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Abstract. In this paper we address the problem of planning reliable landmark-
based robot navigation strategies in the presence of significant sensor uncertainty.
The navigation environments are modeled with directed weighted graphs in which
edges can be traversed with given probabilities. To construct robust and efficient
navigation plans, we compute expected shortest paths in such graphs. We formulate
the expected shortest paths problem as a Markov decision process and provide two
algorithms for its solution. We demonstrate the practicality of our approach using
an extensive experimental analysis using graphs with varying sizes and parameters.

1 Introduction

Reliable strategies for mobile robot navigation using visual landmarks must
be robust in the face of significant uncertainty in landmark detection. Vary-
ing lighting conditions, temporary occlusion, and unreliability of landmark
recognition are all factors that contribute to such uncertainty, whether the
visual landmarks are artificial or extracted from the environment. This paper
presents algorithms and experimental results for computing expected short-
est paths for use in navigation between landmarks. The paper builds on our
real-time landmark detection system [16] and on our vision-based navigation
framework [3,4]. Here we extend our prior work with significant contribu-
tions to the understanding of probabilistic navigation. First, we present two
algorithms for the solution to the expected shortest paths problem and prove
their convergence. Second, we present a careful analysis of the properties
of the two algorithms, with an extensive empirical evaluation of their per-
formance in practice. We first review the natural graph formulation of the
problem, and then show how the problem can be concisely described as a
Markov decision process.

The specific problem we address is the following. We assume an unmapped
indoor environment (such as a factory floor or hospital) in which a mobile
robot must repeatedly navigate. To enable the robot to localize itself quickly
and then navigate in this space, the environment is enhanced with artificial
visual landmarks. During an initial exploratory phase the robot systemati-
cally visits all landmarks and constructs their visibility graph. This graph
is continually updated during subsequent navigation. All motion paths are
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planned from landmark to landmark, moving along the visibility edges of the
graph. Because landmark detection is unreliable, each edge is annotated not
only with its length, but also with an estimate of the probability that the
target landmark can be detected. These estimates are based on the history of
all observations made by the robot, and are updated as the robot navigates
the environment. Given such a graph, planning an optimal path to a goal
landmark involves computing the expected shortest path (ESP), i.e., the path
with expected shortest length. Using probabilistic techniques, our navigation
system constructs reliable and efficient motion paths while compensating for
occlusion, unreliability of landmark detection, and variations in visibility due
to changes in the environment over time.

The ESP algorithms can be applied to important problems in other do-
mains as well. For example, probabilistic graphs can be used to model com-
munication networks in which individual links can fail. The ESP algorithms
could then be used for optimal package routing given continually changing
models of link reliability. Another application is that of traffic planning in
a road network where some roads may be closed due to poor weather, acci-
dents, congestion, road construction, or other temporary interruptions (e.g.,
draw bridges or railway crossings). The ESP formulation can also be applied
to other robot path planning problems, for example to configuration-space
planning in uncertain or changing environments.

After reviewing related work in Section 2, we define the expected shortest
path problem and give two algorithms for its solution in Section 3. We then
present the Markov decision process formulation of the problem and analyze
the properties of our algorithms in Section 4. We report on our experimental
results evaluating the performance of the algorithms on large sets of graphs
in Section 5. We conclude with ideas for future work in Section 6.

2 Related work

Techniques for mobile robot navigation based on landmarks include those
planned within a geometric environment map enhanced with perceptual land-
marks [7,10], and those based on a topological description of landmark lo-
cations without a global map [12,17,23]. Many research groups have used
artificial landmarks that can be easily and unobtrusively added to the envi-
ronment for localization and navigation tasks [1,8,20].

Several different approaches to probabilistic path planning have been de-
veloped. Kavraki and Latombe [6] propose a randomized method for config-
uration space preprocessing that generates a network of collision-free con-
figurations in a known environment. Overmars and Švestka [11] describe a
similar probabilistic learning approach that extends to a number of motion
planning problems. Several researchers have used partially observable MDPs
for robot localization and navigation [18,19,21,23]. These approaches model
the robot’s state with a probability distribution, as opposed to our method,
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which assumes a known state. However, POMDPs are computationally in-
tractable and require approximate solutions such as a discretization of the
state space [19] or “coastal navigation” [21].

Probabilistic graphs in which each edge is passable with a given proba-
bility have also been considered [9,13,14,22]. Most existing work, however,
assumes a static graph, i.e., that unpassable edges do not become passable
and vice versa. A typical problem in this scenario is to compute the proba-
bility that the graph is connected [14,22]. Mani et al. [9] study the problem
of finding shortest paths in such static graphs, and focus on series-parallel
graphs. Besides length and probability, they also associate a detection cost
with each edge. Finally, Blei and Kaelbling [2] describe Markov decision pro-
cesses for finding shortest paths in stochastic graphs with partially unknown
topologies. Their work differs from ours in that they assume that an edge is
either passable or not, but that the state of each edge is only known with a
certain probability.

3 The expected shortest paths problem

We assume an environment augmented with N visual landmarks a, b, c, . . .
that can be detected by the robot, albeit unreliably. We assume an edge from
landmark a to landmark b has associated probability pab ∈ [0, 1] and length
lab > 0. The probability pab represents the likelihood that landmark b can
be detected from landmark a; the length lab represents a measure of cost to
traverse the edge (e.g., time of travel). We assume that the robot can only
travel to landmarks that are currently visible. Thus, the probabilities pab

more generally represent the likelihoods that edges are passable.
The robot, at any given landmark (or node) n, must choose among the

currently visible landmarks (i.e., passable edges) where to travel to next.
It also has the option of staying at the current node, and waiting for new
landmarks to become visible. If no edge is currently passable, this is the only
option. We represent the possibility of staying with a self-edge at each node
n. Since staying is always an option, the associated probability is pnn = 1.
To prevent the robot from staying at a landmark indefinitely, we associate
with the self-edge a non-zero cost lnn > 0, for example, the time it takes to
acquire a new image and to search it for landmarks.

A navigation task in such a probabilistic graph consists of a designated
goal node g that the robot wants to reach from its current node s. In a non-
probabilistic graph, the optimal path could be computed easily, for example
using Dijkstra’s shortest-path algorithm. In our case, however, we have to
change the notion of a shortest path to that of a path with shortest expected
length, or expected shortest path (ESP).

In previous work we have described a system in which a robot explores
and navigates an unknown environment augmented with artificial visual land-
marks, and constructs and updates a probabilistic graph in the process [3].
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Fig. 1. A node n with self-edge and two outgoing edges to nodes a and b. All edges
have lengths lij and probabilities of being passable pij . We wish to compute the
expected lengths Eig of the shortest paths from each node i to goal g. The four
possible visibility scenarios at node n are reflected in Equation 2

Edge probabilities are estimated based on the history of observations made
at each landmark.

Here we focus on the ESP problem and on the theoretical and practi-
cal properties of two algorithms for its solution. As mentioned earlier, the
ESP problem and algorithms have applications beyond that of visual robot
navigation and are important in their own right. We thus assume that a
probabilistic graph as described above is given as input.

3.1 The ESP equations

Given a goal node g, the ESP problem is to compute for each node n the
expected length Eng of the shortest path from n to g. Clearly,

Egg = 0. (1)

We now derive equations that recursively relate theN−1 unknowns Eng, n �=g.
Consider first a node n with two outgoing edges n → a and n → b

(see Figure 1). The robot, upon arriving at n, will be faced with one of
four visibility scenarios, depending on which of a and b can be detected.
Suppose for example that a is visible but b is not. This scenario occurs with
probability pna pnb, where p denotes (1− p). Given this situation, the robot
has two options: to go to a, or to stay at n. (The latter may be desirable if b
is usually visible and yields a much shorter path.) The expected total length
of the path through node a is lna + Eag, while the expected total length of
staying at node n is lnn + Eng. For notational convenience, let

Li
ng = lni + Eig

denote the total expected length of the path from n to g through i. The length
of the shortest expected path (with b not visible) is then min(La

ng, L
n
ng), i.e.,

the smaller of the two candidate lengths. We can now write the complete
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equation for Eng by weighting the shortest candidate path with its corre-
sponding probability in each of the four visibility scenarios:

Eng = pna pnb L
n
ng (2)

+ pna pnb min(La
ng, L

n
ng)

+ pna pnb min(Lb
ng, L

n
ng)

+ pna pnb min(La
ng, L

b
ng, L

n
ng).

It is easy to see how this equation generalizes to nodes with more than two
outgoing edges. In particular, a node with k outgoing edges n → a, n →
b, . . . , n→ z yields an equation with 2k terms:

Eng = pna pnb . . . pnz L
n
ng (3)

+ pna pnb . . . pnz min(La
ng, L

n
ng)

+ pna pnb . . . pnz min(Lb
ng, L

n
ng)

+ pna pnb . . . pnz min(La
ng, L

b
ng, L

n
ng)

+ . . .
+ pna pnb . . . pnz min(La

ng, L
b
ng, . . . , L

z
ng, L

n
ng).

We thus have a system of N − 1 equations that recursively relate the
N−1 unknowns Eng, n �= g. Because of the minimum expressions the system
cannot be solved directly. Note, however, that Equation 3 could be written
as a linear equation with only k terms if the ordering among the candidate
lengths Li

ng were known. This observation plays an important role in our
algorithms, so we will elaborate a bit:

Going back to the simpler Equation 2, consider the possible orderings
among La

ng, L
b
ng, and L

n
ng. While one can deduce that Ln

ng cannot be the
smallest of the three, each of the remaining four orderings is possible:

La
ng ≤ Lb

ng ≤ Ln
ng, La

ng ≤ Ln
ng ≤ Lb

ng, (4)

Lb
ng ≤ La

ng ≤ Ln
ng, Lb

ng ≤ Ln
ng ≤ La

ng.

Assume for example that the first of these orderings holds: La
ng ≤ Lb

ng ≤ Ln
ng.

Such an ordering translates literally into a navigation strategy for a robot at
landmark n: go to landmark a if possible (visible); if not, try to go to b if
possible; else remain at n. Given this ordering, Equation 2 simplifies to

Eng = pna L
a
ng + pna pnb L

b
ng + pna pnb L

n
ng. (5)

A final observation: if Ln
ng is not last in the ordering, the subsequent terms in

the equation drop out since pnn = 1 (the self-edge can always be taken) and
thus pnn = 0. For example, given the ordering Lb

ng ≤ Ln
ng ≤ La

ng, Equation 2
simplifies to:

Eng = pnb L
b
ng + pnb L

n
ng. (6)
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3.2 Algorithms for the ESP problem

To solve the ESP problem, we have developed variants of two algorithms
commonly used to solve Markov decision processes (MDPs) (see Section 4
below). Borrowing the names from the MDP literature, these are value it-
eration (VI) and policy iteration (PI). Here we describe our algorithms in
terms of the above notation. We then analyze some of their properties in the
context of an MDP formulation in the next section.

Value iteration Recall that our goal is to solve the system of N − 1 equa-
tions, each of the form of Equation 3. Collecting the N − 1 unknowns Eng,
n �= g, into a vector v we can write the entire system of equations concisely:

v = F (v). (7)

Thus, the desired solution v of this system of equations is a fixed point of
function F . The value iteration algorithm finds this fixed point by treating
Equation 7 as an iterative process

v(n+1) = F (v(n)). (8)

In [3] we have shown that this process converges to a unique fixed point v∗

given an initial value v(0) = 0, if there exists a path with non-zero probabil-
ities from each node to the goal. Convergence is geometric once the current
value is in the vicinity of the fixed point.

For an efficient implementation, we use the observation about orderings
made in the previous section. That is, to evaluate Equation 3 for a node n
with out-degree k, we first sort the candidate lengths Li

ng in O(k log k) time,
and then evaluate the resulting linear equation in O(k) time. The total time
for one iteration of Equation 8 is thus almost linear in the total number of
edges in the graph E.

Policy iteration The idea of the second algorithm is to hypothesize edge
orderings (as in Equation 4) at all nodes, and to solve the resulting linear
system of Equation 7. The process is then repeated, using the previous solu-
tion to determine the new edge orderings. The iteration terminates when the
solution to the current system of equations yields the same orderings as the
previous solution. The name of the algorithm, policy iteration, reflects that
instead of iterating over the values of the expected lengths, we iterate over
the ordering of the expected lengths of the outgoing paths at each node. Re-
call that these orderings represent strategies (or policies) for the robot when
faced with different visibility scenarios at a node.

Note that while each iteration of the VI algorithm requires evaluating
N − 1 linear equations (which together with the sorting step takesO(N2 logN)
time for dense graphs), each iteration of the PI algorithm requires solving this
linear system, requiring a total time of O(N3) for dense graphs. As we show
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in Section 5, however, the PI algorithm is competitive since it converges in
very few iterations.

Analyzing the convergence properties of the policy iteration algorithm is
easiest in the context of a Markov decision process (MDP) formulation, which
we present next.

4 MDP formulation

The ESP problem can be formulated nicely as a Markov decision process
(MDP). In brief, a MDP consists of a set of states S, and a set of allowable
actions As for each state s ∈ S. Each action α ∈ As taken in state s yields a
reward r(s, α), and results in a new (random) state s′ according to a transi-
tion probability distribution p(·|s, α). The objective is to devise a policy with
a stationary decision rule δ : S → As that selects a certain (fixed) action in
each state so as to optimize a function of the total reward. This brief discus-
sion ignores many common variations of MDPs, including time-dependent or
discounted rewards, and non-stationary policies. For a comprehensive intro-
duction to Markov decision processes, see the book by Puterman [15].

The ESP problem specifically translates into a non-discounted negative
expected total-reward MDP. This means that each reward is interpreted as
cost or penalty, and that the objective is to minimize the total expected cost.
Upon reaching the goal g, no further cost is incurred.

In our case, the set of states S is the collection of landmarks. The concept
of an allowable action at a landmark is slightly more complicated: it is not
simply a destination landmark the robot should go to (which may not always
be visible), but rather a strategy telling the robot what to do in any visibility
scenario. Of course, such strategies correspond to the familiar edge orderings
from Equation 4. Thus, the set of allowable actions As at landmark s is the
set of all orderings among the outgoing edges of s.

For example, suppose the robot is at a node s with three outgoing edges
s → a, s → b, s → c. Then an example of α ∈ As would be: go to landmark
c if possible; otherwise, go to landmark a if possible; otherwise, remain at s
(take the self-edge) and try again. We notate this as α = s : c, a, s. A robot
following this action (strategy) will end up at c, a, or s, depending on the
visibility scenario. The transition probabilities are thus

p(c|s, α) = psc (9)
p(a|s, α) = psc psa

p(s|s, α) = psc psa.

The expected cost for α is simply the expected length for this action

r(s, α) = psc lsc + psc psa lsa + psc psa lss. (10)
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Note that p(i|s, α) = 0 for any other landmark i since the self-edge can always
be taken. We can therefore write the expected cost for action α as

r(s, α) =
∑
i∈S

lsi p(i|s, α). (11)

A decision rule (or policy) δ assigns to each landmark one action (strategy)
α. Under a given policy, the robot traverses the graph until it reaches the
goal landmark. We assume the action at goal g is always α = g : g, and
r(g, α) = 0. Since we wish to find the expected shortest path, we seek a policy
that minimizes the total expected cost, i.e., the sum of the costs accrued by
the actions leading to the goal.

We now derive the total expected cost for a given decision rule δ. Let
us denote the landmarks x1, . . . , xN . Let rδ be the vector containing the
expected cost for the action given by δ at each of the N landmarks. That is,
entry s of rδ is

rδ[s] = r(s, δ(xs)). (12)

Let Pδ be the N ×N transition probability matrix under the decision rule δ,
i.e., the entry at row s and column d is

Pδ[s, d] = p(xd|xs, δ(xs)). (13)

Now define the j-step transition probability matrix jPδ such that jPδ[s, d] is
the probability of arriving at xd after j transitions from xs. The probabilities
after j + 1 steps are then

j+1Pδ[s, d] =
N∑

i=1

jPδ[s, i] p(xd|xi, δ(xi)) (14)

=
N∑

i=1

jPδ[s, i] Pδ[i, d],

and therefore j+1Pδ = jPδ Pδ. Since 1Pδ = Pδ, we get by induction

jPδ = P
j
δ . (15)

The vector of expected costs for the first transition is just rδ. It is easy
to see that the costs for the second transition are Pδ rδ; for the third, P 2

δ rδ,
etc. The vector vδ of total expected costs for δ is thus the infinite sum

vδ =
∞∑

i=0

P i
δ rδ. (16)

Expanding this sum we get

vδ = rδ + Pδ rδ + P 2
δ rδ + P

3
δ rδ + . . .

= rδ + Pδ(rδ + Pδ rδ + P 2
δ rδ + . . . ),
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and thus

vδ = rδ + Pδ vδ. (17)

So, given a decision rule δ we can compute the expected lengths by solving

(I − Pδ) vδ = rδ. (18)

We now ask the question “which policy results in the shortest total ex-
pected lengths?” and present our two algorithms, value iteration and policy
iteration, in this MDP formulation. The difference between the two is that
VI iterates over the expected lengths v, while PI iterates over the policies δ.

4.1 Value iteration

The value iteration algorithm computes a sequence of values v(0), v(1), . . . , as
follows:

1. Choose an initial v(0), and set n = 0.
2. Compute

v(n+1)[k] = min
α∈Axk

(
r(xk, α) +

N∑
i=1

p(xi|xk, α) v(n)[i]

)
. (19)

3. If v(n+1) is very close to v(n), then terminate and return the policy δ
consisting of the minimizing actions α for all nodes. Else, increment n by
1, and go to step 2.

When written in matrix form, Equation 19 becomes

v(n+1) = min
δ
(rδ + Pδv

(n)), (20)

which parallels Equation 8 in Section 3.2. Our convergence result from [3]
guarantees that Equation 20 has a unique fixed point v∗, and that the se-
quence v(n) converges monotonically to v∗ when v(0) = 0.

4.2 Policy iteration

The policy iteration algorithm computes a sequence of policies δ(0), δ(1), . . . ,
as follows:

1. Choose an initial policy δ(0), and set n = 0.
2. Solve (I − Pδ(n)) v(n) = rδ(n) for v(n).
3. If δ(n) is in the set

D = argmin
δ
(rδ + Pδv

(n)),

then terminate and return δ(n). Else choose some δ(n+1) ∈ D, increment
n by 1, and go to step 2.



10 Briggs, Detweiler, Scharstein, Vandenberg-Rodes

We now turn to the convergence proof. It turns out that for general non-
discounted negative expected reward MDPs, the policy iteration algorithm
does not always converge to the optimal policy [15]. Given the conditions in
our model, however, it does.

We will first prove the following lemma, analog to Proposition 7.3.13 in
the text by Puterman [15].

Lemma 1 For each iteration n in policy iteration, v(n+1) ≤ v(n).

Proof: By step 3 in the policy iteration algorithm, if δ(n) is in the set D,
then v(n+1) = v(n). If δ(n) is not in D, then

rδ(n+1) + Pδ(n+1)v(n) ≤ rδ(n) + Pδ(n)v(n) = v(n). (21)

Because all entries of P k
δ(n) are non-negative for every k > 0, we can substitute

rδ(n+1) + Pδ(n+1)v(n) for v(n) in the above inequality, giving:

rδ(n+1) + Pδ(n+1)(rδ(n+1) + Pδ(n+1)v(n)) (22)
= (I + Pδ(n+1))rδ(n+1) + P 2

δ(n+1)v
(n) ≤ v(n). (23)

So by induction,

(
K−1∑
k=0

P k
δ(n+1)rδ(n+1)) + PK

δ(n+1)v
(n) ≤ v(n) (24)

for any positive K. Since all entries of v(n) are non-negative,

K−1∑
k=0

P k
δ(n+1)rδ(n+1) ≤ v(n) (25)

for K > 0. Taking the limit as K goes to infinity gives
∞∑

k=0

P k
δ(n+1)rδ(n+1) ≤ v(n). (26)

Therefore by Equation 16, v(n+1) ≤ v(n). ✷

We are now prepared to prove our main theorem:

Theorem 1. Given the above model and an initial policy δ(0) such that vδ(0)

is finite, policy iteration converges to a policy δ with minimal vδ.

Proof: Suppose we start with some δ(0) such that v(0) is finite. By Lemma 1,
for each iteration n, v(n+1) ≤ v(n). There are finitely many edges in the
graph, so there are only finitely many decision rules (since each decision rule
is an ordering of the edges). Since the sequence v(n) is non-increasing and
no decision rule appears twice, the algorithm must terminate, because there
exists an optimal decision rule. When it does at the n-th iteration, δ(n) is in
argmin(rδ +Pδv

(n)), so v(n) = min(rδ +Pδv
(n)). Our fixed-point result from
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Fig. 2. Every landmark xn is part of a chain of landmarks that leads to goal g

the VI algorithm then guarantees that we have the optimal decision rule δ.
✷

The remaining problem is to find an initial policy δ(0) that yields finite
expected costs vδ(0) . Note that there are many policies that yield infinite
expected costs. Intuitively, such policies can “trap” the robot within a sub-
graph from which it cannot reach the goal. The simplest example is a policy
containing an action α = s : s that commands the robot to always stay at a
node s. Circular traps such s : t, s and t : s, t are also possible.

A policy δ with finite vδ can easily be constructed, however, using a
breadth-first search that starts at the goal node g and follows the edges
in reverse direction. Initially, the action α = s : g, s is assigned to each node
s that has a direct edge to the goal. Recursively, actions α = s : b(s), s are
then assigned to other nodes s, where b(s) denotes the node’s predecessor in
the search (i.e., a node one step closer to the goal).

The above algorithm performs a backwards search through every edge,
and thus takes O(E) time, where E is the number of edges in the graph. It
assigns actions that impose a (non-circular) tree structure on the graph, with
goal g forming the root of the tree (see Figure 2). In particular, each node
xn is part of a chain of nodes leading to the goal

xn → . . .→ xk → xk−1 → . . .→ g.

Assume xk and xk−1 are two successive nodes along that chain. By Equa-
tion 17,

v[k] = r(xk, α) + pxkxk−1v[k − 1] + pxkxk−1 v[k], (27)

so

v[k] =
r(xk, α)
pxkxk−1

+ v[k − 1]. (28)

Since the probabilities for each landmark are non-zero, and the costs are
finite, by induction from the goal landmark g, each v[k] through v[n] is finite.
Therefore the above breadth-first search algorithm gives a suitable starting
policy δ(0) for the policy iteration algorithm.

We now have convergence proofs for both VI and PI algorithms, and
also an algorithm for constructing an initial policy for PI. To our knowledge,
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no theoretical results exist about the convergence speed of either algorithm.
Thus, in order to assess the practicality of both VI and PI algorithms, we
now turn to our empirical evaluation.

5 Experiments

We have implemented both the value iteration and policy iteration algo-
rithms, and have performed an extensive experimental evaluation to assess
their respective performance. Our implementation is in C, and we use Matlab
for solving the linear system of equations in the policy iteration algorithm.

As a first step in both algorithms we compute the actual shortest paths
(ignoring the probabilities) using Dijkstra’s shortest path algorithm. This
is done for several reasons: First, in a graph that is being constructed by
a robot exploring the environment, the goal may not be reachable from all
nodes (e.g., from nodes that the robot has only seen but not yet visited).
Running Dijkstra’s algorithm will identify these nodes, which can then be
removed before solving the ESP problem. Second, the lengths of the actual
shortest paths are lower bounds on the lengths of the expected shortest paths,
and can be used as a better initial estimate for the unknowns Eng for the
value iteration algorithm. (The VI convergence proof is based on bounded
increasing sequences and extends to any start value that is component-wise
smaller than the solution.) Finally, for policy iteration, it turns out that the
actual shortest paths provide an alternate way of finding an initial policy
that yields finite expected lengths, and thus a solvable system. While the
breadth-first search algorithm from Section 4.2 for finding an initial policy is
asymptotically faster, extra memory and time are needed to establish back-
pointers along all edges before the actual search, which are not required by
Dijkstra’s algorithm. In practice, we have found that the two methods have
very similar running times.

For testing purposes we have generated more than 50,000 graphs with
different properties, including number of nodes N , number of edges E, and
range of probability values. Graphs used have up to 3000 nodes; graph densi-
ties range from sparse (E ∝ N) to dense (E ∝ N2); and probability values are
characterized as very low (0.0001–0.001), low (0.0001–0.5), or full (0.0001–1).
We have also experimented with different graph structures, including large
diameter “corridor” graphs, and “multi-room” graphs (sparsely connected
collections of highly connected subgraphs, simulating the visibility graphs of
multi-room buildings).

Here we report on a subset of our results. The plots shown in Figure 3
measure the number of iterations necessary for VI and PI as a function of
the number of nodes N in the graph. Each plot shows the results of 1250
individual experiments on random graphs with up to 2500 nodes. We have
performed such experiments for many different types of graphs and parame-
ters. The plots in Figure 3 contrast sparse graphs (E ≈ N) with dense graphs
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Fig. 3. Number of iterations for VI (first row) and PI (second row) algorithms as
a function of the number of nodes in the graph. The plots on the left show results
for sparse graphs (E ≈ N), the plots on the right show results for dense graphs
(E ≈ N2/15)

(E ≈ N2/15), both with full random probabilities (ranging from 0.0001 to
1). Examining the plots in the first row of Figure 3, it can be seen that the
value iteration algorithm requires large numbers of iterations (often upwards
of 10,000) on sparse graphs, while it converges much faster on dense graphs
(typically within a few hundred iterations). The likely reason for this is that
changes in the variables can propagate much faster in densely connected
graphs. Note that the initial “peak” in the second plot is due to our defini-
tion of “dense” as E ≈ N2/15, which for small N still results in fairly sparse
graphs. Interestingly, the average number of iterations for dense graphs does
not increase with larger values of N — if anything, there is a slight decrease.

Results for the policy iteration algorithm (shown in the second row of
Figure 3) are vastly different. In all cases, PI only takes very few iterations
to converge. While the number of iterations increases with the number of
nodes, the curves flatten out quickly, and the distributions of iterations for
N = 1000 are very similar to those for N = 2500. Even for the largest N ,
most sparse graphs take no more than 6–9 iterations to converge; the dense
graphs rarely take more than 7 or 8 iterations. In fact, among the more than
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Iterations vs. number of nodes N
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Fig. 4. Number of iterations for VI for normal (red ×) and very low (black ◦) edge
probabilities on sparse graphs

50,000 graphs we have generated, only a handful require 11 iterations, only 3
require 12 iterations, and we have yet to find a graph that requires more than
12 iterations. As is the case for VI, the distribution of iterations for dense
graphs is narrower and has fewer outliers.

We have also investigated the effect of different probability ranges. The
number of iterations used by the PI algorithm remains roughly the same,
although a low probability range (0.0001 to 0.5) often requires one extra it-
eration. The VI algorithm, however, is strongly affected by the probability
ranges. This is demonstrated in Figure 4, which shows the number of it-
erations of the VI algorithm on sparse graphs for two different probability
ranges: full (0.0001–1), and very low (0.0001–0.001).

The results of other experiments we have performed are consistent with
the ones reported here. In particular, for PI, the curve defined by the number
of iterations vs. graph size always resembles a logarithmic shape, indicating
that few iterations are necessary even for very large graphs. Also, we have
been unable to construct “pathological cases” that require a certain mini-
mum number of iterations for PI. Value iteration, on the other hand, can
be made to converge arbitrarily slowly by constructing graphs whose edges
all have very low probabilities as shown in Figure 4. Although such graphs
may not be common in practical applications, this is further evidence for the
unpredictability of the convergence speed of VI that is also exhibited in the
top left plot in Figure 3.
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We now turn to the actual running times of the two algorithms. Figure 5
shows plots that compare the running times of VI and PI as a function of N
on the same sets of graphs as in Figure 3. All experiments were performed
under Linux on a 1.53 GHz Athlon machine with 512 MB of memory. It can
be seen that policy iteration clearly outperforms value iteration, in particular
on sparse graphs, where PI is faster by several orders of magnitude. Much of
this performance gain is due to the fact that we use Matlab’s sparse matrix
representation and equation solver. (Using a regular solver for sparse graphs
is slower by at least a factor of 10.) On dense graphs, the margin between PI
and VI is much smaller, since VI takes fewer iterations than it does on sparse
graphs, but PI’s equation solving step requires more work. Even in this case,
however, PI is the winner, running at least a factor of 2 faster than VI. It
should be noted that the reported running times are process times. When we
measure total time, the running times of PI and VI on dense graphs become
almost identical. The likely reason for this is that the time for PI’s memory
allocation steps are not measured in the process time.

Graphs encountered in real environments span the range of the two types
of graphs discussed here. In practical applications, sparse graphs will be more
common, and PI, although slightly more difficult to implement, will be the
better choice.

A practical issue is the memory requirements of the two algorithms. VI,
which only needs to evaluate the system of equations, requires only enough
memory to store the graph. PI, which needs to solve the system, needs up
to O(N2) space to store the matrix representing this system. Given a large
enough graph, the matrix will be too large to be allocated, making PI impos-
sible to use. For our implementation and hardware, this happens for dense
graphs upwards of about 2800 nodes. In such situations, VI would be the only
choice. Since we are using Matlab’s sparse matrix representation, however,
the memory is sufficient for much larger sparse graphs. For example, a sparse
graph with 15,000 nodes and about 25,000 edges can still be solved using PI
in less than 1 second.

6 Conclusion

In this paper we have defined the expected shortest path (ESP) problem, which
arises in landmark-based robot navigation where the reliability of landmark
detection is modeled explicitly. We have presented two algorithms for its so-
lution, value iteration (VI) and policy iteration (PI), and have proven their
convergence properties in the context of a MDP formulation. Using an ex-
tensive experimental analysis, we have demonstrated the practicality of both
algorithms, and have shown that PI usually outperforms VI. In particular, on
sparse graphs, PI is orders of magnitudes faster. On very large dense graphs,
however, PI cannot be used due to its larger memory requirements.
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Running times (seconds) vs. number of nodes N
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Fig. 5. Running times in seconds for VI (red ×) and PI (blue +) algorithms as a
function of the number of nodes in the graph. The first plot shows results for sparse
graphs (E ≈ N); the second plot shows results for dense graphs (E ≈ N2/15)
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In future work we plan to investigate the application of our algorithms to
navigation using natural landmarks extracted from the environment. Building
on related work in this area [5,10,12,17], we aim to extend our probabilistic
framework to obtain more reliable and efficient path planners for vision-based
robot navigation in arbitrary environments.
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