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Vision�based mobile robot navigation requires robust

methods for planning and executing tasks due to the un�

reliability of visual information� In this paper we pro�

pose a new method for reliable vision�based navigation

in an unmodeled dynamic environment� Arti�cial land�

marks are used as visual cues for navigation� Our sys�

tem builds a visibility graph among landmark locations

during an exploration phase and then uses that graph

for navigation� To deal with temporary occlusion of

landmarks� long�term changes in the environment� and

inherent uncertainties in the landmark detection pro�

cess� we use a probabilistic model of landmark visibility�

Based on the history of previous observations made�

each visibility edge in the graph is annotated with an

estimated probability of landmark detection� To solve a

navigation task� our algorithm computes the expected

shortest paths between all landmarks and the speci�ed

goal� by solving a special instance of a Markov decision

process� The paper presents both the probabilistic ex�

pected shortest path planner and the landmark design

and detection algorithm� which �nds landmark patterns

under general a�ne transformations in real�time�

� Introduction

Vision�based mobile robot navigation is often planned

using landmarks� either arti�cial or extracted from

the environment� Such landmarks must be detected

quickly and as reliably as possible� When landmark de�

tection is unreliable due to factors such as temporary

occlusion or varying lighting conditions� the planner

�Support for this work was provided in part by the
National Science Foundation under grant CCR���������
POWRE grant EIA��������� VT�EPSCoR grant OSR�
��	�	
�� by Middlebury College� and by a grant to Middle�
bury College from the Howard Hughes Medical Institute�

should compute motion paths dynamically to always

�nd the current best path� This paper makes two ma�

jor contributions� ��� a navigation system that uses

probability estimates of landmark visibility in order to

compute expected shortest paths between landmarks�

�	� a novel landmark pattern together with a real�time

algorithm for landmark detection that can handle a

wide range of a
ne transformations�

��� Navigation using expected shortest paths

Our system uses arti�cial landmarks as visual cues for

navigation in an unknown environment� The robot �rst

explores the environment to learn the relative locations

of the landmarks and builds a graph of landmark loca�

tions that it subsequently uses for navigation� During

navigation� the robot plans motion paths along edges

of the landmark visibility graph� If it wants to navigate

from landmark s to landmark g� it plans and executes

a path starting with a landmark visible from s� As

it moves through the environment� it continually up�

dates the graph with any newly acquired data� such as

measured distance between two landmarks� or changes

to the landmark visibility information� As is discussed

in Sections 	 and �� the planner uses estimates of the

probabilities of landmark visibility to �nd paths with

expected shortest length by solving a Markov decision

process�

��� Landmark�based navigation

Many techniques have been employed for sensor�based

navigation and localization� Industrial mobile robots

have traditionally navigated by following painted lines

on the �oor or tracking buried wires or infrared bea�

cons� The disadvantage of these approaches is that
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they require substantial engineering of the environ�

ment� Recently many researchers have employed land�

marks
 either arti�cial or extracted from the environ�

ment
 to guide the motion of a mobile robot in indoor

environments� The most commonly used approach

with arti�cial landmarks is heuristic� landmarks are

designed and placed so that landmark detection under

normal circumstances is straightforward� The problem

with the heuristic approach is that it only works un�

der certain restricted conditions that are enforced for

the sake of speed� the patterns must be viewed from a

narrow range of distances and angles and will not be

recognized if partially occluded�

We propose a self�similar pattern speci�cally de�

signed for the application of mobile robot navigation�

The pattern is quickly recognizable under a variety

of viewing conditions� even when partially occluded

or mounted at an angle� In contrast to existing ap�

proaches that require two�dimensional analysis of an

image� our method �nds matches along individual scan�

lines� without any preprocessing� making it suitable for

real�time applications�

��� Related work

Traditionally� vision�based robot navigation has pro�

ceeded from three�dimensional maps of the environ�

ment� constructed� for example� using stereo vision

techniques ���� More recently� landmarks have been

used to navigate without a full environment model�

Techniques for mobile robot navigation based on land�

marks include those that are primarily reactive ����

those planned within a geometric environment map en�

hanced with perceptual landmarks ��� ���� and those

based on a topological description of landmark loca�

tions without a global map ��� ��� ����

Our navigation system uses arti�cial landmarks

placed throughout the environment as visual cues� A

topological map of current landmark locations is �rst

constructed during an exploratory phase and then used

for navigation without requiring a global geometric

map� To compensate for occlusion and unreliability

of landmark detection� our navigation algorithm em�

ploys probabilistic techniques to construct reliable and

e
cient motion paths� Several di�erent approaches to

probabilistic path planning have been developed in re�

lated work� Blei and Kaelbling �	� describe Markov de�

cision processes for �nding shortest paths in stochastic

graphs with partially unknown topologies� Their work

di�ers from ours in that they assume that an edge is

either passable or not� but that the state of each edge

is only known with a certain probability� Kavraki and

Latombe ��� propose a randomized method for con�gu�

ration space preprocessing that generates a network of

collision�free con�gurations in a known environment�

Overmars and �Svestka ��	� describe a similar proba�

bilistic learning approach that extends to a number of

motion planning problems� including those for free �y�

ing planar robots� car�like robots� and robots with high

degrees of freedom� Finally� a Markov model is used by

Simmons and Koenig ���� to plan navigation strategies

in partially observable environments�

Rather than relying on landmarks extracted from the

environment ��� �� ��� ��� ���� the approach taken in

this paper and by a number of other research groups

��� �� ��� ��� ��� 	�� is to use arti�cial landmarks that

can be easily and unobtrusively added to the environ�

ment� Becker et al� ��� use simple landmarks attached

to the ceiling of the environment� and use a recognition

algorithm that relies on a �xed distance of the pattern

to the camera� Taylor and Kriegman �	�� utilize the

projective invariance of cross�ratios� but their approach

cannot handle partial occlusion and requires special�

ized hardware for real�time performance� Lin and Tum�

mala ���� propose three�dimensional landmarks consist�

ing of two disks� which can be detected using Hough

transforms from a restricted set of viewing angles� Un�

like these approaches� our method uses simple 	D land�

marks that can be recognized under a wide range of

a
ne transformations in real�time without specialized

hardware�

��� Outline of the paper

Each of the two central themes of the paper 
 robust

navigation and the design of arti�cial landmarks 
 is

discussed in two sections� Section 	 presents our frame�

work for planning based on unreliable sensor data and

develops an algorithm for computing expected short�
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est paths� Section � discusses how a visibility graph

can be annotated with estimates of the unreliability

of observations� Section � then introduces self�similar

functions for the design of an optimally recognizable

intensity pattern� Finally� Section � presents an al�

gorithm for �nding such patterns in an image under

general a
ne transformations in real time�

� Robust navigation using unreliable

sensors

The discussion in this section is based on the following

scenario�

We assume an unknown environment augmented

with visual landmarks fL�� L�� � � � � LNg that can be

detected by the robot� albeit unreliably� We will use

lowercase letters a� b� � � � when referring to individual

landmarks� The robot navigates the environment by

traveling along the edges of the visibility graph de�ned

by the landmarks� We assume an edge from landmark

a to landmark b has associated probability pab � ��� ��

and length lab � �� The probability pab represents

the likelihood that landmark b can be detected from

landmark a� The length lab can be� for example� the

physical distance between a and b� or the time it takes

the robot to travel from a to b� In this section we in�

vestigate the problem of robot navigation given such

a visibility graph� In Section � we discuss how such

a graph can be constructed� and how probability and

length factors can be estimated�

Path planning in visibility graphs typically employs

shortest�path algorithms� Given a directed graph

whose edges have �xed lengths� the shortest path from

a start node s to a goal node g can be computed easily�

for example using Dijkstra�s algorithm� In our sce�

nario� landmark detection is unreliable� and thus the

edges of the graph can only be traversed some of the

time� Therefore� we must change the notion of a short�

est path to that of a path with shortest expected length�

or expected shortest path�

��� Navigation using expected shortest paths

Before explaining how these shortest expected lengths

can be computed� let us see how the robot can use

Ecg

lsa

lsb

g
Eag

c
b

a

s
lss

Ebg

Figure �� Path planning example� The robot at landmark

s can currently see landmarks a and b� but not c due to

temporary occlusion�

them to plan its path� Suppose that the robot at land�

mark s can currently see landmarks a and b� but not

landmark c �see Figure ��� Let Eag denote the ex�

pected length of the shortest path from a to goal g�

The total expected length of the path through a will

be lsa � Eag� Similarly� the total expected length of

the path through b will be lsb�Ebg� Thus� the smaller

of those two sums will indicate a candidate shortest

path� Note that these lengths are independent of the

probabilities psa and psb� since at the current moment�

both a and b are visible� The path with overall short�

est expected length� however� may go through neither

a nor b� It is possible that an expected shorter path

to g goes through landmark c� which usually is visible

from s� but at the current moment is not �for example�

due to temporary occlusion�� This would be re�ected

in a low expected length Esg� In this case� it would

be better to stay at s and wait for c to become visible�

rather than going to either a or b� To prevent the robot

from staying at a landmark inde�nitely� we associate a

non�zero cost with this option �for example� the time

it takes to acquire a new image�� That is� each node n

in the graph has a self�edge n � n with cost lnn � �

and probability pnn � � �staying is always an option��

In summary� the robot will make its decision of

whether to go to a� to go to b� or to stay at s based on

which of the three sums �lsa � Eag�� �lsb � Ebg�� and

�lss�Esg� is the smallest� If landmark c is permanently



A� Briggs� D� Scharstein� and S� Abbott

occluded� it may seem that the robot could �get stuck�

at s� As will be discussed in Section �� however� the

current estimate of psc 
 the probability that c is vis�

ible from s 
 will decrease after a repeated failure to

detect c� This will in turn increase the expected length

of the path from s to g� until eventually the expected

length of going through a or b will be shorter�

��� Deriving the expected lengths of the short�

est paths

Given a designated goal g� we will now relate the un�

known quantities Eng �the expected lengths of the

shortest paths from each node to the goal� in recur�

sive equations� In the next section� we show that there

is a unique solution to this system of equations if there

is a path with non�zero probabilities from each node in

the graph to goal g� It turns out that this problem is

a special instance of a Markov decision process� which

is discussed in section 	���

The following relations for the unknowns Eng are

motivated by the discussion in the previous section�

To start� the expected length of the shortest path from

the goal to itself is

Egg � �� ���

Next� let us consider a node n with only a single outgo�

ing edge n� a� The expected length Eng of the short�

est path from n to g can be expressed as a weighted

sum of two terms that correspond to whether or not a

is visible from n�

Eng � ��� pna� �lnn �Eng� �	�

� pna min�lna �Eag� lnn �Eng��

The �rst term represents the case that a is not visible�

which occurs with probability � � pna� In this case

the only choice is to remain at n and acquire another

image� which incurs cost lnn and results in an expected

length of lnn � Eng� The second term represents the

case that a is visible� which occurs with probability pna�

In this case the expected length of the shortest path is

the smaller of lna �Eag and lnn �Eng� corresponding

to the options of going to a or staying at n� Recall

that we are assuming that the goal is reachable from

any node� and thus Eag � �� Given that the edge

n � a is the only edge leaving n� we know that all

paths from n to g have to go through a� and thus that

Eng � lna � Eag� This allows us to solve equation �	�

for Eng� yielding

Eng �
�� pna
pna

lnn � lna �Eag� ���

Now� let us consider a node n with two outgoing

edges n� a and n� b� The relation for the expected

length of the shortest path from n to g can be expressed

analogously� except that now there are four cases� de�

pending on which of a and b are visible� Using the

shorthand p to denote ��� p�� we obtain the following

relation for Eng�

Eng � pna pnb �lnn �Eng� ���

� pna pnb min�lna �Eag� lnn � Eng�

� pna pnb min�lnb �Ebg� lnn � Eng�

� pna pnb min�lna �Eag� lnb � Ebg� lnn � Eng��

It is easy to see how the equation generalizes to nodes

with more than two outgoing edges� A node n with k

outgoing edges n � a� n � b� � � � � n � z yields an

equation with 	k terms�

Eng � pna pnb � � � pnz �lnn �Eng� ���

� pna pnb � � � pnz min�lna � Eag� lnn � Eng�

� pna pnb � � � pnz min�lnb �Ebg� lnn � Eng�

� pna pnb � � � pnz min�lna � Eag� lnb � Ebg�

lnn �Eng�

� � � �

� pna pnb � � � pnz min�lna � Eag� lnb � Ebg� � � � �

lnz � Ezg� lnn �Eng��

Unlike in the case for only a single edge� it is no

longer possible to explicitly solve these equations for

Eng because of the minimum expressions� which recur�

sively relate the unknown quantities Eig� For example�

to determine the value of the minimum expressions in

equation ���� we need to know the ordering amongKa�
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Kb� and Kn� where Ki denotes lni � Eig� While one

can still deduce that Kn cannot be the smallest of the

three� each of the remaining � orderings is possible�

Ka � Kb � Kn Ka � Kn � Kb ���

Kb � Ka � Kn Kb � Kn � Ka

Note that if such orderings were known for all nodes�

equations ��� and ��� would simplify to linear equations

involving the unknowns Eng� The expected lengths of

the shortest paths could then be computed simply by

solving a system of N �� linear equations� where N

is the total number of landmarks �including the goal��

The presence of the minima� however� prohibits this

approach�

To summarize� the landmark visibility graph de�nes

a system of N �� equations 
 each of the form of

equation ��� 
 for the N �� unknowns Eng� n �� g�

We now turn to the question of how this system of

equations can be solved�

��� An algorithm for computing the expected

shortest paths

For notational convenience� let us collect the N �
� unknowns Eng� n �� g� into a vector X �

�x�� x� � � � � xN��� � IRN��� and rewrite equation ���

in vector form�

xn � fn�X�� ���

Collecting the individual functions fn � IRN�� � IR

�each of which is a linear combination of minima of

components of X plus constant o�sets� into a function

F � IRN�� � IRN���

F � �f�� f�� � � � � fN���� ���

we can then rewrite the entire system of equations con�

cisely�

X � F�X�� ���

Thus� the desired solutionX of this system of equations

is a �xed point of function F� The properties of F are

summarized in the following theorem� a proof of the

theorem can be found in Appendix A�

Theorem � If there exists a path to the goal from ev�

ery node in the graph� and if all edges in the graph have

non�zero probabilities pij � ��� �� and positive lengths

lij � �� then F has a unique �xed point X� in IRN���
Moreover� the iterative process

X
�k��� � F�X�k�� ����

converges to this �xed point given the initial value

X
��� � �	

X
� � lim

k��
X

�k�� ����

This theorem translates literally into an e
cient al�

gorithm for computing the expected shortest paths Eig�

Starting with an initial estimate X���� iterate equation

���� until the value converges�� Convergence is geo�

metric �i�e�� the error decreases exponentially� once the

current value is in the vicinity of the �xed point� In

practice� usually no more than a few hundred iterations

are necessary for the values to converge to within ma�

chine precision� �It is possible� however� to construct

graphs for which convergence is arbitrarily slow��

Instead of iterating equation ����� it is also possible

to repeatedly solve the linear system of equations ����

using the previous solution to hypothesize which terms

are the minima in each equation� Thus� instead of it�

erating over the values of the expected lengths� we can

iterate over the ordering of the expected lengths of the

outgoing paths at each node �as in equation ����� The

iteration terminates when the solution to the current

system of equations yields the same ordering as the pre�

vious solution� It can be shown that this second algo�

rithm �iterating over orderings� converges much faster

than the �rst �iterating over values�� but each iteration

requires solving a system of linear equations� rather

than just evaluating it�

��� Relation to Markov Decision Processes

The problem of expected shortest paths can be viewed

as a special instance of a Markov decision process

�MDP�� Brie�y� a MDP consists of a set of states S�

and a set of allowable actions As associated with each

�In fact� it can be shown that the process converges for
any initial value X���

� IRN���
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state s � S� Each action a � As taken in state s

yields a reward r�s� a�� and results in a new �random�

state s� according to a transition probability distribu�

tion p� � j s� a�� The objective is to devise a policy or

decision rule d � S � As that selects a certain ��xed�

action in each state so as to optimize a function of the

total reward� This brief discussion ignores many com�

mon variations of MDPs� including time�dependent or

discounted rewards� and non�stationary policies� For

a comprehensive introduction to Markov decision pro�

cesses� see the book by Puterman �����

Our problem of expected shortest paths translates

into a non�discounted negative expected total�reward

MDP� This means that each reward is interpreted as

cost or penalty� and that the objective is to minimize

the total expected cost� Upon reaching the goal g� no

further cost is incurred� The key insight for relating

our problem to a MDP is that the states in the MDP

are not simply the nodes in the graph� Rather� each

state encodes a node together with the set of outgoing

edges currently passable� That is� a node with k out�

going edges contributes 	k states� In each state� the

allowable actions are to traverse any of the passable

�visible� edges� including the self�edge� The cost asso�

ciated with an action is the length of the edge traversed�

The transition probabilities are the probabilities asso�

ciated with the di�erent states �visibility scenarios� of

the destination node� For example� if the action is

to go to a node x with 	 outgoing edges x � y and

x � z� the resulting state will be one of the � states

encoding which of the 	 edges will be passable once x

is reached� the corresponding probabilities are pxy pxz�

pxy pxz� pxy pxz� and pxy pxz�

Note that while the corresponding MDP has many

more states than there are nodes or edges� a policy can

be speci�ed by ordering the outgoing edges at each

node �as in equation ����� Then� for each subset of

visible edges� the edge corresponding to the shortest

path is chosen� Each such ordering can in turn be

derived from a current estimate of the expected lengths

of the shortest paths from each node to the goal� Thus�

while the number of states jSj of the MDP is

jSj �
NX
n��

	od�n��

where od�n� is the out�degree of node n� the entire

MDP can be concisely described with the N � � un�

knowns Eng�

Our algorithms for computing the expected shortest

paths presented in section 	�� are variants of two algo�

rithms known as value iteration and policy iteration in

the MDP community� An important di�erence is that

in our case both algorithms require the iteration �or

solution� of only N � � equations� rather than of jSj
equations� as discussed in the previous paragraph�

� Building the visibility graph

Now that we are armed with the ability to quickly com�

pute the expected shortest paths from all nodes to a

given goal node� we can apply the navigation strategy

outlined in Section 	��� At each node along the way�

determine which landmarks are currently visible� and

select among those the one that yields the overall ex�

pected shortest path �which includes the option of stay�

ing at the current position�� Repeat the process at each

subsequent node� until the goal is reached� If scanning

for all visible landmarks is signi�cantly more expensive

than just looking for the next landmark on the pre�

dicted shortest path �for example� if scanning requires

a ��� degree rotation of the robot�� the strategy can be

modi�ed as follows� If possible� travel to each landmark

in the sequence corresponding to the expected short�

est path� Only if a landmark in the planned sequence

cannot be detected� scan for all visible landmarks and

replan�

��� Deriving cost and probability estimates

The remaining problem is how the visibility graph can

be constructed and how length �cost� and probability

factors can be estimated and maintained� Let us �rst

discuss how to estimate the lengths of edges� Clearly�

once a visibility edge has been traversed by the robot�

its length lij is known and can be stored� Note that
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�length� will typically refer to the time it takes to tra�

verse the edge� When arti�cial landmarks with known

size are used �such as the ones presented in Section ���

we can also estimate the lengths of edges that have not

yet been traversed� based on the size of the landmark

in the image� Such estimates are fairly accurate� and

are immediately available with each new visibility edge�

they can be replaced with the measured distance once

the edge has been traversed�

We now address the less obvious problem of deter�

mining the probabilities pij �that landmark j is visible

from landmark i�� Since these probabilities are un�

known� the best we can do is to compute estimates

�pij for the true pij as a function g of the history of

observations Oij�

�pij � g�Oij�� ��	�

The history of observations of landmark j from land�

mark i is

Oij � �o
���
ij � o

���
ij � � � � � o

�mi�
ij �� ����

where mi is the total number of observations made

from landmark i up to this point in time� and each

o
�k�
ij � f�� �g records whether landmark j was visible�

Note that observation histories can have �leading ze�

ros�� that is� even if j was not visible the �rst few times

an observation was made� it is possible to reconstruct

the complete observation history for j by keeping track

of all observations ever made at landmark i�

Let us now turn to the function g� how can we derive

probability estimates from observation histories� In

the simplest scenario� assuming independent observa�

tions made with a �xed probability pij� the optimal es�

timate �pij is given by a function g that returns the ratio

of detections ��ones�� to the total number of observa�

tions mi� In reality� however� the observations will nei�

ther be independent� nor will the pij stay constant over

time� While some failures to detect a landmark will

have truly random causes �for example� occlusion by a

person walking by�� others will be caused by lighting

changes throughout the day� or perhaps even by perma�

nent changes to the environment �most extremely� the

removal or addition of a landmark�� Typically� obser�

vations closely spaced in time will be highly correlated�

Therefore� in practice� a more sophisticated estimation

function g should be used� It is also a good idea to

record a time stamp with each observation� so that the

temporal distribution of observations can be taken into

consideration�

��� Exploration and navigation

In our landmark�based navigation system� the robot

operates in two modes� exploration and navigation�

In exploration mode� the robot explores the environ�

ment using a depth��rst search among the unvisited

landmarks� A visibility edge between two landmarks

can be traversed by visual servoing� using the real�time

recognition algorithm discussed in Section �� At every

newly�visited landmark� the robot scans for all land�

marks visible from this position� records their relative

angles and estimates of their distances� and starts an

observation history for this landmark� As is discussed

in Section ��	� the landmarks all have unique barcodes�

which are used as node labels in the graph� As men�

tioned above� in the process of exploring� the robot

replaces distance estimates with more accurate odom�

etry measurements� Also� as landmarks are revisited

during the exploration phase� the observation histories

are updated and the probability estimates are re�ned�

Once part of the environment has been explored� the

robot can enter navigation mode� and accept naviga�

tion tasks from the user� For a given goal� the ex�

pected shortest paths are computed and used for path

planning as described above� Navigation mode and ex�

ploration mode can be interleaved seamlessly� length

and probability factors are continuously updated in

both modes based on observations made and edges tra�

versed� In summary� our navigation system is able to

operate robustly in the presence of unreliable sensory

input� and can cope both with the temporary occlu�

sion of landmarks and with permanent changes to the

environment� such as the removal and addition of new

landmarks�

� A self�similar landmark pattern

Our vision�based navigation system relies on real�time

detection of landmarks in the environment� We have
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designed a self�similar intensity pattern ���� that can

be quickly and reliably detected in images taken by

the robot� In this section we motivate our use of a

self�similar pattern and describe the pattern we have

developed�

��� Self�similar functions

We say a function f � IR� � IR is p�similar for a scale

factor p� ��p��� if f�x� � f�px� �x � �� The graph

of a p�similar function is self�similar� that is� it is iden�

tical to itself scaled by p in the x�direction� Note that

a p�similar function is also pk�similar� for k � 	� �� � � �

Self�similar intensity patterns are attractive for recog�

nition since the property of p�similarity is invariant to

scale� and thus the distance of the pattern to the cam�

era does not matter�

A p�similar pattern can be detected by comparing

the observed intensity pattern to a version of itself

scaled by p� We can accommodate patterns of lim�

ited spatial extent by restricting the comparison to a

window of width w� Let dp�w�f� be the average ab�

solute di�erence between the original and scaled func�

tions over w�

dp�w�f� �
�

w

Z w

�

jf�x� � f�px�j dx� ����

Then f is locally p�similar over w if and only if

dp�w�f� � �� A simple method for detecting a locally

p�similar pattern in a one�dimensional intensity func�

tion I�x� would then be to minimize the above measure

over translations It�x� � I�x� t��

tmatch � argmin
t

dp�w�It��

The minimal value of � is achieved only if I is p�

similar over w at translation t� Unfortunately� all con�

stant functions are p�similar for any p� Thus dp�w�It�

would also be minimal in regions of constant inten�

sity� To exclude locally constant functions� we must

detect patterns that are self�similar only for scale p

�and p�� p�� � � ��� and not for other scales� This can

be achieved by maximizing the mismatch at scale p���

�and p���� p���� � � ��� Let us assume without loss of

generality that the range of observable intensities is

0

1

0 1

Figure �� The square wave function S�x
�

��� ��� A maximal mismatch for scale
p
p is then given

if jf�x� � f�
p
px�j � �� or locally� if

dpp�w�f� �
�

w

Z w

�

jf�x� � f�
p
px�j dx � �� ����

In this case we say that f is �locally�
p
p �antisimilar�

We can combine equations ���� and ����� and revise

our method for detecting self�similar patterns that are

only p�similar for a given scale p� We will maximize

the match function

m�t� � dpp�w�It�� dp�w�It� ����

over all translations t� Note that the range of m�t� is

���� ��� since the range of both terms on the right�hand

side of ���� is ��� ��� A locally constant function will

yield m�t� � �� Similarly� a random intensity pattern

that is neither p�similar nor
p
p �similar will yield a

response close to zero� A signi�cant positive response

is only expected for intensity patterns that are p�similar

but not
p
p �similar�

��� An optimally recognizable pattern

Given the match measure m de�ned in ����� we now

need to �nd an intensity function that yields the opti�

mal response m � �� That is� we seek a p�similar�
p
p �

antisimilar function sp�x�� To derive such a function�

let us consider the periodic �square�wave� function S

depicted in Figure 	�

S�x� �

�
�� x� bxc � �

�

�� x� bxc � �
�

� b	�x� bxc�c� ����

This function has the property that S�x � �� � S�x�
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0
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Figure �� Self�similar square wave sp�x
 for p � �
� �top��

maximal mismatch at scale p��� �middle�� and match at

scale p �bottom��

and S�x� �
�� � ��S�x�� i�e�� it is a ��periodic function

that is similar under a translation of � and anti�similar

under a translation of �
� � It is easy to show that we can

transform S into a p�similar�
p
p �antisimilar function

sp by substituting logp x for x�

sp�x� � S�logp x� � b	�logp x� blogp xc�c ����

with the desired properties of dp�w�sp� � � and

dpp�w�sp� � � for any w �see Figure ���

��� Two�dimensional landmarks

We now have all the components for landmark design

and recognition� The key step for moving to two di�

mensions is to use a pattern that is p�similar in one

direction �say� horizontally�� and constant in the other

direction� See Figure � for an illustration� If such a

pattern is then sampled along any non�vertical line� the

resulting intensity function is still p�similar because of

the scale invariance of self�similarity� This allows us

to detect two�dimensional p�similar patterns that have

undergone an a
ne transformation by examining iso�

lated scanlines�

Formally� let

L�x� y� � sp�x� ����

be our two�dimensional landmark pattern� where sp�x�

is the self�similar square wave function �equation �����

Figure �� Our self�similar landmark pattern with barcode�

for a �xed p� An a
ne transformation yields

A�L�x� y�� � L�ax�by�c� dx�ey�f� � sp�ax�by�c��

Sampled at y � y�� we get sp�ax � �by� � c�� �

sp�ax � t�� Thus� the problem of �nding an a
ne

transformation of the two�dimensional pattern L has

been reduced to �nding a translation t of the one�

dimensional pattern sp�

� The landmark recognition algorithm

The idea underlying the recognition algorithm is to �nd

locations �xm� ym� in the image at which a scanline is

locally p�similar and
p
p�antisimilar� To do this� we

adopt the matching function m from equation ���� for

scanlines in an image I�x� y��

my�x� �
�

w

Z w

�
jI�x� �� y� � I�x �

p
p �� y�j d�

� �

w

Z w

�
jI�x� �� y� � I�x � p�� y�j d�� �	��

The value of my�x� depends on the intensities along

the line �x� y� to �x � w� y�� and is constrained to the

interval ���� ��� If the pattern sp is present at �x� y��

then my�x� � �� It is easy to see that the pattern

csp with reduced contrast c � � �i�e�� di�erence be�

tween maximal and minimal intensities� will only yield

a response my�x� � c� Other �non p�similar� intensity

patterns will yield responses close to or below zero� An
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algorithm for �nding a
ne transformations of a land�

mark with intensities L�x� y� � sp�x� �for a known p�

in an image can be formulated as follows�

for every k�th scanline y

for all x

compute my�x�

mark all strong local maxima of my as matches�

This simple algorithm requires only O�nw�k� opera�

tions for an n�pixel image� The computation of my�x�

can be adapted to discrete images by replacing the inte�

grals in equation �	�� by summations� and determining

inter�pixel intensities using linear interpolation� The

two parameters� k� the spacing of scanlines to search�

and w� the window size� only depend on the smallest

expected size of the landmark pattern and can be �xed�

Typical values for an image of size ���� ��� are k � �

and w � ���

��� Finding matches reliably

The interesting question is� what constitutes a

�strong� local maximum� A simple answer would be to

require that a local maximum be greater than a �xed

threshold cmin �corresponding to a minimumcontrast��

More information� however� can be gained from observ�

ing the shape of my�x� in the vicinity of a local maxi�

mum� Figure � shows several intensity pro�les of scan�

lines that were synthesized from continuous functions

using ���fold oversampling� Below each intensity plot

is a plot of my�x� for p �
�
� and w � ��� The length of

each scanline is ���� The top two patterns are locally
�
�
�similar square waves sp with full and half contrast�

respectively� Both patterns result in clear peaks at the

correct location xm � ���� however� the value of the

maximummy�xm� is less than expected� The observed

values are ���� and ����� while the expected values are

� and �
� � The di�erences are due to sampling and inter�

polation� in particular at locations of discontinuities or

strong change� The bottom two patterns� on the other

hand� are not �
��similar� �c� is a �random� intensity

pattern taken from a real image� and �d� is a �
	 �similar

square wave� The match function for the random pat�

tern �c� has no strong peaks� but there is a distinctive

local maximum in the match function for �d�� It is�

�a�

�b�

�c�

�d�

Figure �� Various intensity patterns I�x
 and match func�

tions my�x
 for p � �
� and w � 	�� �See Section ��� for

details��

however� much more rounded and not as �sharp� as

the top two peaks�

An experimental study analyzing the shape of my�x�

for a wide range of parameters has revealed a simple

but e�ective test for �sharpness�� check that a peak at

half its height is no wider than a �xed threshold� which

only depends on the window size w� That is� given a

local maximum v � my�xm� greater than a threshold

cmin� test whether my�xm 	 �x� � v�	� where �x is

approximately w����
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Figure �� The mobile robot� and two images taken with

its camera� All landmarks have been found� and all but one

have been identi	ed by their barcodes�

��� Grouping matches

The actual landmark patterns can be detected in an

image by grouping individual matches found on con�

secutive scanlines� To be able to distinguish di�erent

landmarks� we add a simple binary barcode to the right

side of the self�similar pattern �as shown in Figure ���

The patterns can then be recognized and identi�ed as

follows� First� the position and orientation of all land�

mark patterns in the image is determined by �tting

a straight line to each set of three or more individual

matches detected on consecutive scanlines� The exact

vertical extent of each pattern is then estimated from

the intensity distribution to the left of this line� Once

the locations of the patterns are known� their barcodes

can be decoded easily� Figure � shows a Pioneer 	 mo�

bile robot equipped with a camera� and two sample pic�

tures taken by the robot� All landmarks are detected

correctly� and all landmark numbers are decoded ex�

cept for one that was too far away�

��� Achieving real�time performance

The recognition algorithm as described above is fairly

fast� typical running times for a straightforward im�

plementation on a ��� MHz Pentium II machine are

���� seconds for ���� ��� images and ���� seconds for

�	��	�� images �using parameters w � �� and k � ���

A dramatic speed�up can be achieved by further re�

stricting the set of pixels for which my�x� is computed�

Recall that we are already considering only every k�th

scanline� We can start by looking at only every 	k�th

scanline� and� only if a match is found� look at its neigh�

boring scanlines as well� Since isolated matches are dis�

carded anyway in the grouping process� no landmark

will be missed� This technique can yield a speed�up of

up to 	 if few or no landmark patterns are present in the

image� Another opportunity for restricting the search

is to make use of the fact that peaks corresponding

to matches have a certain minimum width at a given

height h �e�g�� h � cmin���� Given a lower bound l for

this width� it is possible to scan for peaks by looking

only at every l�th pixel� A conservative bound for l is

typically given by �x� i�e�� half the allowable peak width

used in the test for sharpness discussed in Section ����

Typical values for this number are � or �� We have

found� however� that even with much higher values for

l �e�g�� ���� only very few peaks are overlooked �typi�

cally those resulting from patterns with low contrast��

so further speedup can be achieved with minimal im�

pact on robustness�
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These modi�cations result in new running times of

���	� seconds for ���� ��� images and ����	 seconds

for �	� � 	�� images� corresponding to frame rates of

�� and �� frames per second� respectively� Thus� the

implementation runs at video frame rate even for full�

size images� making it the �rst real�time method for

landmark detection under a
ne transformations�

� Conclusion

Arti�cial landmarks that can be unobtrusively added

to an indoor environment can serve as practical and

inexpensive aids for mobile robot navigation and lo�

calization� When detected quickly and reliably they

can make task execution more robust by reducing un�

certainty due to control and sensing errors� When de�

tection is unreliable� the navigation strategies planned

should be as robust as possible� This paper has

addressed the robust planning problem by providing

two major contributions� First� we have described a

probabilistic path planner that computes paths of ex�

pected shortest length� given landmark visibility his�

tories� Second� we have proposed a novel landmark

pattern together with the �rst practical method em�

ploying full a
ne invariants for real�time detection of

landmarks� The method operates on single scanlines

without any preprocessing and runs at video frame rate

without specialized hardware� An implementation of

the landmark detection algorithm is publicly available

at http���www�middlebury�edu��schar�landmark��
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Appendix A� Proof of Theorem �

Proof� The strategy of the proof is to show that each

component of X���� X���� X���� � � � forms a bounded

increasing sequence� and thus has a limit� Setting

X��� � ��� �� � � �� ��� it is straightforward to compute

that the entries of the vector X��� � F�X���� are all

strictly positive� Of particular importance here is the

observation that every component of X��� is at least

as big as �and in this case strictly greater than� the

corresponding component of X���� With this base case

veri�ed� we can now argue by induction that each in�

dividual component entry of the sequence X���� X����

X���� � � � forms a monotone increasing sequence� To

see why� assume that the claim is true for X���� X����

� � �� X�k�� and consider X�k��� � F�X�k��� The n�th

component of X�k��� is given by fn�X
�k�� while the

n�th component of X�k� is given by fn�X
�k����� Using

the induction hypothesis that every component of X�k�

is at least as big as that of X�k���� it is not hard to see

from equation ��� that fn�X
�k�� � fn�X

�k�����

We must now make a case for boundedness of each

component sequence� To begin� consider a node n in

the graph containing an edge connected directly to the

goal g� Looking at equation ���� the component func�

tion for this node would have the form

fn�X� � pna � � � png � � � pnz �lnn � xn� �	��

� pna � � � png � � � pnz min�lna � xa� lnn � xn�

� � � �

� pna � � � png � � � pnz min�lna � xa� � � � �

lng� � � � � lnz � xz� lnn � xn��

The letters a� � � � � z represent nodes that are potentially

visible from node n� so that xn as well as xa� � � � � xz
are just some subset of components from the vector

X � �x�� x�� � � � � xN����

By choosing a node n that is adjacent to the goal

g� we ensure that the length of the edge lng appears

as a candidate in the �nal minimum of equation �	���

The length lng also appears in several other minima of

equation �	��� but the special signi�cance of this last

minimum expression is that our hypothesis of non�zero

probabilities guarantees that pna � � � png � � � pnz � ��

Now construct the function un�X� from fn�X� in

the following way� Consider each minimum expression

appearing in fn� If lng is among the options� replace



Reliable Mobile Robot Navigation From Unreliable Visual Cues

the minimum with lng �regardless of whether or not

it represents the minimum�� If lng does not appear�

then replace the minimum with the lnn � xn option

�present in every minimumexpression�� In terms of the

underlying graph� this amounts to ignoring all outgoing

edges from node n except for lng and lnn� By replacing

each minimum with a particular candidate� we have

certainly made the value of the function larger� i�e��

un�X� � fn�X� �X� Moreover� combining terms� un
reduces to a simpler equation for a node with only a

single outgoing edge� similar to equation �	�� and thus

has the more accessible form

un�X� � png lng � png �lnn � xn�� �		�

where png � � and thus png � �� For simplicity� we will

write p instead of png in the following discussion� The

function un� although technically de�ned on IRN���

only depends on the n�th coordinate entry xn� Also�

since p � �� un is geometrically contractive in the sense

that for any two points xn and x�n we have

jun�xn�� un�x
�
n�j � p jxn � x�nj�

What this implies is that iterating a point xn with un
yields a sequence xn� un�xn�� u

���
n �xn�� � � � where the

distance of the k�th iteration from the starting point

xn must satisfy

jxn � u�k�n �xn�j �	��


 jxn � un�xn�j� jun�xn�� u���n �xn�j� � � �

� ju�k���n �xn�� u�k�n �xn�j
� jxn � un�xn�j �� � p� p � � � � �� p k���

� jxn � un�xn�j �

�� p
�

In other words� the sequence is bounded� Now since

for any X � �x�� � � � � xn� � � � � xN��� we have un�xn� �
fn�X�� it follows that the monotone sequence in the

n�th coordinate of X���� X���� X���� � � � will also be

bounded� and hence convergent�

To explicitly calculate the upper bound� set xn � �

in equation �	�� and solve to get

u�k�n ��� 
 �p lng � p lnn�
�

p
� lng �

p

p
lnn�

The observant reader will recognize this as the expected

length of the shortest path from a node with a single

outgoing edge to the goal �equation �����

The preceding argument shows that the sequence

X�k� converges in any component corresponding to a

node that is adjacent to the goal� With this fact es�

tablished� we can now repeat the proof for any com�

ponent of X�k� corresponding to a node adjacent to a

node previously handled� More explicitly� assume node

r has an edge to node n� and assume we have shown

that the n�th component of X�k� is bounded and hence

converges� The �nal minimum in the expression for

fr�X� will contain� among other options� the expres�

sion lrn � xn� Knowing that lrn � xn is bounded� by

say bn� we construct ur�X� � ur�xr� from fr�X� by

replacing each minimum containing lrn � xn with the

upper bound bn� and selecting lrr�xr in all other cases�

The remainder of the argument is the same�

Given our hypothesis that from every node there ex�

ists a path to the goal� this bootstrapping technique

eventually leads to the conclusion that every compo�

nent of our sequence X���� X���� X���� � � � is an in�

creasing bounded sequence of real numbers� By the

Monotone Convergence Theorem� we may set X� �

�x��� x
�
�� � � � � x

�
N��� where each x�n is the limit of the n�

th components of �X�k���

This can be summarized with the statement

limk��Xk � X�� �Technically this is a coordinate�

wise limit but we certainly get convergence using most

any topology on IRN���� Now the continuity of the

component functions fn which make up F allow us to

conclude that

F�X�� � F� lim
k��

X�k�� � lim
k��

F�X�k��

� lim
k��

X�k��� � X��

Finally� to argue that X� is the unique �xed point of

F� let Y� � IRN�� also satisfy F�Y�� � Y�� Consider
a particular component function fn of F �see equa�

tion �	��� and again pay special attention to the �nal

minimum term where the variables of all potentially

visible nodes are included� If X� is �xed by fn� i�e��

fn�X
�� � x�n� then lnn � x�n cannot be the minimum
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here since otherwise it would be the minimumthrough�

out and we would have fn�X
�� � x�n � lnn� �This is

were we need the hypothesis that all edge lengths are

strictly positive�� The same observation of course holds

for lnn � y�n� But now� using the fact that the proba�

bility preceding this �nal minimum is strictly positive�

we can show that

jfn�X��� fn�Y
��j � jx�n � y�nj�

Since X� and Y� are both assumed to be �xed by F�

this is only possible if X� � Y�� �
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