 1 � �(x). We again use acontaminated Gaussian model,�M (x) = � log �(1 � �M ) exp(�x2=2�2M) + �M� ; (6.21)to model both Gaussian noise and possible outliers due to occlusions or non-modeled photometric e�ects such as specularities.The posterior distribution p(djIL; IR) can be derived from the prior andmeasurement models using Bayes' rule,p(djIL; IR) / pP (d)pM (IL; IRjd): (6.22)As is often the case, it is more convenient to study the negative log probabilitydistribution E(d) = � logp(djIL; IR) (6.23)=Xi;j �P (di+1;j � di;j) + �P (di;j+1 � di;j)+Xi;j �M (IL(xi + di;j; yj)� IR(xi; yj)):While p(djIL; IR) speci�es a complete distribution, usually only a singleoptimal estimate of d(x; y) is desired (but see [Szeliski, 1989] for why modelingof uncertainties may be useful). The most commonly studied estimate is thepeak of the distribution, or Maximum A Posteriori (MAP) estimate, whichis equivalent to minimizing the energy given in Equation (6.23). Alternateestimates include quantities such as the mean of the distribution [Marroquinet al., 1987].A variety of techniques have been developed for minimizing Equation(6.23). Two of the most popular are the Gibbs Sampler [Geman and Ge-man, 1984; Marroquin et al., 1987] and mean �eld theory [Geiger andGirosi, 1991]. The Gibbs Sampler randomly chooses values for each di;jsite according to the local distribution determined by the current guessesfor a site's neighbors [Geman and Geman, 1984; Szeliski and Hinton, 1985;3 Our formulation easily admits fractional disparities, since IL(x; y) and IR(x;y)are viewed as continuous functions. Sub-pixel disparities can be used to improvethe accuracy of stereo reconstructions [Matthies et al., 1989].



6.5 A Bayesian model of stereo matching 131Barnard, 1989]. This process will in theory converge to a statistically opti-mal sample, given enough time. Mean �eld theory updates an estimate ofthe mean value of di;j at each site using a deterministic update rule derivedfrom the original probability distribution [Geman and Geman, 1984]. It isnot guaranteed to �nd an optimal estimate, but in practice it often �nds agood solution, similar to one available through continuation methods [Blakeand Zisserman, 1987].6.5.3 Explicit local distribution modelThe Gibbs Sampler and its variants can produce good solutions, but at thecost of long computation times. Mean �eld techniques, on the other hand,are not very good at modeling ambiguous estimates, such as multiple poten-tial matches at each pixel. Instead of using either of these two traditionalapproaches, we will develop a novel estimation algorithm based on modelingthe probability distribution of di;j at each site. To do this, we associate ascalar value between 0 and 1 with each possible discrete value of d at eachpixel (i; j), and require that Xd p(i; j; d) = 1: (6.24)Our representation is therefore the same as that used by di�usion-based al-gorithms, i.e., we explicitly model all possible disparities at each pixel, ratherthan modeling a single estimated disparity as in traditional Gibbs Sampleror mean-�eld approaches [Barnard, 1989].To initialize our algorithm, we calculate the probability distribution foreach pixel (i; j) based on the intensity errors between matching pixels, i.e.,p0(i; j; d) / exp (�E0(i; j; d)) ; (6.25)where E0(i; j; d) = �M (IL(xi + d; yj)� IR(xi; yj)) (6.26)is the matching cost of pixel (i; j) at disparity d.To derive the update formula, we start with a basic observation aboutMarkov Random Fields: if the joint probability distribution of all interactingneighbors is known, the local probability distribution of a site is completelydetermined. To compute this distribution, we take the part of the potentialenergy (Equation (6.23)) which involves (i; j), i.e.,~E(di;jjfdi+k;j+lg) = E0(i; j; d) + X(k;l)2N4 �P (di+k;j+l � di;j); (6.27)and turn this into a probability distribution~p(di;jjfdi+k;j+lg) = p0(i; j; d) Y(k;l)2N4 exp (��P (di+k;j+l � di;j)) : (6.28)



132 6. Stereo Using Di�usionWe then integrate out all of the neighboring disparities according to theirjoint probability distributionp(di;j) / Xfdi+k;j+lg ~p(di;jjfdi+k;j+lg)p(fdi+k;j+lg): (6.29)In practice, however, it is impossible to estimate the full joint probabilitydistribution of the neighbors, without resorting to a statistical techniquesuch as the Gibbs Sampler.4 Instead, we assume (sub-optimally) that theneighboring disparity columns have independent distributionsp(fdi+k;j+lg) = Y(k;l)2N4 p(di+k;j+l) (6.30)where the p(di+k;j+l) are the current probability density estimates for eachneighboring site (i + k; j + l).The complete update formula is thereforep(di;j) / p0(i; j; d) Y(k;l)2N4 24 Xd0i+k;j+l exp ���P (d0i+k;j+l � di;j)� p(d0i+k;j+l)35(6.31)orE(i; j; d) E0(i; j; d)+X(k;l)2N4log"�Xd0 exp (��P (d0�d)� E(i+k; j+l; d0))# :(6.32)For notational and computational convenience, we will introduce a few moreadditional quantities. The smoothed probability distributionpS(i; j; d) =Xd0 e��P (d0�d)p(i; j; d0) (6.33)=Xd0 wP (d0 � d)p(i; j; d0)is simply the current probability distribution p(i; j; d) after it has been con-volved vertically (in disparity) with the smoothing kernelwP (d) / e��P (d); with Xd wP (d) = 1:It has a corresponding smoothed energyES(i; j; d) = � logpS(i; j; d): (6.34)4 This is not true, however, of 1D processes such as Markov Random Walks.
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d xyFig. 6.12. Illustration of the four-step di�usion algorithm. At each iteration, theprobabilities are smoothed vertically in each disparity column, converted to ener-gies, di�used horizontally, and converted back to probabilities.Finally, the update rule can be written as a pair of equationsE(i; j; d) E0(i; j; d) + X(k;l)2N4 ES(i + k; j + l; d); (6.35)p(i; j; d) e�E(i;j;d)Pd0 e�E(i;j;d0) : (6.36)In practice, since the values of E(i; j; d) are being updated simultaneouslyat all pixels and disparity, we use a modi�ed version of (6.35),E(i; j; d) E0(i; j; d) + �24ES(i; j; d) + X(k;l)2N4 ES(i + k; j + l; d)35 ; (6.37)i.e., we weight the neighboring values somewhat less (we use � = 0:5) andinclude the current estimated energy in the update rule.If we interpret the above Equations (6.33), (6.34), (6.37), and (6.36) asa four-step algorithm for iteratively computing the best stereo matches, wesee that they are a special instance of a non-linear di�usion process. This isillustrated in Figure 6.12.The smoothing step (Equations (6.33), (6.34)) blurs the current dispar-ity probabilities vertically along a column, thereby enabling di�erent nearby



134 6. Stereo Using Di�usiondisparities to support each other (depending on the size of �P ). It also addsa small amount to each probability (�P ), which in e�ect limits the largestpossible value that ES can take and thus limits the e�ect of disparity discon-tinuities.The update step (Equations (6.37), (6.36)) is identical to a regular dif-fusion step with �-terms (membrane model). However, the probability re-normalization step ensures that the energies represent meaningful log prob-abilities (in practice, it forces the smallest E to be slightly above 0). Therobust form of the E0 function also ensures that bad matches have onlylimited e�ects, thus allowing for occlusions or other non-modeled errors tooccur.For the above algorithm to work well, the various parameters f�P , �P ,�M , �Mgmust be set to appropriate values. The values for �M and �M shouldbe based on the expected noise in the image sensor, i.e., �M should be pro-portional to the regular image noise, while �M should be the probability ofgross errors or occlusions (say 1{10%). The choice of �P depends on the classof disparity surfaces which may be expected, i.e., a small �P favors fronto-parallel surfaces. For the experiments presented here, we set �P = 0:1 and�P = 0:01.Figure 6.13 shows the results of our probabilistic aggregation techniqueapplied to the ramp and rds images. We use a di�erent �M for the two imagepairs: �M = 2 for ramp, and �M = 20 for rds, to compensate for the di�erentsignal strengths of the two pairs. The other parameters are the same forboth image pairs: �M = 0:1; �P = 0:1; �P = 0:01. The number of di�usioniterations is n = 10.6.6 ExperimentsIn this section we numerically evaluate the performance of the di�erent algo-rithms on synthetic images. We also show results for real image data.For our experiments we use �ve synthetic image pairs, based on combiningthree di�erent intensity patterns ramp, rds, and real, and two di�erent dispar-ity patterns, square and bars. We have already introduced the square dispar-ity pattern (Figure 6.3), and the combinations ramp/square and rds/square(Figure 6.4).The new disparity pattern bars consists of two rectangular regions withtwo di�erent disparities (see Figure 6.14). The narrow region in the bottomhalf of the image is displaced by more than twice its width, thus violatingthe commonly assumed monotonicity (ordering) constraint. Together with thelarge disparity range, this provides an extra challenge to stereo algorithms,but re
ects common situations in real images. The new intensity pattern,real, is part of a real image depicting ground covered with grass.Figure 6.15 shows all �ve synthetic image pairs, including the three newimage pairs synthesized using the texture/disparity combinations real/square,
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ramp

rdsFig. 6.13. Performance of the probabilistic model on the ramp and rds image pairs(gray-level images and isometric plots).rds/bars, and real/bars. We do not use the combination ramp/bars since thenarrow region can not be matched unambiguously, resulting in meaninglessdisparity error statistics.We compared the following algorithms: SSD, di�usion using the mem-brane model, di�usion with local stopping, and di�usion using the probabilis-tic model. For each algorithm, we varied the parameters: window size (SSD),�; � (membrane), certainty measure (local stopping), �M ; �P ; �M ; �P ; � (prob-abilistic), and the number of iterations (all di�usion algorithms). For eachparameter setting, we ran the algorithm on a test set of 40 images (the 5image pairs with 8 di�erent levels of additive Gaussian noise: � = 0, 0.25,0.5, 1, 2, 4, 8, 16). We tried more than 70 di�erent parameter settings, result-ing in about 3000 experiments. In each experiment, we compared the com-puted disparities with the true disparities (ignoring the occluded regions),and collected three di�erent error statistics: mean absolute disparity error,root-mean-square (RMS) disparity error, and the \percentage of bad points",i.e., the percentage of points whose absolute disparity error is greater than1/2.
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(a)

Fig. 6.14. The bars disparity pattern, containing an ordering constraint violation:(a) isometric plot; (b) gray-level encoding; (c) gray-level encoding with occlusioninformation.
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138 6. Stereo Using Di�usionRemember that our goal in devising the di�erent algorithmswas to recoverthe occlusion boundaries correctly. The percentage of bad points gives a goodindication of whether the boundaries are recovered correctly, since this iswhere the errors are big. For similar reasons, we prefer the RMS error overthe mean absolute error since it penalizes outliers more.First we analyzed the error statistics for each method separately to gainunderstanding of the e�ect of the di�erent parameters. Then we chose thebest parameters for each method, and compared the di�erent methods witheach other. We present in detail the results of the second, comparative stage,after brie
y discussing the general trends we noticed.SSD, which we include for comparison, has only one parameter: the sizeof the support region. The same holds for simple di�usion, where the size ofthe support region is controlled by the number of iterations. Not surprisingly,the optimal size of the support region depends on the noise level. In general,higher noise levels (or, more precisely, lower signal-to-noise ratios) requirelarger window sizes. The best window size can also depend on the image.The membrane model behaves similarly to regular di�usion with a �xednumber of iterations. For small noise levels, a value of � between 1/3 and 1usually yields smaller errors than regular di�usion, but not always. Also, asmentioned before, for high noise levels, � needs to be chosen quite small toproduce enough smoothing for stable matching.In analyzing regular di�usion with local stopping, we found that the cer-tainty measure is critical. In our experiments, the winner margin Cm almostalways outperformed the measure based on entropy Ce. A problem with ourde�nition of local stopping is that an initial wrong but \certain" match cansurvive. There is clearly a potential for both better certainty measures anddi�erent ways of implementing local stopping.The probabilistic model, which performed by far the best, also has themost parameters. We found, however, that many parameters have only smalle�ects and can be set to default values, including �M = 0:1; �P = 0:01, and� = 0:5. As expected, a small �P worked best for our test images composedfrom fronto-parallel surfaces. For real images, we found that �P needs to bechosen slightly higher. The most important parameter is �M , which shouldre
ect the strength of the image signal. We used three di�erent values for thethree di�erent textures of our test images. Finally, the number of iterationsis less critical, since the method seems to converge relatively fast to a stablesolution. Higher numbers of iterations are necessary for images containingregions of uniform intensity, such as the real images discussed below.For direct comparison of the methods, we plot the disparity error versusthe noise level on all �ve image pairs: Figure 6.16 shows the RMS errors,and Figure 6.17 shows the percentage of bad points. We compare SSD witha window size of 5, the membrane model with � = 0:5, di�usion with localstopping based on winner margin Cm, and the probabilistic model with �P =
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Fig. 6.16. Comparative performance of four stereo algorithms on �ve test imagepairs. The plots show the RMS error of the computed disparities versus the standarddeviation of image noise. The error at occluded points is not included.
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6.7 Discussion and possible extensions 1410:01; �P = 0:1; �M = 0:1, and �M = 2; 8; 20, for ramp, real, and rds texturesrespectively. The number of iterations is 10 for all methods.The probabilistic model clearly beats the three other methods. For smallnoise levels, the occlusion boundaries are recovered almost perfectly. In fact,in three of �ve images the percentage of bad points is 0%, i.e., the absoluteRMS error is less than 1/2 everywhere. Note that the algorithm recovers the\correct" disparity pattern, even though the notion of true disparities is notwell de�ned for ambiguous images such as random dot stereograms.We also tested our algorithms on real images. We include results of theprobabilistic method on images from the SRI's tree sequence and CMU'stown sequence. We used multiple baseline stereo based on �ve images toinitialize the disparity space with the sum of four (appropriately scaled) sim-ilarity measures [Okutomi and Kanade, 1993]. Figures 6.18 and 6.19 show thedisparity maps computed by the probabilistic algorithm after 50 iterations,using the following parameters: �P = 0:4; �P = 0:01; �M = 5; �M = 0:1. Notethat we use a bigger �P than before to account for slanted surfaces.The running times are 220 seconds for the tree pair (image size: 256�233,disparity levels: 16), and 119 seconds for the town pair (image size: 240�256,disparity levels: 9). Thus, on average about 4.5 microseconds are spent perpixel per disparity per iteration. These times were obtained on a DEC Alphaworkstation using an experimental implementation that was not optimizedfor speed.6.7 Discussion and possible extensionsAs we have shown, linear and non-linear di�usion algorithms are an attrac-tive alternative to the adaptive windows introduced by Kanade and Okutomi[Kanade and Okutomi, 1994]. In its simplest form, the membrane algorithmsimply requires the iterative summation of neighboring matching costs, withan additional term thrown in to prevent the support region from growinginde�nitely. The increased weighting of the central pixel relative to the pe-riphery is su�cient to counteract many of the artifacts introduced by thesquared summing window used in SSD. When combined with a local stop-ping condition, the resulting non-linear di�usion process has an adaptivesupport behavior similar to the variably-sized window algorithm. The inclu-sion of additional non-linearities in the Bayesian di�usion algorithm improvesthe performance even more.In addition to their simplicity and computational e�ciency, our non-lineardi�usion algorithms can also handle stereograms with more ambiguity thanthe adaptive window SSD algorithm. Kanade and Okutomi's algorithm isbased on locally adjusting the sub-pixel disparity estimate simultaneouslywith growing the window size. This presupposes that the algorithm is some-how initialized in the vicinity of the true disparity. This is achieved in theirsynthetic image sequences using small disparities, and in their real sequences
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Left Right

Fig. 6.18. Tree images (top) and disparities computed by the probabilistic algo-rithm (bottom).
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UpperLower

Fig. 6.19. Town images (top) and disparities computed by the probabilistic algo-rithm (bottom).



144 6. Stereo Using Di�usionusing a multi-frame version of the basic SSD algorithm [Okutomi and Kanade,1993]. Image pairs with rapidly varying textures and many potential matchessuch as the random-dot stereograms used in our experiments could not behandled by their current algorithm. Of course, their basic method could po-tentially be extended to include a standard multiple disparity search compo-nent, but the performance of such a hybrid method is as yet unknown.In its present form, our algorithm computes monocular rather than binoc-ular disparity maps, i.e., the disparity map is associated with the right im-age. A binocular representation would remove this restriction, enabling therepresentation of occluded regions in both left and right images. Extendingour di�usion algorithms to a binocular representation is relatively straight-forward: the concept of neighbors at the same disparity is modi�ed to de�neequal disparities in the cyclopean representation of depth, i.e., the depth seenby a camera halfway between the original two. Such a representation wouldalso allow us to deal with occlusions more gracefully, allowing occluded pixelsto 
oat to the same disparity as other pixels in the background. However,it is unclear how to extend the Bayesian algorithm, since it requires the re-normalization of disparities along each column in disparity space.In addition to these extensions, we also plan to study better local stop-ping conditions based on improved certainty measures. We would also like toinvestigate multi-resolution versions of our di�usion algorithms to help �ll inregions which have few features to match.6.8 SummaryIn this chapter we have demonstrated that di�usion-based aggregation ofsupport is a useful alternative to both traditional area-based correlation andto more recent techniques based on adaptive window sizes. Our algorithmsare simple to implement and computationally e�cient, and result in betterquality estimates, especially near discontinuities in the disparity surface. Theaddition of local stopping conditions to the basic di�usion process resultsin a behavior similar to that of adaptively sized windows. Furthermore, ournovel non-linear di�usion algorithm derived from a Bayesian model of stereomatching results in markedly improved performance.



7. ConclusionIn this volume,we have investigated the use of stereo vision for the applicationof view synthesis. We conclude by summarizing the contributions made andby outlining possible extensions and directions of future research.7.1 Contributions in view synthesisIn Chapter 3, we proposed a new method for view synthesis from real imagesusing stereo vision. In our approach, scene geometry is implicitly representedby correspondence maps acquired by stereo vision techniques.Using three-view recti�cation, we achieve a purely two-dimensional wayof phrasing view synthesis under the full perspective model as recti�cation,warping, and derecti�cation. In the recti�ed geometry, pixel displacementsin the synthetic view are linear in disparity, allowing the e�cient generationof new views by local image warping. Visibility is resolved automatically byusing ordered forward mapping.A prime advantage of our method of synthesizing new views from stereodata is that realistic views can be synthesized easily and quickly independentof scene complexity. A disadvantage is the limited available information aboutscene geometry, requiring strategies for dealing with partially occluded pointsof unknown geometry and totally occluded points of unknown intensity. Wehave proposed possible ways of dealing with both problems.We have also outlined a framework for view synthesis, in which a sceneis represented by a graph of images and correspondence maps. The basicbuilding block in this framework is our method for synthesizing new viewsfrom a single stereo pair. This approach has the advantage that a globallyconsistent calibration of all reference views is not necessary, as view synthesiscan proceed from pairwise recti�ed image pairs.In Chapter 4, we re-evaluated the requirements on stereo algorithms inlight of the new application of view synthesis. We compared view synthesisto several traditional applications of stereo, and concluded that stereo visionis better-suited for view synthesis than for applications requiring explicit 3Dreconstruction.While the correct recovery of occlusion boundaries and the detection ofpartially occluded regions becomes especially important for view synthesis,



146 7. Conclusiontwo major problems for 3D reconstruction do not a�ect view synthesis. The�rst problem for reconstruction is the limited depth resolution achievablefrom stereo. Since disparities are never explicitly converted to depths in theview synthesis process, the achievable accuracy for remapping a point is inde-pendent of its depth. Thus, disparity maps constitute an ideal representationof scene geometry for the task of synthesizing nearby views. The other mainproblem for 3D reconstruction are textureless areas, whose geometry can notbe recovered. In view synthesis, however, a plausible (and in many cases cor-rect) view can be synthesized by assuming a canonical depth interpretation.Finally, the di�cult task of maintaining full calibration necessary for accurate3D reconstruction is not necessary for view synthesis.We have presented experiments demonstrating that it is possible to e�-ciently synthesize realistic new views even from inaccurate and incompletedepth information, thus meeting our goal of creating convincing impressionsof three-dimensional structure.7.2 Contributions in stereoWe have also presented two new stereo methods that are motivated by therequirements imposed by view synthesis.In Chapter 5, we introduced a new gradient-based evidence measure thatcombines the notions of similarity and con�dence. This measure allows stablematching and easy assignment of canonical depth interpretations in imageregions of insu�cient information.In Chapter 6, we presented several new di�usion-based stereo algorithmsmotivated by the problem of boundary blurring. These algorithms are simpleto implement and computationally e�cient. Non-uniform di�usion using localstopping conditions results in adaptive support similar to the algorithm usingvariably-sized windows. The best results are achieved by a novel non-lineardi�usion algorithm derived from a Bayesian model of stereo matching, whichsigni�cantly outperforms traditional window-based techniques.7.3 Extensions and future workMost of the visual artifacts created by our current implementation are causedby incorrect stereo data. The strongest artifacts are usually caused by occlu-sion boundaries that are recovered incorrectly (especially in \extrapolated"views).While the stereo algorithms presented in this volume are motivated bythe application of view synthesis, they should only be considered a �rst steptowards designing better algorithms that are speci�cally tailored to viewsynthesis. The discussion in Chapter 4 is intended to stimulate and focussuch further development.



7.3 Extensions and future work 147There are several possibilities for improving the stereo methods presentedhere. One idea is to combine the evidence measure from Chapter 5 with thedi�usion-based aggregation methods from Chapter 6. A problem with theevidence measure that needs to be taken into account is that the intensitygradient across occlusion boundaries can be quite di�erent between the twoimages, which can lead to substantial matching errors.The di�usion methods themselves can also be improved. In particular, weplan to investigate new ways of implementing local stopping. One possibilityis to let the di�usion of support be in
uenced by a concurrent anisotropic dif-fusion of intensities, to encourage depth boundaries to coincide with locationsof strong intensity gradients (i.e., intensity edges). We are also interested insymmetric representations of disparities. One option is to use a cyclopeanrepresentation; another is to employ dynamic-programming methods for se-lecting the disparities. We believe that further study of the basic support andaggregation methods in stereo matching is central to developing algorithmswith improved performance over a wide range of imagery.There is also room for improving the view synthesis method presentedin this volume. As mentioned in Section 3.2.7, explicit three-view recti�ca-tion can not be used if the tri-focal plane intersects the observed scene. Inaddition, multiple resampling of the images introduces blur. Both problemscould be remedied by aggregating recti�cation, warping, and derecti�cationinto a single transformation [Seitz and Dyer, 1996b; Seitz and Dyer, 1996a].We would like to devise a fast local warping algorithm that could be used inconjunction with such a combined transform. This might require extendingour view synthesis method to backward mapping, in order to avoid samplinggaps. How this can be done e�ciently while also resolving visibility is aninteresting problem. Another area with room for improvement is the task of�lling holes in the synthesized view. A possible approach would be to extendexisting texture synthesis algorithms developed for the application of imagerestoration.Generally, our plans for future work are based on the belief that image-based scene representations have the potential to fundamentally change the�elds of computer vision and computer graphics as they are known today. Webelieve that viewer-centered applications such as tele-reality will gain centralimportance in the next two decades and will require re-thinking commonlyassumed paradigms in computer vision. In the context of view synthesis, weplan to further investigate stereo algorithms that are able to robustly handledepth discontinuities and occlusion. We also plan to investigate view syn-thesis methods that incorporate multiple images without requiring a globalcalibration between all images, as well as the combination of stereo withimage registration and image mosaicing techniques.
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