vision.middlebury.edu
stereomviewMRFflowcolor
Stereo EvaluationDatasetsCodeSubmit 

Middlebury Stereo Evaluation - Version 2

Version 2 is no longer active. Please use the Stereo Evaluation Version 3

New features and main differences to version 1.

Open a new window for each link
Error Threshold = 1 Sort by nonoccSort by allSort by disc 
 
Algorithm Avg. Tsukuba
ground truth
Venus
ground truth
Teddy
ground truth
Cones
ground truth
Average percent
of bad pixels
(explanation)
 
  Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc  
 
 
IGSM [155] 10.40.93 10 1.37 12 5.05 12 0.07 2 0.17 5 1.04 2 4.08 20 5.98 10 11.4 21 2.14 9 6.97 14 6.27 8
 
3.79
 
TSGO [141] 13.40.87 4 1.13 1 4.66 6 0.11 10 0.24 14 1.47 13 5.61 46 8.09 21 13.8 39 1.67 2 6.16 3 4.95 2
 
4.06
 
JSOSP+GCP [149] 14.80.74 1 1.34 9 3.98 1 0.08 4 0.16 1 1.15 4 3.96 18 10.1 40 11.8 22 2.28 19 7.91 37 6.74 22
 
4.18
 
KADI [164] 15.21.02 16 1.23 4 5.51 17 0.08 3 0.20 8 1.11 3 5.16 37 9.43 35 13.0 33 2.07 4 7.16 19 5.97 4
 
4.33
 
SSCBP [157] 17.61.05 19 1.39 14 5.57 19 0.10 7 0.16 2 1.39 10 3.44 14 8.32 26 9.95 15 2.60 34 7.13 18 7.23 33
 
4.03
 
ADCensus [82] 18.21.07 23 1.48 21 5.73 26 0.09 5 0.25 18 1.15 4 4.10 21 6.22 11 10.9 18 2.42 25 7.25 21 6.95 26
 
3.97
 
AdaptingBP [16] 22.21.11 26 1.37 11 5.79 28 0.10 8 0.21 13 1.44 12 4.22 23 7.06 19 11.8 23 2.48 29 7.92 39 7.32 36
 
4.23
 
CoopRegion [39] 22.20.87 6 1.16 2 4.61 5 0.11 9 0.21 10 1.54 17 5.16 38 8.31 25 13.0 31 2.79 48 7.18 20 8.01 56
 
4.41
 
CCRADAR [150] 26.81.15 28 1.42 18 6.23 41 0.15 22 0.27 21 1.89 27 5.39 41 10.6 45 14.7 50 2.01 3 7.37 23 5.88 3
 
4.75
 
PM-Forest [162] 27.21.63 78 2.17 79 8.71 97 0.15 24 0.19 7 2.13 36 1.91 1 2.29 1 5.47 1 1.32 1 2.02 1 3.69 1
 
2.64
 
RDP [87] 28.70.97 12 1.39 15 5.00 11 0.21 46 0.38 38 1.89 27 4.84 29 9.94 39 12.6 28 2.53 33 7.69 29 7.38 37
 
4.57
 
MultiRBF [129] 28.71.33 53 1.56 27 6.02 37 0.13 15 0.17 4 1.84 24 5.09 35 6.36 12 13.4 37 2.90 58 6.76 11 7.10 31
 
4.39
 
DoubleBP [34] 29.00.88 8 1.29 7 4.76 9 0.13 16 0.45 56 1.87 26 3.53 17 8.30 24 9.63 11 2.90 57 8.78 69 7.79 48
 
4.19
 
OutlierConf [40] 30.00.88 7 1.43 19 4.74 8 0.18 35 0.26 20 2.40 45 5.01 31 9.12 33 12.8 30 2.78 47 8.57 58 6.99 27
 
4.60
 
SegAggr [144] 30.21.99 99 2.39 89 8.59 96 0.12 11 0.21 12 1.68 19 2.19 3 3.73 3 7.02 3 2.16 11 6.52 6 6.37 11
 
3.58
 
CVW-RM [146] 30.41.12 27 1.42 17 5.99 36 0.16 30 0.36 36 1.40 11 4.70 28 6.94 17 12.1 24 2.96 63 7.71 31 7.72 45
 
4.38
 
GC+LocalExp [158] 32.01.48 68 1.88 62 6.95 66 0.13 14 0.25 17 1.52 16 3.33 12 4.88 5 8.87 7 2.72 41 7.42 24 7.94 52
 
3.95
 
SOS [135] 35.01.45 64 1.63 33 7.83 84 0.21 44 0.32 29 2.29 44 3.13 11 8.45 28 9.74 12 2.43 26 7.10 17 7.02 28
 
4.30
 
SubPixSearch [109] 35.42.04 103 2.48 93 6.40 47 0.14 20 0.40 45 1.74 21 4.00 19 6.39 13 11.0 19 2.24 16 6.87 13 6.50 16
 
4.18
 
AdaptiveGF [127] 35.81.04 18 1.53 24 5.62 21 0.17 33 0.41 46 1.98 31 5.71 50 11.3 56 14.3 46 2.44 27 8.22 47 7.05 30
 
4.98
 
GcKuwaGrad [161] 36.51.24 37 1.53 22 6.61 51 0.07 1 0.16 2 1.02 1 4.66 27 5.85 8 13.1 35 3.76 91 8.57 59 10.7 104
 
4.77
 
SurfaceStereo [71] 37.01.28 46 1.65 36 6.78 57 0.19 37 0.28 22 2.61 60 3.12 10 5.10 6 8.65 6 2.89 55 7.95 42 8.26 67
 
4.06
 
SubPixDoubleBP [29] 37.21.24 38 1.76 47 5.98 35 0.12 13 0.46 58 1.74 21 3.45 16 8.38 27 10.0 16 2.93 60 8.73 66 7.91 50
 
4.39
 
LLR [117] 39.51.05 20 1.65 35 5.64 22 0.29 76 0.81 91 3.07 75 4.56 24 9.81 37 12.2 25 2.17 12 8.02 43 6.42 14
 
4.64
 
PM-GCP [160] 40.51.93 94 2.19 81 10.1 115 0.17 34 0.21 11 2.41 47 2.72 5 3.11 2 7.43 4 2.89 56 4.32 2 7.32 35
 
3.73
 
WarpMat [50] 41.41.16 29 1.35 10 6.04 38 0.18 36 0.24 16 2.44 50 5.02 32 9.30 34 13.0 34 3.49 79 8.47 56 9.01 83
 
4.98
 
MultiAgg [138] 41.41.52 71 1.82 51 8.20 92 0.16 26 0.39 44 2.03 33 5.09 34 10.5 44 13.8 40 2.27 17 7.49 25 6.71 20
 
5.00
 
ObjectStereo [84] 41.81.22 36 1.62 30 6.36 44 0.59 104 0.69 83 4.61 104 4.13 22 7.59 20 11.2 20 2.20 14 6.99 15 6.36 10
 
4.46
 
PM-PM [153] 42.22.94 127 3.23 109 9.34 106 0.16 30 0.30 25 2.08 35 3.00 8 8.27 23 9.88 14 2.18 13 6.43 5 6.37 12
 
4.52
 
SGF [159] 43.01.21 35 1.47 20 6.54 50 0.24 58 0.31 26 3.42 89 4.57 25 9.84 38 12.4 27 2.83 51 7.60 27 8.44 70
 
4.91
 
TreeFilter [147] 44.21.02 17 1.54 26 5.52 18 0.24 56 0.41 48 2.86 68 5.86 52 11.2 54 13.6 38 3.00 65 7.00 16 8.49 73
 
5.06
 
PMF [119] 44.61.74 85 2.04 72 8.07 90 0.33 82 0.49 62 4.16 97 2.52 4 5.87 9 8.30 5 2.13 8 6.80 12 6.32 9
 
4.06
 
LM3C [134] 44.62.10 106 2.44 90 8.01 89 0.12 12 0.39 43 1.23 6 5.46 43 10.9 49 14.9 58 2.12 7 7.59 26 6.14 6
 
5.12
 
FastNLGC [137] 45.61.28 45 1.57 28 6.79 58 0.09 6 0.17 6 1.24 8 5.28 39 6.64 16 13.9 42 4.23 110 9.06 79 11.4 110
 
5.13
 
TF_ASW [130] 45.71.65 79 1.96 64 5.90 32 0.14 19 0.31 27 1.51 15 6.25 68 11.8 74 15.1 60 2.49 31 8.32 50 7.02 29
 
5.21
 
LAMC-DSM [123] 45.81.61 76 2.18 80 5.86 30 0.24 58 0.60 72 3.12 76 4.63 26 10.4 43 12.7 29 2.09 6 8.31 49 6.10 5
 
4.83
 
HybridTree [148] 46.61.29 48 1.71 40 6.95 67 0.15 23 0.30 24 1.23 6 6.12 61 11.4 60 15.8 69 2.82 50 8.68 65 7.76 46
 
5.35
 
SegmentTree [126] 47.51.25 39 1.68 39 6.69 54 0.20 38 0.30 23 1.77 23 6.00 56 11.9 75 15.0 59 2.77 43 8.82 72 7.81 49
 
5.35
 
PatchMatch [96] 47.82.09 105 2.33 86 9.31 105 0.21 43 0.39 41 2.62 61 2.99 7 8.16 22 9.62 10 2.47 28 7.80 33 7.11 32
 
4.59
 
RelativeGrad [128] 47.81.18 31 1.27 5 5.91 33 0.23 53 0.24 15 1.28 9 6.89 90 12.3 87 16.0 71 3.31 75 7.94 41 8.24 64
 
5.40
 
PM-Huber [125] 48.83.49 138 4.09 126 9.12 102 0.22 47 0.43 51 2.50 52 3.38 13 5.56 7 10.7 17 2.15 10 6.69 9 6.40 13
 
4.56
 
HEBF [105] 49.21.10 25 1.38 13 5.74 27 0.22 49 0.33 32 2.41 47 6.54 78 11.8 70 15.2 61 2.78 46 9.28 83 8.10 59
 
5.41
 
RealtimeEDP [151] 49.21.29 50 2.12 78 5.88 31 0.25 68 0.54 68 2.84 65 5.67 47 10.9 50 14.7 53 2.27 17 8.03 44 6.70 19
 
5.10
 
PMBP [113] 49.21.96 97 2.21 83 9.22 103 0.30 77 0.49 60 3.57 91 2.88 6 8.57 29 8.99 8 2.22 15 6.64 7 6.48 15
 
4.46
 
HistoAggr2 [122] 49.41.93 95 2.30 85 6.39 45 0.16 27 0.46 59 2.22 40 5.88 53 11.3 57 14.7 51 2.41 24 7.78 32 6.89 25
 
5.20
 
imprNLCA [121] 49.81.38 56 1.83 54 7.38 74 0.21 45 0.41 47 2.26 42 5.99 54 11.5 62 14.3 47 2.85 53 6.68 8 7.98 55
 
5.23
 
CrossLMF [108] 51.72.46 116 2.78 102 6.26 43 0.27 70 0.38 39 2.15 37 5.50 44 10.6 46 14.2 43 2.34 21 7.82 35 6.80 24
 
5.13
 
SSMP [139] 52.31.60 75 1.97 66 6.44 48 0.20 41 0.38 39 2.51 54 6.15 62 11.5 63 15.8 68 2.60 35 7.92 38 7.48 39
 
5.38
 
GC+LSL [136] 53.12.43 115 2.73 100 10.6 122 0.25 64 0.36 35 2.89 70 2.02 2 3.77 4 6.99 2 2.77 44 7.37 22 8.05 57
 
4.19
 
DTAggr-P [120] 54.21.75 87 2.10 75 7.09 69 0.24 61 0.45 54 2.59 56 5.70 49 11.5 61 13.9 41 2.49 30 7.82 34 7.30 34
 
5.24
 
CrossTrees+SP [152] 55.51.68 80 1.99 67 7.82 83 0.22 51 0.32 28 2.84 65 6.23 67 11.7 69 14.8 54 2.52 32 7.71 30 7.50 40
 
5.44
 
CostFilter [83] 56.31.51 70 1.85 57 7.61 79 0.20 41 0.39 42 2.42 49 6.16 63 11.8 72 16.0 72 2.71 40 8.24 48 7.66 43
 
5.55
 
AdaptOvrSegBP [32] 57.21.69 81 2.04 73 5.64 22 0.14 18 0.20 9 1.47 13 7.04 93 11.1 53 16.4 83 3.60 85 8.96 77 8.84 79
 
5.59
 
ARAP [142] 57.43.07 130 3.55 116 11.8 128 0.38 90 0.53 65 4.86 106 3.01 9 6.47 14 9.51 9 2.08 5 6.73 10 6.17 7
 
4.85
 
InfoPermeable [93] 57.71.06 22 1.53 25 5.64 22 0.32 79 0.88 97 4.15 96 5.60 45 13.0 94 14.5 48 2.65 39 9.16 81 7.69 44
 
5.51
 
GlobalGCP [89] 59.20.87 5 2.54 96 4.69 7 0.16 29 0.53 66 2.22 40 6.44 72 11.5 64 16.2 76 3.59 83 9.49 91 8.95 82
 
5.60
 
SymBP+occ [7] 59.70.97 12 1.75 45 5.09 14 0.16 25 0.33 31 2.19 39 6.47 74 10.7 48 17.0 91 4.79 119 10.7 111 10.9 107
 
5.92
 
NonLocalFilter [112] 60.11.47 67 1.85 57 7.88 86 0.25 66 0.42 49 2.60 58 6.01 57 11.6 67 14.3 45 2.87 54 8.45 55 8.10 60
 
5.48
 
CSM [102] 60.40.82 2 1.20 3 4.39 3 0.34 83 0.61 73 2.55 55 7.67 104 12.4 90 17.2 96 3.33 76 9.35 87 7.96 53
 
5.65
 
PlaneFitBP [31] 60.80.97 14 1.83 52 5.26 15 0.17 32 0.51 64 1.71 20 6.65 79 12.1 84 14.7 52 4.17 108 10.7 109 10.6 101
 
5.78
 
GeoSup [57] 61.01.45 62 1.83 55 7.71 81 0.14 21 0.26 19 1.90 29 6.88 88 13.2 98 16.1 74 2.94 61 8.89 75 8.32 69
 
5.80
 
HistAggrSlant [103] 61.02.25 109 2.50 94 9.77 111 0.29 75 0.37 37 3.30 82 3.44 15 8.82 30 9.77 13 2.90 59 8.40 53 7.97 54
 
4.98
 
HOL [143] 61.11.31 52 1.79 49 6.81 59 0.28 72 0.67 79 3.35 84 6.81 86 11.9 78 16.3 79 2.30 20 8.57 57 6.66 18
 
5.56
 
HCFilter [133] 61.81.56 72 1.78 48 8.07 91 0.22 48 0.34 34 2.96 71 6.18 65 11.5 65 16.1 75 3.02 66 8.07 45 8.19 62
 
5.67
 
P-LinearS [85] 62.31.10 24 1.67 37 5.92 34 0.53 100 0.89 99 5.71 110 6.69 81 12.0 82 15.9 70 2.60 36 8.44 54 6.71 21
 
5.68
 
GAOH [118] 62.91.26 41 1.76 46 4.31 2 0.20 39 0.42 50 2.03 33 7.52 100 12.3 88 18.1 108 3.94 101 8.59 61 9.32 86
 
5.81
 
BSM [106] 64.83.08 131 3.38 111 7.80 82 0.26 69 0.70 84 2.40 45 5.74 51 8.95 32 14.8 57 2.34 22 8.79 70 6.80 23
 
5.42
 
AdaptDispCalib [35] 66.51.19 33 1.42 16 6.15 40 0.23 54 0.34 33 2.50 52 7.80 105 13.6 104 17.3 99 3.62 86 9.33 85 9.72 91
 
6.10
 
AdaptLocalSeg [107] 66.71.33 54 1.82 50 7.19 71 0.32 80 0.79 88 4.50 100 5.32 40 11.9 80 14.5 49 2.73 42 9.69 95 7.91 51
 
5.67
 
Segm+visib [4] 66.81.30 51 1.57 29 6.92 65 0.79 112 1.06 106 6.76 118 5.00 30 6.54 15 12.3 26 3.72 90 8.62 64 10.2 96
 
5.40
 
RandomVote [78] 67.04.85 155 5.54 147 17.7 150 0.13 17 0.45 56 1.86 25 5.40 42 9.54 36 14.8 56 2.62 38 7.93 40 7.54 42
 
6.53
 
GeoDif [88] 68.51.88 92 2.35 88 7.64 80 0.38 89 0.82 92 3.02 74 5.99 55 11.3 55 13.3 36 2.84 52 8.33 51 8.09 58
 
5.49
 
ConfSuppWin [97] 68.81.28 47 1.83 52 6.65 52 0.28 73 0.65 78 3.29 81 6.88 88 11.4 59 15.4 63 3.64 87 8.60 62 9.09 84
 
5.75
 
C-SemiGlob [18] 71.02.61 119 3.29 110 9.89 113 0.25 65 0.57 69 3.24 78 5.14 36 11.8 71 13.0 31 2.77 45 8.35 52 8.20 63
 
5.76
 
IterAdaptWgt [90] 71.10.85 3 1.28 6 4.59 4 0.35 86 0.86 94 4.53 102 7.60 101 14.5 123 17.3 101 3.20 73 9.36 88 8.49 72
 
6.08
 
MVSegBP [59] 71.51.06 21 2.78 102 5.57 19 0.20 40 0.61 74 2.02 32 6.53 76 11.3 58 14.8 55 5.29 128 11.3 116 14.5 137
 
6.34
 
MultiResGC [46] 71.80.90 9 1.32 8 4.82 10 0.45 96 0.84 93 3.32 83 6.46 73 11.8 73 17.0 92 4.34 113 10.5 108 10.7 103
 
6.04
 
SCoBeP [114] 72.71.47 66 2.01 70 7.92 88 0.24 55 0.62 75 3.28 79 6.22 66 11.7 68 15.7 66 3.49 79 8.84 73 9.32 87
 
5.90
 
SO+borders [28] 73.01.29 48 1.71 41 6.83 61 0.25 67 0.53 67 2.26 42 7.02 92 12.2 85 16.3 80 3.90 97 9.85 99 10.2 97
 
6.03
 
RecursiveBF [104] 73.81.85 91 2.51 95 7.45 76 0.35 85 0.88 98 3.01 72 6.28 70 12.1 83 14.3 44 2.80 49 8.91 76 7.79 47
 
5.68
 
LocallyConsist [62] 75.21.70 83 2.21 82 5.67 25 0.16 28 0.32 29 1.63 18 8.68 126 13.9 110 17.0 90 4.19 109 10.8 112 9.72 90
 
6.33
 
MSWLinRegr [110] 75.21.46 65 1.72 42 7.89 87 0.57 103 0.92 101 6.71 116 6.11 60 11.0 51 15.6 64 3.12 71 8.76 68 8.52 74
 
6.04
 
CurveletSupWgt [66] 75.51.40 60 1.84 56 7.42 75 1.00 119 1.11 109 4.42 99 7.85 106 8.84 31 16.8 89 3.82 94 6.22 4 8.24 64
 
5.75
 
DistinctSM [26] 76.81.21 34 1.75 44 6.39 45 0.35 87 0.69 82 2.63 62 7.45 98 13.0 95 18.1 107 3.91 98 9.91 101 8.32 68
 
6.14
 
iFBS [99] 76.81.78 90 2.10 74 7.57 77 0.31 78 0.50 63 2.17 38 7.94 109 12.8 92 17.1 94 3.07 68 8.73 67 8.46 71
 
6.05
 
SegmentSupport [27] 79.01.25 39 1.62 32 6.68 53 0.25 62 0.64 76 2.59 56 8.43 121 14.2 116 18.2 109 3.77 92 9.87 100 9.77 92
 
6.44
 
RegionTreeDP [17] 79.11.39 59 1.64 34 6.85 63 0.22 52 0.57 69 1.93 30 7.42 97 11.9 79 16.8 87 6.31 141 11.9 123 11.8 115
 
6.56
 
OverSegmBP [25] 81.71.69 82 1.97 65 8.47 95 0.51 99 0.68 80 4.69 105 6.74 83 11.9 81 15.8 67 3.19 72 8.81 71 8.89 80
 
6.11
 
CostAggr+occ [37] 82.81.38 57 1.96 63 7.14 70 0.44 95 1.13 110 4.87 107 6.80 85 11.9 77 17.3 98 3.60 84 8.57 60 9.36 88
 
6.20
 
SNCC+AM [101] 83.03.21 133 3.57 118 13.6 135 0.22 50 0.45 53 3.01 72 6.41 71 10.4 42 17.7 104 3.11 70 8.61 63 9.27 85
 
6.63
 
RTAdaptWgt [98] 83.21.45 63 1.99 68 7.59 78 0.40 92 0.81 90 3.38 85 7.65 103 13.3 101 16.2 77 3.48 78 9.34 86 8.81 77
 
6.20
 
EnhancedBP [23] 85.30.94 11 1.74 43 5.05 12 0.35 88 0.86 95 4.34 98 8.11 115 13.3 100 18.5 113 5.09 126 11.1 115 11.0 108
 
6.69
 
VSW [92] 85.31.62 77 1.88 61 6.98 68 0.47 98 0.81 89 3.40 86 8.67 125 13.3 103 18.0 105 3.37 77 8.85 74 8.12 61
 
6.29
 
RealtimeHD [116] 88.32.16 107 2.46 92 10.1 116 0.24 57 0.44 52 3.40 86 6.27 69 10.7 47 16.6 86 4.70 118 10.1 104 12.8 126
 
6.66
 
PUTv3 [56] 88.81.77 89 3.86 124 9.42 108 0.42 94 0.95 103 5.72 111 7.02 91 14.2 115 18.3 111 2.40 23 9.11 80 6.56 17
 
6.64
 
SMPF [156] 89.20.98 15 1.53 23 5.31 16 0.25 63 0.69 81 2.60 58 9.93 138 14.5 124 22.6 138 6.51 143 13.1 134 14.8 138
 
7.73
 
GradAdaptWgt [53] 89.72.26 112 2.63 97 8.99 101 0.99 117 1.39 115 4.92 108 8.00 111 13.1 97 18.6 115 2.61 37 7.67 28 7.43 38
 
6.55
 
RT-ColorAW [91] 91.31.40 60 3.08 107 5.81 29 0.72 109 1.71 121 3.80 94 6.69 80 14.0 113 15.3 62 4.03 104 11.9 122 10.2 95
 
6.55
 
AdaptWeight [12] 91.81.38 57 1.85 59 6.90 64 0.71 108 1.19 112 6.13 112 7.88 107 13.3 102 18.6 116 3.97 102 9.79 97 8.26 66
 
6.67
 
SegTreeDP [21] 92.02.21 108 2.76 101 10.3 117 0.46 97 0.60 71 2.44 50 9.58 130 15.2 130 18.4 112 3.23 74 7.86 36 8.83 78
 
6.82
 
InteriorPtLP [33] 92.11.27 43 1.62 30 6.82 60 1.15 125 1.67 119 12.7 138 8.07 113 11.9 76 18.7 118 3.92 100 9.68 94 9.62 89
 
7.26
 
TwoStep [140] 97.42.91 126 3.68 122 13.3 134 0.27 70 0.45 55 2.63 62 7.42 96 12.6 91 18.0 105 4.09 105 10.1 105 10.3 98
 
7.14
 
ImproveSubPix [24] 97.83.00 128 3.61 119 10.9 124 0.88 114 1.47 116 7.10 121 7.12 94 12.4 89 16.6 85 2.96 63 8.22 46 8.55 75
 
6.90
 
BP+DirectedDiff [54] 97.92.90 123 4.47 133 15.1 144 0.65 107 1.20 113 4.52 101 5.07 33 14.7 125 15.7 65 2.94 62 12.6 129 7.50 40
 
7.29
 
RealTimeABW [73] 97.91.26 42 1.67 38 6.83 61 0.33 81 0.65 77 3.56 90 10.7 144 18.3 148 23.3 141 4.81 120 12.6 128 10.7 105
 
7.90
 
SemiGlob [6] 102.03.26 134 3.96 125 12.8 132 1.00 118 1.57 117 11.3 129 6.02 58 12.2 86 16.3 81 3.06 67 9.75 96 8.90 81
 
7.50
 
SDDS [115] 103.83.31 135 3.62 120 10.4 119 0.39 91 0.76 86 2.85 67 7.65 102 13.0 93 19.4 120 3.99 103 10.00 103 10.8 106
 
7.19
 
FastBilateral [61] 103.92.38 114 2.80 104 10.4 118 0.34 84 0.92 100 4.55 103 9.83 136 15.3 131 20.3 128 3.10 69 9.31 84 8.59 76
 
7.31
 
2OP+occ [36] 106.32.91 124 3.56 117 7.33 73 0.24 58 0.49 61 2.76 64 10.9 146 15.4 132 20.6 130 5.42 132 10.8 114 12.5 125
 
7.75
 
RealtimeBFV [58] 106.41.71 84 2.22 84 6.74 55 0.55 102 0.87 96 2.88 69 9.90 137 15.0 127 19.5 121 6.66 147 12.3 125 13.4 130
 
7.65
 
HistoAggr [95] 106.82.47 117 2.71 99 11.1 125 0.74 110 0.97 105 3.28 79 8.31 119 13.8 108 21.0 134 3.86 95 9.47 90 10.4 100
 
7.33
 
BitPlaneNLF [132] 106.81.76 88 2.33 87 8.83 98 3.82 157 4.16 152 5.65 109 8.30 118 13.6 105 17.1 93 3.68 88 9.68 93 9.91 93
 
7.40
 
PlaneFitSGM [75] 107.13.13 132 4.20 129 14.9 141 1.08 122 1.87 125 14.6 143 5.68 48 11.6 66 17.1 95 3.79 93 9.26 82 11.3 109
 
8.21
 
VariableCross [42] 108.91.99 100 2.65 98 6.77 56 0.62 106 0.96 104 3.20 77 9.75 131 15.1 128 18.2 110 6.28 139 12.7 131 12.9 127
 
7.60
 
CostRelaxAW [52] 109.22.91 125 3.49 114 11.4 126 0.60 105 1.11 108 6.45 115 7.92 108 13.7 106 20.9 133 3.59 82 9.43 89 10.3 99
 
7.66
 
RealtimeBP [20] 109.41.49 69 3.40 113 7.87 85 0.77 111 1.90 128 9.00 126 8.72 127 13.2 99 17.2 97 4.61 115 11.6 119 12.4 124
 
7.69
 
BPcompressed [51] 110.82.68 120 3.63 121 9.59 109 1.33 131 1.89 127 9.09 127 8.36 120 13.9 111 16.4 82 3.71 89 9.85 98 9.92 94
 
7.53
 
FastAggreg [43] 110.91.16 30 2.11 77 6.06 39 4.03 158 4.75 155 6.43 114 9.04 128 15.2 129 20.2 126 5.37 131 12.6 127 11.9 117
 
8.24
 
GC+occ [2] 111.31.19 32 2.01 71 6.24 42 1.64 140 2.19 132 6.75 117 11.2 150 17.4 145 19.8 123 5.36 130 12.4 126 13.0 128
 
8.26
 
CCH+SegAggr [45] 111.51.74 85 2.11 76 9.23 104 0.41 93 0.94 102 3.97 95 8.08 114 14.3 118 19.8 124 7.07 149 12.9 132 16.3 146
 
8.07
 
MultiCamGC [3] 111.81.27 44 1.99 68 6.48 49 2.79 150 3.13 144 3.60 92 12.0 152 17.6 146 22.0 136 4.89 121 11.8 121 12.1 119
 
8.31
 
VarMSOH [49] 114.63.97 144 5.23 142 14.9 142 0.28 73 0.76 87 3.78 93 9.34 129 14.3 119 20.0 125 4.14 107 9.91 102 11.4 112
 
8.17
 
AdaptAggrDP [154] 115.11.57 73 3.50 115 8.27 93 1.53 138 2.69 138 12.4 136 6.79 84 14.3 117 16.2 78 5.53 134 13.2 135 14.8 140
 
8.40
 
Unsupervised [67] 115.43.89 143 4.39 131 18.8 153 1.01 120 1.14 111 11.3 129 6.72 82 6.98 18 16.1 73 9.93 156 10.7 110 22.5 159
 
9.45
 
Layered [5] 115.51.57 73 1.87 60 8.28 94 1.34 132 1.85 124 6.85 119 8.64 124 14.3 120 18.5 114 6.59 146 14.7 145 14.4 135
 
8.24
 
SNCC [70] 117.45.17 160 6.08 153 21.7 160 0.95 116 1.73 122 12.0 134 8.04 112 11.1 52 22.9 139 3.59 81 9.02 78 10.7 102
 
9.41
 
ESAW [76] 118.11.92 93 2.45 91 9.66 110 1.03 121 1.65 118 6.89 120 8.48 122 14.2 114 18.7 117 6.56 145 12.7 130 14.4 136
 
8.21
 
AdaptPolygon [41] 120.32.29 113 2.88 106 8.94 100 0.80 113 1.11 107 3.41 88 10.5 142 15.9 137 21.3 135 6.13 138 13.2 136 13.3 129
 
8.32
 
OptimizedDP [63] 121.01.97 98 3.78 123 9.80 112 3.33 153 4.74 154 13.0 140 6.53 77 13.9 112 16.6 84 5.17 127 13.7 141 13.4 131
 
8.83
 
StereoSONN [64] 121.34.04 145 4.74 134 18.1 152 0.53 101 0.75 85 6.21 113 8.53 123 13.7 107 20.2 126 5.07 124 10.8 113 14.0 133
 
8.89
 
RealtimeVar [65] 121.43.33 136 5.48 145 16.8 149 1.15 126 2.35 133 12.8 139 6.18 64 13.1 96 17.3 100 4.66 117 11.7 120 13.7 132
 
9.05
 
ConvexTV [44] 122.83.61 140 5.72 148 18.0 151 1.16 127 2.50 136 12.4 137 6.10 59 15.7 134 16.8 88 3.88 96 14.4 144 11.5 113
 
9.30
 
SGMDDW [124] 124.92.26 111 4.40 132 11.8 129 1.22 128 2.72 139 16.8 144 6.52 75 14.5 122 17.5 102 5.59 135 14.2 143 14.8 139
 
9.36
 
GenModel [19] 126.82.57 118 4.74 135 13.0 133 1.72 142 3.08 142 16.9 146 6.86 87 15.0 126 19.2 119 4.64 116 14.9 146 11.4 111
 
9.50
 
Differential [131] 127.94.74 151 6.77 158 19.4 155 1.69 141 2.62 137 20.4 155 8.29 117 10.1 41 23.3 142 4.25 111 10.3 107 12.2 120
 
10.3
 
TensorVoting [9] 128.23.79 142 4.79 136 8.86 99 1.23 129 1.88 126 11.5 132 9.76 132 17.0 142 24.0 147 4.38 114 11.4 117 12.2 122
 
9.25
 
ReliabilityDP [13] 128.81.36 55 3.39 112 7.25 72 2.35 147 3.48 150 12.2 135 9.82 135 16.9 141 19.5 122 12.9 162 19.9 161 19.7 153
 
10.7
 
RealTimeGPU [14] 128.82.05 104 4.22 130 10.6 123 1.92 145 2.98 141 20.3 153 7.23 95 14.4 121 17.6 103 6.41 142 13.7 140 16.5 148
 
9.82
 
RTCensus [47] 129.25.08 159 6.25 155 19.2 154 1.58 139 2.42 134 14.2 142 7.96 110 13.8 109 20.3 129 4.10 106 9.54 92 12.2 121
 
9.73
 
TwoWin [80] 129.82.25 109 3.08 108 11.6 127 0.92 115 1.31 114 7.53 122 10.7 145 15.8 136 23.6 144 8.25 152 13.5 137 16.6 149
 
9.59
 
HRMBIL [81] 131.63.60 139 4.79 136 16.8 148 1.38 134 2.72 140 17.3 147 7.48 99 15.8 135 20.8 132 4.29 112 13.7 139 12.0 118
 
10.0
 
CostRelax [11] 133.84.76 153 6.08 154 20.3 157 1.41 136 2.48 135 18.5 151 8.18 116 15.9 138 23.8 145 3.91 99 10.2 106 11.8 116
 
10.6
 
TreeDP [8] 137.61.99 101 2.84 105 9.96 114 1.41 135 2.10 131 7.74 123 15.9 159 23.9 161 27.1 156 10.0 157 18.3 157 18.9 152
 
11.7
 
GC [1d] 139.01.94 96 4.12 127 9.39 107 1.79 144 3.44 149 8.75 125 16.5 160 25.0 163 24.9 148 7.70 150 18.2 156 15.3 143
 
11.4
 
CSBP [74] 139.72.00 102 4.17 128 10.5 121 1.48 137 3.11 143 17.7 149 11.1 149 20.2 154 27.5 158 5.98 137 16.5 153 16.0 145
 
11.4
 
DCBGrid [77] 140.85.90 163 7.26 163 21.0 158 1.35 133 1.91 129 11.2 128 10.5 141 17.2 143 22.2 137 5.34 129 11.9 124 14.9 141
 
10.9
 
BioPsyASW [72] 140.93.62 141 5.52 146 14.6 139 3.15 151 4.20 153 20.4 154 11.5 151 18.2 147 23.2 140 4.93 122 13.0 133 11.7 114
 
11.2
 
RINCensus [145] 141.24.78 154 6.00 152 14.4 137 1.11 123 1.76 123 7.91 124 9.76 133 17.3 144 26.1 152 8.09 151 16.2 152 17.6 150
 
10.9
 
LCVB-DEM [163] 141.24.49 149 5.23 141 21.3 159 1.32 130 1.67 120 11.5 131 9.99 139 16.3 140 26.1 153 6.56 144 13.6 138 18.2 151
 
11.4
 
HBpStereoGpu [86] 141.83.37 137 5.34 144 13.6 136 1.12 124 2.06 130 14.1 141 12.2 153 19.0 151 27.2 157 6.29 140 14.2 142 16.4 147
 
11.2
 
H-Cut [69] 142.42.85 121 4.86 139 14.4 138 1.73 143 3.14 145 20.2 152 10.7 143 19.5 152 25.8 151 5.46 133 15.6 148 15.7 144
 
11.7
 
BP+MLH [38] 142.54.17 147 6.34 156 14.6 140 1.96 146 3.31 147 16.8 145 10.2 140 18.9 150 24.0 146 4.93 123 15.5 147 12.3 123
 
11.1
 
SAD-IGMCT [48] 145.45.81 162 7.14 161 22.6 162 2.61 149 3.33 148 25.3 161 9.79 134 15.5 133 25.7 150 5.08 125 11.5 118 15.0 142
 
12.5
 
FLTG-DDE [79] 146.83.03 129 5.28 143 15.0 143 3.39 154 5.02 157 25.0 160 11.0 147 19.5 153 26.3 155 5.78 136 16.0 151 14.2 134
 
12.5
 
2DPOC [94] 151.02.88 122 4.80 138 10.5 120 6.55 161 7.82 161 17.4 148 14.4 156 22.1 157 27.9 159 15.2 165 22.7 164 24.5 161
 
14.7
 
DP [1b] 151.54.12 146 5.04 140 12.0 130 10.1 166 11.0 166 21.0 156 14.0 155 21.6 156 20.6 130 10.5 158 19.1 159 21.1 156
 
14.2
 
DPVI [60] 151.64.76 152 5.83 149 16.6 147 4.89 160 5.66 160 22.9 158 11.0 148 16.2 139 23.4 143 9.64 154 15.6 149 23.5 160
 
13.3
 
PhaseBased [30] 156.74.26 148 6.53 157 15.4 145 6.71 162 8.16 162 26.4 163 14.5 157 23.1 158 25.5 149 10.8 160 20.5 162 21.2 157
 
15.3
 
IMCT [55] 157.24.54 150 5.90 151 19.8 156 3.16 152 3.83 151 23.2 159 18.0 163 23.1 159 35.3 163 12.7 161 18.5 158 27.9 164
 
16.3
 
FW-DLR [111] 157.54.87 156 5.89 150 22.9 163 2.50 148 3.22 146 18.3 150 18.2 164 18.7 149 37.2 164 24.2 167 27.9 166 42.1 167
 
18.8
 
BioDEM [100] 157.96.57 165 8.43 165 28.1 166 3.61 155 4.80 156 33.7 165 13.2 154 21.3 155 34.5 162 6.84 148 16.0 150 19.8 154
 
16.4
 
SSD+MF [1a] 158.05.23 161 7.07 159 24.1 164 3.74 156 5.16 158 11.9 133 16.5 161 24.8 162 32.9 161 10.6 159 19.8 160 26.3 162
 
15.7
 
SO [1c] 159.25.08 158 7.22 162 12.2 131 9.44 165 10.9 165 21.9 157 19.9 165 28.2 167 26.3 154 13.0 163 22.8 165 22.3 158
 
16.6
 
PhaseDiff [22] 161.84.89 157 7.11 160 16.3 146 8.34 164 9.76 164 26.0 162 20.0 166 28.0 166 29.0 160 19.8 166 28.5 167 27.5 163
 
18.8
 
STICA [15] 162.47.70 166 9.63 167 27.8 165 8.19 163 9.58 163 40.3 167 15.8 158 23.2 160 37.7 165 9.80 155 17.8 155 28.7 165
 
19.7
 
LCDM+AdaptWgt [68] 162.45.98 164 7.84 164 22.2 161 14.5 167 15.4 167 35.9 166 20.8 167 27.3 165 38.3 166 8.90 153 17.2 154 20.0 155
 
19.5
 
Infection [10] 164.07.95 167 9.54 166 28.9 167 4.41 159 5.53 159 31.7 164 17.7 162 25.1 164 44.4 167 14.3 164 21.3 163 38.0 166
 
20.7
 


References

[1]D. Scharstein and R. Szeliski.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 2002.
  a - SSD + min-filter (i.e., shiftable windows), window size = 21
  b - Dynamic programming, similar to Bobick and Intille (IJCV 1999)
  c - Scanline optimization (1D optimization using horizontal smoothness terms)
  d - Graph cuts using alpha-beta swaps (Boykov, Veksler, and Zabih, PAMI 2001)
[2]V. Kolmogorov and R. Zabih. Computing visual correspondence with occlusions using graph cuts. ICCV 2001.
[3]V. Kolmogorov and R. Zabih. Multi-camera scene reconstruction via graph cuts. ECCV 2002.
[4]M. Bleyer and M. Gelautz. A layered stereo algorithm using image segmentation and global visibility constraints. ICIP 2004.
[5]L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-quality video view interpolation using a layered representation. SIGGRAPH 2004.
[6]H. Hirschmüller. Accurate and efficient stereo processing by semi-global matching and mutual information. CVPR 2005, PAMI 30(2):328-341, 2008.
[7]J. Sun, Y. Li, S.B. Kang, and H.-Y. Shum. Symmetric stereo matching for occlusion handling. CVPR 2005.
[8]O. Veksler. Stereo correspondence by dynamic programming on a tree. CVPR 2005.
[9]P. Mordohai and G. Medioni. Stereo using monocular cues within the tensor voting framework. PAMI 28(6):968-982, 2006.
[10]G. Olague, F. Fernández, C. Pérez, and E. Lutton. The infection algorithm: an artificial epidemic approach for dense stereo correspondence. Artificial Life, 2006.
[11]R. Brockers, M. Hund, and B. Mertsching. Stereo vision using cost-relaxation with 3D support regions. Image and Vision Computing New Zealand (IVCNZ), 2005.
[12]K.-J. Yoon and I.-S. Kweon. Adaptive support-weight approach for correspondence search. PAMI 28(4):650-656, 2006.
[13]M. Gong and Y.-H. Yang. Near real-time reliable stereo matching using programmable graphics hardware. CVPR 2005.
[14]L. Wang, M. Liao, M. Gong, R. Yang, and D. Nistér. High-quality real-time stereo using adaptive cost aggregation and dynamic programming. 3DPVT 2006.
[15]H. Audirac, A. Beloiarov, F. Núñez, and J. Villegas. Dense disparity map based on STICA algorithm. Expo Forestal, Mexico, 2005.
[16]A. Klaus, M. Sormann and K. Karner. Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. ICPR 2006.
[17]C. Lei, J. Selzer, and Y. Yang. Region-tree based stereo using dynamic programming optimization. CVPR 2006.
[18]H. Hirschmüller. Stereo vision in structured environments by consistent semi-global matching. CVPR 2006, PAMI 30(2):328-341, 2008.
[19]C. Strecha, R. Fransens, and L. Van Gool. Combined depth and outlier estimation in multi-view stereo. CVPR 2006.
[20]Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, and D. Nistér. Real-time global stereo matching using hierarchical belief propagation. BMVC 2006.
[21]Y. Deng and X. Lin. A fast line segment based dense stereo algorithm using tree dynamic programming. ECCV 2006.
[22]S. El-Etriby, A. Al-Hamadi, and B. Michaelis. Dense depth map reconstruction by phase difference-based algorithm under influence of perspective distortion. ICCVG 2006 / J. Machine Graphics and Vision.
[23]S. Larsen, P. Mordohai, M. Pollefeys, and H. Fuchs. Temporally consistent reconstruction from multiple video streams using enhanced belief propagation. ICCV 2007.
[24]S. Gehrig and U. Franke. Improving sub-pixel accuracy for long range stereo. ICCV VRML workshop 2007.
[25]L. Zitnick and S.B. Kang. Stereo for image-based rendering using image over-segmentation. IJCV 2007.
[26]K.-J. Yoon and I. S. Kweon. Stereo matching with the distinctive similarity measure. ICCV 2007.
[27]F. Tombari, S. Mattoccia, and L. Di Stefano. Segmentation-based adaptive support for accurate stereo correspondence. PSIVT 2007.
[28]S. Mattoccia, F. Tombari, and L. Di Stefano. Stereo vision enabling precise border localization within a scanline optimization framework. ACCV 2007.
[29]Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-depth super resolution for range images. CVPR 2007.
[30]S. El-Etriby, A. Al-Hamadi, and B. Michaelis. Dense stereo correspondence with slanted surface using phase-based algorithm. IEEE ISIE 2007.
[31]Q. Yang, C. Engels, and A. Akbarzadeh. Near real-time stereo for weakly-textured scenes. BMVC 2008.
[32]Y. Taguchi, B. Wilburn, and L. Zitnick. Stereo reconstruction with mixed pixels using adaptive over-segmentation. CVPR 2008.
[33]A. Bhusnurmath and C.J. Taylor. Solving stereo matching problems using interior point methods. 3DPVT 2008.
[34]Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér. Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling. PAMI 2008.
[35]Z.Gu, X.Su, Y.Liu, and Q.Zhang. Local stereo matching with adaptive support-weight, rank transform and disparity calibration. Pattern Recognition Letters, 2008.
[36]O. Woodford, P. Torr, I. Reid, and A. Fitzgibbon. Global stereo reconstruction under second order smoothness priors. CVPR 2008.
[37]D. Min and K. Sohn. Cost aggregation and occlusion handling with WLS in stereo matching. IEEE TIP 2008.
[38]O. Stankiewicz and K. Wegner. Depth map estimation software version 2. ISO/IEC MPEG meeting M15338, 2008.
[39]Z. Wang and Z. Zheng. A region based stereo matching algorithm using cooperative optimization. CVPR 2008.
[40] L. Xu and J. Jia. Stereo matching: an outlier confidence approach. ECCV 2008.
[41]J. Lu, G. Lafruit, and F. Catthoor. Anisotropic local high-confidence voting for accurate stereo correspondence. Proc. SPIE, vol. 6812, 2008.
[42]K. Zhang, J. Lu, and G. Lafruit. Cross-based local stereo matching using orthogonal integral images. IEEE TCSVT 2009.
[43]F. Tombari, S. Mattoccia, L. Di Stefano, and E. Addimanda. Near real-time stereo based on effective cost aggregation. ICPR 2008.
[44]T. Pock, T. Schoenemann, G. Graber, H. Bischof, and D. Cremers. A convex formulation of continuous multilabel problems. ECCV 2008.
[45]T. Liu, P. Zhang, and L. Luo. Dense stereo correspondence with contrast context histogram, segmentation-based two-pass aggregation and occlusion handling. PSIVT 2009.
[46]N. Papadakis and V. Caselles. Multi-label depth estimation for graph cuts stereo problems. JMIV 38(1):70-82, 2010.
[47]M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze. A fast stereo matching algorithm suitable for embedded real-time systems. CVIU 2010.
[48]K. Ambrosch and W. Kubinger. Accurate hardware-based stereo vision. CVIU 2010.
[49]R. Ben-Ari and N. Sochen. Stereo matching with Mumford-Shah regularization and occlusion handling. PAMI 32(11): 2071-2084, 2010.
[50]M. Bleyer, M. Gelautz, C. Rother, and C. Rhemann. A stereo approach that handles the matting problem via image warping. CVPR 2009.
[51]T. Yu, R.-S. Lin, B. Super, and B. Tang. Efficient message representations for belief propagation. ICCV 2007.
[52]R. Brockers. Cooperative stereo matching with color-based adaptive local support. CAIP 2009.
[53]L. De-Maeztu, A. Villanueva, and R. Cabeza. Stereo matching using gradient similarity and locally adaptive support-weight. Pattern Recognition Letters 32(13): 1643-1651, 2011.
[54]A. Banno and K. Ikeuchi. Disparity map refinement and 3D surface smoothing via directed anisotropic diffusion. 3DIM 2009.
[55]I. Cabezas. An iterative disparity estimation technique: on computing an initial map. Technical report 2009, Laboratorio Multimedia y Vision, Universidad del Valle, Cali - Colombia.
[56]O. Stankiewicz and K. Wegner. Depth map estimation software version 3. ISO/IEC MPEG meeting M15540, 2008.
[57]A. Hosni, M. Bleyer, M. Gelautz, and C. Rhemann. Local stereo matching using geodesic support weights. ICIP 2009.
[58]K. Zhang, J. Lu, G. Lafruit, R. Lauwereins, and L. Van Gool. Real-time accurate stereo with bitwise fast voting on CUDA. ICCVW 2009.
[59]T. Montserrat, J. Civit, O. Escoda, and J.-L. Landabaso. Depth estimation based on multiview matching with depth/color segmentation and memory efficient belief propagation. ICIP 2009.
[60]V. González and I. Cabezas. Estimación de puntos correspondientes mediante programación dinámica. Congreso Multimedia 2009.
[61]S. Mattoccia, S. Giardino, and A. Gambini. Accurate and efficient cost aggregation strategy for stereo correspondence based on approximated joint bilateral filtering. ACCV 2009.
[62]S. Mattoccia. A locally global approach to stereo correspondence. 3DIM 2009.
[63]J. Salmen, M. Schlipsing, J. Edelbrunner, S. Hegemann, and S. Lueke. Real-time stereo vision: making more out of dynamic programming. CAIP 2009.
[64]M. Vanetti, I. Gallo, and E. Binaghi. Dense two-frame stereo correspondence by self-organizing neural network. ICIAP 2009.
[65]S. Kosov, T. Thormählen, and H.-P. Seidel. Accurate real-time disparity estimation with variational methods. ISVC 2009.
[66]D. Mukherjee, G. Wang, and J. Wu. Stereo matching algorithm based on curvelet decomposition and modified support weights. ICASSP 2010.
[67]H. Trinh and D. McAllester. Unsupervised learning of stereo vision with monocular cues. BMVC 2009.
[68]L. Nalpantidis and A. Gasteratos. Stereo vision for robotic applications in the presence of non-ideal lighting conditions. Image and Vision Computing 2010.
[69]D. Miyazaki, Y. Matsushita, and K. Ikeuchi. Interactive shadow removal from a single image using hierarchical graph cut. ACCV 2009.
[70]N. Einecke and J. Eggert. A two-stage correlation method for stereoscopic depth estimation. DICTA 2010.
[71]M. Bleyer, C. Rother, and P. Kohli. Surface stereo with soft segmentation. CVPR 2010.
[72]L. Nalpantidis and A. Gasteratos. Biologically and psychophysically inspired adaptive support weights algorithm for stereo correspondence. Robotics and Autonomous Systems 2010.
[73]R. Gupta and S.-Y. Cho. Real-time stereo matching using adaptive binary window. 3DPVT 2010.
[74]Q. Yang, L. Wang, and N. Ahuja. A constant-space belief propagation algorithm for stereo matching. CVPR 2010.
[75]M. Humenberger, T. Engelke, and W. Kubinger. A census-based stereo vision algorithm using modified semi-global matching and plane-fitting to improve matching quality. CVPR ECV workshop 2010.
[76]W. Yu, T. Chen, F. Franchetti, and J. Hoe. High performance stereo vision designed for massively data parallel platforms. IEEE TCSVT 2010.
[77]C. Richardt, D. Orr, I. Davies, A. Criminisi, and N. Dodgson. Real-time spatiotemporal stereo matching using the dual-cross-bilateral grid. ECCV 2010.
[78]G. Gales, A. Crouzil, and S. Chambon. A region-based randomized voting scheme for stereo matching. ISVC 2010.
[79]C. Cassisa. Local vs global energy minimization methods: application to stereo matching. PIC 2010.
[80]R. Gupta and S.-Y. Cho. A correlation-based approach for real-time stereo matching. ISVC 2010.
[81]S. Röhl, S. Speidel, D. Gonzalez-Aguirre, S. Suwelack, H. Kenngott, T. Asfour, B. Müller-Stich, and R. Dillmann. From stereo image sequences to smooth and robust surface models using temporal information and bilateral postprocessing. ROBIO 2011.
[82]X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang. On building an accurate stereo matching system on graphics hardware. GPUCV 2011.
[83]C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011.
[84]M. Bleyer, C. Rother, P. Kohli, D. Scharstein, and S. Sinha. Object stereo - joint stereo matching and object segmentation. CVPR 2011.
[85]L. De-Maeztu, S. Mattoccia, A. Villanueva, and R. Cabeza. Linear stereo matching. ICCV 2011.
[86]S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009.
[87]X. Sun, X. Mei, S. Jiao, M. Zhou, and H. Wang. Stereo matching with reliable disparity propagation. 3DIMPVT 2011.
[88]L. De-Maeztu, A. Villanueva, and R. Cabeza. Near real-time stereo matching using geodesic diffusion. PAMI 34(2):410-416, 2012.
[89]L. Wang and R. Yang. Global stereo matching leveraged by sparse ground control points. CVPR 2011.
[90]E. Psota, J. Kowalczuk, J. Carlson, and L. Pérez. A local iterative refinement method for adaptive support-weight stereo matching. IPCV 2011.
[91]X. Chang, Z. Zhou, L. Wang, Y. Shi, and Q. Zhao. Real-time accurate stereo matching using modified two-pass aggregation and winner-take-all guided dynamic programming. 3DIMPVT 2011.
[92]W. Hu, K. Zhang, L. Sun, J. Li, Y. Li, and S. Yang. Virtual support window for adaptive-weight stereo matching. VCIP 2011.
[93]C. Cigla and A. Alatan. Information permeability for stereo matching. Signal Processing: Image Communication, 2013.
[94]F. Hawi and M. Sawan. Phase-based passive stereovision systems dedicated to cortical visual stimulators. ICCD 2012.
[95]D. Min, J. Lu, and M. Do. A revisit to cost aggregation in stereo matching: how far can we reduce its computational redundancy? ICCV 2011.
[96]M. Bleyer, C. Rhemann, and C. Rother. PatchMatch stereo - stereo matching with slanted support windows. BMVC 2011
[97]C. Shi, G. Wang, X. Pei, B. He, and X. Lin. Stereo matching using local plane fitting in confidence-based support window. IEICE Trans. 95-D(2):699-702, 2012.
[98]J. Kowalczuk, E. Psota, and L. Pérez. Real-time stereo matching on CUDA using an iterative refinement method for adaptive support-weight correspondences. IEEE TCSVT 23(1):94-104, 2013.
[99]L. De-Maeztu, S. Mattoccia, A. Villanueva, and R. Cabeza. Efficient aggregation via iterative block-based adapting support-weights. IC3D 2011.
[100]J. Martins, J. Rodrigues, and H. du Buf. Disparity energy model using a trained neuronal population. ISSPIT 2011.
[101]N. Einecke and J. Eggert. Anisotropic median filtering for stereo disparity map refinement. VISAPP 2013.
[102]I. Jung, T. Chung, J. Sim, and C. Kim. Consistent stereo matching under varying radiometric conditions. IEEE Transactions on Multimedia 2013.
[103]M. Antunes and J. Barreto. Efficient stereo matching using histogram aggregation with multiple slant hypothesis. IbPRIA 2013.
[104]Q. Yang. Recursive bilateral filtering. ECCV 2012.
[105]Q. Yang. Hardware-efficient bilateral filtering for stereo matching. PAMI 2013.
[106]K. Zhang, J. Li, Y. Li, W. Hu, L. Sun, and S. Yang. Binary stereo matching. ICPR 2012.
[107]S. Damjanovic, F. van der Heijden, and L. Spreeuwers. Local stereo matching using adaptive local segmentation. ISRN Machine Vision 2012.
[108]J. Lu, K. Shi, D. Min, L. Lin, and M. Do. Cross-based local multipoint filtering. CVPR 2012.
[109]Y. Mizukami, K. Okada, A. Nomura, S. Nakanishi, and K. Tadamura. Sub-pixel disparity search for binocular stereo vision. ICPR 2012.
[110]T. Liu, X. Dai, Z. Huo, X. Zhu, and L. Luo. A cost construction via MSW and linear regression for stereo matching. ICPR 2012.
[111]N. Manap and J. Soraghan. Disparity refinement based on depth image layers separation for stereo matching algorithms. J Telecom., Elec. Comp. Eng. 4(1), 2012.
[112]Q. Yang. A non-local cost aggregation method for stereo matching. CVPR 2012.
[113]F. Besse, C. Rother, A. Fitzgibbon, and J. Kautz. PMBP: PatchMatch belief propagation for correspondence field estimation. BMVC 2012.
[114]N. Barzigar, A. Roozgard, S. Cheng, and P. Verma. SCoBeP: Dense image registration using sparse coding and belief propagation. JVIS 2012.
[115]Y. Wang, E. Dunn, and J.-M. Frahm. Increasing the efficiency of local stereo by leveraging smoothness constraints. 3DIMPVT2012.
[116]V. Drazic and N. Sabater. A precise real-time stereo algorithm. IVCNZ 2012.
[117]S. Zhu, L. Zhang, and H. Jin. A locally linear regression model for boundary preserving regularization in stereo matching. ECCV 2012.
[118]A. Arranz, M. Alvar, J. Boal, A. Sanchez-Miralles, and A. de la Escalera. Genetic algorithm for stereo correspondence with a novel fitness function and occlusion handling. IVAPP 2013.
[119]J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013.
[120]C. Pham and J. Jeon. Domain transformation-based efficient cost aggregation for local stereo matching. IEEE TCSVT 2012.
[121]D. Chen, M. Ardabilian, X Wang, and L. Chen. An improved non-local cost aggregation method for stereo matching based on color and boundary cue. ICME 2013.
[122]D. Min, J. Lu, and M. Do. Joint histogram based cost aggregation for stereo matching. PAMI 2013.
[123]C. Stentoumis, L. Grammatikopoulos, I. Kalisperakis, E. Petsa, and G. Karras. A local adaptive approach for dense stereo matching in architectural scene reconstruction. ISPRS 3D-ARCH 2013.
[124]M. Michael, J. Salmen, J. Stallkamp, and M. Schlipsing. Real-time stereo vision: optimizing semi-global matching. IV 2013.
[125]P. Heise, S. Klose, B. Jensen, and A. Knoll. PatchMatch with Huber regularization for stereo matching. ICCV 2013.
[126]X. Mei, X. Sun, W. Dong, H. Wang, and X. Zhang. Segment-tree based cost aggregation for stereo matching. CVPR 2013.
[127]Q. Yang, P. Ji, D. Li, S. Yao, and M. Zhang. Near real-time stereo matching using adaptive guided filtering. Submitted to Image and Vision Computing 2013.
[128]X. Zhou and P. Boulanger. Radiometric invariant stereo matching based on relative gradients. ICIP, pp. 2989-2992, 2012.
[129]X. Zhou and P. Boulanger. New eye contact correction using radial basis function for wide baseline videoconference system. Pacific-Rim Conference on Multimedia (PCM), pp. 68-79, 2012.
[130]D. Chen, L. Chen, and M. Ardabilian. A novel trilateral filter based adaptive support weight method for stereo matching. BMVC 2013.
[131]M. Samadi and M. Othman. A new fast and robust stereo matching algorithm for robotic systems. IC2IT 2013.
[132]C.-C. Kao and H.-Y. Lin. Stereo matching bit-plane slicing. Technical Report, 2013.
[133]Y. Lin, N. Lu, X. Lou, F. Zou, Y. Yao, and Z. Du. Matching cost filtering for dense stereo correspondence. Mathematical Problems in Engineering, 2013.
[134]Z. Lee, J. Juang, and T. Nguyen. Local disparity estimation with three-moded cross census and advanced support weight. IEEE Transactions on Multimedia 2013.
[135]Y. Wang, K. Wang, E. Dunn, and J.-M. Frahm. Stereo under sequential optimal sampling: a statistical analysis framework for search space reduction. CVPR 2014.
[136] T. Taniai, Y. Matsushita, and T. Naemura. Graph cut based continuous stereo matching using locally shared labels. CVPR 2014.
[137]D. Altantawy, M. Obbaya, and S. Kishk. A fast non-local based stereo matching algorithm using graph cuts. Submitted to IMAVIS 2013.
[138]X. Tan, C. Sun, D. Wang, Y. Guo, and T. Pham. Soft cost aggregation with multi-resolution fusion. ECCV 2014.
[139]B. Ham, D. Min, C. Oh, M. Do, and K. Sohn. Probability-based rendering for view synthesis. IEEE TIP 2014.
[140]L. Wang, Z. Liu, and Z. Zhang. Feature based stereo matching using two-step expansion. Mathematical Problems in Engineering, 2014.
[141]M. Mozerov and J. van Weijer. Accurate stereo matching by two step global optimization. To appear in TIP 2015.
[142] C. Zhang, Z. Li, R. Cai, H. Chao, and Y. Rui. As-rigid-as-possible stereo under second order smoothness priors. ECCV 2014.
[143]H. Jung, H. Park, I. Park, K. Lee, and S. Lee. Stereo reconstruction using high-order likelihoods. CVIU 2014.
[144]V. Muninder, U. Soumik, and A. Krishna. Robust segment-based stereo using cost aggregation. BMVC 2014.
[145]L. Ma. Modified census transform based on the related information of neighborhood for stereo matching algorithm. Submitted to Computer Engineering and Applications 2014.
[146]X. Tan, C. Sun, X. Sirault, R. Furbank, and T. Pham. Stereo matching using cost volume watershed and region merging. Submitted to Signal Processing: Image Communication, 2014.
[147]Q. Yang. Stereo matching using tree filtering. PAMI, preprint, 2014.
[148]D. Vu, B. Chidester, H. Yang, M. Do, and J. Lu. Efficient hybrid tree-based stereo matching with applications to post-capture image refocusing. IEEE TIP 2014.
[149]J. Liu, C. Li, F. Mei, and Z. Wang. 3D entity-based stereo matching with ground control points and joint second order smoothness prior. To appear in Visual Computer, 2014.
[150]J. Jiao, R. Wang, W. Wang, S. Dong, Z. Wang, and W. Gao. Local stereo matching with improved matching cost and disparity refinement. IEEE Multimedia 2014. (An earlier version appeared at ICME 2014.)
[151] X. Sun, X. Mei, S. Jiao, M. Zhou, Z. Liu, and H. Wang. Real-time local stereo via edge-aware disparity propagation. Pattern Recognition Letters, 2014.
[152]F. Cheng, H. Zhang, M. Sun, and D. Yuan. Cross-trees, edge and superpixel priors-based cost aggregation for stereo matching. Submitted to PR 2014.
[153]S. Xu, F. Zhang, X. He, X. Shen, and X. Zhang. PM-PM: PatchMatch with Potts model for object segmentation and stereo matching. TIP 2015.
[154]L. Wang, R. Yang, M. Gong, and M. Liao. Real-time stereo using approximated joint bilateral filtering and dynamic programming. Journal of Real-Time Image Processing 9(3):447-461, 2014.
[155]Y. Zhan, Y. Gu, K. Huang, C. Zhang, and K. Hu. Accurate image-guided stereo matching with efficient matching cost and disparity refinement. Submitted to IEEE TCSVT, 2015.
[156]S. Ploumpis, A. Amanatiadis, and A. Gasteratos. A stereo matching approach based on particle filters and scattered control landmarks. Image and Vision Computing 2015.
[157]Y. Peng, G. Li, R. Wang, and W. Wang. Stereo matching with space-constrained cost aggregation and segmentation-based disparity refinement. 3DIPM 2015.
[158]T. Taniai, Y. Matsushita, Y. Sato, and T. Naemura. Continuous stereo matching using local expansion moves. Submitted to PAMI 2015.
[159]Anonymous. Segment graph based image filtering: fast structure-preserving smoothing. ICCV 2015 submission 492.
[160]X. Huang, C. Yuan, and J. Zhang. Graph cuts stereo matching based on Patch-Match and ground control points constraint. Submitted to PCM 2015.
[161]D. Altantawy and S. Kishk. Artistic gradient-based stereo matching algorithm with a hybrid local-global reasoning. Submitted to IET Computer Vision 2015.
[162]X. Huang, C. Yuan, and J. Zhang. A systematic stereo matching framework based on adaptive color transformation and Patch-Match forest. Submitted to JVCIR 2015.
[163]J. Martins, J. Rodrigues, and H. du Buf. Luminance, colour, viewpoint and border enhanced disparity energy model. PLoS ONE 10(6):e0129908, 2015.
[164]G. Kordelas, D. Alexiadis, P. Daras, and E. Izquierdo. Enhanced disparity estimation in stereo images. IMAVIS 2015.

This page was designed by Daniel Scharstein and Anna Blasiak. Please send feedback and bug reports to schar@middlebury.edu.
Support for this work was provided in part by NSF grant 0413169. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

 

 

 

 

 

 

 

 

 

 

Last modified: July 1 2015 by Daniel Scharstein