Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
Average interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
SoftsplatAug [190] | 2.6 | 1.98 1 | 2.91 1 | 1.06 3 | 2.55 2 | 3.38 2 | 1.14 2 | 1.87 3 | 2.69 2 | 1.06 2 | 3.88 3 | 4.65 3 | 2.70 3 | 7.24 1 | 8.90 1 | 2.98 6 | 3.90 3 | 7.06 3 | 1.97 3 | 5.24 3 | 11.4 3 | 1.38 5 | 5.22 2 | 8.02 2 | 1.50 4 |
SoftSplat [169] | 5.3 | 2.06 2 | 3.06 3 | 1.14 9 | 2.80 5 | 3.91 6 | 1.24 3 | 1.99 5 | 2.73 3 | 1.21 6 | 3.84 2 | 4.64 2 | 2.69 2 | 8.10 18 | 10.0 18 | 2.96 2 | 4.10 5 | 7.53 5 | 1.98 6 | 5.49 5 | 12.1 5 | 1.39 6 | 5.40 3 | 8.33 3 | 1.50 4 |
EAFI [186] | 8.2 | 2.10 5 | 3.19 4 | 1.08 5 | 2.54 1 | 3.23 1 | 1.13 1 | 1.77 2 | 2.79 5 | 1.08 3 | 3.82 1 | 4.51 1 | 2.64 1 | 9.04 26 | 11.3 25 | 3.01 9 | 4.82 23 | 9.09 23 | 1.97 3 | 5.89 14 | 13.1 15 | 1.37 2 | 5.77 10 | 8.91 10 | 1.51 6 |
IFRNet [193] | 8.2 | 2.08 3 | 3.03 2 | 1.16 12 | 2.78 4 | 3.73 4 | 1.38 52 | 1.74 1 | 2.58 1 | 1.04 1 | 3.96 4 | 4.78 4 | 2.96 10 | 7.55 5 | 9.28 5 | 3.12 22 | 4.42 9 | 8.20 9 | 2.02 11 | 5.56 7 | 12.3 6 | 1.37 2 | 5.64 8 | 8.70 8 | 1.51 6 |
DistillNet [184] | 10.1 | 2.11 6 | 3.29 5 | 1.15 11 | 2.71 3 | 3.64 3 | 1.28 19 | 1.96 4 | 2.73 3 | 1.14 4 | 4.05 5 | 4.96 6 | 2.81 5 | 7.81 9 | 9.66 9 | 3.06 14 | 4.79 21 | 9.03 20 | 2.01 9 | 6.04 16 | 13.4 18 | 1.43 14 | 6.05 11 | 9.33 11 | 1.56 16 |
SepConv++ [185] | 13.3 | 2.39 23 | 4.17 25 | 1.20 25 | 2.98 8 | 4.21 9 | 1.28 19 | 3.34 24 | 3.23 8 | 2.20 93 | 4.49 12 | 5.81 17 | 2.87 7 | 7.64 7 | 9.42 7 | 2.97 3 | 3.77 2 | 6.80 2 | 1.96 1 | 5.26 4 | 11.6 4 | 1.36 1 | 5.71 9 | 8.86 9 | 1.45 1 |
FGME [158] | 13.5 | 2.08 3 | 3.34 7 | 0.98 1 | 3.32 22 | 4.43 13 | 1.63 118 | 2.46 6 | 3.28 9 | 1.41 18 | 4.08 6 | 4.85 5 | 3.05 18 | 7.36 3 | 9.08 3 | 3.03 11 | 4.17 7 | 7.62 7 | 2.06 22 | 4.95 2 | 10.7 2 | 1.44 15 | 5.45 4 | 8.41 5 | 1.57 17 |
BMBC [171] | 15.3 | 2.30 15 | 3.40 9 | 1.20 25 | 3.07 9 | 4.25 10 | 1.41 64 | 3.17 20 | 4.19 31 | 1.66 41 | 4.24 8 | 5.28 8 | 2.85 6 | 7.79 8 | 9.62 8 | 3.14 24 | 4.08 4 | 7.47 4 | 2.02 11 | 5.63 8 | 12.4 8 | 1.40 8 | 5.55 6 | 8.58 6 | 1.61 26 |
IDIAL [192] | 16.1 | 2.23 8 | 3.62 12 | 1.14 9 | 3.22 13 | 4.54 21 | 1.46 81 | 2.79 9 | 2.97 6 | 1.23 7 | 4.49 12 | 5.64 13 | 2.94 9 | 8.36 20 | 10.4 20 | 2.97 3 | 4.53 12 | 8.43 12 | 1.99 7 | 6.17 18 | 13.3 17 | 1.50 24 | 6.31 17 | 9.67 15 | 1.58 21 |
STAR-Net [164] | 17.6 | 2.18 7 | 3.37 8 | 1.21 45 | 3.46 32 | 4.88 31 | 1.47 85 | 3.04 18 | 3.53 15 | 1.58 32 | 4.41 11 | 5.44 11 | 2.76 4 | 7.51 4 | 9.27 4 | 2.98 6 | 4.65 13 | 8.72 13 | 1.99 7 | 6.21 20 | 13.4 18 | 1.41 9 | 6.17 13 | 9.45 13 | 1.49 3 |
EDSC [173] | 19.0 | 2.32 19 | 3.90 17 | 1.16 12 | 3.10 10 | 4.38 12 | 1.51 94 | 2.98 15 | 3.54 16 | 1.36 15 | 4.49 12 | 5.74 14 | 3.16 31 | 8.05 17 | 9.96 17 | 3.08 16 | 4.89 24 | 9.28 24 | 2.02 11 | 5.55 6 | 12.3 6 | 1.41 9 | 6.42 22 | 9.99 23 | 1.55 15 |
AdaCoF [165] | 23.4 | 2.41 25 | 4.10 24 | 1.26 141 | 3.10 10 | 4.32 11 | 1.43 70 | 3.48 29 | 3.31 10 | 1.78 59 | 4.84 23 | 5.94 24 | 2.93 8 | 8.68 23 | 10.8 22 | 3.14 24 | 4.13 6 | 7.59 6 | 1.97 3 | 5.77 12 | 12.9 13 | 1.37 2 | 5.60 7 | 8.67 7 | 1.48 2 |
DSepConv [162] | 28.0 | 2.47 26 | 4.39 31 | 1.21 45 | 3.32 22 | 4.60 23 | 1.72 139 | 3.28 21 | 3.66 17 | 1.50 25 | 5.11 30 | 6.36 28 | 3.23 68 | 7.85 10 | 9.69 10 | 3.11 20 | 4.68 15 | 8.78 15 | 2.04 19 | 5.65 9 | 12.5 9 | 1.44 15 | 6.54 27 | 10.2 27 | 1.58 21 |
GDCN [172] | 30.3 | 2.31 17 | 3.98 21 | 1.10 7 | 3.80 92 | 5.17 51 | 1.54 99 | 2.92 13 | 3.78 22 | 1.43 20 | 5.59 83 | 6.01 26 | 3.24 72 | 9.02 25 | 11.3 25 | 3.10 18 | 4.66 14 | 8.75 14 | 2.08 23 | 5.75 11 | 12.7 10 | 1.42 12 | 6.40 21 | 9.98 22 | 1.53 10 |
STSR [170] | 30.4 | 2.31 17 | 3.82 15 | 1.19 18 | 2.94 6 | 3.90 5 | 1.93 175 | 2.92 13 | 3.44 14 | 1.81 60 | 4.29 10 | 5.41 9 | 3.27 82 | 9.51 29 | 11.9 29 | 3.06 14 | 5.38 34 | 10.3 34 | 2.10 24 | 6.75 29 | 15.3 31 | 1.50 24 | 6.43 24 | 9.99 23 | 1.54 11 |
MAF-net [163] | 32.8 | 2.23 8 | 3.84 16 | 1.08 5 | 3.53 46 | 4.85 30 | 1.78 150 | 2.83 11 | 3.70 18 | 1.58 32 | 4.83 22 | 5.88 18 | 3.31 102 | 9.44 28 | 11.8 28 | 3.27 30 | 5.27 29 | 10.0 29 | 2.15 27 | 6.30 21 | 14.2 22 | 1.54 46 | 6.38 20 | 9.90 21 | 1.63 28 |
ProBoost-Net [191] | 32.8 | 2.27 12 | 3.90 17 | 1.07 4 | 3.70 76 | 5.05 41 | 1.78 150 | 2.98 15 | 3.38 12 | 1.65 40 | 4.53 16 | 5.76 15 | 3.33 109 | 8.75 24 | 10.9 24 | 3.25 29 | 5.01 25 | 9.45 25 | 2.14 26 | 6.02 15 | 13.5 20 | 1.45 17 | 6.50 26 | 10.1 26 | 1.59 23 |
CtxSyn [134] | 33.4 | 2.24 10 | 3.72 13 | 1.04 2 | 2.96 7 | 4.16 8 | 1.35 47 | 4.32 109 | 3.42 13 | 3.18 155 | 4.21 7 | 5.46 12 | 3.00 12 | 9.59 32 | 11.9 29 | 3.46 35 | 5.22 26 | 9.76 26 | 2.22 30 | 7.02 34 | 15.4 32 | 1.58 68 | 6.66 30 | 10.2 27 | 1.69 37 |
FRUCnet [153] | 33.6 | 2.61 33 | 4.34 28 | 1.52 192 | 3.30 19 | 4.52 18 | 1.72 139 | 3.14 19 | 3.70 18 | 1.76 56 | 4.74 20 | 5.99 25 | 3.29 87 | 8.11 19 | 10.0 18 | 2.97 3 | 4.48 10 | 8.35 11 | 2.02 11 | 5.78 13 | 12.7 10 | 1.45 17 | 6.06 12 | 9.38 12 | 1.57 17 |
ADC [161] | 33.7 | 2.54 31 | 4.31 26 | 1.29 160 | 3.27 16 | 4.46 14 | 1.62 116 | 3.76 59 | 3.76 20 | 1.70 49 | 5.27 37 | 6.37 29 | 3.19 46 | 8.66 22 | 10.8 22 | 3.11 20 | 4.78 19 | 9.04 21 | 2.01 9 | 5.72 10 | 12.8 12 | 1.41 9 | 6.56 28 | 10.2 27 | 1.51 6 |
CyclicGen [149] | 34.1 | 2.26 11 | 3.32 6 | 1.42 187 | 3.19 12 | 4.01 7 | 2.21 190 | 2.76 8 | 4.05 29 | 1.62 37 | 4.97 25 | 5.92 21 | 3.79 175 | 8.00 16 | 9.84 16 | 3.13 23 | 3.36 1 | 5.65 1 | 2.17 28 | 4.55 1 | 9.68 1 | 1.42 12 | 4.48 1 | 6.84 1 | 1.52 9 |
FeFlow [167] | 34.9 | 2.28 13 | 3.73 14 | 1.18 16 | 3.50 42 | 4.78 29 | 2.09 186 | 2.82 10 | 3.13 7 | 1.66 41 | 4.75 21 | 5.78 16 | 3.72 168 | 7.62 6 | 9.40 6 | 3.04 12 | 4.74 18 | 8.88 17 | 2.03 16 | 6.07 17 | 13.1 15 | 1.59 72 | 6.78 33 | 10.5 33 | 1.65 29 |
MPRN [151] | 35.8 | 2.53 29 | 4.43 32 | 1.21 45 | 3.78 89 | 4.97 34 | 1.57 105 | 3.39 26 | 5.49 38 | 1.28 8 | 5.03 26 | 6.58 32 | 3.19 46 | 9.53 30 | 11.9 29 | 3.31 32 | 5.25 28 | 9.92 27 | 2.22 30 | 6.87 31 | 15.5 33 | 1.49 21 | 6.72 31 | 10.4 31 | 1.60 25 |
TC-GAN [166] | 36.0 | 2.34 20 | 3.96 20 | 1.25 124 | 3.26 15 | 4.51 17 | 1.81 155 | 3.49 30 | 3.80 24 | 2.20 93 | 4.65 17 | 5.90 20 | 3.44 131 | 7.87 11 | 9.73 12 | 3.00 8 | 4.78 19 | 9.00 19 | 2.03 16 | 6.34 23 | 14.2 22 | 1.50 24 | 6.28 16 | 9.73 18 | 1.54 11 |
MV_VFI [183] | 36.5 | 2.35 21 | 3.98 21 | 1.25 124 | 3.25 14 | 4.49 15 | 1.81 155 | 3.46 28 | 3.81 25 | 2.21 97 | 4.66 19 | 5.92 21 | 3.44 131 | 7.87 11 | 9.72 11 | 3.01 9 | 4.80 22 | 9.05 22 | 2.04 19 | 6.33 22 | 14.2 22 | 1.50 24 | 6.27 15 | 9.70 17 | 1.54 11 |
DAIN [152] | 36.7 | 2.38 22 | 4.05 23 | 1.26 141 | 3.28 17 | 4.53 20 | 1.79 153 | 3.32 23 | 3.77 21 | 2.05 83 | 4.65 17 | 5.88 18 | 3.41 127 | 7.88 13 | 9.74 13 | 3.04 12 | 4.73 17 | 8.90 18 | 2.04 19 | 6.36 24 | 14.3 26 | 1.51 32 | 6.25 14 | 9.68 16 | 1.54 11 |
MS-PFT [159] | 37.1 | 2.53 29 | 4.35 29 | 1.16 12 | 3.61 61 | 5.03 37 | 1.69 132 | 3.30 22 | 4.25 33 | 1.77 58 | 5.13 31 | 6.55 31 | 3.19 46 | 7.94 15 | 9.81 15 | 3.21 27 | 4.49 11 | 8.24 10 | 2.22 30 | 6.55 26 | 13.9 21 | 1.79 136 | 6.42 22 | 9.89 20 | 1.69 37 |
DAI [168] | 40.0 | 2.30 15 | 3.42 10 | 1.47 191 | 3.46 32 | 4.66 25 | 1.92 169 | 2.55 7 | 3.78 22 | 1.33 10 | 4.27 9 | 5.10 7 | 4.24 188 | 9.07 27 | 11.3 25 | 3.08 16 | 5.28 30 | 10.1 31 | 2.02 11 | 6.56 27 | 14.7 28 | 1.39 6 | 6.48 25 | 10.0 25 | 1.59 23 |
MEMC-Net+ [160] | 44.3 | 2.39 23 | 3.92 19 | 1.28 151 | 3.36 25 | 4.52 18 | 2.07 185 | 3.37 25 | 3.86 26 | 2.20 93 | 4.84 23 | 5.93 23 | 3.72 168 | 8.55 21 | 10.6 21 | 3.14 24 | 4.70 16 | 8.81 16 | 2.03 16 | 6.40 25 | 14.2 22 | 1.58 68 | 6.37 19 | 9.87 19 | 1.57 17 |
MDP-Flow2 [68] | 45.3 | 2.89 37 | 5.38 39 | 1.19 18 | 3.47 34 | 5.07 44 | 1.26 6 | 3.66 48 | 6.10 76 | 2.48 121 | 5.20 33 | 7.48 43 | 3.14 28 | 10.2 36 | 12.8 37 | 3.61 62 | 6.13 60 | 11.8 55 | 2.31 64 | 7.36 41 | 16.8 39 | 1.49 21 | 7.75 55 | 12.1 53 | 1.69 37 |
PMMST [112] | 45.7 | 2.90 39 | 5.43 41 | 1.20 25 | 3.50 42 | 5.05 41 | 1.27 13 | 3.56 37 | 5.46 36 | 1.82 64 | 5.38 50 | 7.92 71 | 3.41 127 | 10.2 36 | 12.8 37 | 3.60 54 | 5.76 36 | 11.0 36 | 2.26 39 | 7.39 44 | 16.9 43 | 1.53 39 | 7.57 39 | 11.8 39 | 1.72 68 |
SuperSlomo [130] | 46.7 | 2.51 27 | 4.32 27 | 1.25 124 | 3.66 70 | 5.06 43 | 1.93 175 | 2.91 12 | 4.00 28 | 1.41 18 | 5.05 27 | 6.27 27 | 3.66 163 | 9.56 31 | 11.9 29 | 3.30 31 | 5.37 33 | 10.2 33 | 2.24 34 | 6.69 28 | 15.0 29 | 1.53 39 | 6.73 32 | 10.4 31 | 1.66 30 |
TOF-M [150] | 46.9 | 2.54 31 | 4.35 29 | 1.16 12 | 3.70 76 | 5.19 52 | 1.88 162 | 3.43 27 | 3.89 27 | 1.93 72 | 5.05 27 | 6.43 30 | 3.39 121 | 9.84 33 | 12.3 33 | 3.42 34 | 5.34 32 | 10.0 29 | 2.28 48 | 6.88 32 | 15.2 30 | 1.61 81 | 7.14 35 | 11.0 35 | 1.69 37 |
OFRI [154] | 49.5 | 2.28 13 | 3.45 11 | 1.35 180 | 3.44 29 | 4.57 22 | 2.13 188 | 3.02 17 | 3.34 11 | 1.73 53 | 4.51 15 | 5.42 10 | 3.88 176 | 7.89 14 | 9.76 14 | 3.10 18 | 5.24 27 | 9.92 27 | 2.10 24 | 6.78 30 | 14.3 26 | 1.82 141 | 6.32 18 | 9.62 14 | 1.75 111 |
CoT-AMFlow [174] | 50.1 | 2.89 37 | 5.43 41 | 1.19 18 | 3.48 35 | 5.11 47 | 1.25 4 | 3.86 67 | 6.56 99 | 2.48 121 | 5.19 32 | 7.47 42 | 3.10 22 | 10.3 41 | 12.8 37 | 3.61 62 | 6.15 64 | 11.9 64 | 2.31 64 | 7.41 48 | 17.0 48 | 1.48 19 | 7.76 59 | 12.1 53 | 1.73 78 |
FLAVR [188] | 54.0 | 3.02 59 | 4.65 33 | 1.34 178 | 3.70 76 | 4.49 15 | 1.71 137 | 3.52 34 | 4.19 31 | 1.68 46 | 8.08 189 | 9.60 166 | 3.65 162 | 7.35 2 | 9.04 2 | 2.94 1 | 4.20 8 | 7.73 8 | 1.96 1 | 6.17 18 | 13.0 14 | 1.62 91 | 5.53 5 | 8.40 4 | 1.57 17 |
SepConv-v1 [125] | 55.8 | 2.52 28 | 4.83 34 | 1.11 8 | 3.56 56 | 5.04 39 | 1.90 165 | 4.17 92 | 4.15 30 | 2.86 141 | 5.41 60 | 6.81 33 | 3.88 176 | 10.2 36 | 12.8 37 | 3.37 33 | 5.47 35 | 10.4 35 | 2.21 29 | 6.88 32 | 15.6 34 | 1.72 121 | 6.63 29 | 10.3 30 | 1.62 27 |
DeepFlow [85] | 57.1 | 2.98 50 | 5.67 56 | 1.22 77 | 3.88 104 | 5.78 103 | 1.52 95 | 3.62 41 | 5.93 67 | 1.34 11 | 5.39 55 | 7.20 37 | 3.17 35 | 11.0 78 | 13.9 85 | 3.63 78 | 5.91 42 | 11.3 41 | 2.29 53 | 7.14 35 | 16.3 35 | 1.49 21 | 7.80 65 | 12.2 62 | 1.70 45 |
CBF [12] | 62.7 | 2.83 34 | 5.20 35 | 1.23 99 | 3.97 117 | 5.79 105 | 1.56 101 | 3.62 41 | 5.47 37 | 1.60 35 | 5.21 34 | 7.12 34 | 3.29 87 | 10.1 34 | 12.6 34 | 3.62 70 | 5.97 45 | 11.5 45 | 2.31 64 | 7.76 82 | 17.8 81 | 1.61 81 | 7.60 42 | 11.9 42 | 1.76 126 |
DeepFlow2 [106] | 63.4 | 2.99 53 | 5.65 53 | 1.22 77 | 3.88 104 | 5.79 105 | 1.48 87 | 3.62 41 | 6.03 70 | 1.34 11 | 5.38 50 | 7.44 41 | 3.22 61 | 11.0 78 | 13.8 78 | 3.67 86 | 5.83 37 | 11.2 37 | 2.25 38 | 7.60 62 | 17.4 63 | 1.50 24 | 7.82 66 | 12.2 62 | 1.77 137 |
NN-field [71] | 63.9 | 2.98 50 | 5.70 57 | 1.20 25 | 3.31 21 | 4.73 27 | 1.26 6 | 4.69 132 | 5.91 65 | 2.03 81 | 5.99 130 | 9.13 147 | 3.57 154 | 10.3 41 | 12.8 37 | 3.60 54 | 6.24 72 | 12.0 71 | 2.31 64 | 7.39 44 | 16.9 43 | 1.54 46 | 7.69 50 | 12.0 48 | 1.72 68 |
NNF-Local [75] | 65.0 | 2.92 42 | 5.51 48 | 1.19 18 | 3.30 19 | 4.71 26 | 1.26 6 | 3.65 46 | 5.91 65 | 2.29 105 | 5.76 103 | 8.70 125 | 3.55 152 | 10.3 41 | 12.9 44 | 3.60 54 | 6.42 95 | 12.4 93 | 2.34 80 | 7.57 58 | 17.4 63 | 1.74 123 | 7.61 43 | 11.9 42 | 1.72 68 |
Aniso. Huber-L1 [22] | 67.1 | 2.95 45 | 5.44 44 | 1.24 114 | 4.42 157 | 6.27 156 | 1.67 128 | 3.79 60 | 5.70 46 | 1.50 25 | 5.31 40 | 7.42 40 | 3.24 72 | 11.1 89 | 14.0 97 | 3.61 62 | 5.91 42 | 11.4 43 | 2.24 34 | 7.60 62 | 17.3 57 | 1.51 32 | 7.62 45 | 11.9 42 | 1.73 78 |
IROF-TV [53] | 67.7 | 3.07 69 | 5.91 79 | 1.23 99 | 3.71 80 | 5.47 78 | 1.40 60 | 3.70 54 | 6.27 83 | 1.58 32 | 5.25 36 | 7.60 50 | 3.17 35 | 11.0 78 | 13.9 85 | 4.47 148 | 6.37 90 | 12.4 93 | 2.30 59 | 7.79 87 | 17.9 88 | 1.50 24 | 7.63 46 | 11.9 42 | 1.66 30 |
LME [70] | 68.1 | 2.95 45 | 5.59 51 | 1.19 18 | 3.68 73 | 5.50 81 | 1.38 52 | 4.06 82 | 7.00 123 | 1.71 51 | 5.38 50 | 7.92 71 | 3.18 39 | 11.2 103 | 14.1 107 | 4.51 180 | 6.29 77 | 12.2 78 | 2.31 64 | 7.33 39 | 16.8 39 | 1.51 32 | 7.83 67 | 12.3 67 | 1.70 45 |
CLG-TV [48] | 68.5 | 2.94 43 | 5.45 45 | 1.25 124 | 4.26 143 | 6.17 141 | 1.60 110 | 3.68 52 | 5.73 48 | 1.73 53 | 5.36 46 | 7.41 39 | 3.32 106 | 11.1 89 | 14.0 97 | 3.57 40 | 5.88 41 | 11.3 41 | 2.26 39 | 7.58 59 | 17.0 48 | 1.57 65 | 7.75 55 | 12.1 53 | 1.72 68 |
IROF++ [58] | 69.8 | 3.03 60 | 5.77 65 | 1.20 25 | 3.59 60 | 5.31 65 | 1.33 40 | 4.32 109 | 6.61 101 | 2.25 100 | 5.06 29 | 7.14 35 | 3.16 31 | 11.0 78 | 13.9 85 | 4.44 144 | 6.34 84 | 12.3 87 | 2.27 45 | 7.54 57 | 17.3 57 | 1.64 97 | 8.09 92 | 12.7 93 | 1.69 37 |
GMFlow_RVC [196] | 69.9 | 3.32 138 | 6.87 155 | 1.20 25 | 3.49 39 | 5.16 49 | 1.26 6 | 3.51 32 | 5.83 55 | 1.81 60 | 5.68 94 | 8.61 121 | 3.21 54 | 10.9 69 | 13.7 70 | 3.62 70 | 6.67 132 | 13.0 135 | 2.26 39 | 7.50 53 | 17.2 54 | 1.55 53 | 7.74 53 | 12.1 53 | 1.72 68 |
CombBMOF [111] | 70.9 | 3.16 99 | 5.88 74 | 1.24 114 | 3.54 50 | 5.24 57 | 1.34 44 | 4.01 77 | 6.45 94 | 2.20 93 | 5.62 91 | 8.22 89 | 3.29 87 | 10.7 58 | 13.5 59 | 3.62 70 | 6.20 68 | 11.9 64 | 2.27 45 | 7.78 86 | 17.3 57 | 1.56 60 | 7.75 55 | 12.1 53 | 1.71 57 |
NNF-EAC [101] | 71.1 | 3.01 56 | 5.60 52 | 1.25 124 | 3.63 64 | 5.36 70 | 1.29 25 | 4.17 92 | 7.03 125 | 2.99 145 | 5.50 70 | 7.96 73 | 3.28 84 | 11.2 103 | 14.1 107 | 3.60 54 | 5.86 40 | 11.2 37 | 2.26 39 | 7.43 49 | 17.0 48 | 1.54 46 | 7.79 64 | 12.2 62 | 1.73 78 |
ALD-Flow [66] | 72.5 | 3.28 130 | 6.45 131 | 1.24 114 | 3.81 94 | 5.73 100 | 1.41 64 | 3.62 41 | 6.28 84 | 1.35 14 | 5.58 80 | 8.39 103 | 3.04 16 | 10.8 61 | 13.5 59 | 4.15 124 | 5.96 44 | 11.4 43 | 2.29 53 | 7.34 40 | 16.8 39 | 1.51 32 | 8.25 118 | 12.9 111 | 1.70 45 |
DF-Auto [113] | 72.7 | 2.94 43 | 5.34 37 | 1.23 99 | 3.99 120 | 5.84 110 | 1.65 122 | 3.85 65 | 6.73 104 | 1.55 31 | 5.38 50 | 7.54 45 | 3.25 76 | 10.4 47 | 13.0 47 | 3.70 90 | 6.17 67 | 11.9 64 | 2.28 48 | 7.94 98 | 18.2 100 | 1.75 128 | 7.68 48 | 12.0 48 | 1.71 57 |
PH-Flow [99] | 74.5 | 3.12 84 | 6.01 94 | 1.20 25 | 3.39 26 | 4.94 33 | 1.28 19 | 3.70 54 | 6.43 90 | 2.48 121 | 5.23 35 | 7.58 49 | 3.22 61 | 10.4 47 | 13.1 51 | 3.62 70 | 6.84 158 | 13.3 156 | 2.47 142 | 7.84 91 | 18.1 96 | 1.58 68 | 7.87 73 | 12.3 67 | 1.73 78 |
WLIF-Flow [91] | 75.1 | 2.95 45 | 5.53 49 | 1.20 25 | 3.66 70 | 5.41 73 | 1.39 56 | 4.26 102 | 7.17 135 | 2.54 125 | 5.30 39 | 7.57 48 | 3.29 87 | 10.7 58 | 13.5 59 | 3.70 90 | 6.74 145 | 13.1 143 | 2.48 148 | 7.40 46 | 16.9 43 | 1.53 39 | 7.87 73 | 12.3 67 | 1.69 37 |
Second-order prior [8] | 76.0 | 2.91 41 | 5.39 40 | 1.24 114 | 4.26 143 | 6.21 149 | 1.56 101 | 3.82 62 | 6.34 87 | 1.62 37 | 5.39 55 | 7.68 52 | 3.04 16 | 11.1 89 | 13.9 85 | 3.59 44 | 6.14 62 | 11.9 64 | 2.31 64 | 7.61 64 | 17.4 63 | 1.63 96 | 7.90 75 | 12.4 77 | 1.78 145 |
p-harmonic [29] | 77.4 | 3.00 54 | 5.72 59 | 1.21 45 | 4.33 148 | 6.24 154 | 1.69 132 | 3.60 38 | 6.07 74 | 1.39 17 | 5.70 95 | 7.87 66 | 3.29 87 | 11.0 78 | 13.8 78 | 3.63 78 | 6.02 49 | 11.6 49 | 2.34 80 | 7.67 69 | 17.5 68 | 1.70 116 | 7.92 79 | 12.4 77 | 1.72 68 |
FMOF [92] | 78.0 | 3.16 99 | 5.92 82 | 1.23 99 | 3.48 35 | 5.07 44 | 1.28 19 | 4.59 127 | 6.82 109 | 2.78 136 | 5.71 97 | 8.42 104 | 3.40 124 | 10.4 47 | 13.0 47 | 3.67 86 | 6.49 102 | 12.6 103 | 2.28 48 | 7.64 66 | 17.5 68 | 1.48 19 | 8.06 90 | 12.6 88 | 1.67 33 |
Brox et al. [5] | 78.1 | 3.08 72 | 5.94 84 | 1.21 45 | 3.83 98 | 5.67 92 | 1.45 77 | 3.93 70 | 5.76 51 | 1.67 44 | 5.32 41 | 7.19 36 | 3.22 61 | 10.6 55 | 13.4 57 | 3.56 38 | 6.60 124 | 12.7 110 | 2.42 127 | 8.61 145 | 19.7 148 | 3.04 191 | 7.43 37 | 11.6 37 | 1.68 35 |
SIOF [67] | 79.8 | 3.06 67 | 5.74 63 | 1.24 114 | 4.40 156 | 6.40 167 | 1.63 118 | 4.17 92 | 7.43 150 | 1.93 72 | 5.40 59 | 7.75 57 | 3.44 131 | 10.1 34 | 12.6 34 | 3.58 42 | 6.10 55 | 11.8 55 | 2.29 53 | 7.52 55 | 17.2 54 | 1.53 39 | 7.96 84 | 12.5 87 | 1.73 78 |
MDP-Flow [26] | 81.8 | 2.86 35 | 5.34 37 | 1.20 25 | 3.49 39 | 5.15 48 | 1.34 44 | 4.01 77 | 5.51 39 | 2.28 102 | 5.58 80 | 7.91 70 | 3.33 109 | 11.2 103 | 14.0 97 | 4.49 159 | 6.72 139 | 13.1 143 | 2.54 166 | 7.71 73 | 17.7 77 | 1.74 123 | 7.83 67 | 12.3 67 | 1.70 45 |
HCFN [157] | 82.2 | 3.16 99 | 6.30 114 | 1.20 25 | 3.69 75 | 5.58 85 | 1.32 36 | 3.97 74 | 6.09 75 | 1.73 53 | 5.54 73 | 8.33 96 | 3.22 61 | 10.9 69 | 13.7 70 | 3.61 62 | 6.29 77 | 11.9 64 | 2.62 180 | 8.11 112 | 18.5 111 | 1.61 81 | 8.18 102 | 12.8 102 | 1.73 78 |
Local-TV-L1 [65] | 82.5 | 3.00 54 | 5.47 46 | 1.30 164 | 4.43 159 | 6.23 153 | 1.75 146 | 3.50 31 | 5.35 35 | 1.45 21 | 5.39 55 | 7.56 46 | 3.29 87 | 11.2 103 | 14.1 107 | 3.91 113 | 6.16 65 | 11.8 55 | 2.47 142 | 7.67 69 | 17.6 72 | 1.55 53 | 7.57 39 | 11.8 39 | 1.76 126 |
OAR-Flow [123] | 83.1 | 3.13 89 | 5.95 86 | 1.22 77 | 3.83 98 | 5.70 95 | 1.48 87 | 3.65 46 | 6.06 71 | 1.16 5 | 5.60 86 | 8.48 109 | 3.03 13 | 11.2 103 | 14.1 107 | 4.51 180 | 6.12 58 | 11.8 55 | 2.41 123 | 7.97 101 | 17.9 88 | 1.59 72 | 8.11 96 | 12.7 93 | 1.71 57 |
RAFT-it+_RVC [198] | 84.0 | 3.64 169 | 7.86 174 | 1.18 16 | 3.49 39 | 5.16 49 | 1.26 6 | 3.52 34 | 5.81 53 | 1.37 16 | 6.05 137 | 9.42 158 | 3.21 54 | 10.4 47 | 13.0 47 | 3.61 62 | 6.79 152 | 13.0 135 | 2.98 196 | 7.25 36 | 16.6 36 | 1.77 133 | 7.76 59 | 12.2 62 | 1.78 145 |
JOF [136] | 84.2 | 3.08 72 | 5.89 76 | 1.24 114 | 3.48 35 | 5.04 39 | 1.37 50 | 3.85 65 | 5.98 69 | 2.07 84 | 5.43 63 | 7.81 64 | 3.28 84 | 11.3 123 | 14.2 123 | 4.51 180 | 6.72 139 | 13.1 143 | 2.37 96 | 7.48 52 | 17.1 52 | 1.54 46 | 8.01 86 | 12.6 88 | 1.73 78 |
SegFlow [156] | 85.0 | 3.23 118 | 6.50 134 | 1.21 45 | 3.55 53 | 5.27 62 | 1.31 32 | 4.03 80 | 5.73 48 | 1.34 11 | 6.09 138 | 9.56 164 | 3.37 116 | 11.1 89 | 14.0 97 | 4.50 164 | 6.10 55 | 11.8 55 | 2.40 111 | 7.51 54 | 17.2 54 | 1.66 104 | 8.06 90 | 12.6 88 | 1.73 78 |
PRAFlow_RVC [177] | 88.4 | 3.33 141 | 6.76 149 | 1.20 25 | 3.56 56 | 5.25 58 | 1.32 36 | 3.94 71 | 6.33 86 | 2.41 116 | 5.65 93 | 8.49 110 | 3.12 26 | 10.3 41 | 12.9 44 | 3.62 70 | 6.41 92 | 12.4 93 | 2.30 59 | 7.37 43 | 16.9 43 | 2.11 169 | 8.63 162 | 13.5 161 | 1.82 177 |
F-TV-L1 [15] | 88.8 | 3.30 132 | 6.36 123 | 1.29 160 | 4.39 155 | 6.32 162 | 1.62 116 | 3.80 61 | 5.90 64 | 1.76 56 | 5.61 88 | 7.97 75 | 3.31 102 | 10.9 69 | 13.6 65 | 3.59 44 | 5.84 38 | 11.2 37 | 2.33 76 | 7.70 71 | 17.6 72 | 1.79 136 | 7.61 43 | 11.9 42 | 1.78 145 |
Ad-TV-NDC [36] | 89.3 | 3.23 118 | 5.70 57 | 1.44 189 | 4.78 183 | 6.46 171 | 1.92 169 | 3.67 49 | 5.86 60 | 1.50 25 | 5.97 127 | 8.14 87 | 3.51 142 | 10.8 61 | 13.5 59 | 3.63 78 | 6.24 72 | 12.0 71 | 2.40 111 | 7.70 71 | 17.3 57 | 1.51 32 | 7.48 38 | 11.7 38 | 1.73 78 |
CPM-Flow [114] | 89.5 | 3.17 106 | 6.31 118 | 1.21 45 | 3.54 50 | 5.26 60 | 1.31 32 | 4.22 99 | 5.88 62 | 1.45 21 | 6.11 140 | 9.48 160 | 3.31 102 | 11.1 89 | 13.9 85 | 4.50 164 | 6.28 76 | 12.1 75 | 2.32 73 | 7.66 67 | 17.6 72 | 1.74 123 | 8.18 102 | 12.8 102 | 1.76 126 |
UnDAF [187] | 90.0 | 3.33 141 | 6.85 152 | 1.22 77 | 3.74 85 | 5.62 90 | 1.28 19 | 4.28 104 | 7.97 166 | 2.83 138 | 6.35 154 | 10.1 173 | 3.16 31 | 10.4 47 | 13.0 47 | 3.59 44 | 6.12 58 | 11.8 55 | 2.33 76 | 7.74 79 | 17.8 81 | 1.56 60 | 7.93 80 | 12.4 77 | 1.76 126 |
Modified CLG [34] | 90.8 | 2.87 36 | 5.32 36 | 1.24 114 | 4.51 165 | 6.21 149 | 1.96 179 | 4.15 90 | 6.45 94 | 2.67 133 | 5.56 77 | 7.69 53 | 3.64 161 | 10.8 61 | 13.5 59 | 3.63 78 | 6.36 89 | 12.3 87 | 2.39 106 | 7.46 51 | 17.1 52 | 1.56 60 | 7.86 70 | 12.3 67 | 1.75 111 |
VCN_RVC [178] | 90.8 | 3.82 178 | 8.35 182 | 1.21 45 | 3.55 53 | 5.29 64 | 1.30 30 | 4.20 96 | 7.12 133 | 1.89 69 | 6.70 165 | 10.9 180 | 3.18 39 | 10.9 69 | 13.7 70 | 3.61 62 | 6.20 68 | 11.9 64 | 2.24 34 | 7.73 77 | 17.8 81 | 1.55 53 | 8.10 93 | 12.7 93 | 1.85 182 |
2DHMM-SAS [90] | 91.2 | 3.10 79 | 5.91 79 | 1.21 45 | 4.10 131 | 6.05 130 | 1.46 81 | 4.38 114 | 7.10 130 | 2.07 84 | 5.38 50 | 7.78 62 | 3.22 61 | 11.3 123 | 14.3 133 | 4.42 140 | 6.33 81 | 12.2 78 | 2.26 39 | 7.95 100 | 18.2 100 | 1.64 97 | 8.19 105 | 12.8 102 | 1.70 45 |
TC/T-Flow [77] | 91.5 | 3.21 114 | 6.24 108 | 1.22 77 | 3.90 109 | 5.86 112 | 1.43 70 | 3.69 53 | 5.83 55 | 1.50 25 | 5.88 119 | 8.93 137 | 3.15 29 | 11.1 89 | 13.9 85 | 4.50 164 | 6.23 70 | 12.0 71 | 2.26 39 | 8.61 145 | 19.0 125 | 1.93 153 | 8.16 101 | 12.8 102 | 1.70 45 |
DMF_ROB [135] | 93.1 | 3.15 96 | 6.13 102 | 1.22 77 | 3.96 114 | 5.87 113 | 1.56 101 | 5.24 159 | 7.74 162 | 2.62 127 | 5.73 100 | 8.32 95 | 3.19 46 | 11.0 78 | 13.8 78 | 4.50 164 | 6.07 52 | 11.7 52 | 2.37 96 | 7.66 67 | 17.5 68 | 1.50 24 | 8.10 93 | 12.7 93 | 1.73 78 |
COFM [59] | 93.3 | 3.03 60 | 5.76 64 | 1.22 77 | 3.55 53 | 5.21 54 | 1.32 36 | 3.82 62 | 6.98 121 | 2.81 137 | 5.41 60 | 7.97 75 | 3.30 97 | 10.8 61 | 13.6 65 | 3.62 70 | 7.01 173 | 13.7 171 | 2.40 111 | 8.00 106 | 18.5 111 | 1.98 157 | 7.91 76 | 12.4 77 | 1.80 166 |
Layers++ [37] | 93.8 | 2.96 48 | 5.56 50 | 1.22 77 | 3.29 18 | 4.64 24 | 1.26 6 | 4.07 83 | 7.24 136 | 3.08 149 | 5.48 67 | 8.10 83 | 3.25 76 | 12.0 190 | 15.2 191 | 4.62 193 | 7.29 183 | 14.3 183 | 2.44 134 | 7.63 65 | 17.5 68 | 1.54 46 | 7.84 69 | 12.3 67 | 1.70 45 |
MS_RAFT+_RVC [195] | 94.0 | 3.21 114 | 6.39 125 | 1.25 124 | 3.52 45 | 5.23 56 | 1.28 19 | 3.61 39 | 5.89 63 | 2.34 107 | 5.39 55 | 7.76 59 | 3.53 146 | 11.2 103 | 14.0 97 | 4.50 164 | 5.98 46 | 11.5 45 | 2.23 33 | 7.43 49 | 17.0 48 | 1.93 153 | 9.71 191 | 15.3 191 | 1.86 184 |
FlowFields [108] | 94.2 | 3.15 96 | 6.30 114 | 1.21 45 | 3.57 58 | 5.34 68 | 1.32 36 | 4.73 134 | 6.89 114 | 3.23 158 | 5.85 114 | 8.96 140 | 3.08 19 | 10.8 61 | 13.6 65 | 4.19 125 | 6.57 116 | 12.8 123 | 2.36 92 | 7.72 74 | 17.8 81 | 1.67 109 | 8.20 107 | 12.9 111 | 1.74 102 |
nLayers [57] | 94.4 | 3.03 60 | 5.72 59 | 1.21 45 | 3.48 35 | 5.09 46 | 1.31 32 | 5.60 165 | 7.52 153 | 4.26 180 | 5.61 88 | 8.33 96 | 3.29 87 | 11.6 167 | 14.6 166 | 4.31 131 | 6.66 130 | 12.9 132 | 2.40 111 | 7.58 59 | 17.3 57 | 1.59 72 | 7.94 81 | 12.4 77 | 1.69 37 |
LDOF [28] | 94.6 | 3.03 60 | 5.66 55 | 1.28 151 | 4.06 126 | 5.53 83 | 2.40 194 | 4.32 109 | 6.43 90 | 2.00 77 | 5.45 66 | 7.56 46 | 3.60 159 | 10.2 36 | 12.7 36 | 3.59 44 | 6.39 91 | 12.4 93 | 2.29 53 | 8.36 128 | 19.4 137 | 2.21 174 | 7.57 39 | 11.8 39 | 1.86 184 |
TV-L1-MCT [64] | 94.9 | 3.17 106 | 6.05 97 | 1.22 77 | 3.87 101 | 5.82 108 | 1.40 60 | 4.48 121 | 7.75 163 | 2.24 99 | 5.37 48 | 7.76 59 | 3.24 72 | 11.6 167 | 14.7 173 | 4.31 131 | 6.08 53 | 11.7 52 | 2.31 64 | 8.07 110 | 18.6 115 | 2.15 171 | 7.68 48 | 12.0 48 | 1.68 35 |
ComplOF-FED-GPU [35] | 95.3 | 3.23 118 | 6.40 126 | 1.22 77 | 3.73 83 | 5.62 90 | 1.44 73 | 5.23 158 | 6.06 71 | 3.23 158 | 5.53 71 | 8.25 90 | 3.29 87 | 11.1 89 | 13.9 85 | 4.21 126 | 6.11 57 | 11.8 55 | 2.32 73 | 8.16 115 | 18.5 111 | 1.61 81 | 8.29 126 | 12.9 111 | 1.71 57 |
TC-Flow [46] | 95.9 | 3.31 134 | 6.70 145 | 1.22 77 | 3.91 111 | 5.95 116 | 1.45 77 | 3.64 45 | 5.84 57 | 1.28 8 | 5.70 95 | 8.50 112 | 3.22 61 | 11.2 103 | 14.1 107 | 4.44 144 | 6.34 84 | 12.3 87 | 2.41 123 | 7.79 87 | 17.9 88 | 1.55 53 | 8.42 142 | 13.2 144 | 1.74 102 |
RAFT-it [194] | 96.8 | 3.59 166 | 7.70 170 | 1.20 25 | 3.41 28 | 5.00 35 | 1.25 4 | 3.54 36 | 5.97 68 | 1.72 52 | 5.77 105 | 8.85 133 | 3.52 145 | 10.3 41 | 12.9 44 | 3.60 54 | 6.77 148 | 12.9 132 | 2.71 191 | 7.30 37 | 16.7 38 | 1.66 104 | 9.94 192 | 15.7 193 | 1.84 181 |
AdaConv-v1 [124] | 96.9 | 3.57 164 | 6.88 156 | 1.41 185 | 4.34 151 | 5.67 92 | 2.52 196 | 5.00 148 | 5.86 60 | 2.98 143 | 6.91 171 | 8.89 135 | 4.89 192 | 10.2 36 | 12.8 37 | 3.21 27 | 5.33 31 | 10.1 31 | 2.27 45 | 7.30 37 | 16.6 36 | 1.92 152 | 6.94 34 | 10.8 34 | 1.67 33 |
DPOF [18] | 97.0 | 3.34 144 | 6.82 150 | 1.29 160 | 3.40 27 | 4.93 32 | 1.29 25 | 5.00 148 | 6.36 88 | 3.40 161 | 5.86 115 | 8.94 138 | 3.51 142 | 11.0 78 | 13.8 78 | 3.59 44 | 6.56 113 | 12.7 110 | 2.28 48 | 7.99 103 | 18.2 100 | 1.55 53 | 8.24 115 | 12.9 111 | 1.70 45 |
AGIF+OF [84] | 97.0 | 3.12 84 | 5.95 86 | 1.20 25 | 3.64 66 | 5.39 71 | 1.40 60 | 3.96 73 | 6.44 93 | 2.28 102 | 5.48 67 | 8.03 79 | 3.25 76 | 11.4 134 | 14.3 133 | 4.49 159 | 6.91 164 | 13.5 166 | 2.37 96 | 7.85 93 | 17.9 88 | 1.54 46 | 8.44 146 | 13.2 144 | 1.73 78 |
CRTflow [81] | 97.3 | 3.09 77 | 5.91 79 | 1.27 147 | 4.35 153 | 6.31 160 | 1.68 130 | 4.15 90 | 7.26 137 | 1.84 65 | 5.33 43 | 7.51 44 | 3.38 118 | 11.0 78 | 13.8 78 | 4.48 152 | 6.09 54 | 11.7 52 | 2.30 59 | 8.55 142 | 19.8 149 | 1.55 53 | 8.19 105 | 12.8 102 | 1.72 68 |
PGM-C [118] | 98.5 | 3.17 106 | 6.29 112 | 1.21 45 | 3.58 59 | 5.32 66 | 1.33 40 | 5.01 150 | 6.14 79 | 1.90 70 | 6.14 143 | 9.63 167 | 3.23 68 | 11.2 103 | 14.1 107 | 4.50 164 | 6.14 62 | 11.8 55 | 2.34 80 | 8.20 117 | 18.9 122 | 1.59 72 | 8.46 149 | 13.3 150 | 1.73 78 |
Classic++ [32] | 99.2 | 3.05 65 | 5.85 70 | 1.24 114 | 4.08 129 | 6.08 132 | 1.52 95 | 3.74 57 | 5.58 42 | 1.53 30 | 5.72 99 | 8.12 85 | 3.21 54 | 11.4 134 | 14.3 133 | 3.74 101 | 6.68 134 | 13.0 135 | 2.42 127 | 8.35 127 | 19.2 129 | 1.62 91 | 8.21 109 | 12.9 111 | 1.73 78 |
RAFT-TF_RVC [179] | 99.7 | 3.56 162 | 7.63 169 | 1.19 18 | 3.51 44 | 5.21 54 | 1.27 13 | 3.61 39 | 6.19 82 | 1.84 65 | 5.77 105 | 8.80 130 | 3.18 39 | 10.5 53 | 13.1 51 | 3.60 54 | 7.04 176 | 13.3 156 | 2.74 194 | 7.80 89 | 17.9 88 | 1.66 104 | 8.69 165 | 13.7 166 | 1.82 177 |
Sparse-NonSparse [56] | 99.8 | 3.07 69 | 5.88 74 | 1.21 45 | 3.61 61 | 5.33 67 | 1.33 40 | 4.29 106 | 7.47 151 | 2.19 92 | 5.37 48 | 7.74 55 | 3.21 54 | 11.5 149 | 14.5 154 | 4.36 135 | 6.66 130 | 12.9 132 | 2.41 123 | 8.69 152 | 20.1 156 | 1.67 109 | 8.27 123 | 13.0 125 | 1.70 45 |
EAI-Flow [147] | 99.9 | 3.37 147 | 6.27 110 | 1.32 171 | 3.79 90 | 5.59 87 | 1.52 95 | 4.30 107 | 7.09 128 | 2.39 114 | 5.60 86 | 8.34 98 | 2.96 10 | 11.2 103 | 14.1 107 | 4.34 134 | 6.04 51 | 11.6 49 | 2.34 80 | 7.72 74 | 17.6 72 | 3.12 192 | 7.77 62 | 12.1 53 | 1.82 177 |
OFLAF [78] | 100.6 | 3.10 79 | 5.98 91 | 1.20 25 | 3.44 29 | 5.03 37 | 1.26 6 | 3.73 56 | 5.82 54 | 1.66 41 | 5.33 43 | 7.74 55 | 3.10 22 | 11.6 167 | 14.7 173 | 4.50 164 | 6.58 121 | 12.8 123 | 2.48 148 | 9.33 178 | 21.6 179 | 2.06 165 | 8.45 148 | 13.2 144 | 1.80 166 |
ProFlow_ROB [142] | 100.7 | 3.16 99 | 6.30 114 | 1.21 45 | 3.77 88 | 5.71 97 | 1.39 56 | 4.12 87 | 5.27 34 | 1.62 37 | 6.15 144 | 9.68 168 | 3.11 24 | 11.5 149 | 14.5 154 | 4.50 164 | 5.85 39 | 11.2 37 | 2.24 34 | 8.50 138 | 19.4 137 | 1.56 60 | 8.70 166 | 13.6 164 | 1.85 182 |
ProbFlowFields [126] | 101.0 | 3.15 96 | 6.32 120 | 1.21 45 | 3.53 46 | 5.26 60 | 1.29 25 | 5.03 152 | 7.35 145 | 3.73 168 | 5.43 63 | 7.97 75 | 3.25 76 | 11.1 89 | 14.0 97 | 4.50 164 | 6.48 100 | 12.6 103 | 2.55 169 | 7.99 103 | 18.4 110 | 2.57 183 | 7.78 63 | 12.2 62 | 1.75 111 |
S2F-IF [121] | 101.7 | 3.26 125 | 6.66 142 | 1.20 25 | 3.53 46 | 5.25 58 | 1.29 25 | 4.11 86 | 6.64 102 | 2.34 107 | 5.89 120 | 9.06 145 | 3.08 19 | 11.4 134 | 14.3 133 | 4.51 180 | 6.41 92 | 12.4 93 | 2.40 111 | 7.84 91 | 18.1 96 | 1.76 131 | 8.33 133 | 13.1 135 | 1.75 111 |
Sparse Occlusion [54] | 101.8 | 3.16 99 | 6.18 106 | 1.23 99 | 4.14 138 | 6.24 154 | 1.45 77 | 3.67 49 | 5.84 57 | 1.52 29 | 5.61 88 | 8.26 91 | 3.15 29 | 11.5 149 | 14.4 144 | 4.48 152 | 6.26 74 | 12.1 75 | 2.46 139 | 8.52 140 | 19.6 146 | 1.54 46 | 8.28 125 | 13.0 125 | 1.75 111 |
PMF [73] | 102.2 | 3.14 92 | 6.13 102 | 1.20 25 | 3.73 83 | 5.60 88 | 1.27 13 | 5.24 159 | 8.98 182 | 3.76 169 | 5.75 101 | 8.56 118 | 3.28 84 | 10.8 61 | 13.6 65 | 3.62 70 | 6.55 109 | 12.7 110 | 2.35 89 | 8.41 134 | 19.5 143 | 1.64 97 | 8.57 157 | 13.4 156 | 1.70 45 |
MLDP_OF [87] | 102.4 | 3.08 72 | 5.98 91 | 1.21 45 | 4.01 122 | 6.01 126 | 1.49 90 | 3.67 49 | 6.14 79 | 1.47 23 | 5.78 107 | 8.13 86 | 3.95 180 | 11.3 123 | 14.2 123 | 3.87 109 | 6.71 137 | 13.0 135 | 2.51 158 | 7.73 77 | 17.7 77 | 1.71 118 | 8.18 102 | 12.8 102 | 1.76 126 |
HAST [107] | 102.4 | 3.01 56 | 5.73 61 | 1.21 45 | 3.45 31 | 5.01 36 | 1.27 13 | 6.39 179 | 8.24 172 | 4.09 174 | 5.43 63 | 7.96 73 | 3.03 13 | 11.2 103 | 14.2 123 | 3.59 44 | 7.47 188 | 14.7 188 | 2.47 142 | 8.68 151 | 20.1 156 | 1.53 39 | 8.35 136 | 13.1 135 | 1.77 137 |
TF+OM [98] | 103.2 | 3.33 141 | 6.83 151 | 1.25 124 | 3.65 67 | 5.43 75 | 1.47 85 | 3.82 62 | 6.43 90 | 1.68 46 | 6.01 132 | 9.04 144 | 3.19 46 | 11.2 103 | 14.1 107 | 4.38 137 | 6.46 99 | 12.5 99 | 2.34 80 | 8.30 126 | 19.2 129 | 1.86 145 | 8.05 89 | 12.6 88 | 1.75 111 |
FlowFields+ [128] | 103.2 | 3.14 92 | 6.26 109 | 1.22 77 | 3.54 50 | 5.27 62 | 1.30 30 | 4.74 137 | 7.10 130 | 3.20 156 | 6.01 132 | 9.35 155 | 3.11 24 | 11.1 89 | 13.9 85 | 4.50 164 | 6.57 116 | 12.8 123 | 2.40 111 | 7.89 97 | 18.2 100 | 1.80 138 | 8.22 111 | 12.9 111 | 1.73 78 |
BlockOverlap [61] | 103.6 | 2.98 50 | 5.47 46 | 1.33 174 | 4.38 154 | 6.09 133 | 1.88 162 | 4.26 102 | 5.57 41 | 3.14 152 | 5.56 77 | 7.32 38 | 4.14 185 | 11.1 89 | 13.9 85 | 3.77 104 | 6.41 92 | 12.3 87 | 2.54 166 | 7.75 80 | 17.4 63 | 3.02 190 | 7.32 36 | 11.4 36 | 1.78 145 |
FlowNetS+ft+v [110] | 104.2 | 3.07 69 | 5.81 67 | 1.28 151 | 4.57 172 | 6.29 158 | 2.41 195 | 4.01 77 | 5.64 44 | 2.13 89 | 5.55 75 | 7.77 61 | 3.88 176 | 11.3 123 | 14.2 123 | 4.46 147 | 5.99 48 | 11.5 45 | 2.35 89 | 8.63 148 | 20.0 153 | 1.62 91 | 7.70 51 | 12.0 48 | 1.74 102 |
C-RAFT_RVC [181] | 105.0 | 4.01 183 | 8.57 187 | 1.25 124 | 3.81 94 | 5.74 101 | 1.44 73 | 4.30 107 | 7.14 134 | 2.34 107 | 5.90 121 | 8.92 136 | 3.37 116 | 10.5 53 | 13.1 51 | 3.59 44 | 6.55 109 | 12.7 110 | 2.31 64 | 7.76 82 | 17.8 81 | 1.66 104 | 8.15 100 | 12.8 102 | 1.77 137 |
Filter Flow [19] | 105.7 | 3.13 89 | 5.90 77 | 1.28 151 | 4.56 171 | 6.38 166 | 1.85 160 | 4.22 99 | 6.28 84 | 2.10 87 | 5.91 122 | 7.97 75 | 3.44 131 | 10.4 47 | 13.1 51 | 3.69 89 | 6.43 97 | 12.5 99 | 2.40 111 | 8.17 116 | 18.8 120 | 1.62 91 | 7.94 81 | 12.4 77 | 1.78 145 |
MCPFlow_RVC [197] | 107.5 | 3.84 179 | 8.13 179 | 1.22 77 | 3.65 67 | 5.46 77 | 1.34 44 | 4.00 76 | 7.34 143 | 1.61 36 | 5.79 109 | 8.74 127 | 3.24 72 | 10.8 61 | 13.5 59 | 3.59 44 | 7.40 184 | 14.5 185 | 2.41 123 | 7.36 41 | 16.8 39 | 1.59 72 | 11.3 198 | 17.9 198 | 1.96 191 |
LSM [39] | 107.8 | 3.12 84 | 6.05 97 | 1.21 45 | 3.68 73 | 5.47 78 | 1.33 40 | 4.38 114 | 7.66 160 | 2.01 78 | 5.55 75 | 8.19 88 | 3.19 46 | 11.5 149 | 14.5 154 | 4.43 141 | 6.83 155 | 13.3 156 | 2.37 96 | 8.70 153 | 20.1 156 | 1.72 121 | 8.34 135 | 13.1 135 | 1.71 57 |
EpicFlow [100] | 108.0 | 3.17 106 | 6.34 121 | 1.21 45 | 3.79 90 | 5.70 95 | 1.44 73 | 4.28 104 | 5.73 48 | 1.67 44 | 6.37 157 | 10.1 173 | 3.39 121 | 11.2 103 | 14.1 107 | 4.50 164 | 6.23 70 | 12.0 71 | 2.38 103 | 8.11 112 | 18.5 111 | 1.76 131 | 8.76 170 | 13.8 170 | 1.74 102 |
Black & Anandan [4] | 108.9 | 3.22 117 | 5.87 72 | 1.30 164 | 4.82 186 | 6.55 176 | 1.78 150 | 7.16 183 | 7.10 130 | 3.93 171 | 6.25 150 | 8.49 110 | 3.35 114 | 10.9 69 | 13.7 70 | 3.56 38 | 6.33 81 | 12.2 78 | 2.37 96 | 8.23 120 | 18.6 115 | 1.64 97 | 7.67 47 | 11.9 42 | 1.69 37 |
RNLOD-Flow [119] | 109.6 | 3.06 67 | 5.87 72 | 1.21 45 | 3.96 114 | 5.97 123 | 1.42 67 | 4.39 116 | 8.08 169 | 2.44 118 | 5.35 45 | 7.75 57 | 3.18 39 | 11.5 149 | 14.5 154 | 4.49 159 | 6.71 137 | 13.1 143 | 2.43 130 | 7.85 93 | 18.0 94 | 2.18 172 | 8.44 146 | 13.2 144 | 1.73 78 |
TCOF [69] | 109.8 | 3.12 84 | 5.94 84 | 1.21 45 | 4.60 175 | 6.64 182 | 1.76 148 | 4.13 88 | 7.30 139 | 1.81 60 | 5.42 62 | 7.88 67 | 3.25 76 | 11.3 123 | 14.2 123 | 3.63 78 | 6.42 95 | 12.4 93 | 2.36 92 | 9.08 175 | 21.0 175 | 1.59 72 | 8.37 138 | 13.1 135 | 1.76 126 |
Ramp [62] | 110.3 | 3.11 83 | 5.96 88 | 1.22 77 | 3.61 61 | 5.34 68 | 1.40 60 | 4.91 143 | 8.45 175 | 3.20 156 | 5.29 38 | 7.66 51 | 3.21 54 | 11.5 149 | 14.5 154 | 4.31 131 | 6.88 163 | 13.4 161 | 2.48 148 | 8.73 160 | 20.2 160 | 1.52 38 | 8.29 126 | 13.0 125 | 1.73 78 |
ComponentFusion [94] | 111.4 | 3.41 149 | 7.08 159 | 1.20 25 | 3.63 64 | 5.44 76 | 1.27 13 | 4.20 96 | 6.49 96 | 2.43 117 | 5.59 83 | 8.38 102 | 3.32 106 | 11.4 134 | 14.4 144 | 4.11 122 | 6.26 74 | 12.1 75 | 2.35 89 | 9.30 177 | 21.6 179 | 2.80 188 | 8.68 163 | 13.6 164 | 1.73 78 |
Fusion [6] | 111.5 | 3.04 64 | 5.86 71 | 1.22 77 | 3.75 87 | 5.47 78 | 1.42 67 | 4.08 84 | 5.55 40 | 3.08 149 | 5.80 110 | 8.10 83 | 3.19 46 | 11.4 134 | 14.3 133 | 3.73 98 | 6.99 170 | 13.7 171 | 2.60 175 | 8.40 133 | 19.4 137 | 1.65 102 | 8.50 151 | 13.3 150 | 1.80 166 |
Classic+NL [31] | 112.2 | 3.10 79 | 5.92 82 | 1.23 99 | 3.66 70 | 5.40 72 | 1.39 56 | 4.78 139 | 8.42 174 | 3.01 147 | 5.36 46 | 7.78 62 | 3.30 97 | 11.5 149 | 14.5 154 | 4.24 128 | 6.73 141 | 13.1 143 | 2.40 111 | 8.74 161 | 20.2 160 | 1.70 116 | 8.29 126 | 13.0 125 | 1.71 57 |
AggregFlow [95] | 112.7 | 3.80 177 | 8.08 177 | 1.23 99 | 3.87 101 | 5.83 109 | 1.43 70 | 4.21 98 | 6.79 106 | 2.85 140 | 6.11 140 | 9.36 156 | 3.31 102 | 10.6 55 | 13.3 55 | 3.67 86 | 6.13 60 | 11.8 55 | 2.34 80 | 8.70 153 | 19.8 149 | 2.30 178 | 8.27 123 | 13.0 125 | 1.75 111 |
Bartels [41] | 114.1 | 3.48 156 | 7.24 163 | 1.30 164 | 4.02 123 | 6.12 138 | 1.68 130 | 3.74 57 | 5.80 52 | 1.95 75 | 5.87 117 | 8.44 106 | 3.78 174 | 10.3 41 | 12.8 37 | 3.75 103 | 6.77 148 | 13.0 135 | 2.73 193 | 7.53 56 | 17.3 57 | 2.72 186 | 8.13 97 | 12.7 93 | 1.77 137 |
Occlusion-TV-L1 [63] | 114.2 | 3.14 92 | 6.13 102 | 1.25 124 | 4.47 163 | 6.61 179 | 1.66 125 | 3.51 32 | 5.71 47 | 1.70 49 | 6.33 152 | 9.58 165 | 3.51 142 | 11.0 78 | 13.9 85 | 3.57 40 | 6.48 100 | 12.6 103 | 2.52 163 | 8.36 128 | 18.1 96 | 2.00 160 | 8.32 132 | 13.0 125 | 1.79 160 |
HBM-GC [103] | 114.6 | 3.08 72 | 5.90 77 | 1.26 141 | 3.97 117 | 6.04 129 | 1.41 64 | 3.92 69 | 5.62 43 | 2.87 142 | 5.54 73 | 8.03 79 | 3.21 54 | 11.7 177 | 14.7 173 | 4.58 192 | 7.66 192 | 15.0 192 | 2.69 189 | 8.36 128 | 19.3 132 | 1.55 53 | 7.86 70 | 12.3 67 | 1.76 126 |
Classic+CPF [82] | 114.7 | 3.12 84 | 5.96 88 | 1.21 45 | 3.72 82 | 5.51 82 | 1.39 56 | 4.39 116 | 7.38 148 | 2.27 101 | 5.32 41 | 7.70 54 | 3.18 39 | 11.7 177 | 14.8 179 | 4.50 164 | 7.18 181 | 14.0 181 | 2.45 136 | 8.79 162 | 20.2 160 | 1.57 65 | 8.71 168 | 13.7 166 | 1.73 78 |
FC-2Layers-FF [74] | 115.3 | 3.18 110 | 6.16 105 | 1.22 77 | 3.33 24 | 4.73 27 | 1.35 47 | 4.34 113 | 7.09 128 | 3.11 151 | 5.56 77 | 8.29 92 | 3.29 87 | 11.5 149 | 14.5 154 | 4.48 152 | 7.00 171 | 13.7 171 | 2.48 148 | 8.92 167 | 20.6 168 | 1.71 118 | 8.30 129 | 13.0 125 | 1.73 78 |
LFNet_ROB [145] | 115.4 | 3.65 171 | 7.73 171 | 1.23 99 | 3.88 104 | 5.80 107 | 1.49 90 | 4.57 124 | 8.96 181 | 2.02 80 | 5.62 91 | 8.44 106 | 3.18 39 | 11.0 78 | 13.8 78 | 4.47 148 | 7.19 182 | 14.1 182 | 2.47 142 | 7.59 61 | 17.4 63 | 1.82 141 | 8.10 93 | 12.7 93 | 1.78 145 |
Efficient-NL [60] | 115.7 | 3.05 65 | 5.77 65 | 1.21 45 | 3.90 109 | 5.84 110 | 1.38 52 | 5.90 171 | 6.94 118 | 4.19 177 | 5.59 83 | 8.09 82 | 3.20 53 | 11.5 149 | 14.4 144 | 4.40 139 | 6.87 159 | 13.4 161 | 2.40 111 | 8.85 163 | 20.5 165 | 1.68 113 | 8.57 157 | 13.4 156 | 1.66 30 |
CNN-flow-warp+ref [115] | 116.3 | 2.90 39 | 5.43 41 | 1.25 124 | 4.10 131 | 5.95 116 | 1.83 159 | 4.92 144 | 7.63 158 | 2.45 119 | 6.13 142 | 7.85 65 | 3.72 168 | 11.3 123 | 14.2 123 | 4.51 180 | 6.03 50 | 11.6 49 | 2.46 139 | 9.00 168 | 20.8 173 | 1.65 102 | 7.91 76 | 12.4 77 | 1.76 126 |
FESL [72] | 116.5 | 3.16 99 | 6.02 95 | 1.21 45 | 3.65 67 | 5.42 74 | 1.35 47 | 4.39 116 | 7.61 157 | 2.18 91 | 5.71 97 | 8.35 100 | 3.30 97 | 11.6 167 | 14.7 173 | 4.51 180 | 6.73 141 | 13.1 143 | 2.47 142 | 8.70 153 | 20.1 156 | 1.56 60 | 8.42 142 | 13.2 144 | 1.75 111 |
Horn & Schunck [3] | 116.8 | 3.16 99 | 5.83 68 | 1.26 141 | 4.91 187 | 6.65 183 | 1.92 169 | 6.13 174 | 6.85 110 | 3.53 164 | 6.80 168 | 9.10 146 | 3.57 154 | 10.9 69 | 13.7 70 | 3.59 44 | 6.16 65 | 11.9 64 | 2.32 73 | 8.63 148 | 19.5 143 | 1.84 144 | 7.91 76 | 12.3 67 | 1.73 78 |
2D-CLG [1] | 117.1 | 3.01 56 | 5.65 53 | 1.28 151 | 4.59 174 | 6.17 141 | 1.95 178 | 5.18 156 | 6.06 71 | 3.15 154 | 6.01 132 | 7.88 67 | 3.97 181 | 11.4 134 | 14.4 144 | 4.69 194 | 5.98 46 | 11.5 45 | 2.45 136 | 8.89 166 | 20.5 165 | 1.67 109 | 7.74 53 | 12.0 48 | 1.71 57 |
SRR-TVOF-NL [89] | 117.3 | 3.32 138 | 6.46 132 | 1.23 99 | 3.96 114 | 5.96 120 | 1.59 106 | 4.68 130 | 7.90 165 | 3.52 163 | 5.99 130 | 8.77 128 | 3.23 68 | 11.2 103 | 14.1 107 | 4.45 146 | 6.79 152 | 13.2 153 | 2.31 64 | 7.88 95 | 18.0 94 | 1.50 24 | 8.37 138 | 13.1 135 | 1.75 111 |
RFlow [88] | 118.4 | 3.08 72 | 5.99 93 | 1.23 99 | 4.33 148 | 6.31 160 | 1.66 125 | 4.83 140 | 7.32 140 | 3.14 152 | 5.87 117 | 8.72 126 | 3.47 137 | 11.1 89 | 14.0 97 | 3.60 54 | 6.54 108 | 12.7 110 | 2.39 106 | 8.54 141 | 19.8 149 | 1.61 81 | 8.26 120 | 12.9 111 | 1.80 166 |
OFH [38] | 119.6 | 3.18 110 | 6.29 112 | 1.23 99 | 4.11 133 | 5.96 120 | 1.61 113 | 4.68 130 | 8.40 173 | 1.68 46 | 5.84 112 | 8.99 141 | 3.03 13 | 11.3 123 | 14.2 123 | 4.25 130 | 6.30 79 | 12.2 78 | 2.40 111 | 8.59 143 | 19.3 132 | 1.89 148 | 8.55 154 | 13.4 156 | 1.97 192 |
TriFlow [93] | 119.7 | 3.71 174 | 7.95 176 | 1.25 124 | 4.31 147 | 6.36 165 | 1.71 137 | 4.05 81 | 6.86 112 | 1.84 65 | 6.21 149 | 9.44 159 | 3.17 35 | 11.3 123 | 14.2 123 | 4.48 152 | 6.76 147 | 13.1 143 | 2.29 53 | 8.01 108 | 18.2 100 | 1.75 128 | 8.24 115 | 12.9 111 | 1.70 45 |
PWC-Net_RVC [143] | 120.2 | 3.66 173 | 7.76 172 | 1.21 45 | 3.91 111 | 5.97 123 | 1.37 50 | 3.88 68 | 6.73 104 | 1.48 24 | 6.36 155 | 10.1 173 | 3.13 27 | 11.8 183 | 14.9 184 | 4.49 159 | 6.78 151 | 13.1 143 | 2.34 80 | 7.72 74 | 17.7 77 | 1.66 104 | 8.57 157 | 13.5 161 | 1.88 186 |
3DFlow [133] | 120.7 | 3.26 125 | 6.37 124 | 1.21 45 | 3.70 76 | 5.55 84 | 1.46 81 | 4.51 122 | 6.52 97 | 2.28 102 | 5.84 112 | 8.84 132 | 3.59 157 | 11.2 103 | 14.1 107 | 3.79 106 | 7.04 176 | 13.7 171 | 2.68 188 | 8.59 143 | 19.4 137 | 1.82 141 | 8.26 120 | 12.9 111 | 1.77 137 |
CostFilter [40] | 121.4 | 3.46 155 | 7.24 163 | 1.19 18 | 3.71 80 | 5.60 88 | 1.27 13 | 5.63 167 | 9.41 189 | 3.86 170 | 6.37 157 | 10.1 173 | 3.23 68 | 11.2 103 | 14.0 97 | 3.78 105 | 6.35 87 | 12.2 78 | 2.40 111 | 8.86 165 | 20.6 168 | 1.69 114 | 8.80 172 | 13.8 170 | 1.74 102 |
SVFilterOh [109] | 121.5 | 3.23 118 | 6.35 122 | 1.23 99 | 3.53 46 | 5.19 52 | 1.31 32 | 5.91 172 | 8.20 171 | 4.22 178 | 5.75 101 | 8.52 114 | 3.43 129 | 11.4 134 | 14.3 133 | 4.53 188 | 6.97 168 | 13.6 169 | 2.38 103 | 7.94 98 | 18.3 107 | 1.57 65 | 8.31 131 | 13.0 125 | 1.79 160 |
Nguyen [33] | 121.6 | 3.26 125 | 6.11 100 | 1.33 174 | 4.94 188 | 6.51 174 | 1.91 168 | 4.09 85 | 7.32 140 | 1.96 76 | 6.19 148 | 8.53 115 | 3.60 159 | 11.1 89 | 13.9 85 | 3.58 42 | 6.55 109 | 12.7 110 | 2.36 92 | 9.44 180 | 21.8 183 | 1.80 138 | 7.86 70 | 12.3 67 | 1.74 102 |
S2D-Matching [83] | 121.8 | 3.21 114 | 6.22 107 | 1.22 77 | 3.97 117 | 5.95 116 | 1.48 87 | 4.57 124 | 7.70 161 | 2.84 139 | 5.48 67 | 8.06 81 | 3.48 139 | 11.4 134 | 14.3 133 | 4.14 123 | 6.97 168 | 13.6 169 | 2.56 173 | 8.09 111 | 18.6 115 | 1.74 123 | 8.21 109 | 12.9 111 | 1.76 126 |
Adaptive [20] | 122.9 | 3.24 122 | 6.44 129 | 1.25 124 | 4.57 172 | 6.61 179 | 1.72 139 | 3.94 71 | 6.12 78 | 1.81 60 | 5.86 115 | 8.66 124 | 3.47 137 | 11.6 167 | 14.6 166 | 3.59 44 | 6.55 109 | 12.7 110 | 2.51 158 | 9.03 171 | 20.6 168 | 1.59 72 | 8.13 97 | 12.7 93 | 1.78 145 |
IAOF [50] | 124.1 | 3.53 161 | 6.60 139 | 1.32 171 | 5.39 196 | 7.19 196 | 1.96 179 | 5.81 169 | 7.32 140 | 3.63 166 | 6.15 144 | 8.34 98 | 3.72 168 | 11.1 89 | 14.0 97 | 3.60 54 | 6.50 103 | 12.6 103 | 2.34 80 | 8.28 125 | 19.0 125 | 1.53 39 | 7.94 81 | 12.4 77 | 1.73 78 |
PBOFVI [189] | 124.1 | 3.31 134 | 6.60 139 | 1.21 45 | 4.34 151 | 6.42 169 | 1.69 132 | 4.98 146 | 8.07 168 | 2.35 110 | 5.76 103 | 8.63 122 | 3.45 135 | 11.5 149 | 14.5 154 | 4.50 164 | 6.34 84 | 12.2 78 | 2.30 59 | 8.39 132 | 18.8 120 | 1.80 138 | 8.26 120 | 13.0 125 | 1.74 102 |
Steered-L1 [116] | 124.2 | 2.97 49 | 5.73 61 | 1.21 45 | 3.81 94 | 5.72 99 | 1.60 110 | 8.15 186 | 9.24 186 | 6.46 194 | 6.42 159 | 9.21 153 | 4.28 189 | 11.4 134 | 14.3 133 | 3.80 107 | 6.52 106 | 12.7 110 | 2.43 130 | 8.20 117 | 19.0 125 | 2.54 181 | 8.33 133 | 13.1 135 | 1.70 45 |
FlowNet2 [120] | 124.5 | 4.84 192 | 10.1 193 | 1.29 160 | 4.11 133 | 6.13 139 | 1.61 113 | 4.73 134 | 7.06 126 | 2.36 111 | 6.36 155 | 10.0 171 | 3.38 118 | 11.2 103 | 14.1 107 | 3.71 93 | 6.44 98 | 12.5 99 | 2.33 76 | 8.45 135 | 19.4 137 | 1.61 81 | 8.03 88 | 12.6 88 | 1.77 137 |
Complementary OF [21] | 125.0 | 3.48 156 | 7.32 167 | 1.20 25 | 3.89 107 | 5.96 120 | 1.45 77 | 8.94 190 | 6.94 118 | 5.45 188 | 6.33 152 | 10.0 171 | 3.09 21 | 11.3 123 | 14.2 123 | 4.24 128 | 6.33 81 | 12.3 87 | 2.42 127 | 8.62 147 | 19.3 132 | 1.75 128 | 9.07 181 | 14.3 182 | 1.72 68 |
CompactFlow_ROB [155] | 125.7 | 3.91 182 | 8.50 186 | 1.24 114 | 3.94 113 | 5.94 115 | 1.54 99 | 5.28 161 | 8.58 177 | 2.62 127 | 8.69 192 | 14.5 194 | 3.26 81 | 10.9 69 | 13.7 70 | 3.64 85 | 6.87 159 | 13.4 161 | 2.33 76 | 8.50 138 | 19.6 146 | 1.53 39 | 8.22 111 | 12.9 111 | 1.75 111 |
TVL1_RVC [175] | 126.8 | 3.32 138 | 6.27 110 | 1.36 182 | 5.03 190 | 6.77 190 | 1.94 177 | 4.84 141 | 6.87 113 | 2.98 143 | 6.16 147 | 8.51 113 | 3.58 156 | 10.9 69 | 13.7 70 | 3.63 78 | 6.57 116 | 12.7 110 | 2.43 130 | 9.00 168 | 20.6 168 | 2.20 173 | 7.72 52 | 12.1 53 | 1.71 57 |
FF++_ROB [141] | 127.0 | 3.27 128 | 6.67 143 | 1.20 25 | 3.74 85 | 5.58 85 | 1.38 52 | 4.86 142 | 7.42 149 | 2.99 145 | 6.57 164 | 10.4 178 | 3.54 149 | 11.5 149 | 14.5 154 | 4.51 180 | 6.62 127 | 12.8 123 | 2.47 142 | 7.97 101 | 18.3 107 | 1.90 149 | 8.24 115 | 12.9 111 | 1.78 145 |
AugFNG_ROB [139] | 127.4 | 3.73 175 | 7.90 175 | 1.25 124 | 4.12 136 | 6.02 127 | 1.74 143 | 4.70 133 | 8.79 179 | 1.94 74 | 8.14 190 | 13.4 191 | 3.29 87 | 12.0 190 | 15.1 189 | 4.50 164 | 6.50 103 | 12.6 103 | 2.28 48 | 8.03 109 | 18.3 107 | 1.62 91 | 7.75 55 | 12.1 53 | 1.75 111 |
TV-L1-improved [17] | 127.5 | 3.09 77 | 6.03 96 | 1.25 124 | 4.55 170 | 6.59 178 | 1.70 135 | 5.88 170 | 5.66 45 | 4.09 174 | 5.53 71 | 7.88 67 | 3.22 61 | 11.4 134 | 14.4 144 | 3.61 62 | 6.73 141 | 13.1 143 | 2.51 158 | 9.48 181 | 22.1 185 | 1.94 155 | 8.25 118 | 12.9 111 | 1.79 160 |
TI-DOFE [24] | 128.6 | 3.41 149 | 6.44 129 | 1.44 189 | 5.20 194 | 6.82 193 | 2.01 183 | 4.19 95 | 6.41 89 | 1.88 68 | 6.98 172 | 9.50 161 | 3.70 166 | 10.8 61 | 13.6 65 | 3.61 62 | 6.59 122 | 12.8 123 | 2.36 92 | 8.13 114 | 18.2 100 | 1.77 133 | 8.53 153 | 12.4 77 | 2.33 196 |
EPPM w/o HM [86] | 129.0 | 3.35 145 | 6.86 154 | 1.21 45 | 3.85 100 | 5.88 114 | 1.29 25 | 7.03 181 | 9.47 192 | 3.97 173 | 6.15 144 | 9.51 162 | 3.38 118 | 10.6 55 | 13.3 55 | 3.62 70 | 7.00 171 | 13.7 171 | 2.37 96 | 8.85 163 | 20.5 165 | 2.62 185 | 8.42 142 | 13.2 144 | 1.76 126 |
GraphCuts [14] | 130.8 | 3.65 171 | 7.01 158 | 1.27 147 | 3.89 107 | 5.71 97 | 1.59 106 | 7.54 184 | 5.84 57 | 4.31 181 | 5.98 129 | 8.42 104 | 3.45 135 | 11.4 134 | 14.4 144 | 4.09 120 | 6.56 113 | 12.8 123 | 2.30 59 | 8.70 153 | 20.2 160 | 1.98 157 | 8.59 161 | 13.5 161 | 1.73 78 |
BriefMatch [122] | 131.9 | 3.25 124 | 6.49 133 | 1.25 124 | 3.87 101 | 5.67 92 | 1.97 181 | 6.16 175 | 6.17 81 | 4.79 184 | 6.83 170 | 8.37 101 | 5.73 195 | 11.0 78 | 13.8 78 | 3.73 98 | 6.75 146 | 13.0 135 | 2.61 177 | 7.99 103 | 17.9 88 | 3.29 193 | 8.22 111 | 12.8 102 | 2.32 195 |
LSM_FLOW_RVC [182] | 132.2 | 4.28 189 | 9.20 189 | 1.31 168 | 4.09 130 | 6.17 141 | 1.50 93 | 5.13 154 | 9.21 185 | 2.39 114 | 7.80 184 | 13.2 190 | 3.16 31 | 11.2 103 | 14.1 107 | 4.47 148 | 6.31 80 | 12.2 78 | 2.39 106 | 8.26 121 | 19.0 125 | 1.58 68 | 8.52 152 | 13.3 150 | 1.80 166 |
NL-TV-NCC [25] | 132.9 | 3.37 147 | 6.58 138 | 1.24 114 | 4.23 142 | 6.41 168 | 1.49 90 | 4.39 116 | 6.68 103 | 2.07 84 | 7.19 180 | 11.2 184 | 3.35 114 | 10.7 58 | 13.4 57 | 4.00 117 | 6.95 165 | 13.4 161 | 2.44 134 | 9.06 172 | 20.0 153 | 2.13 170 | 8.42 142 | 13.1 135 | 1.78 145 |
CVENG22+RIC [199] | 133.0 | 3.13 89 | 6.11 100 | 1.23 99 | 3.99 120 | 5.95 116 | 1.46 81 | 4.98 146 | 6.79 106 | 2.03 81 | 6.50 162 | 10.1 173 | 3.54 149 | 11.6 167 | 14.6 166 | 4.51 180 | 6.67 132 | 13.0 135 | 2.39 106 | 8.45 135 | 19.3 132 | 1.77 133 | 9.23 186 | 14.5 186 | 1.75 111 |
IAOF2 [51] | 133.9 | 3.43 152 | 6.70 145 | 1.28 151 | 4.62 177 | 6.77 190 | 1.74 143 | 4.41 120 | 6.89 114 | 2.12 88 | 5.97 127 | 8.53 115 | 3.33 109 | 11.6 167 | 14.7 173 | 4.06 119 | 6.87 159 | 13.4 161 | 2.51 158 | 8.26 121 | 18.7 119 | 1.61 81 | 8.22 111 | 12.9 111 | 1.74 102 |
EPMNet [131] | 134.5 | 4.90 193 | 10.5 197 | 1.28 151 | 4.04 125 | 5.98 125 | 1.60 110 | 4.73 134 | 7.06 126 | 2.36 111 | 8.74 194 | 15.0 195 | 3.48 139 | 11.2 103 | 14.1 107 | 3.71 93 | 6.70 136 | 13.0 135 | 2.34 80 | 8.45 135 | 19.4 137 | 1.61 81 | 8.38 140 | 13.1 135 | 1.78 145 |
TriangleFlow [30] | 135.4 | 3.24 122 | 6.31 118 | 1.26 141 | 4.29 146 | 6.29 158 | 1.66 125 | 4.67 129 | 6.85 110 | 2.48 121 | 5.78 107 | 8.47 108 | 3.30 97 | 11.4 134 | 14.4 144 | 3.47 36 | 6.63 129 | 12.8 123 | 2.37 96 | 9.67 185 | 22.5 186 | 2.08 167 | 9.69 190 | 15.2 190 | 1.90 188 |
ResPWCR_ROB [140] | 136.2 | 3.52 160 | 7.36 168 | 1.23 99 | 4.06 126 | 6.18 146 | 1.53 98 | 4.57 124 | 6.90 116 | 1.91 71 | 7.44 183 | 12.2 188 | 3.40 124 | 11.5 149 | 14.6 166 | 4.39 138 | 7.10 179 | 13.7 171 | 2.54 166 | 7.81 90 | 17.8 81 | 1.67 109 | 9.04 180 | 14.2 179 | 1.71 57 |
LocallyOriented [52] | 136.5 | 3.29 131 | 6.53 136 | 1.26 141 | 4.64 178 | 6.69 185 | 1.74 143 | 5.61 166 | 7.56 154 | 3.67 167 | 6.73 166 | 9.84 170 | 3.18 39 | 11.5 149 | 14.4 144 | 3.71 93 | 6.57 116 | 12.7 110 | 2.45 136 | 8.71 157 | 19.3 132 | 1.71 118 | 8.40 141 | 13.1 135 | 1.72 68 |
Correlation Flow [76] | 137.8 | 3.27 128 | 6.50 134 | 1.20 25 | 4.42 157 | 6.56 177 | 1.65 122 | 3.98 75 | 6.10 76 | 2.30 106 | 5.93 124 | 8.94 138 | 3.32 106 | 11.6 167 | 14.6 166 | 3.84 108 | 7.63 191 | 14.8 189 | 2.65 186 | 9.95 189 | 23.0 189 | 2.01 162 | 8.73 169 | 13.7 166 | 1.71 57 |
ContinualFlow_ROB [148] | 138.3 | 3.79 176 | 8.09 178 | 1.25 124 | 4.03 124 | 6.11 136 | 1.61 113 | 4.76 138 | 7.58 155 | 2.38 113 | 7.09 175 | 11.7 185 | 3.17 35 | 12.2 194 | 15.4 194 | 4.49 159 | 6.35 87 | 12.3 87 | 2.29 53 | 8.71 157 | 20.0 153 | 1.61 81 | 9.02 178 | 14.2 179 | 1.78 145 |
ACK-Prior [27] | 139.3 | 3.30 132 | 6.56 137 | 1.21 45 | 3.81 94 | 5.78 103 | 1.42 67 | 7.13 182 | 6.90 116 | 5.04 185 | 6.02 135 | 8.78 129 | 3.70 166 | 11.7 177 | 14.7 173 | 4.57 191 | 6.95 165 | 13.5 166 | 2.50 154 | 8.36 128 | 19.2 129 | 2.53 180 | 8.56 156 | 13.4 156 | 1.73 78 |
ROF-ND [105] | 139.6 | 3.18 110 | 5.83 68 | 1.21 45 | 4.13 137 | 6.13 139 | 1.92 169 | 4.22 99 | 7.51 152 | 2.22 98 | 7.10 176 | 10.8 179 | 3.53 146 | 11.4 134 | 14.3 133 | 4.48 152 | 6.95 165 | 13.5 166 | 2.53 164 | 8.21 119 | 18.6 115 | 1.90 149 | 9.08 182 | 14.2 179 | 1.81 175 |
HBpMotionGpu [43] | 140.5 | 3.63 168 | 7.28 165 | 1.35 180 | 4.78 183 | 6.69 185 | 1.92 169 | 4.33 112 | 7.01 124 | 2.56 126 | 6.46 160 | 9.81 169 | 3.40 124 | 11.5 149 | 14.4 144 | 5.69 199 | 6.83 155 | 13.3 156 | 2.55 169 | 7.40 46 | 16.9 43 | 1.51 32 | 8.30 129 | 13.0 125 | 1.79 160 |
StereoOF-V1MT [117] | 140.8 | 3.56 162 | 7.20 162 | 1.22 77 | 4.27 145 | 6.18 146 | 1.70 135 | 6.10 173 | 6.80 108 | 3.43 162 | 7.17 179 | 9.52 163 | 4.01 184 | 11.2 103 | 14.1 107 | 4.43 141 | 6.61 126 | 12.5 99 | 2.60 175 | 9.49 182 | 21.6 179 | 2.05 163 | 8.01 86 | 12.4 77 | 1.78 145 |
H+S_RVC [176] | 141.2 | 3.43 152 | 6.69 144 | 1.28 151 | 4.50 164 | 6.02 127 | 1.90 165 | 5.12 153 | 7.34 143 | 2.66 131 | 7.02 174 | 8.60 120 | 3.54 149 | 11.5 149 | 14.5 154 | 3.88 110 | 6.62 127 | 12.8 123 | 2.43 130 | 8.64 150 | 19.5 143 | 2.06 165 | 8.36 137 | 12.8 102 | 1.76 126 |
Dynamic MRF [7] | 145.8 | 3.19 113 | 6.41 127 | 1.22 77 | 4.11 133 | 6.21 149 | 1.56 101 | 5.37 163 | 7.35 145 | 2.70 134 | 6.74 167 | 9.18 151 | 4.19 186 | 11.1 89 | 13.9 85 | 4.48 152 | 7.02 174 | 13.7 171 | 2.62 180 | 9.26 176 | 21.4 178 | 2.23 175 | 8.57 157 | 13.3 150 | 1.80 166 |
LiteFlowNet [138] | 146.7 | 3.86 180 | 8.34 181 | 1.22 77 | 3.80 92 | 5.75 102 | 1.44 73 | 5.33 162 | 9.45 191 | 2.66 131 | 8.72 193 | 14.4 193 | 3.88 176 | 11.8 183 | 14.8 179 | 4.50 164 | 7.03 175 | 13.7 171 | 2.40 111 | 9.07 174 | 20.4 164 | 1.69 114 | 8.13 97 | 12.7 93 | 1.78 145 |
FOLKI [16] | 146.8 | 3.64 169 | 7.12 160 | 1.65 194 | 5.22 195 | 6.72 188 | 2.36 193 | 5.20 157 | 8.08 169 | 3.96 172 | 7.93 186 | 9.33 154 | 5.52 194 | 11.2 103 | 14.0 97 | 3.70 90 | 6.56 113 | 12.6 103 | 2.74 194 | 8.00 106 | 18.2 100 | 2.88 189 | 7.96 84 | 12.3 67 | 1.78 145 |
Shiralkar [42] | 146.9 | 3.57 164 | 7.31 166 | 1.22 77 | 4.46 162 | 6.33 164 | 1.65 122 | 5.49 164 | 6.98 121 | 2.73 135 | 7.42 182 | 10.9 180 | 3.43 129 | 11.5 149 | 14.4 144 | 3.73 98 | 6.57 116 | 12.7 110 | 2.48 148 | 9.58 183 | 21.9 184 | 1.88 147 | 9.18 185 | 14.4 184 | 1.75 111 |
SimpleFlow [49] | 147.0 | 3.10 79 | 5.97 90 | 1.22 77 | 4.19 140 | 6.11 136 | 1.64 121 | 9.91 193 | 9.43 190 | 6.53 195 | 5.58 80 | 8.29 92 | 3.30 97 | 11.6 167 | 14.6 166 | 4.43 141 | 7.42 186 | 14.6 187 | 2.56 173 | 10.7 193 | 25.2 193 | 2.73 187 | 9.16 184 | 14.4 184 | 1.73 78 |
Rannacher [23] | 147.8 | 3.31 134 | 6.72 148 | 1.25 124 | 4.60 175 | 6.66 184 | 1.72 139 | 6.36 178 | 6.54 98 | 4.25 179 | 5.91 122 | 8.87 134 | 3.49 141 | 11.5 149 | 14.5 154 | 3.63 78 | 6.73 141 | 13.1 143 | 2.53 164 | 9.35 179 | 21.7 182 | 1.98 157 | 8.70 166 | 13.7 166 | 1.75 111 |
Learning Flow [11] | 148.1 | 3.14 92 | 6.09 99 | 1.27 147 | 4.51 165 | 6.53 175 | 1.67 128 | 11.5 198 | 12.9 198 | 7.17 198 | 6.31 151 | 8.30 94 | 3.66 163 | 11.7 177 | 14.8 179 | 3.89 111 | 6.59 122 | 12.8 123 | 2.48 148 | 8.27 124 | 18.9 122 | 1.96 156 | 8.68 163 | 13.4 156 | 1.80 166 |
SILK [80] | 148.3 | 3.45 154 | 6.85 152 | 1.36 182 | 5.11 192 | 6.70 187 | 2.21 190 | 11.1 195 | 9.96 193 | 6.24 193 | 6.49 161 | 8.82 131 | 3.59 157 | 11.4 134 | 14.3 133 | 3.54 37 | 6.87 159 | 13.3 156 | 2.63 182 | 7.76 82 | 17.7 77 | 1.87 146 | 8.20 107 | 12.7 93 | 1.80 166 |
OFRF [132] | 151.8 | 4.02 184 | 8.26 180 | 1.33 174 | 4.53 168 | 6.49 172 | 1.81 155 | 4.60 128 | 7.27 138 | 2.13 89 | 6.02 135 | 9.15 148 | 3.39 121 | 11.8 183 | 14.9 184 | 4.23 127 | 7.13 180 | 13.9 179 | 2.39 106 | 9.02 170 | 20.8 173 | 1.59 72 | 8.79 171 | 13.8 170 | 1.77 137 |
Adaptive flow [45] | 152.2 | 3.60 167 | 6.30 114 | 1.54 193 | 5.14 193 | 6.79 192 | 2.14 189 | 4.52 123 | 6.60 100 | 3.01 147 | 6.54 163 | 8.64 123 | 4.23 187 | 12.1 193 | 15.2 191 | 4.09 120 | 7.57 189 | 14.9 191 | 2.64 184 | 7.75 80 | 17.8 81 | 2.28 177 | 8.47 150 | 13.3 150 | 1.71 57 |
StereoFlow [44] | 153.7 | 5.35 198 | 10.3 195 | 1.42 187 | 5.03 190 | 7.21 197 | 1.76 148 | 4.14 89 | 6.94 118 | 2.01 78 | 5.83 111 | 8.55 117 | 3.33 109 | 13.7 196 | 17.3 196 | 4.70 195 | 8.71 197 | 17.2 197 | 2.70 190 | 7.88 95 | 18.1 96 | 1.61 81 | 8.82 174 | 13.9 175 | 1.79 160 |
UnFlow [127] | 154.0 | 4.05 185 | 8.73 188 | 1.31 168 | 4.44 161 | 6.28 157 | 1.87 161 | 4.92 144 | 7.36 147 | 2.62 127 | 5.95 126 | 9.00 142 | 3.27 82 | 12.0 190 | 15.2 191 | 4.37 136 | 7.59 190 | 14.8 189 | 2.61 177 | 7.77 85 | 17.6 72 | 1.64 97 | 10.4 193 | 15.4 192 | 2.33 196 |
IRR-PWC_RVC [180] | 154.3 | 4.57 190 | 10.0 192 | 1.28 151 | 4.06 126 | 6.17 141 | 1.63 118 | 5.02 151 | 8.82 180 | 2.47 120 | 9.64 196 | 16.3 196 | 3.21 54 | 11.7 177 | 14.8 179 | 4.56 190 | 7.08 178 | 13.9 179 | 2.38 103 | 8.71 157 | 19.9 152 | 1.59 72 | 9.08 182 | 14.3 182 | 1.77 137 |
2bit-BM-tele [96] | 155.1 | 3.31 134 | 6.41 127 | 1.34 178 | 4.53 168 | 6.62 181 | 1.80 154 | 6.23 176 | 9.24 186 | 6.19 192 | 5.94 125 | 8.59 119 | 3.55 152 | 11.3 123 | 14.2 123 | 4.03 118 | 7.72 193 | 15.1 193 | 3.02 197 | 12.2 197 | 28.7 198 | 4.77 199 | 7.76 59 | 12.1 53 | 1.82 177 |
IIOF-NLDP [129] | 156.3 | 3.36 146 | 6.62 141 | 1.21 45 | 4.22 141 | 6.32 162 | 1.59 106 | 5.16 155 | 7.63 158 | 2.63 130 | 6.10 139 | 9.20 152 | 3.53 146 | 11.6 167 | 14.6 166 | 4.79 197 | 7.42 186 | 14.5 185 | 2.71 191 | 12.0 196 | 28.2 196 | 3.38 194 | 8.93 176 | 13.9 175 | 1.74 102 |
SPSA-learn [13] | 160.6 | 3.89 181 | 7.79 173 | 1.27 147 | 4.43 159 | 6.17 141 | 1.81 155 | 9.03 191 | 8.47 176 | 5.47 189 | 6.80 168 | 9.40 157 | 3.72 168 | 11.5 149 | 14.5 154 | 3.91 113 | 6.51 105 | 12.6 103 | 2.46 139 | 11.9 194 | 27.9 195 | 4.54 197 | 10.5 195 | 16.5 195 | 1.75 111 |
FFV1MT [104] | 162.0 | 4.09 187 | 8.38 183 | 1.31 168 | 4.68 180 | 6.18 146 | 2.02 184 | 6.95 180 | 11.5 195 | 3.35 160 | 7.12 177 | 9.16 149 | 3.98 182 | 11.3 123 | 14.1 107 | 3.74 101 | 6.77 148 | 12.7 110 | 2.50 154 | 9.59 184 | 21.0 175 | 2.05 163 | 8.87 175 | 13.8 170 | 1.90 188 |
SegOF [10] | 163.7 | 3.51 158 | 7.12 160 | 1.32 171 | 4.17 139 | 6.10 134 | 1.59 106 | 8.69 188 | 7.75 163 | 5.15 186 | 8.58 191 | 14.3 192 | 4.29 190 | 11.7 177 | 14.8 179 | 4.50 164 | 6.79 152 | 13.2 153 | 2.50 154 | 10.1 190 | 23.5 190 | 2.55 182 | 8.80 172 | 13.8 170 | 1.72 68 |
Heeger++ [102] | 167.1 | 4.76 191 | 9.63 191 | 1.33 174 | 4.65 179 | 6.22 152 | 1.90 165 | 7.84 185 | 9.26 188 | 3.57 165 | 7.12 177 | 9.16 149 | 3.98 182 | 11.9 187 | 15.0 187 | 4.47 148 | 6.52 106 | 12.2 78 | 2.61 177 | 9.82 186 | 20.6 168 | 2.00 160 | 9.02 178 | 14.0 177 | 1.79 160 |
PGAM+LK [55] | 167.3 | 4.08 186 | 8.41 184 | 1.65 194 | 4.74 182 | 6.45 170 | 2.27 192 | 8.87 189 | 12.2 196 | 6.88 196 | 8.06 188 | 10.9 180 | 4.83 191 | 11.4 134 | 14.3 133 | 3.90 112 | 6.83 155 | 13.2 153 | 2.55 169 | 8.26 121 | 18.9 122 | 2.27 176 | 8.55 154 | 13.3 150 | 1.90 188 |
SLK [47] | 168.2 | 3.51 158 | 6.96 157 | 1.41 185 | 4.72 181 | 6.10 134 | 1.98 182 | 9.84 192 | 7.59 156 | 5.20 187 | 7.98 187 | 11.0 183 | 6.14 196 | 11.8 183 | 14.9 184 | 3.71 93 | 6.60 124 | 12.7 110 | 2.50 154 | 9.87 188 | 22.8 188 | 2.08 167 | 8.94 177 | 14.0 177 | 2.03 193 |
WRT [146] | 170.5 | 3.42 151 | 6.71 147 | 1.23 99 | 4.33 148 | 6.06 131 | 1.89 164 | 9.93 194 | 8.00 167 | 5.95 191 | 6.98 172 | 9.01 143 | 3.77 173 | 11.9 187 | 15.1 189 | 3.97 116 | 7.82 194 | 15.4 194 | 2.64 184 | 12.5 198 | 29.5 199 | 3.47 195 | 10.5 195 | 16.6 196 | 1.80 166 |
HCIC-L [97] | 171.5 | 4.98 195 | 9.28 190 | 1.77 197 | 4.97 189 | 6.87 195 | 2.11 187 | 5.70 168 | 10.0 194 | 4.41 183 | 7.85 185 | 11.8 186 | 3.68 165 | 10.9 69 | 13.7 70 | 3.72 97 | 8.18 196 | 16.1 196 | 2.55 169 | 9.06 172 | 21.0 175 | 2.58 184 | 9.57 189 | 15.0 189 | 1.81 175 |
WOLF_ROB [144] | 173.4 | 5.06 196 | 10.3 195 | 1.30 164 | 4.79 185 | 6.72 188 | 1.75 146 | 6.29 177 | 9.03 183 | 4.14 176 | 7.37 181 | 11.8 186 | 3.33 109 | 11.9 187 | 15.0 187 | 4.48 152 | 7.40 184 | 14.3 183 | 2.51 158 | 10.5 192 | 23.9 191 | 1.74 123 | 9.44 187 | 14.8 187 | 1.78 145 |
Pyramid LK [2] | 182.1 | 4.16 188 | 8.44 185 | 1.74 196 | 5.83 197 | 6.82 193 | 2.76 197 | 11.4 196 | 8.60 178 | 5.89 190 | 12.4 198 | 16.7 197 | 7.03 198 | 14.3 197 | 18.1 197 | 3.92 115 | 6.69 135 | 12.2 78 | 2.63 182 | 10.3 191 | 24.0 192 | 2.45 179 | 11.1 197 | 17.4 197 | 2.55 198 |
GroupFlow [9] | 185.3 | 4.94 194 | 10.2 194 | 1.36 182 | 4.51 165 | 6.50 173 | 1.92 169 | 8.67 187 | 9.13 184 | 4.38 182 | 8.83 195 | 13.0 189 | 5.40 193 | 12.9 195 | 16.3 195 | 4.53 188 | 7.89 195 | 15.5 195 | 2.65 186 | 9.85 187 | 22.6 187 | 1.91 151 | 9.52 188 | 14.9 188 | 1.88 186 |
Periodicity [79] | 196.6 | 5.27 197 | 11.1 198 | 1.83 198 | 7.09 198 | 7.33 198 | 2.86 198 | 11.4 196 | 12.2 196 | 7.13 197 | 10.5 197 | 17.1 198 | 6.14 196 | 14.9 198 | 19.0 198 | 4.71 196 | 9.13 198 | 17.9 198 | 3.16 198 | 11.9 194 | 27.8 194 | 3.76 196 | 10.4 193 | 15.8 194 | 2.29 194 |
AVG_FLOW_ROB [137] | 198.8 | 14.6 199 | 20.0 199 | 3.66 199 | 11.3 199 | 12.1 199 | 4.33 199 | 13.4 199 | 14.1 199 | 7.93 199 | 19.0 199 | 25.3 199 | 10.2 199 | 18.3 199 | 23.1 199 | 5.58 198 | 16.7 199 | 32.2 199 | 4.90 199 | 16.6 199 | 28.6 197 | 4.56 198 | 15.9 199 | 19.8 199 | 4.61 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |