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Vision-based mobile robot navigation requires robust
methods for planning and executing tasks due to the un-
reliability of visual information. In this paper we pro-
pose a new method for reliable vision-based navigation
i an unmodeled dynamic environment. Artificial land-
marks are used as visual cues for navigation. Qur sys-
tem builds a visibility graph among landmark locations
during an exploration phase and then uses that graph
for navigation. To deal with temporary occlusion of
landmarks, long-term changes in the environment, and
imherent uncertainties in the landmark detection pro-
cess, we use a probabilistic model of landmark visibility.
Based on the history of previous observations made,
each wvistbility edge in the graph is annotated with an
estimated probability of landmark detection. To solve a
navigation task, our algorithm computes the expected
shortest paths between all landmarks and the specified
goal, by solving a special instance of a Markov decision
process. The paper presents both the probabilistic ex-
pected shortest path planner and the landmark design
and detection algorithm, which finds landmark patterns
under general affine transformations in real-time.

1 Introduction

Vision-based mobile robot navigation is often planned
using landmarks, either artificial or extracted from
the environment. Such landmarks must be detected
quickly and as reliably as possible. When landmark de-
tection is unreliable due to factors such as temporary

occlusion or varying lighting conditions, the planner
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should compute motion paths dynamically to always
find the current best path. This paper makes two ma-
jor contributions: (1) a navigation system that uses
probability estimates of landmark visibility in order to
compute expected shortest paths between landmarks;
(2) a novel landmark pattern together with a real-time
algorithm for landmark detection that can handle a
wide range of affine transformations.

1.1 Navigation using expected shortest paths

Our system uses artificial landmarks as visual cues for
navigation in an unknown environment. The robot first
explores the environment to learn the relative locations
of the landmarks and builds a graph of landmark loca-
tions that it subsequently uses for navigation. During
navigation, the robot plans motion paths along edges
of the landmark visibility graph. If it wants to navigate
from landmark s to landmark ¢, it plans and executes
a path starting with a landmark visible from s. As
it moves through the environment, it continually up-
dates the graph with any newly acquired data, such as
measured distance between two landmarks, or changes
to the landmark visibility information. As is discussed
in Sections 2 and 3, the planner uses estimates of the
probabilities of landmark visibility to find paths with
expected shortest length by solving a Markov decision
process.

1.2 Landmark-based navigation

Many techniques have been employed for sensor-based
navigation and localization. Industrial mobile robots
have traditionally navigated by following painted lines
on the floor or tracking buried wires or infrared bea-

cons. The disadvantage of these approaches is that



they require substantial engineering of the environ-
ment. Recently many researchers have employed land-
marks — either artificial or extracted from the environ-
ment — to guide the motion of a mobile robot in indoor
environments. The most commonly used approach
with artificial landmarks is heuristic: landmarks are
designed and placed so that landmark detection under
normal circumstances is straightforward. The problem
with the heuristic approach is that it only works un-
der certain restricted conditions that are enforced for
the sake of speed: the patterns must be viewed from a
narrow range of distances and angles and will not be
recognized if partially occluded.

We propose a self-similar pattern specifically de-
signed for the application of mobile robot navigation.
The pattern is quickly recognizable under a variety
of viewing conditions, even when partially occluded
or mounted at an angle. In contrast to existing ap-
proaches that require two-dimensional analysis of an
image, our method finds matches along individual scan-
lines, without any preprocessing, making it suitable for
real-time applications.

1.3 Related work

Traditionally, vision-based robot navigation has pro-
ceeded from three-dimensional maps of the environ-
ment, constructed, for example, using stereo vision
techniques [3]. More recently, landmarks have been
used to navigate without a full environment model.
Techniques for mobile robot navigation based on land-
marks include those that are primarily reactive [5],
those planned within a geometric environment map en-
hanced with perceptual landmarks [9, 11], and those
based on a topological description of landmark loca-
tions without a global map [8, 13, 17].

Our navigation system uses artificial landmarks
placed throughout the environment as visual cues. A
topological map of current landmark locations is first
constructed during an exploratory phase and then used
for navigation without requiring a global geometric
map. To compensate for occlusion and unreliability
of landmark detection, our navigation algorithm em-
ploys probabilistic techniques to construct reliable and
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efficient motion paths. Several different approaches to
probabilistic path planning have been developed in re-
lated work. Blei and Kaelbling [2] describe Markov de-
cision processes for finding shortest paths in stochastic
graphs with partially unknown topologies. Their work
differs from ours in that they assume that an edge is
either passable or not, but that the state of each edge
is only known with a certain probability. Kavraki and
Latombe [7] propose a randomized method for configu-
ration space preprocessing that generates a network of
collision-free configurations in a known environment.
Overmars and Svestka [12] describe a similar proba-
bilistic learning approach that extends to a number of
motion planning problems, including those for free fly-
ing planar robots, car-like robots, and robots with high
degrees of freedom. Finally, a Markov model is used by
Simmons and Koenig [18] to plan navigation strategies
in partially observable environments.

Rather than relying on landmarks extracted from the
environment [4, 5, 11, 13, 17], the approach taken in
this paper and by a number of other research groups
[1, 6, 10, 15, 19, 20] is to use artificial landmarks that
can be easily and unobtrusively added to the environ-
ment. Becker et al. [1] use simple landmarks attached
to the ceiling of the environment, and use a recognition
algorithm that relies on a fixed distance of the pattern
to the camera. Taylor and Kriegman [20] utilize the
projective invariance of cross-ratios, but their approach
cannot handle partial occlusion and requires special-
1zed hardware for real-time performance. Lin and Tum-
mala [10] propose three-dimensional landmarks consist-
ing of two disks, which can be detected using Hough
transforms from a restricted set of viewing angles. Un-
like these approaches, our method uses simple 2D land-
marks that can be recognized under a wide range of
affine transformations in real-time without specialized
hardware.

1.4 Outline of the paper

Each of the two central themes of the paper — robust
navigation and the design of artificial landmarks — is
discussed in two sections. Section 2 presents our frame-
work for planning based on unreliable sensor data and
develops an algorithm for computing expected short-
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est paths. Section 3 discusses how a visibility graph
can be annotated with estimates of the unreliability
of observations. Section 4 then introduces self-similar
functions for the design of an optimally recognizable
intensity pattern. Finally, Section 5 presents an al-
gorithm for finding such patterns in an image under

general affine transformations in real time.

2 Robust navigation using unreliable
sensors

The discussion in this section is based on the following

scenario:

We assume an unknown environment augmented
with visual landmarks {Li, La,..., Ly} that can be
detected by the robot, albeit unreliably. We will use
lowercase letters a,b,... when referring to individual
landmarks. The robot navigates the environment by
traveling along the edges of the visibility graph defined
by the landmarks. We assume an edge from landmark
a to landmark b has associated probability pas € [0, 1]
and length l,, > 0. The probability pu, represents
the likelihood that landmark b can be detected from
landmark a. The length [, can be, for example, the
physical distance between a and b, or the time it takes
the robot to travel from a to b. In this section we in-
vestigate the problem of robot navigation given such
a visibility graph. In Section 3 we discuss how such
a graph can be constructed, and how probability and
length factors can be estimated.

Path planning in visibility graphs typically employs
shortest-path algorithms. Given a directed graph
whose edges have fixed lengths, the shortest path from
a start node s to a goal node g can be computed easily,
for example using Dijkstra’s algorithm. In our sce-
nario, landmark detection is unreliable, and thus the
edges of the graph can only be traversed some of the
time. Therefore, we must change the notion of a short-
est path to that of a path with shortest expected length,
or expected shortest path.

2.1 Navigation using expected shortest paths

Before explaining how these shortest expected lengths
can be computed, let us see how the robot can use

Figure 1: Path planning example: The robot at landmark
s can currently see landmarks a and b, but not ¢ due to

temporary occlusion.

them to plan its path. Suppose that the robot at land-
mark s can currently see landmarks @ and b, but not
Let F.4 denote the ex-
pected length of the shortest path from a to goal g.
The total expected length of the path through a will
be ls4 + Fay. Similarly, the total expected length of
the path through & will be {5 + F4,. Thus, the smaller
of those two sums will indicate a candidate shortest
path. Note that these lengths are independent of the
probabilities ps, and pgp, since at the current moment,
both a and b are visible. The path with overall short-
est expected length, however, may go through neither

landmark ¢ (see Figure 1).

a nor b. It is possible that an expected shorter path
to g goes through landmark ¢, which usually is visible
from s, but at the current moment is not (for example,
due to temporary occlusion). This would be reflected
in a low expected length E,,. In this case, it would
be better to stay at s and wait for ¢ to become visible,
rather than going to either a or b. To prevent the robot
from staying at a landmark indefinitely, we associate a
non-zero cost with this option (for example, the time
it takes to acquire a new image). That is, each node n
in the graph has a self-edge n — n with cost [, > 0
and probability p,, = 1 (staying is always an option).

In summary, the robot will make its decision of
whether to go to a, to go to b, or to stay at s based on
which of the three sums (l;q + Eag), (Isp + Ebg), and
(Iss+ Esg) is the smallest. If landmark ¢ is permanently



occluded, it may seem that the robot could “get stuck”
at s. As will be discussed in Section 3, however, the
current estimate of ps. — the probability that ¢ is vis-
ible from s — will decrease after a repeated failure to
detect ¢. This will in turn increase the expected length
of the path from s to g, until eventually the expected

length of going through a or b will be shorter.

2.2 Deriving the expected lengths of the short-
est paths

Given a designated goal g, we will now relate the un-
known quantities E,, (the expected lengths of the
shortest paths from each node to the goal) in recur-
sive equations. In the next section, we show that there
1s a unique solution to this system of equations if there
1s a path with non-zero probabilities from each node in
the graph to goal ¢. It turns out that this problem is
a special instance of a Markov decision process, which
1s discussed in section 2.4.

The following relations for the unknowns FE,, are
motivated by the discussion in the previous section.
To start, the expected length of the shortest path from
the goal to itself is

Egq=0. (1)

Next, let us consider a node n with only a single outgo-
ing edge n — a. The expected length F,, of the short-
est path from n to g can be expressed as a weighted
sum of two terms that correspond to whether or not a
is visible from n:

Eng = (1= Pna) (ban + Eng) (2)
+  Pna min(lna + Eag, lnn + Eng)

The first term represents the case that a is not visible,
which occurs with probability 1 — p,,. In this case
the only choice is to remain at n and acquire another
image, which incurs cost /,,,, and results in an expected
length of l,,, + Epg.

case that a 1s visible, which occurs with probability pyq.

The second term represents the

In this case the expected length of the shortest path is
the smaller of l,,q + Eqg and b, + Eyy, corresponding
Recall

to the options of going to a or staying at n.
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that we are assuming that the goal 1s reachable from
any node, and thus F,; < oo. Given that the edge
n — a is the only edge leaving n, we know that all
paths from n to ¢ have to go through a, and thus that
Eng > lpa + Eqg. This allows us to solve equation (2)
for Eyg, yielding

1- Pna
Pra

Eng = lnn + lna + Eag~ (3)

Now, let us consider a node n with two outgoing
edges n — a and n — b. The relation for the expected
length of the shortest path from n to g can be expressed
analogously, except that now there are four cases, de-
Using the
shorthand P to denote (1 — p), we obtain the following

pending on which of @ and b are visible.

relation for F,g:

Eng = Pna Pt (Inn + Eng) (4)
+  Pna Prp min(lye + Eag, lun + Eng)
+ Pra Pne min(lyy + Eig, lyn + Enyg)
+  Pna Pnb Min(lng + Eag, lnb + Eog, lnn + Enyg).

It is easy to see how the equation generalizes to nodes
with more than two outgoing edges. A node n with &
outgoing edges n = a, n — b, ..., n — z yields an

equation with 2* terms:

E Prz (lnn + Eng) (5)
in(lpa + Eag, lan + Eng)

Prz min(lny + Eig, lnn + Eng)

min(lne + Eag, lnp + Ebg,

lon + Eng)

ng = DPna Pnb ---
+ PnaPnb - Pnz I
+ Pna Pnb - -
+ Pna Pnb -+ Pnz M

+ ...
+ Pna Pnb - Pnz min(lna + Eaga lnb + Ebga RS
lnz + Ezg, lnn + Eng)

Unlike in the case for only a single edge, it is no
longer possible to explicitly solve these equations for
FEpg because of the minimum expressions, which recur-
sively relate the unknown quantities F;,. For example,
to determine the value of the minimum expressions in
equation (4), we need to know the ordering among K,
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Ky, and K,,, where K; denotes {,; + F;,. While one
can still deduce that K, cannot be the smallest of the
three, each of the remaining 4 orderings is possible:

K, < Ky < K, K, < K, < K, (6)

Ky < Ky, < K, Ky < K, < K,

Note that if such orderings were known for all nodes,
equations (4) and (5) would simplify to linear equations
involving the unknowns £, . The expected lengths of
the shortest paths could then be computed simply by
solving a system of N —1 linear equations, where N
is the total number of landmarks (including the goal).
The presence of the minima, however, prohibits this
approach.

To summarize, the landmark visibility graph defines
a system of N —1 equations — each of the form of
equation (5) — for the N —1 unknowns E,,, n # g.
We now turn to the question of how this system of
equations can be solved.

2.3 An algorithm for computing the expected
shortest paths

For notational convenience, let us collect the N —
1 unknowns E,s, n # g, into a vector X =
[£1,25...,2y_1] € RY™! and rewrite equation (5)
in vector form:

Collecting the individual functions f, : RV™' — R
(each of which is a linear combination of minima of

components of X plus constant offsets) into a function
F:RY"' 5 RV

FI(flaf?a"'afN—l)’ (8)

we can then rewrite the entire system of equations con-
cisely:

X = F(X). (9)

Thus, the desired solution X of this system of equations
is a fired point of function F. The properties of F are
summarized in the following theorem; a proof of the
theorem can be found in Appendix A.

Theorem 1 If there exists a path to the goal from ev-
ery node in the graph, and if all edges in the graph have
non-zero probabilities p;; € (0,1] and positive lengths
lij > 0, then F has a unique fized point X~ in RV
Moreover, the iterative process

xk+D = p(x™)y (10)

converges to this fired point given the initial value
x = g:
X = lim X%, (11)
k—o0
This theorem translates literally into an efficient al-
gorithm for computing the expected shortest paths F;,.
Starting with an initial estimate X(O), iterate equation

L. Convergence is geo-

(10) until the value converges
metric (i.e., the error decreases exponentially) once the
current value is in the vicinity of the fixed point. In
practice, usually no more than a few hundred iterations
are necessary for the values to converge to within ma-
chine precision. (It is possible, however, to construct

graphs for which convergence is arbitrarily slow.)

Instead of iterating equation (10), it is also possible
to repeatedly solve the linear system of equations (9),
using the previous solution to hypothesize which terms
are the minima in each equation. Thus, instead of it-
erating over the values of the expected lengths, we can
iterate over the ordering of the expected lengths of the
outgoing paths at each node (as in equation (6)). The
iteration terminates when the solution to the current
system of equations yields the same ordering as the pre-
vious solution. It can be shown that this second algo-
rithm (iterating over orderings) converges much faster
than the first (iterating over values), but each iteration
requires solving a system of linear equations, rather
than just evaluating it.

2.4 Relation to Markov Decision Processes

The problem of expected shortest paths can be viewed
as a special instance of a Markov decision process
(MDP). Briefly, a MDP consists of a set of states S,
and a set of allowable actions A, associated with each

'In fact, it can be shown that the process converges for
any initial value X0 ¢ RN-L.



state s € S. Each action a € A, taken in state s
yields a reward r(s, a), and results in a new (random)
state s’ according to a transition probability distribu-
tion p(-|s,a). The objective is to devise a policy or
decision rule d : S — A, that selects a certain (fixed)
action in each state so as to optimize a function of the
total reward. This brief discussion ignores many com-
mon variations of MDPs, including time-dependent or
discounted rewards, and non-stationary policies. For
a comprehensive introduction to Markov decision pro-
cesses, see the book by Puterman [14].

Our problem of expected shortest paths translates
into a non-discounted negative expected total-reward
MDP. This means that each reward is interpreted as
cost or penalty, and that the objective is to minimize
the total expected cost. Upon reaching the goal g, no
further cost is incurred. The key insight for relating
our problem to a MDP is that the states in the MDP
are not simply the nodes in the graph. Rather, each
state encodes a node together with the set of outgoing
edges currently passable. That is, a node with & out-
going edges contributes 2F states. In each state, the
allowable actions are to traverse any of the passable
(visible) edges, including the self-edge. The cost asso-
ciated with an action is the length of the edge traversed.
The transition probabilities are the probabilities asso-
ciated with the different states (visibility scenarios) of
the destination node. For example, if the action is
to go to a node x with 2 outgoing edges # — y and
r — z, the resulting state will be one of the 4 states
encoding which of the 2 edges will be passable once z
is reached; the corresponding probabilities are Pyy P,

]Typxza Py Pzz, and Py Pz

Note that while the corresponding MDP has many
more states than there are nodes or edges, a policy can
be specified by ordering the outgoing edges at each
Then, for each subset of
visible edges, the edge corresponding to the shortest

node (as in equation (6)).
path is chosen. Each such ordering can in turn be
derived from a current estimate of the expected lengths
of the shortest paths from each node to the goal. Thus,
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while the number of states |S| of the MDP is

N
5= 200,
n=1

where od(n) is the out-degree of node n, the entire
MDP can be concisely described with the N — 1 un-
knowns F, .

Our algorithms for computing the expected shortest
paths presented in section 2.3 are variants of two algo-
rithms known as value iteration and policy tteration in
the MDP community. An important difference is that
in our case both algorithms require the iteration (or
solution) of only N — 1 equations, rather than of |S]
equations, as discussed in the previous paragraph.

3 Building the visibility graph

Now that we are armed with the ability to quickly com-
pute the expected shortest paths from all nodes to a
given goal node, we can apply the navigation strategy
outlined in Section 2.1: At each node along the way,
determine which landmarks are currently visible, and
select among those the one that yields the overall ex-
pected shortest path (which includes the option of stay-
ing at the current position). Repeat the process at each
subsequent node, until the goal is reached. If scanning
for all visible landmarks is significantly more expensive
than just looking for the next landmark on the pre-
dicted shortest path (for example, if scanning requires
a 360 degree rotation of the robot), the strategy can be
modified as follows: If possible, travel to each landmark
in the sequence corresponding to the expected short-
est path. Only if a landmark in the planned sequence
cannot be detected, scan for all visible landmarks and
replan.

3.1 Deriving cost and probability estimates

The remaining problem is how the visibility graph can
be constructed and how length (cost) and probability
factors can be estimated and maintained. Let us first
discuss how to estimate the lengths of edges. Clearly,
once a visibility edge has been traversed by the robot,
its length [;; is known and can be stored. Note that
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“length” will typically refer to the time it takes to tra-
verse the edge. When artificial landmarks with known
size are used (such as the ones presented in Section 4),
we can also estimate the lengths of edges that have not
yvet been traversed, based on the size of the landmark
in the image. Such estimates are fairly accurate, and
are immediately available with each new visibility edge;
they can be replaced with the measured distance once
the edge has been traversed.

We now address the less obvious problem of deter-
mining the probabilities p;; (that landmark j is visible
from landmark ). Since these probabilities are un-
known, the best we can do is to compute estimates
p;; for the true p;; as a function g of the history of

observations O;:

pij = 9(0ij). (12)
The history of observations of landmark j from land-
mark ¢ is
1 2 m;
0i; = [0l 02, .. ol (13)

where m; 1s the total number of observations made
from landmark ¢ up to this point in time, and each
OZ(»?) € {0,1} records whether landmark j was visible.
Note that observation histories can have “leading ze-
ros”; that is, even if j was not visible the first few times
an observation was made, it 13 possible to reconstruct
the complete observation history for j by keeping track
of all observations ever made at landmark .

Let us now turn to the function g: how can we derive
probability estimates from observation histories? In
the simplest scenario, assuming independent observa-
tions made with a fixed probability p;;, the optimal es-
timate p;; is given by a function g that returns the ratio
of detections (“ones”) to the total number of observa-
tions m;. In reality, however, the observations will nei-
ther be independent, nor will the p;; stay constant over
time. While some failures to detect a landmark will
have truly random causes (for example, occlusion by a
person walking by), others will be caused by lighting
changes throughout the day, or perhaps even by perma-
nent changes to the environment (most extremely, the
removal or addition of a landmark). Typically, obser-
vations closely spaced in time will be highly correlated.

Therefore, in practice, a more sophisticated estimation
function ¢ should be used. It is also a good idea to
record a time stamp with each observation, so that the
temporal distribution of observations can be taken into
consideration.

3.2 Exploration and navigation

In our landmark-based navigation system, the robot
operates in two modes: exploration and navigation.
In exploration mode, the robot explores the environ-
ment using a depth-first search among the unvisited
landmarks. A visibility edge between two landmarks
can be traversed by visual servoing, using the real-time
recognition algorithm discussed in Section 5. At every
newly-visited landmark, the robot scans for all land-
marks visible from this position, records their relative
angles and estimates of their distances, and starts an
observation history for this landmark. As is discussed
in Section 5.2, the landmarks all have unique barcodes,
which are used as node labels in the graph. As men-
tioned above, in the process of exploring, the robot
replaces distance estimates with more accurate odom-
etry measurements. Also, as landmarks are revisited
during the exploration phase, the observation histories
are updated and the probability estimates are refined.

Once part of the environment has been explored, the
robot can enter navigation mode, and accept naviga-
tion tasks from the user. For a given goal, the ex-
pected shortest paths are computed and used for path
planning as described above. Navigation mode and ex-
ploration mode can be interleaved seamlessly; length
and probability factors are continuously updated in
both modes based on observations made and edges tra-
versed. In summary, our navigation system is able to
operate robustly in the presence of unreliable sensory
input, and can cope both with the temporary occlu-
sion of landmarks and with permanent changes to the
environment, such as the removal and addition of new
landmarks.

4 A self-similar landmark pattern

Our vision-based navigation system relies on real-time
detection of landmarks in the environment. We have



designed a self-similar intensity pattern [16] that can
be quickly and reliably detected in images taken by
the robot. In this section we motivate our use of a
self-similar pattern and describe the pattern we have
developed.

4.1 Self-similar functions

We say a function f:RY — IR is p-similar for a scale
factor p, 0<p<1,if f(z) = f(px) Y& > 0. The graph
of a p-similar function 1s self-similar; that is, 1t is iden-
tical to itself scaled by p in the z-direction. Note that
a p-similar function is also p¥-similar, for k = 2,3, ...
Self-similar intensity patterns are attractive for recog-
nition since the property of p-similarity is invariant to
scale, and thus the distance of the pattern to the cam-
era does not matter.

A p-similar pattern can be detected by comparing
the observed intensity pattern to a version of itself
scaled by p. We can accommodate patterns of lim-
ited spatial extent by restricting the comparison to a
window of width w. Let dj . (f) be the average ab-
solute difference between the original and scaled func-
tions over w:

bl = [ CIf(@) - fpe) de. (14)

w
Then f 1is locally p-similar over w if and only if
dp w(f) = 0. A simple method for detecting a locally
p-similar pattern in a one-dimensional intensity func-
tion I(xz) would then be to minimize the above measure
over translations I (z) = I(x + t):

tmatch = arg HltlIl dp,w (It) :

The minimal value of 0 is achieved only if I is p-
similar over w at translation ¢. Unfortunately, all con-
stant functions are p-similar for any p. Thus dp . (1)
would also be minimal in regions of constant inten-
sity. To exclude locally constant functions, we must
detect patterns that are self-similar only for scale p

This can
1/2

(and p* p? ...), and not for other scales.

be achieved by mazimizing the mismatch at scale p
(and p3/2 p®/2 .. ).
generality that the range of observable intensities is

Let us assume without loss of
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Figure 2: The square wave function S(z).

[0,1]. A maximal mismatch for scale ,/p is then given

if [f(x) — f(/px)| = 1, or locally, if

)= [ @) - PR de =1 (15)

w

In this case we say that f is (locally) \/p -antisimilar.

We can combine equations (14) and (15), and revise
our method for detecting self-similar patterns that are
only p-similar for a given scale p. We will maximize
the match function

m(t) = d 5 (le) = dpw(l) (16)

over all translations ¢. Note that the range of m(t) is
[—1, 1], since the range of both terms on the right-hand
side of (16) is [0,1]. A locally constant function will
yield m(t) = 0. Similarly, a random intensity pattern
that is neither p-similar nor ,/p-similar will yield a
response close to zero. A significant positive response
1s only expected for intensity patterns that are p-similar
but not ,/p-similar.

4.2 An optimally recognizable pattern

Given the match measure m defined in (16), we now
need to find an intensity function that yields the opti-
mal response m = 1. That is, we seck a p-similar, |/p-
antisimilar function s, (). To derive such a function,
let us consider the periodic “square-wave” function S
depicted in Figure 2:

DN DO
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[l
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~—

This function has the property that S(z 4+ 1) = S(x)
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Figure 3: Self-similar square wave sp(z) for p = % (top);
mazimal mismatch at scale p*/? (middle); and match at

scale p (bottom).

and S(z+ %) =1-=5(z), i.e., it is a 1-periodic function
that is similar under a translation of 1 and anti-similar
under a translation of % It is easy to show that we can
transform S into a p-similar, /p-antisimilar function
sp by substituting log, z for x:

sp(x) = S(log, v) = [2(log, # — [log, z])|  (18)

with the desired properties of d, (sp) = 0 and
d /5w(sp) = 1 for any w (see Figure 3).

4.3 Two-dimensional landmarks

We now have all the components for landmark design
and recognition. The key step for moving to two di-
mensions is to use a pattern that is p-similar in one
direction (say, horizontally), and constant in the other
direction. See Figure 4 for an illustration. If such a
pattern is then sampled along any non-vertical line, the
resulting intensity function is still p-similar because of
the scale invariance of self-similarity. This allows us
to detect two-dimensional p-similar patterns that have
undergone an affine transformation by examining iso-
lated scanlines.

Formally, let
L(z,y) = sp(x) (19)
be our two-dimensional landmark pattern, where s, (z)
is the self-similar square wave function (equation (18))

Figure 4: Our self-similar landmark pattern with barcode.

for a fixed p. An affine transformation yields
A(L(z,y)) = L(az+by+e, detey+f) = s, (ax+by+e).

Sampled at y = yo, we get s,(az + (byo + ¢)) =
splaz + t).
transformation of the two-dimensional pattern L has

Thus, the problem of finding an affine

been reduced to finding a translation ¢ of the one-
dimensional pattern s,.

5 The landmark recognition algorithm

The idea underlying the recognition algorithm is to find
locations (&, ym) in the image at which a scanline is
locally p-similar and ,/p-antisimilar. To do this, we
adopt the matching function m from equation (16) for
scanlines in an image I(z, y):

my(z) =

[ e - 1+ RE ) g

-—1/ (x4 €.y) — I(x + pE.y) dE. (20)
wJo

The value of my(x) depends on the intensities along
the line (z,y) to (# + w,y), and is constrained to the
interval [—1,1]. If the pattern s, is present at (z,y),
then my(x) = 1. It is easy to see that the pattern
esp with reduced contrast ¢ < 1 (i.e., difference be-
tween maximal and minimal intensities) will only yield
a response my(x) = ¢. Other (non p-similar) intensity
patterns will yield responses close to or below zero. An



algorithm for finding affine transformations of a land-
mark with intensities L(z,y) = sp(2) (for a known p)
in an image can be formulated as follows:

for every k-th scanline y
for all z
compute my ()
mark all strong local maxima of m, as matches.

This simple algorithm requires only O(nw/k) opera-
tions for an n-pixel image. The computation of m, (z)
can be adapted to discrete images by replacing the inte-
grals in equation (20) by summations, and determining
inter-pixel intensities using linear interpolation. The
two parameters, k, the spacing of scanlines to search,
and w, the window size, only depend on the smallest
expected size of the landmark pattern and can be fixed.
Typical values for an image of size 640 x 480 are k = 6
and w = 45.

5.1 Finding matches reliably

The interesting question is: what constitutes a
“strong” local maximum? A simple answer would be to
require that a local maximum be greater than a fixed
threshold ¢pin (corresponding to a minimum contrast).
More information, however, can be gained from observ-
ing the shape of my () in the vicinity of a local maxi-
mum. Figure b shows several intensity profiles of scan-
lines that were synthesized from continuous functions
using 10-fold oversampling. Below each intensity plot
is a plot of my () for p = % and w = 50. The length of
each scanline is 400. The top two patterns are locally
%—similar square waves s, with full and half contrast,
respectively. Both patterns result in clear peaks at the
correct location z,, = 350; however, the value of the
maximum 1y, (2,,) is less than expected. The observed
values are 0.66 and 0.33, while the expected values are
1 and % The differences are due to sampling and inter-
polation, in particular at locations of discontinuities or
strong change. The bottom two patterns, on the other
hand, are not %—similar: (c) is a “random” intensity

pattern taken from a real image, and (d) is a %—similar

square wave. The match function for the random pat-
tern (c) has no strong peaks, but there is a distinctive

local maximum in the match function for (d). Tt is,
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Figure 5: Various intensity patterns I(z) and match func-
tions my(z) for p = % and w = 50. (See Section 5.1 for
details.)

however, much more rounded and not as “sharp” as
the top two peaks.

An experimental study analyzing the shape of my ()
for a wide range of parameters has revealed a simple
but effective test for “sharpness”: check that a peak at
half its height is no wider than a fixed threshold, which
only depends on the window size w. That is, given a
local maximum v = my (2,,) greater than a threshold
Cmin, test whether my (2, + 0,) < v/2, where §, is
approximately w/10.
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Figure 6: The mobile robot, and two images taken with
its camera. All landmarks have been found, and all but one
have been identified by their barcodes.

5.2 Grouping matches

The actual landmark patterns can be detected in an
image by grouping individual matches found on con-
secutive scanlines. To be able to distinguish different
landmarks, we add a simple binary barcode to the right

side of the self-similar pattern (as shown in Figure 4).
The patterns can then be recognized and identified as
follows: First, the position and orientation of all land-
mark patterns in the image is determined by fitting
a straight line to each set of three or more individual
matches detected on consecutive scanlines. The exact
vertical extent of each pattern is then estimated from
the intensity distribution to the left of this line. Once
the locations of the patterns are known, their barcodes
can be decoded easily. Figure 6 shows a Pioneer 2 mo-
bile robot equipped with a camera, and two sample pic-
tures taken by the robot. All landmarks are detected
correctly, and all landmark numbers are decoded ex-
cept for one that was too far away.

5.3 Achieving real-time performance

The recognition algorithm as described above is fairly
fast: typical running times for a straightforward im-
plementation on a 450 MHz Pentium II machine are
0.33 seconds for 640 x 480 images and 0.08 seconds for
320 x 240 images (using parameters w = 45 and k = 6).

A dramatic speed-up can be achieved by further re-
stricting the set of pixels for which m,, () is computed.
Recall that we are already considering only every k-th
scanline. We can start by looking at only every 2k-th
scanline, and, only if a match is found, look at its neigh-
boring scanlines as well. Since isolated matches are dis-
carded anyway in the grouping process, no landmark
will be missed. This technique can yield a speed-up of
up to 2 if few or no landmark patterns are present in the
image. Another opportunity for restricting the search
is to make use of the fact that peaks corresponding
to matches have a certain minimum width at a given
height h (e.g., h = emin/4). Given a lower bound [ for
this width, it 1s possible to scan for peaks by looking
only at every [-th pixel. A conservative bound for [ is
typically given by d,, i.e., half the allowable peak width
used in the test for sharpness discussed in Section 5.1.
Typical values for this number are 4 or 5. We have
found, however, that even with much higher values for
[ (e.g., 10), only very few peaks are overlooked (typi-
cally those resulting from patterns with low contrast),
so further speedup can be achieved with minimal im-
pact on robustness.



These modifications result in new running times of
0.027 seconds for 640 x 480 images and 0.012 seconds
for 320 x 240 images, corresponding to frame rates of
36 and 81 frames per second, respectively. Thus, the
implementation runs at video frame rate even for full-
size 1mages, making it the first real-time method for
landmark detection under affine transformations.

6 Conclusion

Artificial landmarks that can be unobtrusively added
to an indoor environment can serve as practical and
inexpensive aids for mobile robot navigation and lo-
calization. When detected quickly and reliably they
can make task execution more robust by reducing un-
certainty due to control and sensing errors. When de-
tection is unreliable, the navigation strategies planned
should be as robust as possible. This paper has
addressed the robust planning problem by providing
two major contributions. First, we have described a
probabilistic path planner that computes paths of ex-
pected shortest length, given landmark visibility his-
tories. Second, we have proposed a novel landmark
pattern together with the first practical method em-
ploying full affine invariants for real-time detection of
landmarks. The method operates on single scanlines
without any preprocessing and runs at video frame rate
without specialized hardware. An implementation of
the landmark detection algorithm is publicly available

at http://www.middlebury.edu/"schar/landmark/.
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Appendix A: Proof of Theorem 1

Proof: The strategy of the proof is to show that each
component of X(O), X(l), X(Z), ... forms a bounded
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increasing sequence, and thus has a limit. Setting
X = [0,0,...,0], it is straightforward to compute
that the entries of the vector X" = F(X(O)) are all
strictly positive. Of particular importance here is the
observation that every component of XM s at least
as big as (and in this case strictly greater than) the
corresponding component of X, With this base case
verified, we can now argue by induction that each in-
dividual component entry of the sequence X(O), X(l),
X(Z), ... forms a monotone increasing sequence. To
see why, assume that the claim is true for X(O), X(l),

., X®)and consider X* 1) = F(X(k)). The n-th
component of XF+1 ig given by f, (X(k)) while the
n-th component of X is given by f, (X(k_l)). Using
the induction hypothesis that every component of x k)
is at least as big as that of X(k_l), it is not hard to see
from equation (5) that f, (X(k)) > fn (X(k_l)).

We must now make a case for boundedness of each
component sequence. To begin, consider a node n in
the graph containing an edge connected directly to the
goal ¢g. Looking at equation (5), the component func-
tion for this node would have the form

[n(X) = Pna - Png - Pz (lnn + 2,) (21)
+ Pna - Png --- Pz Min(lhe + 2a, lhn + 25)
+ ...
+ Pna - Png --- Pz min(lpe + 24, ...,
lng, -« lns + 25, Lpn + 25).
The letters a, . . ., z represent nodes that are potentially
visible from node n, so that x, as well as x,,..., 2z,

are just some subset of components from the vector

X = [l‘l,l‘z, . .,l‘N_l].

By choosing a node n that is adjacent to the goal
g, we ensure that the length of the edge [,, appears
as a candidate in the final minimum of equation (21).
The length {4 also appears in several other minima of
equation (21), but the special significance of this last
minimum expression is that our hypothesis of non-zero
-Png -+ -Pnz > 0.

Now construct the function u,(X) from f,(X) in
the following way. Consider each minimum expression

probabilities guarantees that p,, ..

appearing in f,. If l,, is among the options, replace
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the minimum with /,, (regardless of whether or not
it represents the minimum). If [, does not appear,
then replace the minimum with the [, + z, option
(present in every minimum expression). In terms of the
underlying graph, this amounts to ignoring all outgoing
edges from node n except for I, and I,,,,. By replacing
each minimum with a particular candidate, we have
certainly made the value of the function larger, i.e.,
un(X) > fn(X) ¥X. Moreover, combining terms, uy
reduces to a simpler equation for a node with only a
single outgoing edge, similar to equation (2), and thus
has the more accessible form

where p,, > 0 and thus p,; < 1. For simplicity, we will
write p instead of py4 in the following discussion. The
function w,, although technically defined on RV,
only depends on the n-th coordinate entry z,. Also,
since p < 1, uy, 18 geometrically contractive in the sense
that for any two points z,, and z!, we have

|t (wn) = wn (@) =D len — 2, |-

What this implies is that iterating a point z,, with wu,
(2)

yields a sequence xy,, un(2s), tp ' (2n), ... where the
distance of the k-th iteration from the starting point

x, must satisfy

20 — ul ()] (23)
< fen = tn(@n)| + Jun(20) = u) (20) | +

= |on — tn(zn

< an = tun(Tn

In other words, the sequence is bounded. Now since
for any X = [x1,...,2pn,...,2N—1] We have u,(z,) >
fn(X), it follows that the monotone sequence in the
n-th coordinate of X(O), X(l), X(Z),

bounded, and hence convergent.

. will also be

To explicitly calculate the upper bound, set z, = 0
in equation (23) and solve to get

The observant reader will recognize this as the expected
length of the shortest path from a node with a single
outgoing edge to the goal (equation (3)).

The preceding argument shows that the sequence
x (k) converges in any component corresponding to a
node that is adjacent to the goal. With this fact es-
tablished, we can now repeat the proof for any com-
ponent of x (k) corresponding to a node adjacent to a
node previously handled. More explicitly, assume node
r has an edge to node n, and assume we have shown
that the n-th component of X*) is bounded and hence
converges. The final minimum in the expression for
fr(X) will contain, among other options, the expres-
sion [, + ,. Knowing that /., + x, is bounded, by
say by, we construct u,(X) = u,(z,) from f.(X) by
replacing each minimum containing l,.,, + ¢, with the
upper bound b,,, and selecting /,. 4+, in all other cases.
The remainder of the argument is the same.

Given our hypothesis that from every node there ex-
ists a path to the goal, this bootstrapping technique
eventually leads to the conclusion that every compo-
nent of our sequence X(O), X(l), X(Z),
creasing bounded sequence of real numbers. By the

. 1s an 1n-

Monotone Convergence Theorem, we may set X* =
(z}, 2%, ..., 2% _,) where each & is the limit of the n-
th components of (X(k)).

This can be summarized with the statement
limg o0 Xk = X*. (Technically this is a coordinate-
wise limit but we certainly get convergence using most
any topology on ]RN_l.) Now the continuity of the
component functions f,, which make up F allow us to
conclude that

F(X*) = F(lim x*)y = Jim F(X*))
= lim X"+ = x*,
k—oco

Finally, to argue that X* is the unique fixed point of
F,let Y* € RV ~! also satisfy F(Y") = Y. Consider
a particular component function f, of F (see equa-
tion (21)) and again pay special attention to the final
minimum term where the variables of all potentially
visible nodes are included. If X* is fixed by f,, i.e.,
fn(X™) = 23, then l,, + 2} cannot be the minimum



here since otherwise it would be the minimum through-
out and we would have f,,(X*) = #% + l,,. (This is
were we need the hypothesis that all edge lengths are

strictly positive.) The same observation of course holds

for l,,n, + y. But now, using the fact that the proba-

bility preceding this final minimum is strictly positive,

we can show that

/o (X7) = £ (Y7) < |2}, — g5

Since X* and Y* are both assumed to be fixed by F,
this is only possible if X* = Y™, O
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