Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
Average endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it+_RVC [198] | 2.0 | 0.07 1 | 0.20 2 | 0.04 1 | 0.13 1 | 0.44 1 | 0.10 1 | 0.16 1 | 0.29 1 | 0.13 2 | 0.07 3 | 0.42 8 | 0.03 1 | 0.40 2 | 0.60 2 | 0.18 1 | 0.09 1 | 0.39 3 | 0.05 1 | 0.06 2 | 0.09 2 | 0.08 3 | 0.28 2 | 0.65 5 | 0.17 1 |
RAFT-it [194] | 2.7 | 0.07 1 | 0.21 7 | 0.05 3 | 0.15 3 | 0.49 4 | 0.11 2 | 0.17 2 | 0.32 2 | 0.14 3 | 0.05 1 | 0.24 2 | 0.03 1 | 0.46 5 | 0.68 5 | 0.23 6 | 0.09 1 | 0.31 1 | 0.07 2 | 0.06 2 | 0.11 4 | 0.07 1 | 0.28 2 | 0.61 2 | 0.20 2 |
NNF-Local [75] | 7.6 | 0.07 1 | 0.20 2 | 0.05 3 | 0.15 3 | 0.51 8 | 0.12 8 | 0.18 4 | 0.37 4 | 0.14 3 | 0.10 6 | 0.49 12 | 0.06 6 | 0.41 3 | 0.61 3 | 0.21 4 | 0.23 7 | 0.66 9 | 0.19 7 | 0.10 19 | 0.12 18 | 0.17 32 | 0.34 6 | 0.80 11 | 0.23 4 |
MS_RAFT+_RVC [195] | 9.1 | 0.07 1 | 0.20 2 | 0.04 1 | 0.22 48 | 0.50 7 | 0.21 97 | 0.20 7 | 0.40 7 | 0.16 18 | 0.07 3 | 0.40 6 | 0.03 1 | 0.39 1 | 0.58 1 | 0.19 2 | 0.11 3 | 0.31 1 | 0.08 3 | 0.05 1 | 0.08 1 | 0.07 1 | 0.27 1 | 0.52 1 | 0.23 4 |
RAFT-TF_RVC [179] | 15.2 | 0.10 55 | 0.30 80 | 0.05 3 | 0.18 16 | 0.55 15 | 0.14 26 | 0.21 12 | 0.43 13 | 0.19 49 | 0.06 2 | 0.23 1 | 0.04 4 | 0.51 8 | 0.75 9 | 0.25 7 | 0.14 4 | 0.42 4 | 0.11 4 | 0.07 5 | 0.12 18 | 0.08 3 | 0.37 9 | 0.80 11 | 0.27 7 |
PMMST [112] | 15.5 | 0.09 38 | 0.21 7 | 0.07 24 | 0.18 16 | 0.51 8 | 0.16 38 | 0.21 12 | 0.42 11 | 0.17 25 | 0.10 6 | 0.33 4 | 0.08 18 | 0.51 8 | 0.74 7 | 0.28 11 | 0.24 8 | 0.65 8 | 0.20 11 | 0.11 37 | 0.12 18 | 0.17 32 | 0.37 9 | 0.74 7 | 0.35 10 |
OFLAF [78] | 17.1 | 0.08 12 | 0.21 7 | 0.06 10 | 0.16 9 | 0.53 10 | 0.12 8 | 0.19 5 | 0.37 4 | 0.14 3 | 0.14 18 | 0.77 46 | 0.07 11 | 0.51 8 | 0.78 12 | 0.25 7 | 0.31 21 | 0.76 10 | 0.25 27 | 0.11 37 | 0.12 18 | 0.21 68 | 0.42 17 | 0.78 9 | 0.63 34 |
MDP-Flow2 [68] | 17.6 | 0.08 12 | 0.21 7 | 0.07 24 | 0.15 3 | 0.48 2 | 0.11 2 | 0.20 7 | 0.40 7 | 0.14 3 | 0.15 36 | 0.80 55 | 0.08 18 | 0.63 27 | 0.93 27 | 0.43 31 | 0.26 12 | 0.76 10 | 0.23 18 | 0.11 37 | 0.12 18 | 0.17 32 | 0.38 12 | 0.79 10 | 0.44 13 |
NN-field [71] | 18.8 | 0.08 12 | 0.22 19 | 0.05 3 | 0.17 13 | 0.55 15 | 0.13 16 | 0.19 5 | 0.39 6 | 0.15 9 | 0.09 5 | 0.48 11 | 0.05 5 | 0.41 3 | 0.61 3 | 0.20 3 | 0.52 79 | 0.64 7 | 0.26 32 | 0.13 68 | 0.13 50 | 0.20 62 | 0.35 7 | 0.83 14 | 0.21 3 |
ComponentFusion [94] | 22.3 | 0.07 1 | 0.21 7 | 0.05 3 | 0.16 9 | 0.55 15 | 0.12 8 | 0.20 7 | 0.44 14 | 0.15 9 | 0.11 10 | 0.65 19 | 0.06 6 | 0.71 50 | 1.07 55 | 0.53 54 | 0.32 25 | 1.06 41 | 0.28 35 | 0.11 37 | 0.13 50 | 0.15 24 | 0.41 15 | 0.88 20 | 0.54 21 |
CoT-AMFlow [174] | 25.3 | 0.08 12 | 0.22 19 | 0.07 24 | 0.15 3 | 0.48 2 | 0.12 8 | 0.21 12 | 0.45 15 | 0.15 9 | 0.16 50 | 0.86 69 | 0.08 18 | 0.67 40 | 0.96 34 | 0.56 59 | 0.27 14 | 0.82 15 | 0.24 23 | 0.12 54 | 0.12 18 | 0.18 49 | 0.42 17 | 0.85 15 | 0.60 29 |
TC/T-Flow [77] | 29.1 | 0.07 1 | 0.21 7 | 0.05 3 | 0.19 25 | 0.68 43 | 0.12 8 | 0.28 36 | 0.66 42 | 0.14 3 | 0.14 18 | 0.86 69 | 0.07 11 | 0.67 40 | 0.98 41 | 0.49 47 | 0.22 6 | 0.82 15 | 0.19 7 | 0.11 37 | 0.11 4 | 0.30 118 | 0.50 39 | 1.02 41 | 0.64 37 |
PRAFlow_RVC [177] | 29.7 | 0.11 68 | 0.27 61 | 0.08 55 | 0.24 72 | 0.64 34 | 0.19 65 | 0.28 36 | 0.61 32 | 0.23 78 | 0.12 14 | 0.62 18 | 0.06 6 | 0.60 19 | 0.87 18 | 0.38 20 | 0.18 5 | 0.50 5 | 0.16 5 | 0.07 5 | 0.12 18 | 0.08 3 | 0.49 33 | 0.92 25 | 0.51 17 |
WLIF-Flow [91] | 30.3 | 0.08 12 | 0.21 7 | 0.06 10 | 0.18 16 | 0.55 15 | 0.15 32 | 0.25 26 | 0.56 29 | 0.17 25 | 0.14 18 | 0.68 22 | 0.08 18 | 0.61 23 | 0.91 24 | 0.41 28 | 0.43 52 | 0.96 25 | 0.29 41 | 0.13 68 | 0.12 18 | 0.21 68 | 0.51 45 | 1.03 45 | 0.72 60 |
UnDAF [187] | 31.2 | 0.09 38 | 0.26 51 | 0.07 24 | 0.16 9 | 0.53 10 | 0.11 2 | 0.22 15 | 0.48 18 | 0.15 9 | 0.17 64 | 0.93 90 | 0.08 18 | 0.70 48 | 1.04 50 | 0.48 42 | 0.29 18 | 0.92 21 | 0.24 23 | 0.12 54 | 0.12 18 | 0.18 49 | 0.45 23 | 0.95 29 | 0.58 26 |
NNF-EAC [101] | 32.0 | 0.09 38 | 0.22 19 | 0.07 24 | 0.17 13 | 0.53 10 | 0.13 16 | 0.23 17 | 0.49 19 | 0.15 9 | 0.16 50 | 0.80 55 | 0.09 42 | 0.60 19 | 0.89 20 | 0.40 25 | 0.38 39 | 0.78 12 | 0.28 35 | 0.12 54 | 0.12 18 | 0.18 49 | 0.57 65 | 1.24 70 | 0.69 51 |
Layers++ [37] | 32.4 | 0.08 12 | 0.21 7 | 0.07 24 | 0.19 25 | 0.56 19 | 0.17 44 | 0.20 7 | 0.40 7 | 0.18 37 | 0.13 15 | 0.58 17 | 0.07 11 | 0.48 6 | 0.70 6 | 0.33 14 | 0.47 64 | 1.01 31 | 0.33 65 | 0.15 97 | 0.14 79 | 0.24 83 | 0.46 27 | 0.88 20 | 0.72 60 |
IROF++ [58] | 33.4 | 0.08 12 | 0.23 27 | 0.07 24 | 0.21 39 | 0.68 43 | 0.17 44 | 0.28 36 | 0.63 35 | 0.19 49 | 0.15 36 | 0.73 35 | 0.09 42 | 0.60 19 | 0.89 20 | 0.42 30 | 0.43 52 | 1.08 44 | 0.31 52 | 0.10 19 | 0.12 18 | 0.12 14 | 0.47 29 | 0.98 33 | 0.68 50 |
LME [70] | 33.9 | 0.08 12 | 0.22 19 | 0.06 10 | 0.15 3 | 0.49 4 | 0.11 2 | 0.30 47 | 0.64 37 | 0.31 110 | 0.15 36 | 0.78 50 | 0.09 42 | 0.66 35 | 0.96 34 | 0.53 54 | 0.33 26 | 1.18 62 | 0.28 35 | 0.12 54 | 0.12 18 | 0.18 49 | 0.44 20 | 0.91 24 | 0.61 30 |
nLayers [57] | 34.5 | 0.07 1 | 0.19 1 | 0.06 10 | 0.22 48 | 0.59 24 | 0.19 65 | 0.25 26 | 0.54 25 | 0.20 60 | 0.15 36 | 0.84 63 | 0.08 18 | 0.53 11 | 0.78 12 | 0.34 17 | 0.44 57 | 0.84 17 | 0.30 48 | 0.13 68 | 0.13 50 | 0.20 62 | 0.47 29 | 0.97 32 | 0.67 48 |
HAST [107] | 35.3 | 0.07 1 | 0.20 2 | 0.05 3 | 0.18 16 | 0.54 13 | 0.13 16 | 0.17 2 | 0.32 2 | 0.12 1 | 0.15 36 | 0.90 82 | 0.06 6 | 0.49 7 | 0.74 7 | 0.22 5 | 0.58 92 | 1.09 46 | 0.44 95 | 0.19 129 | 0.17 119 | 0.47 150 | 0.32 5 | 0.64 4 | 0.33 9 |
ProFlow_ROB [142] | 35.7 | 0.08 12 | 0.26 51 | 0.06 10 | 0.18 16 | 0.70 51 | 0.13 16 | 0.31 54 | 0.80 69 | 0.17 25 | 0.14 18 | 0.75 41 | 0.06 6 | 0.80 66 | 1.21 72 | 0.49 47 | 0.33 26 | 1.18 62 | 0.20 11 | 0.07 5 | 0.13 50 | 0.13 21 | 0.50 39 | 1.19 62 | 0.58 26 |
FC-2Layers-FF [74] | 36.7 | 0.08 12 | 0.21 7 | 0.07 24 | 0.21 39 | 0.70 51 | 0.17 44 | 0.20 7 | 0.40 7 | 0.18 37 | 0.15 36 | 0.76 44 | 0.08 18 | 0.53 11 | 0.77 10 | 0.37 18 | 0.49 71 | 1.02 33 | 0.33 65 | 0.16 107 | 0.13 50 | 0.29 113 | 0.44 20 | 0.87 19 | 0.64 37 |
PH-Flow [99] | 36.9 | 0.08 12 | 0.24 36 | 0.07 24 | 0.21 39 | 0.68 43 | 0.17 44 | 0.23 17 | 0.49 19 | 0.19 49 | 0.16 50 | 0.83 61 | 0.09 42 | 0.56 15 | 0.83 15 | 0.38 20 | 0.30 19 | 0.81 13 | 0.24 23 | 0.15 97 | 0.13 50 | 0.30 118 | 0.43 19 | 0.85 15 | 0.66 45 |
Correlation Flow [76] | 37.8 | 0.09 38 | 0.23 27 | 0.07 24 | 0.17 13 | 0.58 22 | 0.11 2 | 0.43 86 | 0.99 90 | 0.15 9 | 0.11 10 | 0.47 10 | 0.08 18 | 0.75 56 | 1.08 56 | 0.56 59 | 0.41 47 | 0.92 21 | 0.30 48 | 0.14 80 | 0.13 50 | 0.27 101 | 0.40 14 | 0.85 15 | 0.42 12 |
AGIF+OF [84] | 39.4 | 0.08 12 | 0.22 19 | 0.07 24 | 0.23 64 | 0.73 58 | 0.18 55 | 0.28 36 | 0.66 42 | 0.18 37 | 0.14 18 | 0.70 25 | 0.08 18 | 0.57 16 | 0.85 16 | 0.38 20 | 0.47 64 | 0.97 26 | 0.31 52 | 0.13 68 | 0.13 50 | 0.22 75 | 0.51 45 | 0.99 36 | 0.74 69 |
GMFlow_RVC [196] | 40.0 | 0.17 124 | 0.30 80 | 0.14 123 | 0.26 90 | 0.57 21 | 0.24 106 | 0.24 21 | 0.42 11 | 0.23 78 | 0.14 18 | 0.51 14 | 0.09 42 | 0.54 14 | 0.77 10 | 0.30 13 | 0.24 8 | 0.56 6 | 0.20 11 | 0.11 37 | 0.16 104 | 0.13 21 | 0.28 2 | 0.61 2 | 0.23 4 |
RNLOD-Flow [119] | 40.4 | 0.07 1 | 0.20 2 | 0.06 10 | 0.19 25 | 0.68 43 | 0.13 16 | 0.33 65 | 0.79 66 | 0.17 25 | 0.14 18 | 0.73 35 | 0.07 11 | 0.69 47 | 1.03 47 | 0.48 42 | 0.37 37 | 0.99 29 | 0.29 41 | 0.16 107 | 0.16 104 | 0.29 113 | 0.45 23 | 0.88 20 | 0.65 42 |
ProbFlowFields [126] | 40.6 | 0.10 55 | 0.31 85 | 0.08 55 | 0.19 25 | 0.63 30 | 0.17 44 | 0.27 31 | 0.63 35 | 0.22 71 | 0.11 10 | 0.49 12 | 0.07 11 | 0.82 70 | 1.22 76 | 0.59 64 | 0.25 10 | 1.05 40 | 0.21 14 | 0.09 14 | 0.12 18 | 0.17 32 | 0.58 67 | 1.33 73 | 0.62 32 |
3DFlow [133] | 40.8 | 0.09 38 | 0.24 36 | 0.06 10 | 0.19 25 | 0.67 40 | 0.13 16 | 0.29 43 | 0.68 45 | 0.15 9 | 0.10 6 | 0.32 3 | 0.08 18 | 0.62 26 | 0.91 24 | 0.40 25 | 0.55 84 | 1.03 36 | 0.38 88 | 0.22 145 | 0.15 93 | 0.46 148 | 0.35 7 | 0.73 6 | 0.32 8 |
Classic+CPF [82] | 42.1 | 0.08 12 | 0.23 27 | 0.07 24 | 0.22 48 | 0.73 58 | 0.17 44 | 0.30 47 | 0.70 47 | 0.18 37 | 0.14 18 | 0.72 34 | 0.08 18 | 0.63 27 | 0.93 27 | 0.45 39 | 0.51 77 | 1.03 36 | 0.32 57 | 0.14 80 | 0.12 18 | 0.30 118 | 0.48 31 | 0.93 26 | 0.72 60 |
FESL [72] | 42.1 | 0.08 12 | 0.21 7 | 0.07 24 | 0.25 79 | 0.75 66 | 0.19 65 | 0.27 31 | 0.61 32 | 0.18 37 | 0.14 18 | 0.68 22 | 0.08 18 | 0.61 23 | 0.89 20 | 0.44 33 | 0.47 64 | 1.03 36 | 0.32 57 | 0.14 80 | 0.15 93 | 0.25 91 | 0.50 39 | 0.96 30 | 0.63 34 |
Sparse-NonSparse [56] | 42.9 | 0.08 12 | 0.23 27 | 0.07 24 | 0.22 48 | 0.73 58 | 0.18 55 | 0.28 36 | 0.64 37 | 0.19 49 | 0.14 18 | 0.71 31 | 0.08 18 | 0.67 40 | 0.99 44 | 0.48 42 | 0.49 71 | 1.06 41 | 0.32 57 | 0.14 80 | 0.11 4 | 0.28 107 | 0.49 33 | 0.98 33 | 0.73 65 |
ALD-Flow [66] | 43.0 | 0.07 1 | 0.21 7 | 0.06 10 | 0.19 25 | 0.64 34 | 0.13 16 | 0.30 47 | 0.73 53 | 0.15 9 | 0.17 64 | 0.92 86 | 0.07 11 | 0.78 62 | 1.14 63 | 0.59 64 | 0.33 26 | 1.30 80 | 0.21 14 | 0.12 54 | 0.12 18 | 0.28 107 | 0.54 54 | 1.19 62 | 0.73 65 |
COFM [59] | 43.6 | 0.08 12 | 0.26 51 | 0.06 10 | 0.18 16 | 0.62 28 | 0.14 26 | 0.30 47 | 0.74 55 | 0.19 49 | 0.15 36 | 0.86 69 | 0.07 11 | 0.79 63 | 1.14 63 | 0.74 100 | 0.35 33 | 0.87 20 | 0.28 35 | 0.14 80 | 0.12 18 | 0.28 107 | 0.49 33 | 0.94 27 | 0.71 57 |
TC-Flow [46] | 44.2 | 0.07 1 | 0.21 7 | 0.06 10 | 0.15 3 | 0.59 24 | 0.11 2 | 0.31 54 | 0.78 63 | 0.14 3 | 0.16 50 | 0.86 69 | 0.08 18 | 0.75 56 | 1.11 59 | 0.54 56 | 0.42 50 | 1.40 92 | 0.25 27 | 0.11 37 | 0.12 18 | 0.29 113 | 0.62 76 | 1.35 75 | 0.93 99 |
Efficient-NL [60] | 44.3 | 0.08 12 | 0.22 19 | 0.06 10 | 0.21 39 | 0.67 40 | 0.17 44 | 0.31 54 | 0.73 53 | 0.18 37 | 0.14 18 | 0.71 31 | 0.08 18 | 0.59 18 | 0.88 19 | 0.39 23 | 1.30 131 | 1.35 86 | 0.67 125 | 0.14 80 | 0.13 50 | 0.26 95 | 0.45 23 | 0.85 15 | 0.55 24 |
LSM [39] | 45.5 | 0.08 12 | 0.23 27 | 0.07 24 | 0.22 48 | 0.73 58 | 0.18 55 | 0.28 36 | 0.64 37 | 0.19 49 | 0.14 18 | 0.70 25 | 0.09 42 | 0.66 35 | 0.97 38 | 0.48 42 | 0.50 73 | 1.06 41 | 0.33 65 | 0.15 97 | 0.12 18 | 0.29 113 | 0.50 39 | 0.99 36 | 0.73 65 |
HCFN [157] | 46.2 | 0.08 12 | 0.23 27 | 0.06 10 | 0.16 9 | 0.58 22 | 0.12 8 | 0.23 17 | 0.51 22 | 0.15 9 | 0.16 50 | 0.82 58 | 0.08 18 | 0.64 30 | 0.95 33 | 0.44 33 | 0.34 30 | 1.01 31 | 0.25 27 | 0.23 150 | 0.20 146 | 0.46 148 | 0.56 62 | 1.20 67 | 0.86 89 |
Ramp [62] | 46.3 | 0.08 12 | 0.24 36 | 0.07 24 | 0.21 39 | 0.72 54 | 0.18 55 | 0.27 31 | 0.62 34 | 0.19 49 | 0.15 36 | 0.71 31 | 0.09 42 | 0.66 35 | 0.97 38 | 0.49 47 | 0.51 77 | 1.09 46 | 0.34 71 | 0.15 97 | 0.12 18 | 0.30 118 | 0.48 31 | 0.96 30 | 0.72 60 |
JOF [136] | 46.5 | 0.08 12 | 0.23 27 | 0.06 10 | 0.23 64 | 0.72 54 | 0.20 82 | 0.25 26 | 0.53 24 | 0.19 49 | 0.14 18 | 0.74 39 | 0.08 18 | 0.53 11 | 0.79 14 | 0.33 14 | 0.43 52 | 0.92 21 | 0.32 57 | 0.19 129 | 0.15 93 | 0.40 141 | 0.52 51 | 1.07 54 | 0.71 57 |
Classic+NL [31] | 48.9 | 0.08 12 | 0.23 27 | 0.07 24 | 0.22 48 | 0.74 63 | 0.18 55 | 0.29 43 | 0.65 41 | 0.19 49 | 0.15 36 | 0.73 35 | 0.09 42 | 0.64 30 | 0.93 27 | 0.47 40 | 0.52 79 | 1.12 52 | 0.33 65 | 0.16 107 | 0.13 50 | 0.29 113 | 0.49 33 | 0.98 33 | 0.74 69 |
OAR-Flow [123] | 49.4 | 0.08 12 | 0.25 44 | 0.07 24 | 0.26 90 | 0.81 86 | 0.18 55 | 0.38 74 | 0.93 80 | 0.20 60 | 0.16 50 | 0.88 76 | 0.08 18 | 0.83 72 | 1.21 72 | 0.61 68 | 0.31 21 | 1.28 74 | 0.18 6 | 0.08 10 | 0.10 3 | 0.17 32 | 0.52 51 | 1.13 57 | 0.69 51 |
PWC-Net_RVC [143] | 49.6 | 0.12 93 | 0.32 90 | 0.09 77 | 0.25 79 | 0.79 81 | 0.20 82 | 0.32 59 | 0.75 56 | 0.24 83 | 0.13 15 | 0.54 16 | 0.08 18 | 0.75 56 | 1.12 61 | 0.43 31 | 0.59 94 | 1.08 44 | 0.36 83 | 0.06 2 | 0.12 18 | 0.08 3 | 0.41 15 | 0.90 23 | 0.38 11 |
VCN_RVC [178] | 49.6 | 0.13 109 | 0.34 98 | 0.10 101 | 0.24 72 | 0.74 63 | 0.20 82 | 0.27 31 | 0.57 30 | 0.22 71 | 0.17 64 | 0.79 53 | 0.10 65 | 0.68 46 | 1.02 46 | 0.39 23 | 0.37 37 | 0.98 28 | 0.25 27 | 0.08 10 | 0.13 50 | 0.09 8 | 0.44 20 | 1.02 41 | 0.46 16 |
IIOF-NLDP [129] | 49.7 | 0.10 55 | 0.28 64 | 0.07 24 | 0.22 48 | 0.75 66 | 0.15 32 | 0.35 68 | 0.85 70 | 0.16 18 | 0.11 10 | 0.41 7 | 0.08 18 | 0.67 40 | 1.00 45 | 0.41 28 | 0.89 119 | 1.24 72 | 0.55 114 | 0.11 37 | 0.13 50 | 0.19 57 | 0.54 54 | 1.05 52 | 0.66 45 |
TV-L1-MCT [64] | 50.2 | 0.08 12 | 0.23 27 | 0.07 24 | 0.24 72 | 0.77 72 | 0.19 65 | 0.32 59 | 0.76 60 | 0.19 49 | 0.14 18 | 0.69 24 | 0.09 42 | 0.72 52 | 1.03 47 | 0.60 66 | 0.54 82 | 1.10 50 | 0.35 77 | 0.11 37 | 0.12 18 | 0.20 62 | 0.54 54 | 1.04 49 | 0.84 86 |
FlowFields+ [128] | 51.0 | 0.11 68 | 0.35 102 | 0.08 55 | 0.23 64 | 0.73 58 | 0.19 65 | 0.30 47 | 0.72 51 | 0.25 88 | 0.14 18 | 0.65 19 | 0.09 42 | 0.85 76 | 1.25 78 | 0.62 71 | 0.25 10 | 1.09 46 | 0.21 14 | 0.10 19 | 0.12 18 | 0.16 29 | 0.59 69 | 1.35 75 | 0.65 42 |
PMF [73] | 51.2 | 0.09 38 | 0.25 44 | 0.07 24 | 0.19 25 | 0.60 27 | 0.14 26 | 0.23 17 | 0.46 17 | 0.17 25 | 0.17 64 | 0.87 74 | 0.09 42 | 0.58 17 | 0.86 17 | 0.26 9 | 0.82 115 | 1.17 59 | 0.54 111 | 0.21 141 | 0.22 152 | 0.36 135 | 0.39 13 | 0.75 8 | 0.59 28 |
FMOF [92] | 52.5 | 0.08 12 | 0.22 19 | 0.07 24 | 0.24 72 | 0.76 69 | 0.19 65 | 0.24 21 | 0.54 25 | 0.18 37 | 0.14 18 | 0.70 25 | 0.08 18 | 0.64 30 | 0.94 32 | 0.44 33 | 1.19 127 | 1.12 52 | 0.65 124 | 0.15 97 | 0.13 50 | 0.32 128 | 0.58 67 | 1.16 60 | 0.70 56 |
SVFilterOh [109] | 52.9 | 0.10 55 | 0.24 36 | 0.08 55 | 0.21 39 | 0.62 28 | 0.15 32 | 0.24 21 | 0.51 22 | 0.17 25 | 0.16 50 | 0.84 63 | 0.09 42 | 0.61 23 | 0.92 26 | 0.27 10 | 0.81 114 | 1.19 65 | 0.46 101 | 0.21 141 | 0.20 146 | 0.42 143 | 0.37 9 | 0.80 11 | 0.44 13 |
IROF-TV [53] | 53.5 | 0.09 38 | 0.25 44 | 0.08 55 | 0.22 48 | 0.77 72 | 0.19 65 | 0.30 47 | 0.70 47 | 0.19 49 | 0.18 73 | 0.93 90 | 0.11 74 | 0.73 54 | 1.04 50 | 0.56 59 | 0.44 57 | 1.69 120 | 0.31 52 | 0.09 14 | 0.11 4 | 0.12 14 | 0.50 39 | 1.08 55 | 0.73 65 |
S2F-IF [121] | 53.9 | 0.11 68 | 0.35 102 | 0.08 55 | 0.22 48 | 0.75 66 | 0.19 65 | 0.30 47 | 0.72 51 | 0.24 83 | 0.16 50 | 0.79 53 | 0.10 65 | 0.87 80 | 1.28 87 | 0.66 78 | 0.26 12 | 1.09 46 | 0.23 18 | 0.10 19 | 0.12 18 | 0.17 32 | 0.55 59 | 1.19 62 | 0.61 30 |
MCPFlow_RVC [197] | 54.8 | 0.16 120 | 0.35 102 | 0.11 109 | 0.37 118 | 0.83 89 | 0.33 119 | 0.40 82 | 0.71 49 | 0.45 120 | 0.13 15 | 0.52 15 | 0.10 65 | 0.65 33 | 0.93 27 | 0.37 18 | 0.27 14 | 0.85 18 | 0.19 7 | 0.09 14 | 0.13 50 | 0.11 11 | 0.54 54 | 1.03 45 | 0.54 21 |
CombBMOF [111] | 55.8 | 0.10 55 | 0.29 73 | 0.07 24 | 0.22 48 | 0.65 37 | 0.16 38 | 0.25 26 | 0.55 27 | 0.17 25 | 0.16 50 | 0.74 39 | 0.11 74 | 0.67 40 | 0.98 41 | 0.44 33 | 0.60 97 | 1.04 39 | 0.54 111 | 0.17 118 | 0.17 119 | 0.25 91 | 0.51 45 | 1.06 53 | 0.64 37 |
MDP-Flow [26] | 56.5 | 0.09 38 | 0.25 44 | 0.08 55 | 0.19 25 | 0.54 13 | 0.18 55 | 0.24 21 | 0.55 27 | 0.20 60 | 0.16 50 | 0.91 83 | 0.09 42 | 0.74 55 | 1.06 54 | 0.61 68 | 0.46 62 | 1.02 33 | 0.35 77 | 0.12 54 | 0.14 79 | 0.17 32 | 0.78 108 | 1.68 116 | 0.97 106 |
FlowFields [108] | 57.7 | 0.12 93 | 0.35 102 | 0.08 55 | 0.23 64 | 0.76 69 | 0.20 82 | 0.31 54 | 0.75 56 | 0.25 88 | 0.15 36 | 0.73 35 | 0.10 65 | 0.87 80 | 1.28 87 | 0.66 78 | 0.27 14 | 1.12 52 | 0.23 18 | 0.10 19 | 0.12 18 | 0.17 32 | 0.60 72 | 1.37 79 | 0.64 37 |
EPPM w/o HM [86] | 57.8 | 0.11 68 | 0.30 80 | 0.08 55 | 0.19 25 | 0.67 40 | 0.13 16 | 0.29 43 | 0.71 49 | 0.17 25 | 0.17 64 | 0.78 50 | 0.11 74 | 0.63 27 | 0.93 27 | 0.33 14 | 0.60 97 | 1.35 86 | 0.40 90 | 0.19 129 | 0.15 93 | 0.45 147 | 0.45 23 | 0.94 27 | 0.64 37 |
2DHMM-SAS [90] | 57.8 | 0.08 12 | 0.24 36 | 0.07 24 | 0.23 64 | 0.78 76 | 0.17 44 | 0.42 84 | 0.90 75 | 0.22 71 | 0.15 36 | 0.75 41 | 0.09 42 | 0.65 33 | 0.96 34 | 0.48 42 | 0.56 86 | 1.13 56 | 0.34 71 | 0.15 97 | 0.13 50 | 0.30 118 | 0.56 62 | 1.13 57 | 0.79 77 |
PBOFVI [189] | 58.3 | 0.11 68 | 0.26 51 | 0.09 77 | 0.21 39 | 0.77 72 | 0.14 26 | 0.42 84 | 0.96 84 | 0.16 18 | 0.14 18 | 0.65 19 | 0.08 18 | 0.75 56 | 1.08 56 | 0.58 62 | 0.64 104 | 1.14 57 | 0.41 91 | 0.14 80 | 0.14 79 | 0.30 118 | 0.49 33 | 1.01 38 | 0.69 51 |
MLDP_OF [87] | 58.7 | 0.11 68 | 0.28 64 | 0.09 77 | 0.18 16 | 0.56 19 | 0.13 16 | 0.34 66 | 0.79 66 | 0.17 25 | 0.16 50 | 0.82 58 | 0.09 42 | 0.72 52 | 1.05 53 | 0.50 50 | 0.34 30 | 1.10 50 | 0.27 34 | 0.18 126 | 0.15 93 | 0.44 146 | 0.76 101 | 1.09 56 | 0.69 51 |
Sparse Occlusion [54] | 60.0 | 0.09 38 | 0.24 36 | 0.08 55 | 0.22 48 | 0.63 30 | 0.19 65 | 0.38 74 | 0.91 76 | 0.18 37 | 0.17 64 | 0.85 67 | 0.09 42 | 0.75 56 | 1.09 58 | 0.47 40 | 0.34 30 | 1.00 30 | 0.26 32 | 0.22 145 | 0.22 152 | 0.28 107 | 0.53 53 | 1.13 57 | 0.67 48 |
CostFilter [40] | 60.3 | 0.10 55 | 0.27 61 | 0.08 55 | 0.20 37 | 0.63 30 | 0.15 32 | 0.22 15 | 0.45 15 | 0.18 37 | 0.19 78 | 0.88 76 | 0.12 82 | 0.60 19 | 0.90 23 | 0.28 11 | 0.75 109 | 1.19 65 | 0.50 106 | 0.21 141 | 0.24 159 | 0.40 141 | 0.46 27 | 1.02 41 | 0.62 32 |
S2D-Matching [83] | 60.8 | 0.09 38 | 0.26 51 | 0.07 24 | 0.23 64 | 0.80 83 | 0.18 55 | 0.38 74 | 0.93 80 | 0.20 60 | 0.15 36 | 0.70 25 | 0.09 42 | 0.70 48 | 1.03 47 | 0.51 51 | 0.55 84 | 1.17 59 | 0.35 77 | 0.17 118 | 0.13 50 | 0.32 128 | 0.51 45 | 1.01 38 | 0.81 81 |
NL-TV-NCC [25] | 61.5 | 0.10 55 | 0.26 51 | 0.08 55 | 0.22 48 | 0.72 54 | 0.15 32 | 0.35 68 | 0.85 70 | 0.16 18 | 0.15 36 | 0.70 25 | 0.09 42 | 0.79 63 | 1.16 66 | 0.51 51 | 0.78 111 | 1.38 89 | 0.48 104 | 0.16 107 | 0.15 93 | 0.26 95 | 0.55 59 | 1.16 60 | 0.55 24 |
OFH [38] | 62.2 | 0.10 55 | 0.25 44 | 0.09 77 | 0.19 25 | 0.69 48 | 0.14 26 | 0.43 86 | 1.02 95 | 0.17 25 | 0.17 64 | 1.08 107 | 0.08 18 | 0.87 80 | 1.25 78 | 0.73 96 | 0.43 52 | 1.69 120 | 0.32 57 | 0.10 19 | 0.13 50 | 0.18 49 | 0.59 69 | 1.40 84 | 0.74 69 |
AggregFlow [95] | 63.3 | 0.11 68 | 0.32 90 | 0.08 55 | 0.31 107 | 0.96 112 | 0.23 104 | 0.36 71 | 0.85 70 | 0.27 101 | 0.17 64 | 0.84 63 | 0.10 65 | 0.79 63 | 1.17 67 | 0.54 56 | 0.27 14 | 0.85 18 | 0.19 7 | 0.11 37 | 0.13 50 | 0.15 24 | 0.59 69 | 1.19 62 | 0.83 82 |
SimpleFlow [49] | 65.7 | 0.09 38 | 0.24 36 | 0.08 55 | 0.24 72 | 0.78 76 | 0.20 82 | 0.43 86 | 0.96 84 | 0.21 67 | 0.16 50 | 0.77 46 | 0.09 42 | 0.71 50 | 1.04 50 | 0.55 58 | 1.47 138 | 1.59 108 | 0.76 130 | 0.13 68 | 0.12 18 | 0.22 75 | 0.50 39 | 1.04 49 | 0.72 60 |
Occlusion-TV-L1 [63] | 68.8 | 0.09 38 | 0.26 51 | 0.07 24 | 0.22 48 | 0.74 63 | 0.18 55 | 0.51 102 | 1.15 109 | 0.21 67 | 0.18 73 | 0.91 83 | 0.10 65 | 0.87 80 | 1.25 78 | 0.72 92 | 0.47 64 | 1.38 89 | 0.36 83 | 0.10 19 | 0.12 18 | 0.11 11 | 0.83 114 | 1.78 121 | 0.96 105 |
PGM-C [118] | 69.5 | 0.12 93 | 0.36 111 | 0.09 77 | 0.25 79 | 0.84 92 | 0.20 82 | 0.32 59 | 0.78 63 | 0.25 88 | 0.20 84 | 1.06 100 | 0.12 82 | 0.88 86 | 1.30 93 | 0.66 78 | 0.31 21 | 1.30 80 | 0.23 18 | 0.10 19 | 0.11 4 | 0.17 32 | 0.61 75 | 1.37 79 | 0.76 74 |
SegFlow [156] | 70.2 | 0.12 93 | 0.36 111 | 0.09 77 | 0.25 79 | 0.85 95 | 0.20 82 | 0.32 59 | 0.77 61 | 0.25 88 | 0.20 84 | 1.08 107 | 0.12 82 | 0.89 90 | 1.31 100 | 0.69 84 | 0.39 42 | 1.21 68 | 0.29 41 | 0.10 19 | 0.11 4 | 0.17 32 | 0.56 62 | 1.22 69 | 0.71 57 |
WRT [146] | 70.4 | 0.11 68 | 0.28 64 | 0.07 24 | 0.28 100 | 0.87 100 | 0.20 82 | 0.55 106 | 1.12 102 | 0.20 60 | 0.10 6 | 0.36 5 | 0.08 18 | 0.66 35 | 0.96 34 | 0.44 33 | 1.72 148 | 1.61 109 | 0.88 139 | 0.14 80 | 0.14 79 | 0.24 83 | 0.70 92 | 1.04 49 | 0.75 73 |
Adaptive [20] | 73.2 | 0.09 38 | 0.26 51 | 0.06 10 | 0.23 64 | 0.78 76 | 0.18 55 | 0.54 105 | 1.19 115 | 0.21 67 | 0.18 73 | 0.91 83 | 0.10 65 | 0.88 86 | 1.25 78 | 0.73 96 | 0.50 73 | 1.28 74 | 0.31 52 | 0.14 80 | 0.16 104 | 0.22 75 | 0.65 80 | 1.37 79 | 0.79 77 |
SRR-TVOF-NL [89] | 73.4 | 0.11 68 | 0.29 73 | 0.08 55 | 0.28 100 | 0.91 105 | 0.20 82 | 0.39 78 | 0.92 77 | 0.24 83 | 0.17 64 | 0.77 46 | 0.09 42 | 0.81 68 | 1.11 59 | 0.79 104 | 0.33 26 | 1.02 33 | 0.28 35 | 0.19 129 | 0.18 131 | 0.31 125 | 0.57 65 | 1.01 38 | 0.77 75 |
DPOF [18] | 73.5 | 0.12 93 | 0.33 96 | 0.08 55 | 0.26 90 | 0.80 83 | 0.20 82 | 0.24 21 | 0.49 19 | 0.20 60 | 0.19 78 | 0.83 61 | 0.13 94 | 0.66 35 | 0.98 41 | 0.40 25 | 1.11 126 | 1.41 94 | 0.57 118 | 0.25 153 | 0.14 79 | 0.55 153 | 0.51 45 | 1.02 41 | 0.54 21 |
CPM-Flow [114] | 73.8 | 0.12 93 | 0.36 111 | 0.09 77 | 0.25 79 | 0.85 95 | 0.20 82 | 0.32 59 | 0.77 61 | 0.25 88 | 0.20 84 | 1.06 100 | 0.12 82 | 0.88 86 | 1.30 93 | 0.65 75 | 0.39 42 | 1.22 69 | 0.30 48 | 0.10 19 | 0.12 18 | 0.17 32 | 0.68 86 | 1.52 96 | 0.89 96 |
ROF-ND [105] | 74.1 | 0.12 93 | 0.29 73 | 0.09 77 | 0.26 90 | 0.72 54 | 0.17 44 | 0.36 71 | 0.86 73 | 0.17 25 | 0.14 18 | 0.46 9 | 0.12 82 | 0.83 72 | 1.18 68 | 0.69 84 | 0.50 73 | 1.15 58 | 0.35 77 | 0.21 141 | 0.17 119 | 0.36 135 | 0.69 90 | 1.40 84 | 0.74 69 |
DeepFlow2 [106] | 74.2 | 0.10 55 | 0.29 73 | 0.09 77 | 0.25 79 | 0.79 81 | 0.19 65 | 0.40 82 | 0.96 84 | 0.23 78 | 0.21 94 | 1.08 107 | 0.12 82 | 0.80 66 | 1.18 68 | 0.62 71 | 0.36 36 | 1.45 98 | 0.24 23 | 0.11 37 | 0.11 4 | 0.24 83 | 0.82 113 | 1.68 116 | 1.00 110 |
FF++_ROB [141] | 74.8 | 0.12 93 | 0.38 119 | 0.09 77 | 0.25 79 | 0.83 89 | 0.20 82 | 0.38 74 | 0.92 77 | 0.27 101 | 0.16 50 | 0.70 25 | 0.11 74 | 0.87 80 | 1.29 89 | 0.64 74 | 0.63 102 | 1.18 62 | 0.41 91 | 0.10 19 | 0.12 18 | 0.18 49 | 0.67 83 | 1.37 79 | 0.99 109 |
TCOF [69] | 74.9 | 0.11 68 | 0.28 64 | 0.09 77 | 0.24 72 | 0.76 69 | 0.19 65 | 0.53 103 | 1.15 109 | 0.29 106 | 0.24 103 | 0.88 76 | 0.20 123 | 0.88 86 | 1.26 83 | 0.69 84 | 0.38 39 | 0.93 24 | 0.29 41 | 0.16 107 | 0.16 104 | 0.22 75 | 0.49 33 | 1.03 45 | 0.65 42 |
ACK-Prior [27] | 76.1 | 0.11 68 | 0.25 44 | 0.09 77 | 0.18 16 | 0.59 24 | 0.13 16 | 0.27 31 | 0.64 37 | 0.16 18 | 0.15 36 | 0.78 50 | 0.09 42 | 0.82 70 | 1.14 63 | 0.71 90 | 1.90 153 | 1.90 132 | 0.99 147 | 0.23 150 | 0.17 119 | 0.49 152 | 0.77 105 | 1.44 89 | 0.91 97 |
Complementary OF [21] | 76.7 | 0.11 68 | 0.28 64 | 0.10 101 | 0.18 16 | 0.63 30 | 0.12 8 | 0.31 54 | 0.75 56 | 0.18 37 | 0.19 78 | 0.97 93 | 0.12 82 | 0.97 111 | 1.31 100 | 1.00 122 | 1.78 151 | 1.73 123 | 0.87 138 | 0.11 37 | 0.12 18 | 0.22 75 | 0.68 86 | 1.48 90 | 0.95 102 |
RFlow [88] | 77.0 | 0.10 55 | 0.27 61 | 0.09 77 | 0.19 25 | 0.64 34 | 0.15 32 | 0.46 97 | 1.07 97 | 0.18 37 | 0.22 100 | 1.31 125 | 0.11 74 | 0.92 99 | 1.30 93 | 0.91 114 | 0.42 50 | 1.42 96 | 0.31 52 | 0.14 80 | 0.13 50 | 0.24 83 | 0.77 105 | 1.66 110 | 0.94 101 |
EpicFlow [100] | 78.5 | 0.12 93 | 0.36 111 | 0.09 77 | 0.25 79 | 0.85 95 | 0.21 97 | 0.39 78 | 1.00 91 | 0.25 88 | 0.19 78 | 1.01 96 | 0.11 74 | 0.89 90 | 1.31 100 | 0.69 84 | 0.53 81 | 1.31 82 | 0.34 71 | 0.10 19 | 0.11 4 | 0.17 32 | 0.67 83 | 1.43 88 | 0.87 92 |
ComplOF-FED-GPU [35] | 80.5 | 0.11 68 | 0.29 73 | 0.10 101 | 0.21 39 | 0.78 76 | 0.14 26 | 0.32 59 | 0.79 66 | 0.17 25 | 0.19 78 | 0.99 95 | 0.11 74 | 0.89 90 | 1.29 89 | 0.73 96 | 1.25 129 | 1.74 124 | 0.64 122 | 0.14 80 | 0.13 50 | 0.30 118 | 0.64 78 | 1.50 93 | 0.83 82 |
HBM-GC [103] | 80.6 | 0.14 115 | 0.28 64 | 0.12 118 | 0.26 90 | 0.69 48 | 0.22 101 | 0.34 66 | 0.75 56 | 0.22 71 | 0.21 94 | 0.77 46 | 0.15 103 | 0.67 40 | 0.97 38 | 0.52 53 | 0.63 102 | 0.81 13 | 0.44 95 | 0.22 145 | 0.19 143 | 0.36 135 | 0.54 54 | 1.21 68 | 0.78 76 |
Classic++ [32] | 81.2 | 0.09 38 | 0.25 44 | 0.07 24 | 0.23 64 | 0.78 76 | 0.19 65 | 0.43 86 | 1.00 91 | 0.22 71 | 0.20 84 | 1.11 111 | 0.10 65 | 0.87 80 | 1.30 93 | 0.66 78 | 0.47 64 | 1.62 110 | 0.33 65 | 0.17 118 | 0.14 79 | 0.32 128 | 0.79 109 | 1.64 108 | 0.92 98 |
Steered-L1 [116] | 81.8 | 0.09 38 | 0.22 19 | 0.08 55 | 0.14 2 | 0.49 4 | 0.12 8 | 0.28 36 | 0.69 46 | 0.16 18 | 0.18 73 | 1.06 100 | 0.09 42 | 0.89 90 | 1.24 77 | 0.91 114 | 1.71 147 | 1.68 118 | 0.94 142 | 0.26 155 | 0.18 131 | 0.71 157 | 1.06 130 | 1.80 123 | 1.64 137 |
Aniso. Huber-L1 [22] | 83.5 | 0.10 55 | 0.28 64 | 0.08 55 | 0.31 107 | 0.88 101 | 0.28 113 | 0.56 109 | 1.13 104 | 0.29 106 | 0.20 84 | 0.92 86 | 0.13 94 | 0.84 75 | 1.20 70 | 0.70 88 | 0.39 42 | 1.23 70 | 0.28 35 | 0.17 118 | 0.15 93 | 0.27 101 | 0.64 78 | 1.36 78 | 0.79 77 |
LiteFlowNet [138] | 83.5 | 0.16 120 | 0.44 132 | 0.11 109 | 0.31 107 | 0.90 104 | 0.24 106 | 0.39 78 | 0.92 77 | 0.26 96 | 0.19 78 | 0.75 41 | 0.12 82 | 0.96 106 | 1.38 115 | 0.74 100 | 0.44 57 | 1.28 74 | 0.29 41 | 0.10 19 | 0.16 104 | 0.12 14 | 0.67 83 | 1.35 75 | 0.84 86 |
TF+OM [98] | 84.5 | 0.10 55 | 0.26 51 | 0.07 24 | 0.22 48 | 0.66 39 | 0.19 65 | 0.36 71 | 0.78 63 | 0.39 116 | 0.20 84 | 0.89 80 | 0.13 94 | 0.98 116 | 1.31 100 | 1.03 123 | 0.56 86 | 1.55 106 | 0.33 65 | 0.16 107 | 0.17 119 | 0.27 101 | 0.76 101 | 1.59 106 | 0.98 107 |
CVENG22+RIC [199] | 85.5 | 0.11 68 | 0.36 111 | 0.08 55 | 0.26 90 | 0.93 107 | 0.20 82 | 0.44 92 | 1.12 102 | 0.25 88 | 0.20 84 | 1.07 104 | 0.12 82 | 1.15 142 | 1.60 148 | 1.09 129 | 0.48 70 | 1.50 104 | 0.35 77 | 0.10 19 | 0.11 4 | 0.17 32 | 0.66 82 | 1.54 99 | 0.80 80 |
C-RAFT_RVC [181] | 85.5 | 0.21 136 | 0.46 134 | 0.16 132 | 0.47 127 | 1.04 121 | 0.42 129 | 0.50 100 | 0.96 84 | 0.50 123 | 0.22 100 | 0.76 44 | 0.16 105 | 0.93 101 | 1.31 100 | 0.72 92 | 0.35 33 | 0.97 26 | 0.32 57 | 0.13 68 | 0.16 104 | 0.17 32 | 0.51 45 | 1.03 45 | 0.45 15 |
CRTflow [81] | 86.8 | 0.11 68 | 0.30 80 | 0.08 55 | 0.24 72 | 0.77 72 | 0.17 44 | 0.50 100 | 1.13 104 | 0.21 67 | 0.23 102 | 1.24 119 | 0.12 82 | 0.86 79 | 1.27 85 | 0.65 75 | 0.60 97 | 1.95 138 | 0.50 106 | 0.12 54 | 0.14 79 | 0.21 68 | 0.79 109 | 1.77 120 | 0.98 107 |
DeepFlow [85] | 86.8 | 0.12 93 | 0.31 85 | 0.11 109 | 0.28 100 | 0.82 87 | 0.22 101 | 0.44 92 | 1.00 91 | 0.33 111 | 0.26 113 | 1.34 128 | 0.15 103 | 0.81 68 | 1.21 72 | 0.58 62 | 0.38 39 | 1.55 106 | 0.25 27 | 0.11 37 | 0.11 4 | 0.24 83 | 0.93 125 | 1.82 125 | 1.12 122 |
DMF_ROB [135] | 87.2 | 0.11 68 | 0.32 90 | 0.09 77 | 0.25 79 | 0.83 89 | 0.19 65 | 0.45 95 | 1.10 101 | 0.24 83 | 0.21 94 | 1.08 107 | 0.12 82 | 0.91 97 | 1.31 100 | 0.82 107 | 0.70 106 | 1.80 128 | 0.46 101 | 0.10 19 | 0.11 4 | 0.19 57 | 0.83 114 | 1.73 118 | 1.01 113 |
TriangleFlow [30] | 89.0 | 0.11 68 | 0.29 73 | 0.09 77 | 0.26 90 | 0.95 110 | 0.17 44 | 0.47 98 | 1.07 97 | 0.18 37 | 0.16 50 | 0.87 74 | 0.09 42 | 1.07 127 | 1.47 135 | 1.10 130 | 0.87 116 | 1.39 91 | 0.57 118 | 0.15 97 | 0.19 143 | 0.23 82 | 0.63 77 | 1.33 73 | 0.84 86 |
BriefMatch [122] | 89.0 | 0.09 38 | 0.24 36 | 0.07 24 | 0.21 39 | 0.68 43 | 0.16 38 | 0.25 26 | 0.59 31 | 0.16 18 | 0.20 84 | 1.11 111 | 0.10 65 | 0.93 101 | 1.29 89 | 0.98 117 | 1.69 146 | 1.63 112 | 1.07 151 | 0.25 153 | 0.18 131 | 0.73 158 | 1.25 141 | 1.94 132 | 2.15 151 |
TV-L1-improved [17] | 90.6 | 0.09 38 | 0.26 51 | 0.07 24 | 0.20 37 | 0.71 53 | 0.16 38 | 0.53 103 | 1.18 114 | 0.22 71 | 0.21 94 | 1.24 119 | 0.11 74 | 0.90 94 | 1.31 100 | 0.72 92 | 1.51 140 | 1.93 135 | 0.84 134 | 0.18 126 | 0.17 119 | 0.31 125 | 0.73 95 | 1.62 107 | 0.87 92 |
SIOF [67] | 92.8 | 0.11 68 | 0.28 64 | 0.09 77 | 0.27 98 | 0.95 110 | 0.20 82 | 0.60 121 | 1.17 111 | 0.48 121 | 0.25 108 | 1.13 113 | 0.16 105 | 0.97 111 | 1.33 107 | 1.03 123 | 0.43 52 | 1.32 83 | 0.36 83 | 0.13 68 | 0.13 50 | 0.18 49 | 0.76 101 | 1.52 96 | 1.14 126 |
ContinualFlow_ROB [148] | 94.1 | 0.19 131 | 0.46 134 | 0.14 123 | 0.46 126 | 1.04 121 | 0.41 126 | 0.59 118 | 1.22 118 | 0.58 128 | 0.28 124 | 1.06 100 | 0.19 119 | 0.98 116 | 1.41 125 | 0.61 68 | 0.75 109 | 1.33 85 | 0.56 116 | 0.07 5 | 0.12 18 | 0.09 8 | 0.55 59 | 1.19 62 | 0.53 20 |
CBF [12] | 95.1 | 0.10 55 | 0.28 64 | 0.09 77 | 0.34 114 | 0.80 83 | 0.37 122 | 0.43 86 | 0.95 83 | 0.26 96 | 0.21 94 | 1.14 114 | 0.13 94 | 0.90 94 | 1.27 85 | 0.82 107 | 0.41 47 | 1.23 70 | 0.30 48 | 0.23 150 | 0.19 143 | 0.39 140 | 0.76 101 | 1.56 101 | 1.02 114 |
LocallyOriented [52] | 95.2 | 0.12 93 | 0.35 102 | 0.08 55 | 0.33 113 | 1.01 115 | 0.25 109 | 0.61 125 | 1.30 127 | 0.28 103 | 0.18 73 | 0.80 55 | 0.13 94 | 0.93 101 | 1.29 89 | 0.79 104 | 0.98 122 | 1.48 102 | 0.56 116 | 0.12 54 | 0.14 79 | 0.21 68 | 0.73 95 | 1.48 90 | 0.95 102 |
DF-Auto [113] | 96.6 | 0.13 109 | 0.36 111 | 0.08 55 | 0.45 125 | 1.03 119 | 0.41 126 | 0.56 109 | 1.13 104 | 0.58 128 | 0.26 113 | 1.17 116 | 0.17 110 | 0.96 106 | 1.30 93 | 1.03 123 | 0.30 19 | 1.17 59 | 0.23 18 | 0.14 80 | 0.18 131 | 0.13 21 | 0.85 117 | 1.66 110 | 1.06 116 |
Brox et al. [5] | 98.0 | 0.11 68 | 0.32 90 | 0.11 109 | 0.27 98 | 0.93 107 | 0.22 101 | 0.39 78 | 0.94 82 | 0.24 83 | 0.24 103 | 1.25 121 | 0.13 94 | 1.10 136 | 1.39 123 | 1.43 147 | 0.89 119 | 1.77 126 | 0.55 114 | 0.10 19 | 0.13 50 | 0.11 11 | 0.91 122 | 1.83 127 | 1.13 124 |
CLG-TV [48] | 98.4 | 0.11 68 | 0.29 73 | 0.09 77 | 0.32 111 | 0.86 99 | 0.30 115 | 0.55 106 | 1.17 111 | 0.28 103 | 0.25 108 | 1.05 98 | 0.17 110 | 0.92 99 | 1.30 93 | 0.79 104 | 0.47 64 | 1.72 122 | 0.35 77 | 0.17 118 | 0.17 119 | 0.25 91 | 0.74 98 | 1.57 103 | 0.88 94 |
CompactFlow_ROB [155] | 98.8 | 0.22 139 | 0.48 139 | 0.14 123 | 0.44 124 | 1.02 116 | 0.40 125 | 0.60 121 | 1.13 104 | 0.74 140 | 0.26 113 | 0.88 76 | 0.20 123 | 1.01 120 | 1.44 133 | 0.73 96 | 0.41 47 | 1.41 94 | 0.34 71 | 0.08 10 | 0.13 50 | 0.09 8 | 0.75 99 | 1.53 98 | 0.95 102 |
ResPWCR_ROB [140] | 98.9 | 0.19 131 | 0.43 130 | 0.16 132 | 0.34 114 | 0.84 92 | 0.29 114 | 0.45 95 | 0.96 84 | 0.37 114 | 0.25 108 | 0.85 67 | 0.19 119 | 0.85 76 | 1.20 70 | 0.71 90 | 0.88 117 | 1.24 72 | 0.64 122 | 0.14 80 | 0.17 119 | 0.21 68 | 0.70 92 | 1.42 86 | 0.83 82 |
Local-TV-L1 [65] | 99.2 | 0.14 115 | 0.34 98 | 0.14 123 | 0.47 127 | 1.05 124 | 0.43 130 | 0.72 135 | 1.25 122 | 0.52 125 | 0.31 131 | 1.39 133 | 0.22 127 | 0.83 72 | 1.21 72 | 0.63 73 | 0.39 42 | 1.29 77 | 0.29 41 | 0.11 37 | 0.11 4 | 0.22 75 | 1.06 130 | 1.87 128 | 1.67 139 |
F-TV-L1 [15] | 99.2 | 0.14 115 | 0.35 102 | 0.14 123 | 0.34 114 | 0.98 113 | 0.26 111 | 0.59 118 | 1.19 115 | 0.26 96 | 0.27 120 | 1.36 130 | 0.16 105 | 0.90 94 | 1.30 93 | 0.76 102 | 0.54 82 | 1.62 110 | 0.36 83 | 0.13 68 | 0.15 93 | 0.20 62 | 0.68 86 | 1.56 101 | 0.66 45 |
Fusion [6] | 99.5 | 0.11 68 | 0.34 98 | 0.10 101 | 0.19 25 | 0.69 48 | 0.16 38 | 0.29 43 | 0.66 42 | 0.23 78 | 0.20 84 | 1.19 117 | 0.14 101 | 1.07 127 | 1.42 127 | 1.22 138 | 1.35 133 | 1.49 103 | 0.86 136 | 0.20 135 | 0.20 146 | 0.26 95 | 1.07 133 | 2.07 140 | 1.39 133 |
OFRF [132] | 100.0 | 0.13 109 | 0.32 90 | 0.11 109 | 0.60 139 | 1.10 130 | 0.58 140 | 0.65 130 | 1.19 115 | 0.51 124 | 0.25 108 | 0.84 63 | 0.20 123 | 0.76 61 | 1.13 62 | 0.44 33 | 0.57 89 | 1.12 52 | 0.32 57 | 0.16 107 | 0.16 104 | 0.34 132 | 0.86 119 | 1.28 71 | 1.48 134 |
Rannacher [23] | 100.5 | 0.11 68 | 0.31 85 | 0.09 77 | 0.25 79 | 0.84 92 | 0.21 97 | 0.57 114 | 1.27 124 | 0.26 96 | 0.24 103 | 1.32 126 | 0.13 94 | 0.91 97 | 1.33 107 | 0.72 92 | 1.49 139 | 1.95 138 | 0.78 131 | 0.15 97 | 0.14 79 | 0.26 95 | 0.69 90 | 1.58 104 | 0.86 89 |
LSM_FLOW_RVC [182] | 101.2 | 0.23 145 | 0.58 149 | 0.19 141 | 0.49 130 | 1.32 138 | 0.41 126 | 0.65 130 | 1.47 138 | 0.49 122 | 0.33 133 | 1.37 131 | 0.22 127 | 0.96 106 | 1.37 113 | 0.70 88 | 0.40 46 | 1.45 98 | 0.34 71 | 0.09 14 | 0.14 79 | 0.12 14 | 0.60 72 | 1.38 83 | 0.63 34 |
Second-order prior [8] | 102.8 | 0.11 68 | 0.31 85 | 0.09 77 | 0.26 90 | 0.93 107 | 0.20 82 | 0.57 114 | 1.25 122 | 0.26 96 | 0.20 84 | 1.04 97 | 0.12 82 | 0.94 104 | 1.34 109 | 0.83 110 | 0.61 100 | 1.93 135 | 0.47 103 | 0.20 135 | 0.16 104 | 0.34 132 | 0.77 105 | 1.64 108 | 1.07 118 |
TriFlow [93] | 103.0 | 0.12 93 | 0.33 96 | 0.09 77 | 0.30 105 | 0.89 102 | 0.27 112 | 0.56 109 | 1.17 111 | 0.57 127 | 0.21 94 | 0.92 86 | 0.16 105 | 1.07 127 | 1.38 115 | 1.19 136 | 0.35 33 | 1.19 65 | 0.29 41 | 0.52 161 | 0.22 152 | 1.30 161 | 0.73 95 | 1.42 86 | 0.83 82 |
Bartels [41] | 105.2 | 0.12 93 | 0.30 80 | 0.11 109 | 0.22 48 | 0.65 37 | 0.19 65 | 0.35 68 | 0.86 73 | 0.23 78 | 0.28 124 | 1.32 126 | 0.18 114 | 0.97 111 | 1.38 115 | 0.98 117 | 1.20 128 | 1.76 125 | 0.78 131 | 0.20 135 | 0.17 119 | 0.48 151 | 0.91 122 | 1.88 129 | 1.22 127 |
p-harmonic [29] | 105.7 | 0.12 93 | 0.36 111 | 0.11 109 | 0.25 79 | 0.82 87 | 0.21 97 | 0.57 114 | 1.24 119 | 0.28 103 | 0.26 113 | 1.20 118 | 0.19 119 | 1.07 127 | 1.39 123 | 1.31 142 | 0.44 57 | 1.65 115 | 0.37 87 | 0.15 97 | 0.16 104 | 0.21 68 | 0.87 120 | 1.76 119 | 1.06 116 |
Dynamic MRF [7] | 106.7 | 0.12 93 | 0.34 98 | 0.11 109 | 0.22 48 | 0.89 102 | 0.16 38 | 0.44 92 | 1.13 104 | 0.20 60 | 0.24 103 | 1.29 124 | 0.14 101 | 1.11 137 | 1.52 142 | 1.13 134 | 1.54 141 | 2.37 151 | 0.93 140 | 0.13 68 | 0.12 18 | 0.31 125 | 1.27 143 | 2.33 151 | 1.66 138 |
FlowNetS+ft+v [110] | 108.4 | 0.11 68 | 0.31 85 | 0.09 77 | 0.30 105 | 0.91 105 | 0.25 109 | 0.62 128 | 1.27 124 | 0.44 119 | 0.27 120 | 1.26 122 | 0.18 114 | 1.04 125 | 1.38 115 | 1.10 130 | 0.46 62 | 1.66 116 | 0.34 71 | 0.17 118 | 0.18 131 | 0.35 134 | 0.75 99 | 1.67 115 | 1.00 110 |
EAI-Flow [147] | 108.6 | 0.19 131 | 0.43 130 | 0.15 129 | 0.38 120 | 1.02 116 | 0.30 115 | 0.47 98 | 1.05 96 | 0.37 114 | 0.25 108 | 0.96 92 | 0.19 119 | 1.01 120 | 1.44 133 | 0.76 102 | 0.58 92 | 1.37 88 | 0.42 93 | 0.19 129 | 0.16 104 | 0.28 107 | 0.68 86 | 1.48 90 | 0.88 94 |
SegOF [10] | 109.6 | 0.15 119 | 0.36 111 | 0.10 101 | 0.57 133 | 1.16 131 | 0.59 142 | 0.68 132 | 1.24 119 | 0.64 132 | 0.32 132 | 0.86 69 | 0.26 133 | 1.18 145 | 1.50 141 | 1.47 149 | 1.63 145 | 2.09 142 | 0.96 144 | 0.08 10 | 0.13 50 | 0.12 14 | 0.70 92 | 1.50 93 | 0.69 51 |
CNN-flow-warp+ref [115] | 110.3 | 0.13 109 | 0.38 119 | 0.11 109 | 0.31 107 | 0.85 95 | 0.30 115 | 0.59 118 | 1.31 130 | 0.41 117 | 0.28 124 | 1.39 133 | 0.17 110 | 1.09 134 | 1.42 127 | 1.33 143 | 0.80 112 | 1.94 137 | 0.48 104 | 0.10 19 | 0.12 18 | 0.17 32 | 1.35 146 | 2.18 147 | 1.72 142 |
EPMNet [131] | 110.8 | 0.22 139 | 0.51 141 | 0.17 136 | 0.65 143 | 1.35 143 | 0.58 140 | 0.57 114 | 1.01 94 | 0.63 131 | 0.29 128 | 1.07 104 | 0.22 127 | 0.97 111 | 1.38 115 | 0.68 82 | 0.59 94 | 1.29 77 | 0.50 106 | 0.17 118 | 0.21 149 | 0.22 75 | 0.65 80 | 1.51 95 | 0.51 17 |
FlowNet2 [120] | 110.8 | 0.22 139 | 0.50 140 | 0.17 136 | 0.67 144 | 1.32 138 | 0.61 144 | 0.61 125 | 1.08 100 | 0.69 135 | 0.28 124 | 0.89 80 | 0.22 127 | 0.97 111 | 1.38 115 | 0.68 82 | 0.59 94 | 1.29 77 | 0.50 106 | 0.19 129 | 0.22 152 | 0.27 101 | 0.60 72 | 1.32 72 | 0.51 17 |
WOLF_ROB [144] | 112.3 | 0.16 120 | 0.46 134 | 0.12 118 | 0.51 132 | 1.46 147 | 0.36 121 | 0.74 136 | 1.45 137 | 0.41 117 | 0.26 113 | 1.05 98 | 0.18 114 | 1.05 126 | 1.42 127 | 1.11 132 | 1.34 132 | 1.63 112 | 0.75 129 | 0.11 37 | 0.13 50 | 0.17 32 | 0.80 112 | 1.55 100 | 1.10 119 |
LFNet_ROB [145] | 112.7 | 0.20 135 | 0.52 144 | 0.15 129 | 0.37 118 | 1.03 119 | 0.31 118 | 0.56 109 | 1.30 127 | 0.36 112 | 0.24 103 | 0.98 94 | 0.18 114 | 1.17 143 | 1.61 149 | 1.12 133 | 0.56 86 | 1.90 132 | 0.44 95 | 0.12 54 | 0.16 104 | 0.15 24 | 0.85 117 | 1.92 131 | 1.02 114 |
LDOF [28] | 113.1 | 0.12 93 | 0.35 102 | 0.10 101 | 0.32 111 | 1.06 125 | 0.24 106 | 0.43 86 | 0.98 89 | 0.30 109 | 0.45 138 | 2.48 158 | 0.26 133 | 1.01 120 | 1.37 113 | 1.05 127 | 1.10 125 | 2.08 141 | 0.67 125 | 0.12 54 | 0.15 93 | 0.24 83 | 0.94 126 | 2.05 137 | 1.10 119 |
IRR-PWC_RVC [180] | 113.3 | 0.25 147 | 0.55 145 | 0.16 132 | 0.58 135 | 1.25 135 | 0.53 137 | 0.68 132 | 1.27 124 | 0.74 140 | 0.29 128 | 0.82 58 | 0.25 131 | 0.94 104 | 1.36 111 | 0.65 75 | 0.50 73 | 1.66 116 | 0.39 89 | 0.16 107 | 0.21 149 | 0.18 49 | 0.79 109 | 1.58 104 | 0.86 89 |
Ad-TV-NDC [36] | 115.0 | 0.23 145 | 0.40 125 | 0.31 155 | 0.92 154 | 1.42 146 | 0.93 153 | 1.05 147 | 1.60 144 | 0.74 140 | 0.48 139 | 1.27 123 | 0.49 142 | 0.85 76 | 1.25 78 | 0.60 66 | 0.44 57 | 1.47 100 | 0.32 57 | 0.12 54 | 0.13 50 | 0.19 57 | 1.59 153 | 2.06 139 | 2.87 159 |
AugFNG_ROB [139] | 115.4 | 0.22 139 | 0.51 141 | 0.15 129 | 0.58 135 | 1.16 131 | 0.57 139 | 0.69 134 | 1.35 135 | 0.67 134 | 0.27 120 | 0.92 86 | 0.20 123 | 1.09 134 | 1.53 145 | 0.89 112 | 0.62 101 | 1.84 131 | 0.51 110 | 0.11 37 | 0.16 104 | 0.15 24 | 0.84 116 | 1.66 110 | 0.93 99 |
StereoFlow [44] | 117.7 | 0.46 163 | 0.77 162 | 0.47 160 | 1.41 159 | 2.26 162 | 1.16 156 | 1.30 159 | 1.94 157 | 1.02 156 | 1.33 157 | 2.98 160 | 1.16 156 | 1.08 132 | 1.49 138 | 0.99 119 | 0.31 21 | 1.40 92 | 0.22 17 | 0.07 5 | 0.11 4 | 0.08 3 | 0.98 128 | 1.88 129 | 1.31 130 |
Shiralkar [42] | 118.4 | 0.13 109 | 0.39 122 | 0.10 101 | 0.28 100 | 1.08 126 | 0.19 65 | 0.61 125 | 1.33 133 | 0.25 88 | 0.27 120 | 1.35 129 | 0.18 114 | 1.01 120 | 1.47 135 | 0.90 113 | 0.88 117 | 2.04 140 | 0.54 111 | 0.20 135 | 0.16 104 | 0.42 143 | 1.04 129 | 2.13 144 | 1.10 119 |
Learning Flow [11] | 119.4 | 0.11 68 | 0.32 90 | 0.09 77 | 0.29 104 | 0.99 114 | 0.23 104 | 0.55 106 | 1.24 119 | 0.29 106 | 0.36 134 | 1.56 140 | 0.25 131 | 1.25 150 | 1.64 151 | 1.41 145 | 1.55 143 | 2.32 150 | 0.85 135 | 0.14 80 | 0.18 131 | 0.24 83 | 1.09 134 | 2.09 142 | 1.27 128 |
StereoOF-V1MT [117] | 119.8 | 0.13 109 | 0.40 125 | 0.10 101 | 0.34 114 | 1.33 141 | 0.19 65 | 0.60 121 | 1.42 136 | 0.22 71 | 0.26 113 | 1.38 132 | 0.16 105 | 1.21 147 | 1.65 152 | 1.22 138 | 1.60 144 | 2.42 152 | 0.93 140 | 0.12 54 | 0.14 79 | 0.25 91 | 1.46 151 | 2.52 153 | 1.70 141 |
IAOF2 [51] | 123.7 | 0.14 115 | 0.35 102 | 0.12 118 | 0.42 122 | 1.09 128 | 0.38 123 | 0.64 129 | 1.32 132 | 0.55 126 | 0.92 149 | 1.60 142 | 1.04 151 | 1.00 119 | 1.38 115 | 0.94 116 | 0.80 112 | 1.43 97 | 0.58 120 | 0.20 135 | 0.18 131 | 0.32 128 | 0.92 124 | 1.66 110 | 1.13 124 |
Filter Flow [19] | 125.6 | 0.17 124 | 0.39 122 | 0.13 121 | 0.43 123 | 1.09 128 | 0.38 123 | 0.75 137 | 1.34 134 | 0.78 145 | 0.70 146 | 1.54 139 | 0.68 145 | 1.13 140 | 1.38 115 | 1.51 150 | 0.57 89 | 1.32 83 | 0.44 95 | 0.22 145 | 0.23 157 | 0.26 95 | 0.96 127 | 1.66 110 | 1.12 122 |
TVL1_RVC [175] | 126.5 | 0.31 152 | 0.55 145 | 0.37 158 | 0.88 151 | 1.38 145 | 0.92 152 | 1.17 150 | 1.79 151 | 0.99 154 | 0.86 148 | 1.88 148 | 0.91 148 | 1.07 127 | 1.43 132 | 1.19 136 | 0.57 89 | 1.81 129 | 0.43 94 | 0.09 14 | 0.13 50 | 0.12 14 | 1.44 150 | 2.25 149 | 2.07 149 |
GraphCuts [14] | 127.0 | 0.16 120 | 0.38 119 | 0.14 123 | 0.59 138 | 1.36 144 | 0.46 131 | 0.56 109 | 1.07 97 | 0.64 132 | 0.26 113 | 1.14 114 | 0.17 110 | 0.96 106 | 1.35 110 | 0.84 111 | 2.25 160 | 1.79 127 | 1.22 154 | 0.22 145 | 0.17 119 | 0.43 145 | 1.22 140 | 2.05 137 | 1.78 144 |
Modified CLG [34] | 128.3 | 0.19 131 | 0.46 134 | 0.17 136 | 0.49 130 | 1.08 126 | 0.51 134 | 0.93 141 | 1.59 142 | 0.82 147 | 0.49 140 | 1.65 145 | 0.42 139 | 1.14 141 | 1.48 137 | 1.42 146 | 1.06 124 | 2.16 146 | 0.68 127 | 0.12 54 | 0.14 79 | 0.20 62 | 1.12 137 | 2.17 146 | 1.52 135 |
IAOF [50] | 128.8 | 0.17 124 | 0.39 122 | 0.18 140 | 0.61 140 | 1.23 134 | 0.55 138 | 1.20 152 | 1.87 155 | 0.73 138 | 0.66 145 | 1.46 135 | 0.72 146 | 0.99 118 | 1.36 111 | 0.99 119 | 0.73 108 | 1.83 130 | 0.45 99 | 0.18 126 | 0.15 93 | 0.27 101 | 1.30 144 | 1.81 124 | 2.09 150 |
Black & Anandan [4] | 129.3 | 0.18 129 | 0.42 128 | 0.19 141 | 0.58 135 | 1.31 137 | 0.50 133 | 0.95 143 | 1.58 141 | 0.70 136 | 0.49 140 | 1.59 141 | 0.45 140 | 1.08 132 | 1.42 127 | 1.22 138 | 1.43 136 | 2.28 148 | 0.83 133 | 0.15 97 | 0.17 119 | 0.17 32 | 1.11 135 | 1.98 134 | 1.30 129 |
SPSA-learn [13] | 129.3 | 0.18 129 | 0.45 133 | 0.17 136 | 0.57 133 | 1.32 138 | 0.51 134 | 0.84 139 | 1.50 139 | 0.72 137 | 0.52 142 | 1.64 144 | 0.49 142 | 1.12 139 | 1.42 127 | 1.39 144 | 1.75 150 | 2.14 144 | 1.06 150 | 0.13 68 | 0.13 50 | 0.19 57 | 1.32 145 | 2.08 141 | 1.73 143 |
GroupFlow [9] | 129.4 | 0.21 136 | 0.51 141 | 0.21 145 | 0.79 148 | 1.69 152 | 0.72 149 | 0.86 140 | 1.64 145 | 0.74 140 | 0.30 130 | 1.07 104 | 0.26 133 | 1.29 153 | 1.81 156 | 0.82 107 | 1.94 155 | 2.30 149 | 1.36 155 | 0.11 37 | 0.14 79 | 0.19 57 | 1.06 130 | 1.96 133 | 1.35 132 |
BlockOverlap [61] | 130.0 | 0.17 124 | 0.35 102 | 0.16 132 | 0.48 129 | 1.02 116 | 0.46 131 | 0.75 137 | 1.31 130 | 0.59 130 | 0.40 137 | 1.47 136 | 0.33 138 | 0.96 106 | 1.26 83 | 1.14 135 | 1.40 135 | 1.47 100 | 0.86 136 | 0.31 158 | 0.22 152 | 0.86 160 | 1.20 139 | 1.78 121 | 2.19 152 |
HBpMotionGpu [43] | 131.4 | 0.17 124 | 0.41 127 | 0.13 121 | 0.61 140 | 1.34 142 | 0.59 142 | 0.95 143 | 1.68 146 | 0.76 144 | 0.38 135 | 1.63 143 | 0.27 136 | 1.11 137 | 1.49 138 | 1.27 141 | 0.66 105 | 1.53 105 | 0.45 99 | 0.20 135 | 0.18 131 | 0.28 107 | 1.12 137 | 2.04 136 | 1.67 139 |
2D-CLG [1] | 131.5 | 0.28 149 | 0.62 153 | 0.21 145 | 0.67 144 | 1.21 133 | 0.70 147 | 1.12 148 | 1.80 152 | 0.99 154 | 1.07 153 | 2.06 151 | 1.12 155 | 1.23 149 | 1.52 142 | 1.62 154 | 1.54 141 | 2.15 145 | 0.96 144 | 0.10 19 | 0.11 4 | 0.16 29 | 1.38 149 | 2.26 150 | 1.83 146 |
UnFlow [127] | 132.2 | 0.38 159 | 0.70 157 | 0.25 151 | 0.76 146 | 1.46 147 | 0.70 147 | 0.98 145 | 1.75 148 | 0.73 138 | 0.55 143 | 1.52 138 | 0.48 141 | 1.47 156 | 1.83 158 | 1.61 153 | 0.91 121 | 2.19 147 | 0.72 128 | 0.13 68 | 0.16 104 | 0.12 14 | 0.87 120 | 2.03 135 | 1.00 110 |
2bit-BM-tele [96] | 132.8 | 0.21 136 | 0.42 128 | 0.23 149 | 0.39 121 | 1.04 121 | 0.35 120 | 0.60 121 | 1.30 127 | 0.36 112 | 0.38 135 | 1.49 137 | 0.30 137 | 1.01 120 | 1.41 125 | 0.99 119 | 1.39 134 | 1.68 118 | 0.95 143 | 0.31 158 | 0.23 157 | 0.70 156 | 1.11 135 | 2.09 142 | 1.61 136 |
Nguyen [33] | 134.2 | 0.22 139 | 0.47 138 | 0.19 141 | 0.87 150 | 1.29 136 | 0.97 154 | 1.17 150 | 1.81 153 | 0.92 151 | 0.99 151 | 1.82 146 | 1.07 152 | 1.17 143 | 1.49 138 | 1.46 148 | 0.72 107 | 2.09 142 | 0.60 121 | 0.14 80 | 0.14 79 | 0.20 62 | 1.37 147 | 2.18 147 | 1.86 147 |
Horn & Schunck [3] | 139.2 | 0.22 139 | 0.55 145 | 0.22 147 | 0.61 140 | 1.53 150 | 0.52 136 | 1.01 146 | 1.73 147 | 0.80 146 | 0.78 147 | 2.02 149 | 0.77 147 | 1.26 151 | 1.58 147 | 1.55 151 | 1.43 136 | 2.59 155 | 1.00 148 | 0.16 107 | 0.18 131 | 0.15 24 | 1.51 152 | 2.50 152 | 1.88 148 |
TI-DOFE [24] | 143.2 | 0.38 159 | 0.64 154 | 0.47 160 | 1.16 157 | 1.72 153 | 1.26 159 | 1.39 161 | 2.06 163 | 1.17 158 | 1.29 156 | 2.21 153 | 1.41 159 | 1.27 152 | 1.61 149 | 1.57 152 | 1.28 130 | 2.57 154 | 1.01 149 | 0.13 68 | 0.15 93 | 0.16 29 | 1.87 157 | 2.71 157 | 2.53 156 |
SILK [80] | 144.0 | 0.25 147 | 0.55 145 | 0.29 153 | 0.77 147 | 1.49 149 | 0.79 150 | 1.14 149 | 1.83 154 | 0.84 148 | 0.59 144 | 1.82 146 | 0.55 144 | 1.36 154 | 1.69 153 | 1.82 156 | 1.92 154 | 2.65 156 | 1.15 153 | 0.16 107 | 0.13 50 | 0.36 135 | 1.69 154 | 2.54 154 | 2.30 155 |
Heeger++ [102] | 146.5 | 0.34 155 | 0.61 151 | 0.22 147 | 0.89 152 | 2.04 161 | 0.65 146 | 1.20 152 | 1.77 149 | 0.91 150 | 1.08 154 | 2.24 154 | 0.99 150 | 1.67 160 | 1.96 160 | 1.99 157 | 2.17 159 | 3.02 159 | 1.62 159 | 0.14 80 | 0.18 131 | 0.21 68 | 1.81 155 | 2.64 155 | 2.27 153 |
HCIC-L [97] | 148.5 | 0.43 162 | 0.64 154 | 0.29 153 | 1.90 163 | 1.89 157 | 2.31 163 | 1.20 152 | 1.51 140 | 1.44 162 | 1.49 160 | 2.58 159 | 1.55 160 | 1.21 147 | 1.52 142 | 1.03 123 | 1.01 123 | 1.63 112 | 0.98 146 | 0.83 163 | 0.55 163 | 1.52 163 | 1.26 142 | 1.82 125 | 1.34 131 |
H+S_RVC [176] | 149.2 | 0.35 156 | 0.74 161 | 0.26 152 | 0.91 153 | 1.77 154 | 0.83 151 | 1.25 157 | 1.98 159 | 0.98 153 | 1.63 163 | 2.40 157 | 1.72 162 | 1.59 159 | 1.77 155 | 2.30 160 | 1.78 151 | 3.16 160 | 1.62 159 | 0.14 80 | 0.17 119 | 0.24 83 | 2.37 159 | 2.90 159 | 2.73 158 |
Adaptive flow [45] | 150.8 | 0.36 157 | 0.59 150 | 0.37 158 | 1.21 158 | 1.60 151 | 1.23 158 | 1.21 155 | 1.77 149 | 1.18 159 | 0.94 150 | 2.03 150 | 0.97 149 | 1.20 146 | 1.57 146 | 1.08 128 | 1.73 149 | 1.90 132 | 1.12 152 | 0.59 162 | 0.37 162 | 1.37 162 | 1.37 147 | 2.16 145 | 1.81 145 |
SLK [47] | 151.0 | 0.30 151 | 0.70 157 | 0.36 157 | 1.09 156 | 1.77 154 | 1.21 157 | 1.25 157 | 1.98 159 | 1.03 157 | 1.56 161 | 2.26 155 | 1.71 161 | 1.54 158 | 1.82 157 | 2.14 159 | 2.02 156 | 2.79 158 | 1.36 155 | 0.17 118 | 0.16 104 | 0.26 95 | 2.43 160 | 3.18 160 | 3.31 161 |
FFV1MT [104] | 151.2 | 0.33 154 | 0.64 154 | 0.24 150 | 0.79 148 | 1.90 159 | 0.64 145 | 1.33 160 | 1.90 156 | 1.23 160 | 1.38 158 | 2.98 160 | 1.29 157 | 1.76 161 | 1.99 161 | 2.45 161 | 2.33 161 | 3.64 162 | 1.72 161 | 0.16 107 | 0.18 131 | 0.27 101 | 1.81 155 | 2.64 155 | 2.27 153 |
Periodicity [79] | 154.8 | 0.31 152 | 0.78 163 | 0.20 144 | 1.54 161 | 2.62 163 | 1.71 160 | 1.86 163 | 2.00 161 | 1.66 163 | 1.15 155 | 3.05 162 | 1.07 152 | 5.17 163 | 6.79 163 | 4.19 163 | 3.79 163 | 5.26 199 | 2.93 163 | 0.12 54 | 0.18 131 | 0.36 135 | 2.67 161 | 5.01 162 | 3.18 160 |
PGAM+LK [55] | 155.7 | 0.37 158 | 0.70 157 | 0.59 162 | 1.08 155 | 1.89 157 | 1.15 155 | 0.94 142 | 1.59 142 | 0.88 149 | 1.40 159 | 3.28 163 | 1.33 158 | 1.37 155 | 1.70 154 | 1.67 155 | 2.10 157 | 2.53 153 | 1.39 157 | 0.36 160 | 0.28 161 | 0.65 154 | 1.89 158 | 2.72 158 | 2.71 157 |
FOLKI [16] | 157.0 | 0.29 150 | 0.73 160 | 0.33 156 | 1.52 160 | 1.96 160 | 1.80 161 | 1.23 156 | 2.04 162 | 0.95 152 | 0.99 151 | 2.20 152 | 1.08 154 | 1.53 157 | 1.85 159 | 2.07 158 | 2.14 158 | 3.23 161 | 1.60 158 | 0.26 155 | 0.21 149 | 0.68 155 | 2.67 161 | 3.27 161 | 4.32 162 |
Pyramid LK [2] | 160.3 | 0.39 161 | 0.61 151 | 0.61 163 | 1.67 162 | 1.78 156 | 2.00 162 | 1.50 162 | 1.97 158 | 1.38 161 | 1.57 162 | 2.39 156 | 1.78 163 | 2.94 162 | 3.72 162 | 2.98 162 | 3.33 162 | 2.74 157 | 2.43 162 | 0.30 157 | 0.24 159 | 0.73 158 | 3.80 163 | 5.08 163 | 4.88 163 |
AdaConv-v1 [124] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
SepConv-v1 [125] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
SuperSlomo [130] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
CtxSyn [134] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
CyclicGen [149] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
TOF-M [150] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
MPRN [151] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
DAIN [152] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
FRUCnet [153] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
OFRI [154] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
FGME [158] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
MS-PFT [159] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
MEMC-Net+ [160] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
ADC [161] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
DSepConv [162] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
MAF-net [163] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
STAR-Net [164] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
AdaCoF [165] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
TC-GAN [166] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
FeFlow [167] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
DAI [168] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
SoftSplat [169] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
STSR [170] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
BMBC [171] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
GDCN [172] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
EDSC [173] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
MV_VFI [183] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
DistillNet [184] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
SepConv++ [185] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
EAFI [186] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
FLAVR [188] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
SoftsplatAug [190] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
ProBoost-Net [191] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
IDIAL [192] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
IFRNet [193] | 164.2 | 0.92 164 | 1.02 164 | 0.94 164 | 3.93 164 | 4.38 164 | 3.53 164 | 3.56 164 | 3.06 164 | 3.57 164 | 3.28 164 | 3.78 164 | 3.41 164 | 6.48 164 | 7.07 164 | 5.99 165 | 5.88 165 | 4.40 163 | 4.70 164 | 1.79 165 | 1.19 165 | 3.18 165 | 7.91 164 | 8.50 164 | 7.97 164 |
AVG_FLOW_ROB [137] | 191.7 | 2.57 199 | 1.94 199 | 3.25 199 | 5.72 199 | 5.60 199 | 5.32 199 | 4.74 199 | 4.29 199 | 5.13 199 | 4.42 199 | 4.31 199 | 4.48 199 | 6.72 199 | 7.81 199 | 5.76 164 | 5.73 164 | 4.41 198 | 4.80 199 | 1.40 164 | 0.78 164 | 2.04 164 | 7.95 199 | 9.31 199 | 8.09 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |