Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
A75 endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it+_RVC [198] | 2.3 | 0.06 2 | 0.12 1 | 0.04 1 | 0.12 2 | 0.36 1 | 0.11 2 | 0.16 1 | 0.22 3 | 0.16 2 | 0.04 1 | 0.07 1 | 0.04 1 | 0.36 7 | 0.61 5 | 0.18 3 | 0.07 1 | 0.23 3 | 0.06 1 | 0.09 4 | 0.13 2 | 0.11 5 | 0.22 1 | 0.51 4 | 0.17 1 |
RAFT-it [194] | 3.8 | 0.06 2 | 0.13 5 | 0.05 3 | 0.13 5 | 0.40 3 | 0.12 3 | 0.16 1 | 0.24 5 | 0.17 13 | 0.04 1 | 0.08 2 | 0.04 1 | 0.40 11 | 0.69 10 | 0.21 7 | 0.08 2 | 0.18 1 | 0.07 2 | 0.08 2 | 0.15 4 | 0.09 1 | 0.23 3 | 0.50 3 | 0.19 2 |
MS_RAFT+_RVC [195] | 10.9 | 0.06 2 | 0.12 1 | 0.05 3 | 0.21 73 | 0.43 5 | 0.23 101 | 0.17 8 | 0.24 5 | 0.19 37 | 0.05 3 | 0.10 3 | 0.04 1 | 0.29 1 | 0.46 1 | 0.17 1 | 0.09 3 | 0.18 1 | 0.08 3 | 0.07 1 | 0.11 1 | 0.09 1 | 0.22 1 | 0.40 1 | 0.20 4 |
NNF-Local [75] | 14.5 | 0.06 2 | 0.15 7 | 0.05 3 | 0.13 5 | 0.55 21 | 0.13 12 | 0.16 1 | 0.28 14 | 0.16 2 | 0.07 15 | 0.33 25 | 0.07 19 | 0.36 7 | 0.61 5 | 0.22 9 | 0.16 33 | 0.47 11 | 0.14 41 | 0.13 35 | 0.15 4 | 0.23 40 | 0.23 3 | 0.69 29 | 0.20 4 |
MDP-Flow2 [68] | 17.5 | 0.08 40 | 0.17 16 | 0.07 21 | 0.13 5 | 0.42 4 | 0.12 3 | 0.17 8 | 0.22 3 | 0.17 13 | 0.08 24 | 0.35 30 | 0.07 19 | 0.42 15 | 0.84 23 | 0.24 12 | 0.16 33 | 0.43 8 | 0.13 22 | 0.13 35 | 0.16 18 | 0.22 37 | 0.27 9 | 0.53 7 | 0.29 15 |
NN-field [71] | 17.8 | 0.06 2 | 0.17 16 | 0.05 3 | 0.15 20 | 0.62 37 | 0.15 27 | 0.17 8 | 0.27 11 | 0.17 13 | 0.07 15 | 0.29 16 | 0.07 19 | 0.35 6 | 0.61 5 | 0.21 7 | 0.13 15 | 0.39 6 | 0.11 9 | 0.16 68 | 0.16 18 | 0.27 73 | 0.24 5 | 0.67 25 | 0.19 2 |
RAFT-TF_RVC [179] | 21.8 | 0.08 40 | 0.22 49 | 0.05 3 | 0.18 41 | 0.50 14 | 0.17 42 | 0.18 30 | 0.34 24 | 0.19 37 | 0.06 5 | 0.12 4 | 0.05 5 | 0.48 30 | 0.80 19 | 0.27 24 | 0.13 15 | 0.28 4 | 0.13 22 | 0.09 4 | 0.15 4 | 0.10 4 | 0.32 53 | 0.78 42 | 0.25 8 |
OFLAF [78] | 22.8 | 0.07 16 | 0.15 7 | 0.07 21 | 0.15 20 | 0.46 10 | 0.14 20 | 0.16 1 | 0.21 2 | 0.16 2 | 0.07 15 | 0.20 7 | 0.06 10 | 0.31 2 | 0.59 4 | 0.19 5 | 0.22 83 | 0.59 20 | 0.17 72 | 0.14 43 | 0.16 18 | 0.29 82 | 0.29 34 | 0.53 7 | 0.33 45 |
CoT-AMFlow [174] | 23.8 | 0.08 40 | 0.18 23 | 0.07 21 | 0.14 13 | 0.44 8 | 0.13 12 | 0.17 8 | 0.24 5 | 0.17 13 | 0.08 24 | 0.42 48 | 0.07 19 | 0.44 22 | 0.88 29 | 0.29 30 | 0.15 27 | 0.47 11 | 0.13 22 | 0.15 57 | 0.17 37 | 0.25 61 | 0.27 9 | 0.56 9 | 0.30 22 |
TC/T-Flow [77] | 24.5 | 0.05 1 | 0.19 28 | 0.04 1 | 0.13 5 | 0.61 34 | 0.12 3 | 0.17 8 | 0.34 24 | 0.16 2 | 0.06 5 | 0.43 52 | 0.05 5 | 0.47 26 | 0.92 34 | 0.24 12 | 0.11 6 | 0.53 15 | 0.10 6 | 0.14 43 | 0.15 4 | 0.42 130 | 0.31 50 | 0.82 48 | 0.33 45 |
ComponentFusion [94] | 24.7 | 0.06 2 | 0.16 9 | 0.05 3 | 0.14 13 | 0.45 9 | 0.14 20 | 0.16 1 | 0.30 17 | 0.16 2 | 0.06 5 | 0.37 35 | 0.05 5 | 0.47 26 | 0.99 44 | 0.33 44 | 0.21 76 | 1.08 63 | 0.16 63 | 0.14 43 | 0.17 37 | 0.20 34 | 0.27 9 | 0.64 17 | 0.29 15 |
WLIF-Flow [91] | 24.8 | 0.07 16 | 0.16 9 | 0.07 21 | 0.17 32 | 0.58 26 | 0.16 36 | 0.17 8 | 0.30 17 | 0.18 25 | 0.08 24 | 0.31 21 | 0.07 19 | 0.41 13 | 0.77 15 | 0.27 24 | 0.17 43 | 0.66 22 | 0.14 41 | 0.17 79 | 0.15 4 | 0.27 73 | 0.25 6 | 0.56 9 | 0.27 11 |
NNF-EAC [101] | 27.0 | 0.08 40 | 0.18 23 | 0.07 21 | 0.14 13 | 0.50 14 | 0.14 20 | 0.18 30 | 0.27 11 | 0.17 13 | 0.08 24 | 0.43 52 | 0.08 45 | 0.43 21 | 0.84 23 | 0.26 20 | 0.16 33 | 0.54 17 | 0.13 22 | 0.15 57 | 0.16 18 | 0.24 53 | 0.29 34 | 0.66 21 | 0.30 22 |
ProFlow_ROB [142] | 27.7 | 0.06 2 | 0.21 38 | 0.06 11 | 0.14 13 | 0.66 46 | 0.12 3 | 0.17 8 | 0.56 67 | 0.16 2 | 0.05 3 | 0.41 44 | 0.04 1 | 0.65 61 | 1.38 72 | 0.32 41 | 0.12 9 | 1.03 58 | 0.10 6 | 0.10 8 | 0.18 64 | 0.19 32 | 0.26 8 | 0.98 59 | 0.25 8 |
LME [70] | 27.8 | 0.07 16 | 0.16 9 | 0.06 11 | 0.14 13 | 0.43 5 | 0.13 12 | 0.18 30 | 0.30 17 | 0.18 25 | 0.08 24 | 0.44 57 | 0.07 19 | 0.49 33 | 0.96 39 | 0.31 35 | 0.15 27 | 0.74 27 | 0.14 41 | 0.15 57 | 0.17 37 | 0.25 61 | 0.28 18 | 0.68 28 | 0.31 27 |
TC-Flow [46] | 28.6 | 0.06 2 | 0.17 16 | 0.07 21 | 0.11 1 | 0.46 10 | 0.10 1 | 0.17 8 | 0.34 24 | 0.16 2 | 0.06 5 | 0.41 44 | 0.06 10 | 0.53 43 | 1.21 57 | 0.25 17 | 0.13 15 | 1.04 59 | 0.13 22 | 0.13 35 | 0.15 4 | 0.36 107 | 0.32 53 | 1.07 63 | 0.41 68 |
ALD-Flow [66] | 29.0 | 0.06 2 | 0.16 9 | 0.06 11 | 0.13 5 | 0.49 12 | 0.12 3 | 0.17 8 | 0.35 30 | 0.17 13 | 0.06 5 | 0.42 48 | 0.06 10 | 0.54 45 | 1.24 61 | 0.25 17 | 0.11 6 | 0.98 53 | 0.10 6 | 0.15 57 | 0.15 4 | 0.36 107 | 0.32 53 | 1.10 70 | 0.37 60 |
Layers++ [37] | 29.2 | 0.07 16 | 0.17 16 | 0.08 57 | 0.19 55 | 0.56 24 | 0.19 63 | 0.17 8 | 0.25 8 | 0.18 25 | 0.06 5 | 0.15 6 | 0.06 10 | 0.31 2 | 0.51 2 | 0.18 3 | 0.17 43 | 0.77 30 | 0.13 22 | 0.18 86 | 0.18 64 | 0.31 89 | 0.27 9 | 0.66 21 | 0.32 38 |
RNLOD-Flow [119] | 29.6 | 0.06 2 | 0.14 6 | 0.06 11 | 0.15 20 | 0.65 44 | 0.13 12 | 0.17 8 | 0.34 24 | 0.17 13 | 0.07 15 | 0.25 11 | 0.06 10 | 0.41 13 | 0.86 27 | 0.24 12 | 0.16 33 | 0.66 22 | 0.14 41 | 0.20 111 | 0.23 122 | 0.39 119 | 0.27 9 | 0.57 11 | 0.28 14 |
nLayers [57] | 30.3 | 0.06 2 | 0.12 1 | 0.06 11 | 0.23 89 | 0.63 39 | 0.23 101 | 0.17 8 | 0.32 21 | 0.20 63 | 0.06 5 | 0.14 5 | 0.06 10 | 0.32 5 | 0.53 3 | 0.19 5 | 0.16 33 | 0.53 15 | 0.13 22 | 0.15 57 | 0.17 37 | 0.26 67 | 0.29 34 | 0.70 30 | 0.39 65 |
HAST [107] | 31.2 | 0.06 2 | 0.12 1 | 0.05 3 | 0.13 5 | 0.50 14 | 0.12 3 | 0.16 1 | 0.17 1 | 0.15 1 | 0.06 5 | 0.21 8 | 0.05 5 | 0.31 2 | 0.63 8 | 0.17 1 | 0.22 83 | 0.95 50 | 0.17 72 | 0.24 132 | 0.25 139 | 0.70 155 | 0.28 18 | 0.44 2 | 0.32 38 |
PMMST [112] | 33.2 | 0.09 57 | 0.17 16 | 0.09 76 | 0.19 55 | 0.57 25 | 0.19 63 | 0.18 30 | 0.33 22 | 0.19 37 | 0.09 55 | 0.21 8 | 0.09 75 | 0.40 11 | 0.69 10 | 0.23 11 | 0.17 43 | 0.45 10 | 0.13 22 | 0.14 43 | 0.16 18 | 0.23 40 | 0.30 41 | 0.60 13 | 0.29 15 |
UnDAF [187] | 33.5 | 0.08 40 | 0.19 28 | 0.07 21 | 0.13 5 | 0.49 12 | 0.13 12 | 0.17 8 | 0.27 11 | 0.17 13 | 0.08 24 | 0.75 93 | 0.07 19 | 0.54 45 | 1.29 62 | 0.26 20 | 0.16 33 | 1.20 79 | 0.13 22 | 0.15 57 | 0.17 37 | 0.24 53 | 0.28 18 | 1.17 71 | 0.30 22 |
AGIF+OF [84] | 34.2 | 0.07 16 | 0.18 23 | 0.07 21 | 0.21 73 | 0.79 71 | 0.20 76 | 0.17 8 | 0.37 37 | 0.18 25 | 0.08 24 | 0.36 31 | 0.07 19 | 0.42 15 | 0.74 13 | 0.28 26 | 0.16 33 | 0.75 28 | 0.13 22 | 0.17 79 | 0.17 37 | 0.28 79 | 0.28 18 | 0.65 19 | 0.31 27 |
IROF++ [58] | 36.5 | 0.07 16 | 0.18 23 | 0.07 21 | 0.19 55 | 0.78 67 | 0.19 63 | 0.18 30 | 0.40 45 | 0.19 37 | 0.08 24 | 0.42 48 | 0.08 45 | 0.47 26 | 0.88 29 | 0.33 44 | 0.17 43 | 1.00 55 | 0.13 22 | 0.12 20 | 0.18 64 | 0.15 19 | 0.28 18 | 0.73 34 | 0.31 27 |
OAR-Flow [123] | 36.6 | 0.07 16 | 0.21 38 | 0.06 11 | 0.15 20 | 0.70 50 | 0.14 20 | 0.17 8 | 0.61 73 | 0.19 37 | 0.06 5 | 0.45 59 | 0.06 10 | 0.65 61 | 1.39 73 | 0.31 35 | 0.09 3 | 1.09 64 | 0.09 5 | 0.11 13 | 0.14 3 | 0.24 53 | 0.36 72 | 1.09 68 | 0.46 81 |
Classic+CPF [82] | 37.6 | 0.07 16 | 0.20 33 | 0.07 21 | 0.20 67 | 0.76 63 | 0.19 63 | 0.17 8 | 0.38 42 | 0.18 25 | 0.07 15 | 0.38 39 | 0.07 19 | 0.46 25 | 0.84 23 | 0.32 41 | 0.17 43 | 0.77 30 | 0.13 22 | 0.18 86 | 0.17 37 | 0.40 122 | 0.28 18 | 0.64 17 | 0.31 27 |
FC-2Layers-FF [74] | 37.9 | 0.07 16 | 0.16 9 | 0.07 21 | 0.18 41 | 0.71 55 | 0.18 50 | 0.18 30 | 0.26 9 | 0.19 37 | 0.08 24 | 0.29 16 | 0.08 45 | 0.38 10 | 0.64 9 | 0.29 30 | 0.19 61 | 0.73 26 | 0.15 54 | 0.20 111 | 0.18 64 | 0.39 119 | 0.27 9 | 0.67 25 | 0.32 38 |
PH-Flow [99] | 38.0 | 0.07 16 | 0.21 38 | 0.07 21 | 0.18 41 | 0.73 58 | 0.18 50 | 0.18 30 | 0.34 24 | 0.19 37 | 0.08 24 | 0.39 43 | 0.08 45 | 0.45 23 | 0.79 17 | 0.33 44 | 0.18 55 | 0.69 24 | 0.14 41 | 0.18 86 | 0.17 37 | 0.38 114 | 0.27 9 | 0.66 21 | 0.29 15 |
Efficient-NL [60] | 38.8 | 0.06 2 | 0.16 9 | 0.06 11 | 0.20 67 | 0.74 60 | 0.19 63 | 0.18 30 | 0.36 36 | 0.18 25 | 0.08 24 | 0.30 18 | 0.07 19 | 0.42 15 | 0.77 15 | 0.28 26 | 0.19 61 | 0.91 44 | 0.15 54 | 0.18 86 | 0.18 64 | 0.34 100 | 0.30 41 | 0.61 16 | 0.33 45 |
Sparse-NonSparse [56] | 40.7 | 0.07 16 | 0.21 38 | 0.07 21 | 0.19 55 | 0.76 63 | 0.19 63 | 0.17 8 | 0.37 37 | 0.19 37 | 0.08 24 | 0.44 57 | 0.07 19 | 0.54 45 | 1.03 47 | 0.37 61 | 0.17 43 | 0.93 49 | 0.13 22 | 0.18 86 | 0.15 4 | 0.37 109 | 0.27 9 | 0.75 37 | 0.31 27 |
ProbFlowFields [126] | 43.0 | 0.09 57 | 0.33 85 | 0.08 57 | 0.18 41 | 0.58 26 | 0.17 42 | 0.18 30 | 0.46 57 | 0.21 77 | 0.07 15 | 0.36 31 | 0.07 19 | 0.61 56 | 1.29 62 | 0.35 51 | 0.12 9 | 0.57 19 | 0.12 13 | 0.12 20 | 0.16 18 | 0.24 53 | 0.36 72 | 1.07 63 | 0.37 60 |
Correlation Flow [76] | 43.1 | 0.08 40 | 0.21 38 | 0.08 57 | 0.15 20 | 0.51 17 | 0.13 12 | 0.18 30 | 0.35 30 | 0.17 13 | 0.09 55 | 0.32 22 | 0.08 45 | 0.51 35 | 1.08 51 | 0.28 26 | 0.25 102 | 0.80 34 | 0.20 95 | 0.19 100 | 0.17 37 | 0.38 114 | 0.29 34 | 0.60 13 | 0.29 15 |
PRAFlow_RVC [177] | 43.1 | 0.10 82 | 0.22 49 | 0.08 57 | 0.26 107 | 0.70 50 | 0.24 104 | 0.22 88 | 0.46 57 | 0.24 91 | 0.08 24 | 0.23 10 | 0.07 19 | 0.55 48 | 0.88 29 | 0.35 51 | 0.15 27 | 0.32 5 | 0.14 41 | 0.09 4 | 0.15 4 | 0.12 10 | 0.30 41 | 0.71 31 | 0.22 6 |
PBOFVI [189] | 43.4 | 0.10 82 | 0.20 33 | 0.09 76 | 0.18 41 | 0.60 30 | 0.16 36 | 0.17 8 | 0.28 14 | 0.17 13 | 0.08 24 | 0.26 12 | 0.07 19 | 0.52 41 | 1.06 48 | 0.26 20 | 0.20 68 | 0.75 28 | 0.19 88 | 0.19 100 | 0.18 64 | 0.42 130 | 0.28 18 | 0.66 21 | 0.31 27 |
COFM [59] | 44.3 | 0.06 2 | 0.19 28 | 0.05 3 | 0.15 20 | 0.60 30 | 0.15 27 | 0.17 8 | 0.45 56 | 0.19 37 | 0.06 5 | 0.32 22 | 0.05 5 | 0.69 71 | 1.39 73 | 0.51 83 | 0.24 98 | 0.84 38 | 0.17 72 | 0.16 68 | 0.15 4 | 0.38 114 | 0.37 75 | 0.81 46 | 0.45 78 |
LSM [39] | 44.7 | 0.07 16 | 0.21 38 | 0.07 21 | 0.18 41 | 0.78 67 | 0.18 50 | 0.18 30 | 0.38 42 | 0.19 37 | 0.08 24 | 0.45 59 | 0.08 45 | 0.53 43 | 1.02 46 | 0.35 51 | 0.18 55 | 0.98 53 | 0.14 41 | 0.19 100 | 0.16 18 | 0.38 114 | 0.27 9 | 0.79 45 | 0.31 27 |
FMOF [92] | 44.9 | 0.07 16 | 0.18 23 | 0.07 21 | 0.22 82 | 0.79 71 | 0.21 84 | 0.18 30 | 0.34 24 | 0.20 63 | 0.08 24 | 0.34 27 | 0.07 19 | 0.47 26 | 0.89 32 | 0.34 49 | 0.17 43 | 0.78 32 | 0.13 22 | 0.19 100 | 0.18 64 | 0.40 122 | 0.30 41 | 0.74 35 | 0.31 27 |
Ramp [62] | 45.2 | 0.07 16 | 0.21 38 | 0.07 21 | 0.18 41 | 0.78 67 | 0.19 63 | 0.18 30 | 0.35 30 | 0.19 37 | 0.09 55 | 0.41 44 | 0.08 45 | 0.52 41 | 0.96 39 | 0.36 57 | 0.18 55 | 0.88 42 | 0.14 41 | 0.18 86 | 0.16 18 | 0.41 126 | 0.28 18 | 0.75 37 | 0.32 38 |
FESL [72] | 46.0 | 0.07 16 | 0.16 9 | 0.08 57 | 0.22 82 | 0.84 80 | 0.20 76 | 0.18 30 | 0.37 37 | 0.19 37 | 0.08 24 | 0.28 15 | 0.07 19 | 0.48 30 | 0.82 22 | 0.39 65 | 0.17 43 | 0.71 25 | 0.15 54 | 0.18 86 | 0.20 94 | 0.29 82 | 0.31 50 | 0.67 25 | 0.33 45 |
JOF [136] | 46.4 | 0.07 16 | 0.17 16 | 0.06 11 | 0.20 67 | 0.79 71 | 0.20 76 | 0.17 8 | 0.31 20 | 0.20 63 | 0.07 15 | 0.38 39 | 0.07 19 | 0.42 15 | 0.75 14 | 0.29 30 | 0.23 92 | 0.79 33 | 0.19 88 | 0.23 130 | 0.19 83 | 0.57 143 | 0.28 18 | 0.65 19 | 0.31 27 |
2DHMM-SAS [90] | 47.0 | 0.07 16 | 0.21 38 | 0.07 21 | 0.18 41 | 0.86 88 | 0.18 50 | 0.18 30 | 0.48 60 | 0.19 37 | 0.08 24 | 0.43 52 | 0.08 45 | 0.51 35 | 0.95 37 | 0.35 51 | 0.19 61 | 1.01 57 | 0.14 41 | 0.18 86 | 0.17 37 | 0.40 122 | 0.28 18 | 0.78 42 | 0.32 38 |
Classic+NL [31] | 48.3 | 0.07 16 | 0.20 33 | 0.07 21 | 0.19 55 | 0.79 71 | 0.19 63 | 0.18 30 | 0.37 37 | 0.19 37 | 0.09 55 | 0.43 52 | 0.08 45 | 0.51 35 | 0.94 36 | 0.36 57 | 0.19 61 | 0.92 47 | 0.15 54 | 0.19 100 | 0.17 37 | 0.39 119 | 0.28 18 | 0.78 42 | 0.32 38 |
S2D-Matching [83] | 48.3 | 0.07 16 | 0.21 38 | 0.07 21 | 0.18 41 | 0.79 71 | 0.18 50 | 0.18 30 | 0.47 59 | 0.19 37 | 0.09 55 | 0.37 35 | 0.08 45 | 0.51 35 | 0.97 42 | 0.35 51 | 0.20 68 | 0.91 44 | 0.15 54 | 0.20 111 | 0.17 37 | 0.41 126 | 0.28 18 | 0.71 31 | 0.33 45 |
IIOF-NLDP [129] | 49.5 | 0.08 40 | 0.28 69 | 0.07 21 | 0.21 73 | 0.74 60 | 0.18 50 | 0.18 30 | 0.41 48 | 0.17 13 | 0.09 55 | 0.34 27 | 0.08 45 | 0.51 35 | 0.95 37 | 0.26 20 | 0.25 102 | 0.91 44 | 0.20 95 | 0.15 57 | 0.17 37 | 0.27 73 | 0.34 62 | 0.76 40 | 0.34 55 |
HCFN [157] | 50.8 | 0.08 40 | 0.21 38 | 0.07 21 | 0.12 2 | 0.43 5 | 0.12 3 | 0.17 8 | 0.35 30 | 0.16 2 | 0.08 24 | 0.33 25 | 0.08 45 | 0.50 34 | 0.96 39 | 0.31 35 | 0.20 68 | 0.90 43 | 0.18 80 | 0.28 151 | 0.27 149 | 0.67 153 | 0.36 72 | 1.07 63 | 0.50 89 |
SVFilterOh [109] | 51.8 | 0.09 57 | 0.17 16 | 0.09 76 | 0.20 67 | 0.59 29 | 0.18 50 | 0.19 53 | 0.26 9 | 0.20 63 | 0.10 78 | 0.34 27 | 0.09 75 | 0.37 9 | 0.71 12 | 0.22 9 | 0.19 61 | 0.80 34 | 0.15 54 | 0.26 143 | 0.26 145 | 0.58 144 | 0.28 18 | 0.51 4 | 0.27 11 |
3DFlow [133] | 52.1 | 0.08 40 | 0.20 33 | 0.07 21 | 0.17 32 | 0.61 34 | 0.15 27 | 0.18 30 | 0.28 14 | 0.17 13 | 0.12 97 | 0.30 18 | 0.10 87 | 0.42 15 | 0.81 20 | 0.24 12 | 0.35 131 | 1.15 70 | 0.26 117 | 0.31 158 | 0.19 83 | 0.56 142 | 0.29 34 | 0.60 13 | 0.26 10 |
TV-L1-MCT [64] | 52.2 | 0.07 16 | 0.19 28 | 0.07 21 | 0.22 82 | 0.87 89 | 0.21 84 | 0.18 30 | 0.40 45 | 0.20 63 | 0.09 55 | 0.37 35 | 0.08 45 | 0.61 56 | 1.14 53 | 0.52 86 | 0.22 83 | 1.00 55 | 0.16 63 | 0.13 35 | 0.17 37 | 0.20 34 | 0.29 34 | 0.86 52 | 0.43 72 |
PMF [73] | 52.5 | 0.08 40 | 0.19 28 | 0.07 21 | 0.17 32 | 0.65 44 | 0.15 27 | 0.19 53 | 0.42 50 | 0.20 63 | 0.09 55 | 0.30 18 | 0.09 75 | 0.48 30 | 0.90 33 | 0.24 12 | 0.21 76 | 1.14 69 | 0.16 63 | 0.27 145 | 0.30 156 | 0.50 137 | 0.28 18 | 0.51 4 | 0.27 11 |
SimpleFlow [49] | 52.9 | 0.07 16 | 0.23 53 | 0.07 21 | 0.21 73 | 0.85 83 | 0.21 84 | 0.19 53 | 0.53 65 | 0.20 63 | 0.09 55 | 0.51 65 | 0.09 75 | 0.56 50 | 1.07 50 | 0.41 66 | 0.18 55 | 0.83 37 | 0.14 41 | 0.16 68 | 0.15 4 | 0.28 79 | 0.28 18 | 0.85 50 | 0.33 45 |
MDP-Flow [26] | 53.8 | 0.08 40 | 0.27 66 | 0.08 57 | 0.18 41 | 0.54 20 | 0.19 63 | 0.18 30 | 0.42 50 | 0.18 25 | 0.08 24 | 0.70 89 | 0.08 45 | 0.63 58 | 1.21 57 | 0.46 76 | 0.17 43 | 1.13 66 | 0.15 54 | 0.14 43 | 0.17 37 | 0.23 40 | 0.35 66 | 1.58 103 | 0.54 97 |
IROF-TV [53] | 55.0 | 0.08 40 | 0.22 49 | 0.08 57 | 0.20 67 | 0.85 83 | 0.19 63 | 0.18 30 | 0.40 45 | 0.20 63 | 0.09 55 | 0.79 97 | 0.09 75 | 0.59 55 | 1.06 48 | 0.45 74 | 0.22 83 | 1.74 126 | 0.17 72 | 0.11 13 | 0.16 18 | 0.14 13 | 0.28 18 | 0.85 50 | 0.31 27 |
OFH [38] | 56.3 | 0.09 57 | 0.27 66 | 0.10 92 | 0.13 5 | 0.60 30 | 0.13 12 | 0.18 30 | 0.63 74 | 0.16 2 | 0.07 15 | 0.61 76 | 0.06 10 | 0.74 82 | 1.54 87 | 0.43 70 | 0.18 55 | 1.47 105 | 0.18 80 | 0.14 43 | 0.18 64 | 0.26 67 | 0.34 62 | 1.60 105 | 0.38 63 |
Adaptive [20] | 56.7 | 0.07 16 | 0.23 53 | 0.06 11 | 0.19 55 | 0.75 62 | 0.17 42 | 0.20 71 | 0.67 80 | 0.19 37 | 0.09 55 | 0.74 92 | 0.08 45 | 0.71 76 | 1.34 67 | 0.56 92 | 0.15 27 | 1.22 80 | 0.11 9 | 0.18 86 | 0.20 94 | 0.28 79 | 0.29 34 | 0.86 52 | 0.33 45 |
Occlusion-TV-L1 [63] | 56.8 | 0.08 40 | 0.24 58 | 0.07 21 | 0.17 32 | 0.70 50 | 0.17 42 | 0.19 53 | 0.66 79 | 0.19 37 | 0.09 55 | 0.62 80 | 0.08 45 | 0.75 84 | 1.54 87 | 0.56 92 | 0.14 25 | 1.27 86 | 0.16 63 | 0.12 20 | 0.17 37 | 0.14 13 | 0.37 75 | 1.80 121 | 0.41 68 |
WRT [146] | 61.8 | 0.09 57 | 0.25 62 | 0.07 21 | 0.27 109 | 0.85 83 | 0.24 104 | 0.22 88 | 0.50 63 | 0.20 63 | 0.11 90 | 0.36 31 | 0.09 75 | 0.45 23 | 0.79 17 | 0.30 34 | 0.30 113 | 0.87 40 | 0.20 95 | 0.18 86 | 0.17 37 | 0.29 82 | 0.34 62 | 0.72 33 | 0.29 15 |
AggregFlow [95] | 62.0 | 0.09 57 | 0.28 69 | 0.09 76 | 0.23 89 | 1.02 109 | 0.20 76 | 0.22 88 | 0.84 94 | 0.25 101 | 0.10 78 | 0.37 35 | 0.09 75 | 0.65 61 | 1.39 73 | 0.31 35 | 0.12 9 | 0.43 8 | 0.11 9 | 0.12 20 | 0.18 64 | 0.15 19 | 0.43 91 | 1.03 60 | 0.51 92 |
DeepFlow2 [106] | 62.3 | 0.09 57 | 0.33 85 | 0.09 76 | 0.17 32 | 0.73 58 | 0.16 36 | 0.20 71 | 0.74 82 | 0.22 84 | 0.09 55 | 0.82 101 | 0.08 45 | 0.64 59 | 1.37 69 | 0.33 44 | 0.12 9 | 1.24 83 | 0.11 9 | 0.14 43 | 0.15 4 | 0.31 89 | 0.47 101 | 1.50 94 | 0.65 109 |
MLDP_OF [87] | 64.4 | 0.11 99 | 0.27 66 | 0.11 101 | 0.17 32 | 0.55 21 | 0.16 36 | 0.19 53 | 0.41 48 | 0.19 37 | 0.10 78 | 0.36 31 | 0.09 75 | 0.58 54 | 0.98 43 | 0.36 57 | 0.24 98 | 0.62 21 | 0.24 107 | 0.21 119 | 0.20 94 | 0.63 148 | 0.30 41 | 0.77 41 | 0.33 45 |
S2F-IF [121] | 65.3 | 0.09 57 | 0.48 115 | 0.07 21 | 0.22 82 | 0.90 92 | 0.20 76 | 0.21 79 | 0.76 85 | 0.23 88 | 0.08 24 | 0.59 72 | 0.07 19 | 0.82 99 | 1.52 85 | 0.55 90 | 0.13 15 | 1.06 60 | 0.12 13 | 0.12 20 | 0.17 37 | 0.25 61 | 0.47 101 | 1.37 82 | 0.53 95 |
Sparse Occlusion [54] | 65.8 | 0.09 57 | 0.21 38 | 0.08 57 | 0.22 82 | 0.62 37 | 0.22 92 | 0.19 53 | 0.44 55 | 0.19 37 | 0.09 55 | 0.43 52 | 0.08 45 | 0.56 50 | 1.14 53 | 0.31 35 | 0.22 83 | 0.96 51 | 0.17 72 | 0.28 151 | 0.29 152 | 0.38 114 | 0.32 53 | 0.84 49 | 0.35 57 |
PWC-Net_RVC [143] | 66.4 | 0.12 109 | 0.40 103 | 0.10 92 | 0.25 103 | 0.84 80 | 0.24 104 | 0.24 103 | 0.74 82 | 0.26 106 | 0.09 55 | 0.32 22 | 0.07 19 | 0.76 88 | 1.32 66 | 0.42 67 | 0.19 61 | 1.19 75 | 0.16 63 | 0.09 4 | 0.16 18 | 0.11 5 | 0.34 62 | 0.86 52 | 0.34 55 |
Steered-L1 [116] | 66.6 | 0.08 40 | 0.22 49 | 0.08 57 | 0.12 2 | 0.38 2 | 0.12 3 | 0.17 8 | 0.35 30 | 0.16 2 | 0.08 24 | 0.64 84 | 0.07 19 | 0.75 84 | 1.47 82 | 0.62 105 | 0.21 76 | 1.36 99 | 0.16 63 | 0.28 151 | 0.24 133 | 0.89 159 | 0.42 88 | 1.71 112 | 0.92 127 |
RFlow [88] | 66.9 | 0.10 82 | 0.28 69 | 0.10 92 | 0.15 20 | 0.51 17 | 0.15 27 | 0.19 53 | 0.59 71 | 0.18 25 | 0.08 24 | 0.61 76 | 0.08 45 | 0.72 78 | 1.53 86 | 0.48 81 | 0.20 68 | 1.52 112 | 0.17 72 | 0.19 100 | 0.19 83 | 0.35 104 | 0.35 66 | 1.47 90 | 0.39 65 |
Classic++ [32] | 67.1 | 0.07 16 | 0.24 58 | 0.07 21 | 0.18 41 | 0.70 50 | 0.19 63 | 0.19 53 | 0.64 75 | 0.19 37 | 0.09 55 | 0.85 105 | 0.08 45 | 0.73 80 | 1.68 108 | 0.43 70 | 0.20 68 | 1.75 127 | 0.15 54 | 0.20 111 | 0.18 64 | 0.41 126 | 0.30 41 | 1.53 97 | 0.33 45 |
GMFlow_RVC [196] | 67.5 | 0.20 132 | 0.33 85 | 0.19 134 | 0.29 111 | 0.66 46 | 0.30 112 | 0.25 108 | 0.42 50 | 0.27 108 | 0.12 97 | 0.26 12 | 0.11 96 | 0.56 50 | 0.85 26 | 0.33 44 | 0.23 92 | 0.42 7 | 0.21 101 | 0.14 43 | 0.22 112 | 0.18 30 | 0.25 6 | 0.58 12 | 0.23 7 |
SegFlow [156] | 68.1 | 0.09 57 | 0.50 123 | 0.07 21 | 0.23 89 | 0.93 98 | 0.22 92 | 0.21 79 | 0.81 89 | 0.24 91 | 0.08 24 | 0.85 105 | 0.07 19 | 0.81 96 | 1.61 100 | 0.56 92 | 0.13 15 | 1.31 92 | 0.12 13 | 0.12 20 | 0.16 18 | 0.23 40 | 0.45 95 | 1.30 78 | 0.50 89 |
PGM-C [118] | 68.3 | 0.09 57 | 0.50 123 | 0.07 21 | 0.23 89 | 0.92 94 | 0.22 92 | 0.21 79 | 0.83 92 | 0.24 91 | 0.08 24 | 0.85 105 | 0.07 19 | 0.80 93 | 1.59 95 | 0.54 88 | 0.12 9 | 1.33 94 | 0.12 13 | 0.12 20 | 0.16 18 | 0.23 40 | 0.47 101 | 1.48 91 | 0.51 92 |
VCN_RVC [178] | 69.2 | 0.13 114 | 0.41 107 | 0.11 101 | 0.26 107 | 0.80 77 | 0.24 104 | 0.23 98 | 0.65 78 | 0.21 77 | 0.10 78 | 0.63 82 | 0.08 45 | 0.69 71 | 1.17 55 | 0.38 64 | 0.20 68 | 0.92 47 | 0.16 63 | 0.10 8 | 0.18 64 | 0.11 5 | 0.33 60 | 1.06 62 | 0.31 27 |
FlowFields [108] | 70.1 | 0.09 57 | 0.49 118 | 0.07 21 | 0.23 89 | 0.92 94 | 0.21 84 | 0.22 88 | 0.83 92 | 0.24 91 | 0.09 55 | 0.60 74 | 0.08 45 | 0.84 101 | 1.55 90 | 0.59 98 | 0.12 9 | 1.23 82 | 0.12 13 | 0.12 20 | 0.17 37 | 0.25 61 | 0.46 98 | 1.49 92 | 0.44 74 |
CPM-Flow [114] | 70.5 | 0.09 57 | 0.50 123 | 0.07 21 | 0.23 89 | 0.93 98 | 0.22 92 | 0.21 79 | 0.81 89 | 0.24 91 | 0.08 24 | 0.83 102 | 0.07 19 | 0.81 96 | 1.60 97 | 0.55 90 | 0.13 15 | 1.32 93 | 0.12 13 | 0.12 20 | 0.17 37 | 0.23 40 | 0.49 108 | 1.57 102 | 0.54 97 |
EPPM w/o HM [86] | 71.0 | 0.10 82 | 0.35 92 | 0.09 76 | 0.17 32 | 0.68 48 | 0.15 27 | 0.20 71 | 0.53 65 | 0.20 63 | 0.11 90 | 0.56 69 | 0.10 87 | 0.55 48 | 0.93 35 | 0.31 35 | 0.32 121 | 1.30 90 | 0.25 114 | 0.21 119 | 0.19 83 | 0.64 149 | 0.31 50 | 0.74 35 | 0.30 22 |
EpicFlow [100] | 71.0 | 0.09 57 | 0.50 123 | 0.07 21 | 0.23 89 | 0.94 101 | 0.22 92 | 0.21 79 | 0.93 106 | 0.24 91 | 0.08 24 | 0.84 104 | 0.07 19 | 0.81 96 | 1.61 100 | 0.56 92 | 0.13 15 | 1.35 97 | 0.13 22 | 0.12 20 | 0.16 18 | 0.23 40 | 0.48 106 | 1.52 95 | 0.54 97 |
FlowFields+ [128] | 71.1 | 0.09 57 | 0.49 118 | 0.07 21 | 0.23 89 | 0.92 94 | 0.21 84 | 0.22 88 | 0.84 94 | 0.24 91 | 0.09 55 | 0.59 72 | 0.08 45 | 0.83 100 | 1.51 84 | 0.58 96 | 0.13 15 | 1.18 73 | 0.12 13 | 0.12 20 | 0.18 64 | 0.24 53 | 0.47 101 | 1.45 87 | 0.51 92 |
CostFilter [40] | 71.2 | 0.09 57 | 0.24 58 | 0.09 76 | 0.18 41 | 0.64 40 | 0.17 42 | 0.20 71 | 0.48 60 | 0.21 77 | 0.12 97 | 0.54 66 | 0.12 101 | 0.51 35 | 1.00 45 | 0.25 17 | 0.24 98 | 1.19 75 | 0.19 88 | 0.27 145 | 0.34 160 | 0.54 141 | 0.30 41 | 0.89 56 | 0.30 22 |
DMF_ROB [135] | 71.5 | 0.10 82 | 0.40 103 | 0.09 76 | 0.19 55 | 0.78 67 | 0.18 50 | 0.20 71 | 0.89 102 | 0.22 84 | 0.08 24 | 0.80 99 | 0.07 19 | 0.78 91 | 1.56 91 | 0.60 102 | 0.15 27 | 1.48 106 | 0.13 22 | 0.13 35 | 0.15 4 | 0.27 73 | 0.54 115 | 1.69 110 | 0.64 108 |
TV-L1-improved [17] | 72.2 | 0.07 16 | 0.25 62 | 0.06 11 | 0.16 27 | 0.64 40 | 0.15 27 | 0.19 53 | 0.64 75 | 0.19 37 | 0.08 24 | 0.61 76 | 0.08 45 | 0.73 80 | 1.58 93 | 0.44 72 | 0.33 125 | 1.76 129 | 0.32 132 | 0.24 132 | 0.25 139 | 0.44 133 | 0.32 53 | 1.49 92 | 0.37 60 |
CVENG22+RIC [199] | 73.8 | 0.08 40 | 0.49 118 | 0.07 21 | 0.23 89 | 1.06 112 | 0.20 76 | 0.22 88 | 1.02 109 | 0.22 84 | 0.09 55 | 0.94 113 | 0.08 45 | 0.99 118 | 1.92 136 | 0.76 113 | 0.14 25 | 1.49 107 | 0.13 22 | 0.12 20 | 0.16 18 | 0.23 40 | 0.35 66 | 1.56 100 | 0.35 57 |
NL-TV-NCC [25] | 74.0 | 0.10 82 | 0.23 53 | 0.09 76 | 0.21 73 | 0.72 56 | 0.18 50 | 0.19 53 | 0.39 44 | 0.18 25 | 0.11 90 | 0.41 44 | 0.10 87 | 0.67 67 | 1.29 62 | 0.34 49 | 0.33 125 | 1.50 109 | 0.25 114 | 0.21 119 | 0.20 94 | 0.32 93 | 0.39 82 | 1.07 63 | 0.39 65 |
CombBMOF [111] | 75.5 | 0.10 82 | 0.31 79 | 0.08 57 | 0.22 82 | 0.64 40 | 0.19 63 | 0.19 53 | 0.42 50 | 0.19 37 | 0.10 78 | 0.62 80 | 0.10 87 | 0.57 53 | 0.87 28 | 0.37 61 | 0.41 139 | 1.07 62 | 0.39 143 | 0.21 119 | 0.22 112 | 0.37 109 | 0.35 66 | 0.81 46 | 0.48 85 |
Complementary OF [21] | 75.6 | 0.11 99 | 0.31 79 | 0.12 108 | 0.14 13 | 0.55 21 | 0.13 12 | 0.19 53 | 0.48 60 | 0.20 63 | 0.12 97 | 0.55 67 | 0.12 101 | 0.84 101 | 1.58 93 | 0.69 109 | 0.21 76 | 1.24 83 | 0.18 80 | 0.14 43 | 0.17 37 | 0.31 89 | 0.48 106 | 1.70 111 | 0.68 113 |
BriefMatch [122] | 76.5 | 0.08 40 | 0.24 58 | 0.08 57 | 0.16 27 | 0.69 49 | 0.14 20 | 0.16 1 | 0.37 37 | 0.16 2 | 0.08 24 | 0.42 48 | 0.08 45 | 0.77 89 | 1.61 100 | 0.60 102 | 0.46 142 | 1.68 123 | 0.39 143 | 0.22 127 | 0.22 112 | 0.66 151 | 0.37 75 | 2.06 131 | 1.09 132 |
ComplOF-FED-GPU [35] | 77.0 | 0.10 82 | 0.32 83 | 0.11 101 | 0.14 13 | 0.80 77 | 0.12 3 | 0.19 53 | 0.57 69 | 0.18 25 | 0.10 78 | 0.68 88 | 0.10 87 | 0.80 93 | 1.60 97 | 0.47 77 | 0.24 98 | 1.75 127 | 0.20 95 | 0.17 79 | 0.17 37 | 0.41 126 | 0.37 75 | 1.73 114 | 0.43 72 |
TF+OM [98] | 77.0 | 0.09 57 | 0.23 53 | 0.08 57 | 0.18 41 | 0.58 26 | 0.18 50 | 0.19 53 | 0.58 70 | 0.23 88 | 0.12 97 | 0.47 61 | 0.12 101 | 0.78 91 | 1.61 100 | 0.54 88 | 0.20 68 | 1.24 83 | 0.18 80 | 0.20 111 | 0.22 112 | 0.37 109 | 0.42 88 | 1.41 84 | 0.46 81 |
ACK-Prior [27] | 77.1 | 0.11 99 | 0.26 65 | 0.10 92 | 0.16 27 | 0.52 19 | 0.15 27 | 0.19 53 | 0.35 30 | 0.18 25 | 0.11 90 | 0.38 39 | 0.10 87 | 0.68 68 | 1.23 60 | 0.47 77 | 0.32 121 | 1.30 90 | 0.24 107 | 0.28 151 | 0.21 104 | 0.66 151 | 0.40 84 | 1.43 85 | 0.55 100 |
TCOF [69] | 77.5 | 0.10 82 | 0.30 74 | 0.11 101 | 0.23 89 | 0.84 80 | 0.22 92 | 0.24 103 | 0.85 98 | 0.25 101 | 0.21 124 | 0.64 84 | 0.25 132 | 0.80 93 | 1.46 80 | 0.44 72 | 0.13 15 | 0.56 18 | 0.13 22 | 0.19 100 | 0.21 104 | 0.23 40 | 0.32 53 | 0.91 57 | 0.33 45 |
HBM-GC [103] | 77.5 | 0.14 117 | 0.20 33 | 0.14 122 | 0.25 103 | 0.64 40 | 0.24 104 | 0.23 98 | 0.33 22 | 0.25 101 | 0.17 116 | 0.38 39 | 0.16 115 | 0.42 15 | 0.81 20 | 0.28 26 | 0.23 92 | 0.48 13 | 0.21 101 | 0.29 156 | 0.27 149 | 0.47 136 | 0.30 41 | 0.75 37 | 0.38 63 |
FF++_ROB [141] | 77.8 | 0.10 82 | 0.52 130 | 0.08 57 | 0.24 101 | 0.92 94 | 0.22 92 | 0.23 98 | 0.91 104 | 0.25 101 | 0.10 78 | 0.66 86 | 0.09 75 | 0.85 106 | 1.56 91 | 0.58 96 | 0.17 43 | 1.06 60 | 0.16 63 | 0.11 13 | 0.16 18 | 0.23 40 | 0.42 88 | 1.29 77 | 0.44 74 |
DeepFlow [85] | 78.0 | 0.11 99 | 0.34 89 | 0.12 108 | 0.19 55 | 0.79 71 | 0.18 50 | 0.21 79 | 0.86 99 | 0.25 101 | 0.11 90 | 0.95 114 | 0.11 96 | 0.65 61 | 1.42 76 | 0.32 41 | 0.13 15 | 1.38 103 | 0.12 13 | 0.14 43 | 0.16 18 | 0.32 93 | 0.55 117 | 1.78 117 | 0.90 125 |
MCPFlow_RVC [197] | 78.4 | 0.17 123 | 0.41 107 | 0.12 108 | 0.44 127 | 1.02 109 | 0.42 122 | 0.43 127 | 0.90 103 | 0.56 125 | 0.12 97 | 0.27 14 | 0.11 96 | 0.75 84 | 1.11 52 | 0.47 77 | 0.22 83 | 0.52 14 | 0.21 101 | 0.12 20 | 0.17 37 | 0.13 11 | 0.37 75 | 0.87 55 | 0.29 15 |
CRTflow [81] | 82.0 | 0.09 57 | 0.37 94 | 0.08 57 | 0.19 55 | 0.72 56 | 0.17 42 | 0.20 71 | 0.76 85 | 0.19 37 | 0.10 78 | 0.76 96 | 0.09 75 | 0.68 68 | 1.44 77 | 0.37 61 | 0.49 144 | 1.87 131 | 0.52 149 | 0.15 57 | 0.20 94 | 0.27 73 | 0.46 98 | 1.63 107 | 0.59 105 |
TriangleFlow [30] | 83.8 | 0.10 82 | 0.29 72 | 0.11 101 | 0.19 55 | 0.81 79 | 0.16 36 | 0.20 71 | 0.70 81 | 0.18 25 | 0.08 24 | 0.61 76 | 0.07 19 | 1.03 120 | 1.80 127 | 0.93 128 | 0.42 140 | 1.36 99 | 0.33 137 | 0.19 100 | 0.24 133 | 0.31 89 | 0.37 75 | 1.19 72 | 0.42 71 |
SRR-TVOF-NL [89] | 83.9 | 0.11 99 | 0.31 79 | 0.09 76 | 0.19 55 | 0.91 93 | 0.17 42 | 0.21 79 | 0.84 94 | 0.21 77 | 0.10 78 | 0.55 67 | 0.09 75 | 0.74 82 | 1.22 59 | 0.59 98 | 0.22 83 | 1.13 66 | 0.18 80 | 0.24 132 | 0.23 122 | 0.43 132 | 0.45 95 | 1.04 61 | 0.50 89 |
Aniso. Huber-L1 [22] | 84.0 | 0.08 40 | 0.29 72 | 0.08 57 | 0.31 113 | 1.02 109 | 0.32 116 | 0.24 103 | 0.75 84 | 0.28 110 | 0.13 106 | 0.75 93 | 0.12 101 | 0.66 66 | 1.31 65 | 0.42 67 | 0.20 68 | 1.16 72 | 0.17 72 | 0.21 119 | 0.21 104 | 0.32 93 | 0.33 60 | 0.94 58 | 0.41 68 |
Rannacher [23] | 85.1 | 0.09 57 | 0.31 79 | 0.09 76 | 0.21 73 | 0.85 83 | 0.20 76 | 0.21 79 | 0.79 88 | 0.21 77 | 0.10 78 | 0.83 102 | 0.10 87 | 0.75 84 | 1.67 106 | 0.45 74 | 0.25 102 | 1.97 135 | 0.19 88 | 0.19 100 | 0.20 94 | 0.37 109 | 0.32 53 | 1.44 86 | 0.35 57 |
F-TV-L1 [15] | 85.2 | 0.14 117 | 0.35 92 | 0.17 129 | 0.23 89 | 0.99 107 | 0.22 92 | 0.22 88 | 0.88 101 | 0.21 77 | 0.13 106 | 0.99 116 | 0.13 109 | 0.70 75 | 1.54 87 | 0.51 83 | 0.17 43 | 1.56 115 | 0.14 41 | 0.17 79 | 0.19 83 | 0.25 61 | 0.30 41 | 1.27 75 | 0.32 38 |
LocallyOriented [52] | 85.8 | 0.09 57 | 0.37 94 | 0.08 57 | 0.25 103 | 1.14 117 | 0.22 92 | 0.25 108 | 1.23 122 | 0.26 106 | 0.12 97 | 0.66 86 | 0.11 96 | 0.87 109 | 1.60 97 | 0.52 86 | 0.16 33 | 0.96 51 | 0.16 63 | 0.15 57 | 0.20 94 | 0.30 87 | 0.41 86 | 1.34 80 | 0.46 81 |
ROF-ND [105] | 86.5 | 0.11 99 | 0.32 83 | 0.10 92 | 0.21 73 | 0.70 50 | 0.18 50 | 0.19 53 | 0.42 50 | 0.19 37 | 0.16 114 | 0.48 63 | 0.13 109 | 0.71 76 | 1.37 69 | 0.47 77 | 0.37 135 | 1.12 65 | 0.24 107 | 0.27 145 | 0.24 133 | 0.50 137 | 0.43 91 | 1.52 95 | 0.44 74 |
SIOF [67] | 88.6 | 0.10 82 | 0.23 53 | 0.10 92 | 0.17 32 | 1.08 113 | 0.16 36 | 0.23 98 | 1.12 114 | 0.27 108 | 0.12 97 | 1.29 132 | 0.12 101 | 0.86 108 | 1.70 111 | 0.87 126 | 0.21 76 | 1.34 96 | 0.19 88 | 0.15 57 | 0.17 37 | 0.24 53 | 0.40 84 | 1.66 108 | 0.88 124 |
LDOF [28] | 88.7 | 0.09 57 | 0.38 99 | 0.09 76 | 0.20 67 | 1.19 120 | 0.19 63 | 0.25 108 | 1.01 108 | 0.22 84 | 0.10 78 | 1.96 143 | 0.08 45 | 0.90 110 | 1.76 118 | 0.82 121 | 0.15 27 | 2.20 140 | 0.13 22 | 0.14 43 | 0.18 64 | 0.23 40 | 0.63 128 | 2.20 139 | 0.93 128 |
Second-order prior [8] | 89.3 | 0.09 57 | 0.37 94 | 0.08 57 | 0.19 55 | 1.12 116 | 0.17 42 | 0.22 88 | 1.11 113 | 0.21 77 | 0.07 15 | 1.15 125 | 0.06 10 | 0.85 106 | 1.62 105 | 0.61 104 | 0.31 119 | 2.31 144 | 0.19 88 | 0.24 132 | 0.22 112 | 0.45 134 | 0.35 66 | 1.56 100 | 0.47 84 |
Fusion [6] | 90.9 | 0.09 57 | 0.40 103 | 0.11 101 | 0.17 32 | 0.60 30 | 0.18 50 | 0.19 53 | 0.51 64 | 0.20 63 | 0.09 55 | 1.20 128 | 0.08 45 | 0.93 112 | 1.74 117 | 1.09 132 | 0.29 108 | 1.22 80 | 0.29 125 | 0.25 139 | 0.26 145 | 0.33 99 | 0.50 110 | 1.99 128 | 0.60 106 |
DPOF [18] | 91.2 | 0.12 109 | 0.44 111 | 0.09 76 | 0.24 101 | 0.85 83 | 0.21 84 | 0.22 88 | 0.56 67 | 0.23 88 | 0.15 110 | 0.58 71 | 0.13 109 | 0.69 71 | 1.17 55 | 0.42 67 | 0.23 92 | 1.15 70 | 0.18 80 | 0.29 156 | 0.19 83 | 0.73 156 | 0.45 95 | 1.07 63 | 0.58 104 |
Brox et al. [5] | 91.5 | 0.10 82 | 0.37 94 | 0.12 108 | 0.23 89 | 0.97 105 | 0.23 101 | 0.22 88 | 0.84 94 | 0.20 63 | 0.09 55 | 1.09 119 | 0.08 45 | 1.07 129 | 1.79 124 | 1.90 145 | 0.17 43 | 1.92 134 | 0.17 72 | 0.13 35 | 0.18 64 | 0.15 19 | 0.64 130 | 2.09 132 | 0.90 125 |
CBF [12] | 93.5 | 0.10 82 | 0.30 74 | 0.10 92 | 0.39 120 | 0.88 90 | 0.46 128 | 0.20 71 | 0.64 75 | 0.24 91 | 0.09 55 | 0.96 115 | 0.08 45 | 0.72 78 | 1.44 77 | 0.48 81 | 0.23 92 | 1.27 86 | 0.20 95 | 0.28 151 | 0.26 145 | 0.52 140 | 0.41 86 | 1.26 73 | 0.56 101 |
DF-Auto [113] | 94.6 | 0.10 82 | 0.43 110 | 0.08 57 | 0.43 126 | 1.24 122 | 0.45 127 | 0.35 121 | 1.21 120 | 0.73 130 | 0.15 110 | 1.12 123 | 0.14 112 | 0.84 101 | 1.61 100 | 0.78 117 | 0.11 6 | 0.87 40 | 0.12 13 | 0.17 79 | 0.23 122 | 0.14 13 | 0.64 130 | 1.45 87 | 0.83 123 |
FlowNetS+ft+v [110] | 94.8 | 0.09 57 | 0.34 89 | 0.09 76 | 0.21 73 | 0.93 98 | 0.20 76 | 0.24 103 | 1.17 116 | 0.32 113 | 0.09 55 | 1.22 129 | 0.09 75 | 1.05 125 | 1.79 124 | 1.25 137 | 0.16 33 | 1.76 129 | 0.14 41 | 0.18 86 | 0.21 104 | 0.34 100 | 0.47 101 | 1.77 116 | 0.74 118 |
CLG-TV [48] | 96.0 | 0.09 57 | 0.30 74 | 0.09 76 | 0.34 115 | 0.94 101 | 0.36 118 | 0.25 108 | 0.77 87 | 0.32 113 | 0.19 119 | 0.89 110 | 0.18 119 | 0.77 89 | 1.59 95 | 0.51 83 | 0.22 83 | 1.65 120 | 0.20 95 | 0.20 111 | 0.22 112 | 0.26 67 | 0.38 81 | 1.27 75 | 0.53 95 |
Dynamic MRF [7] | 96.9 | 0.12 109 | 0.37 94 | 0.13 116 | 0.16 27 | 0.77 65 | 0.14 20 | 0.19 53 | 0.81 89 | 0.19 37 | 0.10 78 | 0.90 111 | 0.10 87 | 1.06 128 | 2.10 146 | 0.99 130 | 0.33 125 | 2.77 150 | 0.30 128 | 0.16 68 | 0.17 37 | 0.45 134 | 0.50 110 | 2.78 151 | 1.10 133 |
Bartels [41] | 98.5 | 0.11 99 | 0.30 74 | 0.13 116 | 0.21 73 | 0.61 34 | 0.21 84 | 0.21 79 | 0.59 71 | 0.24 91 | 0.16 114 | 0.56 69 | 0.16 115 | 0.84 101 | 1.78 122 | 0.65 106 | 0.25 102 | 1.70 124 | 0.30 128 | 0.22 127 | 0.23 122 | 0.61 146 | 0.35 66 | 1.85 123 | 0.45 78 |
Local-TV-L1 [65] | 98.5 | 0.13 114 | 0.38 99 | 0.15 124 | 0.38 119 | 1.16 118 | 0.39 120 | 0.33 119 | 1.12 114 | 0.46 122 | 0.19 119 | 1.65 134 | 0.20 123 | 0.64 59 | 1.37 69 | 0.35 51 | 0.18 55 | 1.27 86 | 0.14 41 | 0.16 68 | 0.16 18 | 0.29 82 | 0.78 139 | 1.90 126 | 2.32 146 |
LiteFlowNet [138] | 99.3 | 0.16 121 | 0.58 133 | 0.12 108 | 0.31 113 | 0.95 103 | 0.28 110 | 0.30 116 | 0.92 105 | 0.29 112 | 0.13 106 | 0.63 82 | 0.12 101 | 1.03 120 | 1.67 106 | 0.69 109 | 0.31 119 | 1.28 89 | 0.24 107 | 0.13 35 | 0.22 112 | 0.14 13 | 0.46 98 | 1.30 78 | 0.49 87 |
CNN-flow-warp+ref [115] | 100.2 | 0.10 82 | 0.49 118 | 0.10 92 | 0.29 111 | 0.95 103 | 0.30 112 | 0.26 113 | 1.40 130 | 0.50 123 | 0.11 90 | 1.15 125 | 0.10 87 | 1.10 133 | 1.85 132 | 1.67 143 | 0.16 33 | 1.87 131 | 0.15 54 | 0.11 13 | 0.17 37 | 0.19 32 | 0.76 137 | 2.23 141 | 1.23 134 |
p-harmonic [29] | 103.7 | 0.12 109 | 0.40 103 | 0.12 108 | 0.22 82 | 0.77 65 | 0.21 84 | 0.24 103 | 0.87 100 | 0.24 91 | 0.13 106 | 1.29 132 | 0.12 101 | 0.98 116 | 1.70 111 | 1.56 142 | 0.26 106 | 1.58 116 | 0.24 107 | 0.20 111 | 0.21 104 | 0.27 73 | 0.39 82 | 1.78 117 | 0.76 119 |
OFRF [132] | 104.1 | 0.11 99 | 0.25 62 | 0.11 101 | 0.42 124 | 1.18 119 | 0.42 122 | 0.31 117 | 0.98 107 | 0.42 119 | 0.18 118 | 0.70 89 | 0.19 121 | 0.68 68 | 1.34 67 | 0.29 30 | 0.33 125 | 1.13 66 | 0.23 105 | 0.21 119 | 0.22 112 | 0.51 139 | 0.76 137 | 1.45 87 | 2.28 145 |
ContinualFlow_ROB [148] | 106.7 | 0.19 129 | 0.72 145 | 0.17 129 | 0.51 133 | 1.40 128 | 0.51 132 | 0.48 129 | 1.35 128 | 0.74 131 | 0.23 128 | 0.73 91 | 0.20 123 | 1.12 135 | 1.82 130 | 0.59 98 | 0.45 141 | 1.50 109 | 0.43 146 | 0.10 8 | 0.16 18 | 0.11 5 | 0.44 94 | 1.26 73 | 0.45 78 |
C-RAFT_RVC [181] | 108.4 | 0.21 133 | 0.70 141 | 0.18 132 | 0.55 135 | 1.31 126 | 0.51 132 | 0.52 132 | 1.20 119 | 0.64 128 | 0.22 125 | 0.50 64 | 0.20 123 | 1.13 136 | 1.69 109 | 0.83 122 | 0.29 108 | 0.81 36 | 0.28 123 | 0.17 79 | 0.22 112 | 0.22 37 | 0.49 108 | 1.09 68 | 0.44 74 |
StereoOF-V1MT [117] | 109.0 | 0.11 99 | 0.47 112 | 0.12 108 | 0.18 41 | 1.56 132 | 0.14 20 | 0.27 115 | 1.22 121 | 0.19 37 | 0.11 90 | 1.81 139 | 0.11 96 | 1.40 147 | 2.31 151 | 1.48 140 | 0.40 138 | 2.77 150 | 0.29 125 | 0.14 43 | 0.19 83 | 0.34 100 | 0.92 141 | 2.94 152 | 1.45 137 |
TriFlow [93] | 109.6 | 0.11 99 | 0.34 89 | 0.10 92 | 0.28 110 | 0.89 91 | 0.29 111 | 0.26 113 | 1.31 125 | 0.51 124 | 0.17 116 | 0.60 74 | 0.17 118 | 0.98 116 | 1.78 122 | 1.06 131 | 0.21 76 | 0.84 38 | 0.19 88 | 0.76 162 | 0.31 159 | 1.79 161 | 0.60 123 | 1.36 81 | 0.67 111 |
WOLF_ROB [144] | 111.7 | 0.14 117 | 0.57 132 | 0.13 116 | 0.36 117 | 1.83 144 | 0.30 112 | 0.42 126 | 1.46 133 | 0.41 117 | 0.15 110 | 1.06 118 | 0.14 112 | 1.11 134 | 1.81 129 | 1.12 133 | 0.30 113 | 1.37 101 | 0.23 105 | 0.13 35 | 0.18 64 | 0.21 36 | 0.61 126 | 1.83 122 | 0.96 129 |
Shiralkar [42] | 112.6 | 0.12 109 | 0.48 115 | 0.12 108 | 0.16 27 | 1.38 127 | 0.15 27 | 0.23 98 | 1.06 110 | 0.20 63 | 0.12 97 | 1.66 135 | 0.12 101 | 1.05 125 | 2.01 143 | 0.84 124 | 0.57 148 | 2.44 146 | 0.37 142 | 0.24 132 | 0.21 104 | 0.58 144 | 0.56 119 | 2.58 148 | 0.67 111 |
Learning Flow [11] | 112.7 | 0.10 82 | 0.33 85 | 0.09 76 | 0.25 103 | 1.09 115 | 0.25 109 | 0.25 108 | 1.18 118 | 0.28 110 | 0.15 110 | 1.97 144 | 0.14 112 | 1.43 149 | 2.32 152 | 2.38 152 | 0.22 83 | 2.47 148 | 0.21 101 | 0.18 86 | 0.23 122 | 0.30 87 | 0.43 91 | 2.42 145 | 0.72 117 |
CompactFlow_ROB [155] | 113.2 | 0.24 142 | 0.77 149 | 0.16 125 | 0.47 128 | 1.25 124 | 0.46 128 | 0.61 138 | 1.32 126 | 1.11 146 | 0.24 131 | 0.86 108 | 0.22 129 | 1.19 139 | 1.87 134 | 0.77 115 | 0.30 113 | 1.59 117 | 0.26 117 | 0.10 8 | 0.19 83 | 0.11 5 | 0.53 113 | 1.76 115 | 0.48 85 |
Ad-TV-NDC [36] | 114.8 | 0.23 139 | 0.41 107 | 0.33 153 | 0.82 147 | 2.22 148 | 0.89 149 | 0.64 142 | 1.71 139 | 0.84 134 | 0.38 140 | 1.67 136 | 0.47 143 | 0.65 61 | 1.46 80 | 0.36 57 | 0.21 76 | 1.38 103 | 0.18 80 | 0.16 68 | 0.17 37 | 0.26 67 | 1.26 148 | 2.20 139 | 5.65 161 |
StereoFlow [44] | 115.1 | 0.55 163 | 0.93 156 | 0.67 162 | 1.85 160 | 3.09 162 | 1.58 157 | 1.78 162 | 2.38 161 | 1.80 158 | 1.81 158 | 3.31 151 | 1.74 158 | 1.05 125 | 1.72 114 | 0.87 126 | 0.09 3 | 1.18 73 | 0.08 3 | 0.08 2 | 0.15 4 | 0.09 1 | 0.74 135 | 2.10 133 | 1.44 135 |
ResPWCR_ROB [140] | 115.2 | 0.21 133 | 0.55 131 | 0.19 134 | 0.36 117 | 0.99 107 | 0.35 117 | 0.43 127 | 1.07 111 | 0.43 120 | 0.23 128 | 0.90 111 | 0.21 127 | 0.91 111 | 1.47 82 | 0.76 113 | 0.38 136 | 1.35 97 | 0.33 137 | 0.18 86 | 0.24 133 | 0.26 67 | 0.61 126 | 1.59 104 | 0.66 110 |
SegOF [10] | 115.4 | 0.15 120 | 0.50 123 | 0.08 57 | 0.67 141 | 1.75 140 | 0.70 143 | 0.54 133 | 1.51 135 | 0.92 138 | 0.32 137 | 1.10 120 | 0.28 134 | 1.56 151 | 2.23 150 | 2.37 150 | 0.30 113 | 2.13 139 | 0.26 117 | 0.10 8 | 0.18 64 | 0.14 13 | 0.64 130 | 1.53 97 | 0.70 116 |
LSM_FLOW_RVC [182] | 116.4 | 0.25 146 | 0.82 150 | 0.22 142 | 0.51 133 | 1.58 134 | 0.47 130 | 0.61 138 | 1.61 137 | 0.61 127 | 0.22 125 | 1.11 121 | 0.20 123 | 1.14 137 | 1.77 119 | 0.79 119 | 0.32 121 | 1.55 114 | 0.33 137 | 0.11 13 | 0.20 94 | 0.16 23 | 0.50 110 | 1.72 113 | 0.49 87 |
LFNet_ROB [145] | 117.5 | 0.22 136 | 0.71 142 | 0.16 125 | 0.41 123 | 1.08 113 | 0.36 118 | 0.48 129 | 1.23 122 | 0.43 120 | 0.19 119 | 0.79 97 | 0.18 119 | 1.24 142 | 1.96 139 | 1.14 134 | 0.36 134 | 1.67 122 | 0.30 128 | 0.16 68 | 0.23 122 | 0.18 30 | 0.53 113 | 1.87 125 | 0.56 101 |
EAI-Flow [147] | 119.1 | 0.21 133 | 0.61 134 | 0.17 129 | 0.34 115 | 1.23 121 | 0.31 115 | 0.35 121 | 1.23 122 | 0.41 117 | 0.20 123 | 0.87 109 | 0.19 121 | 1.09 131 | 1.84 131 | 0.77 115 | 0.30 113 | 1.33 94 | 0.27 121 | 0.25 139 | 0.21 104 | 0.40 122 | 0.54 115 | 1.54 99 | 0.69 115 |
BlockOverlap [61] | 120.0 | 0.18 128 | 0.30 74 | 0.16 125 | 0.48 129 | 1.24 122 | 0.51 132 | 0.39 123 | 1.42 132 | 0.58 126 | 0.28 135 | 1.12 123 | 0.30 136 | 0.69 71 | 1.45 79 | 0.68 108 | 0.30 113 | 1.37 101 | 0.24 107 | 0.27 145 | 0.25 139 | 0.69 154 | 0.56 119 | 1.62 106 | 3.07 152 |
FlowNet2 [120] | 122.9 | 0.24 142 | 0.64 136 | 0.21 139 | 0.77 145 | 1.66 136 | 0.76 146 | 0.63 141 | 1.41 131 | 1.01 141 | 0.26 133 | 0.47 61 | 0.25 132 | 1.03 120 | 1.73 115 | 0.70 111 | 0.35 131 | 1.19 75 | 0.32 132 | 0.24 132 | 0.28 151 | 0.32 93 | 0.60 123 | 1.38 83 | 0.56 101 |
AugFNG_ROB [139] | 123.5 | 0.22 136 | 0.85 154 | 0.14 122 | 0.72 142 | 1.56 132 | 0.74 145 | 0.62 140 | 1.52 136 | 0.97 139 | 0.22 125 | 0.75 93 | 0.21 127 | 1.21 141 | 2.06 145 | 0.79 119 | 0.34 130 | 1.88 133 | 0.31 131 | 0.14 43 | 0.23 122 | 0.16 23 | 0.75 136 | 2.01 130 | 0.78 120 |
Modified CLG [34] | 123.7 | 0.19 129 | 0.65 137 | 0.20 136 | 0.60 139 | 1.43 129 | 0.66 141 | 0.65 143 | 1.85 141 | 1.15 147 | 0.40 142 | 1.70 137 | 0.43 140 | 1.19 139 | 2.00 142 | 2.00 147 | 0.19 61 | 2.26 143 | 0.18 80 | 0.14 43 | 0.19 83 | 0.23 40 | 0.99 143 | 2.47 146 | 1.77 140 |
IRR-PWC_RVC [180] | 124.2 | 0.26 148 | 0.85 154 | 0.18 132 | 0.63 140 | 1.68 137 | 0.63 139 | 0.71 144 | 1.47 134 | 1.03 143 | 0.35 139 | 0.81 100 | 0.33 138 | 1.01 119 | 1.69 109 | 0.59 98 | 0.29 108 | 1.50 109 | 0.27 121 | 0.21 119 | 0.30 156 | 0.22 37 | 0.60 123 | 1.79 120 | 0.68 113 |
SPSA-learn [13] | 124.5 | 0.17 123 | 0.50 123 | 0.20 136 | 0.50 132 | 1.62 135 | 0.52 135 | 0.50 131 | 1.67 138 | 0.90 136 | 0.34 138 | 1.83 140 | 0.40 139 | 1.07 129 | 1.79 124 | 1.70 144 | 0.29 108 | 1.99 136 | 0.33 137 | 0.16 68 | 0.18 64 | 0.23 40 | 1.03 146 | 2.32 144 | 1.78 141 |
EPMNet [131] | 125.2 | 0.24 142 | 0.66 138 | 0.22 142 | 0.74 143 | 1.68 137 | 0.70 143 | 0.56 134 | 1.33 127 | 0.88 135 | 0.24 131 | 0.99 116 | 0.23 130 | 1.03 120 | 1.73 115 | 0.70 111 | 0.35 131 | 1.19 75 | 0.32 132 | 0.22 127 | 0.29 152 | 0.25 61 | 0.66 133 | 1.86 124 | 0.62 107 |
IAOF2 [51] | 125.5 | 0.13 114 | 0.38 99 | 0.13 116 | 0.39 120 | 1.26 125 | 0.41 121 | 0.31 117 | 1.17 116 | 0.40 116 | 1.38 155 | 3.05 149 | 1.52 155 | 0.96 115 | 1.77 119 | 0.94 129 | 0.53 145 | 1.52 112 | 0.35 141 | 0.25 139 | 0.25 139 | 0.35 104 | 0.56 119 | 1.78 117 | 1.06 131 |
2bit-BM-tele [96] | 128.3 | 0.23 139 | 0.47 112 | 0.29 150 | 0.40 122 | 0.98 106 | 0.42 122 | 0.34 120 | 1.09 112 | 0.37 115 | 0.27 134 | 1.23 130 | 0.29 135 | 0.84 101 | 1.77 119 | 0.65 106 | 0.48 143 | 1.71 125 | 0.46 147 | 0.31 158 | 0.30 156 | 0.92 160 | 0.56 119 | 2.00 129 | 0.78 120 |
Black & Anandan [4] | 129.2 | 0.19 129 | 0.50 123 | 0.23 145 | 0.49 130 | 1.82 143 | 0.49 131 | 0.58 136 | 1.73 140 | 0.79 132 | 0.39 141 | 1.88 142 | 0.44 142 | 1.09 131 | 1.92 136 | 1.51 141 | 0.33 125 | 2.22 142 | 0.32 132 | 0.19 100 | 0.23 122 | 0.17 27 | 0.82 140 | 2.19 137 | 1.44 135 |
HBpMotionGpu [43] | 129.4 | 0.16 121 | 0.39 102 | 0.13 116 | 0.59 137 | 1.84 145 | 0.62 138 | 0.59 137 | 2.13 151 | 1.05 144 | 0.23 128 | 1.11 121 | 0.24 131 | 0.93 112 | 2.01 143 | 1.25 137 | 0.29 108 | 1.49 107 | 0.26 117 | 0.26 143 | 0.25 139 | 0.37 109 | 0.70 134 | 2.30 143 | 2.03 143 |
GraphCuts [14] | 129.5 | 0.17 123 | 0.49 118 | 0.16 125 | 0.49 130 | 1.80 141 | 0.44 126 | 0.39 123 | 1.36 129 | 0.82 133 | 0.19 119 | 1.23 130 | 0.16 115 | 1.03 120 | 1.89 135 | 0.78 117 | 0.91 154 | 1.64 118 | 0.32 132 | 0.25 139 | 0.22 112 | 0.64 149 | 0.94 142 | 2.19 137 | 1.81 142 |
IAOF [50] | 129.7 | 0.17 123 | 0.48 115 | 0.21 139 | 0.57 136 | 1.44 130 | 0.61 137 | 0.56 134 | 1.87 142 | 0.67 129 | 0.62 145 | 1.78 138 | 0.77 146 | 0.93 112 | 1.70 111 | 0.85 125 | 0.55 146 | 2.21 141 | 0.29 125 | 0.23 130 | 0.20 94 | 0.32 93 | 0.99 143 | 1.91 127 | 2.88 151 |
Filter Flow [19] | 129.9 | 0.17 123 | 0.47 112 | 0.13 116 | 0.42 124 | 1.49 131 | 0.42 122 | 0.41 125 | 1.91 143 | 1.24 148 | 0.66 146 | 3.00 148 | 0.71 145 | 1.27 143 | 1.86 133 | 2.34 149 | 0.32 121 | 1.66 121 | 0.25 114 | 0.27 145 | 0.29 152 | 0.34 100 | 0.55 117 | 1.68 109 | 1.02 130 |
TVL1_RVC [175] | 130.0 | 0.37 154 | 0.73 146 | 0.50 159 | 1.09 153 | 1.97 146 | 1.17 154 | 1.10 151 | 2.02 147 | 1.54 153 | 1.11 151 | 2.67 146 | 1.28 153 | 1.14 137 | 1.94 138 | 1.46 139 | 0.23 92 | 2.08 137 | 0.24 107 | 0.11 13 | 0.19 83 | 0.13 11 | 1.61 153 | 2.56 147 | 2.65 149 |
GroupFlow [9] | 130.0 | 0.24 142 | 0.71 142 | 0.28 149 | 0.93 151 | 2.46 152 | 0.89 149 | 0.78 145 | 1.98 145 | 0.91 137 | 0.28 135 | 1.16 127 | 0.30 136 | 1.54 150 | 2.43 153 | 0.83 122 | 0.79 152 | 2.82 152 | 1.03 157 | 0.11 13 | 0.18 64 | 0.16 23 | 1.01 145 | 2.26 142 | 1.45 137 |
2D-CLG [1] | 131.0 | 0.25 146 | 0.96 158 | 0.21 139 | 0.87 148 | 1.80 141 | 0.93 151 | 1.14 152 | 2.15 152 | 1.69 155 | 1.49 157 | 3.45 153 | 1.68 157 | 1.42 148 | 2.11 147 | 2.71 155 | 0.27 107 | 2.44 146 | 0.28 123 | 0.12 20 | 0.16 18 | 0.17 27 | 1.33 149 | 2.76 150 | 2.16 144 |
UnFlow [127] | 135.5 | 0.46 159 | 0.99 161 | 0.27 147 | 0.92 150 | 2.11 147 | 0.87 148 | 1.08 150 | 2.15 152 | 1.00 140 | 0.53 144 | 1.85 141 | 0.49 144 | 1.81 155 | 2.48 156 | 2.11 148 | 0.58 150 | 2.61 149 | 0.54 150 | 0.16 68 | 0.20 94 | 0.14 13 | 0.63 128 | 2.18 135 | 0.82 122 |
Nguyen [33] | 137.4 | 0.23 139 | 0.61 134 | 0.22 142 | 1.17 155 | 1.72 139 | 1.26 155 | 0.96 148 | 2.15 152 | 1.37 152 | 1.32 153 | 3.25 150 | 1.54 156 | 1.28 144 | 1.96 139 | 1.90 145 | 0.38 136 | 2.38 145 | 0.40 145 | 0.18 86 | 0.19 83 | 0.24 53 | 1.42 150 | 2.67 149 | 2.35 147 |
SILK [80] | 139.5 | 0.29 149 | 0.73 146 | 0.38 155 | 0.76 144 | 2.24 149 | 0.80 147 | 0.88 147 | 2.12 150 | 1.09 145 | 0.41 143 | 2.08 145 | 0.43 140 | 1.76 154 | 2.45 154 | 3.06 156 | 0.57 148 | 3.06 156 | 0.46 147 | 0.15 57 | 0.18 64 | 0.32 93 | 1.53 152 | 3.07 153 | 3.18 153 |
Horn & Schunck [3] | 140.8 | 0.22 136 | 0.67 139 | 0.26 146 | 0.59 137 | 2.41 151 | 0.55 136 | 0.87 146 | 1.97 144 | 1.01 141 | 0.75 147 | 3.59 155 | 0.83 147 | 1.61 152 | 2.22 149 | 2.62 154 | 0.56 147 | 3.11 157 | 0.55 151 | 0.21 119 | 0.25 139 | 0.17 27 | 1.74 154 | 3.29 156 | 2.65 149 |
TI-DOFE [24] | 144.5 | 0.44 158 | 0.82 150 | 0.62 161 | 1.53 159 | 2.70 156 | 1.64 160 | 1.50 157 | 2.33 159 | 1.81 159 | 1.88 159 | 3.69 156 | 2.14 159 | 1.63 153 | 2.20 148 | 2.37 150 | 0.77 151 | 3.02 155 | 0.81 154 | 0.16 68 | 0.21 104 | 0.16 23 | 2.20 158 | 3.62 158 | 3.53 154 |
Heeger++ [102] | 146.0 | 0.49 161 | 0.76 148 | 0.30 152 | 0.95 152 | 2.91 160 | 0.68 142 | 1.27 153 | 1.98 145 | 1.24 148 | 1.27 152 | 2.82 147 | 1.26 152 | 2.71 160 | 3.10 161 | 3.78 160 | 1.64 160 | 4.13 159 | 1.39 160 | 0.16 68 | 0.24 133 | 0.26 67 | 1.90 155 | 3.25 154 | 3.63 155 |
Periodicity [79] | 148.2 | 0.31 151 | 1.15 163 | 0.20 136 | 0.90 149 | 3.84 163 | 1.08 153 | 2.44 163 | 2.78 163 | 2.17 163 | 0.95 150 | 5.25 163 | 0.90 148 | 6.03 163 | 11.5 199 | 4.83 163 | 4.75 163 | 8.29 199 | 3.21 163 | 0.12 20 | 0.23 122 | 0.15 19 | 2.20 158 | 7.49 163 | 5.15 160 |
SLK [47] | 149.1 | 0.33 152 | 0.98 160 | 0.43 157 | 1.50 157 | 2.71 157 | 1.60 159 | 1.34 155 | 2.30 158 | 1.77 157 | 1.98 161 | 3.91 158 | 2.22 160 | 2.14 158 | 2.64 158 | 3.49 158 | 0.92 156 | 3.28 158 | 0.96 156 | 0.17 79 | 0.24 133 | 0.24 53 | 2.89 160 | 4.18 160 | 4.97 159 |
FFV1MT [104] | 149.7 | 0.46 159 | 0.82 150 | 0.27 147 | 0.77 145 | 2.83 159 | 0.65 140 | 1.52 158 | 2.34 160 | 1.59 154 | 1.36 154 | 4.35 161 | 1.33 154 | 2.72 161 | 3.08 160 | 4.06 161 | 1.45 159 | 4.59 162 | 1.24 159 | 0.19 100 | 0.23 122 | 0.35 104 | 1.90 155 | 3.25 154 | 3.63 155 |
Adaptive flow [45] | 150.8 | 0.41 156 | 0.71 142 | 0.44 158 | 1.50 157 | 2.24 149 | 1.58 157 | 1.34 155 | 2.27 157 | 1.90 160 | 0.90 148 | 3.35 152 | 0.99 149 | 1.29 145 | 1.97 141 | 1.24 136 | 0.91 154 | 2.11 138 | 0.65 152 | 0.70 161 | 0.47 162 | 1.88 162 | 1.12 147 | 2.12 134 | 2.48 148 |
H+S_RVC [176] | 151.2 | 0.38 155 | 1.06 162 | 0.29 150 | 1.14 154 | 2.47 153 | 1.06 152 | 1.52 158 | 2.23 155 | 1.70 156 | 2.38 163 | 3.99 159 | 2.57 162 | 2.25 159 | 2.55 157 | 3.68 159 | 1.91 161 | 4.32 161 | 2.00 161 | 0.20 111 | 0.23 122 | 0.29 82 | 3.22 161 | 3.73 159 | 3.96 157 |
HCIC-L [97] | 152.0 | 0.53 162 | 0.84 153 | 0.34 154 | 2.27 162 | 2.56 154 | 3.42 163 | 1.66 161 | 2.05 148 | 2.02 162 | 2.04 162 | 4.10 160 | 2.31 161 | 1.32 146 | 1.80 127 | 1.20 135 | 0.87 153 | 1.64 118 | 0.81 154 | 1.05 163 | 0.76 163 | 1.94 163 | 1.50 151 | 2.18 135 | 1.70 139 |
PGAM+LK [55] | 155.5 | 0.36 153 | 0.93 156 | 0.54 160 | 1.23 156 | 2.78 158 | 1.35 156 | 1.04 149 | 2.09 149 | 1.26 150 | 1.38 155 | 4.86 162 | 1.25 151 | 1.81 155 | 2.47 155 | 2.51 153 | 1.00 157 | 2.91 154 | 0.79 153 | 0.47 160 | 0.36 161 | 0.86 158 | 2.11 157 | 3.52 157 | 4.01 158 |
FOLKI [16] | 155.6 | 0.29 149 | 0.96 158 | 0.39 156 | 1.93 161 | 3.01 161 | 2.64 161 | 1.30 154 | 2.51 162 | 1.34 151 | 0.92 149 | 3.46 154 | 1.21 150 | 2.13 157 | 2.77 159 | 3.35 157 | 1.03 158 | 4.15 160 | 1.21 158 | 0.24 132 | 0.26 145 | 0.74 157 | 3.53 162 | 4.69 161 | 6.56 162 |
Pyramid LK [2] | 157.9 | 0.41 156 | 0.69 140 | 0.77 163 | 2.66 163 | 2.61 155 | 3.17 162 | 1.58 160 | 2.26 156 | 1.94 161 | 1.95 160 | 3.70 157 | 2.60 163 | 4.10 162 | 5.31 162 | 4.43 162 | 3.35 162 | 2.88 153 | 2.91 162 | 0.27 145 | 0.29 152 | 0.61 146 | 6.29 163 | 7.34 162 | 7.54 163 |
AdaConv-v1 [124] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
SepConv-v1 [125] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
SuperSlomo [130] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
CtxSyn [134] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
CyclicGen [149] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
TOF-M [150] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
MPRN [151] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
DAIN [152] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
FRUCnet [153] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
OFRI [154] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
FGME [158] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
MS-PFT [159] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
MEMC-Net+ [160] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
ADC [161] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
DSepConv [162] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
MAF-net [163] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
STAR-Net [164] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
AdaCoF [165] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
TC-GAN [166] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
FeFlow [167] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
DAI [168] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
SoftSplat [169] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
STSR [170] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
BMBC [171] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
GDCN [172] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
EDSC [173] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
MV_VFI [183] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
DistillNet [184] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
SepConv++ [185] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
EAFI [186] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
FLAVR [188] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
SoftsplatAug [190] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
ProBoost-Net [191] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
IDIAL [192] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
IFRNet [193] | 164.2 | 1.01 164 | 1.20 164 | 1.04 164 | 4.85 164 | 5.45 164 | 4.31 164 | 4.84 164 | 3.27 164 | 4.55 164 | 5.24 164 | 6.19 164 | 5.44 164 | 9.07 164 | 10.1 163 | 8.92 165 | 7.23 164 | 6.02 163 | 6.73 164 | 2.68 165 | 1.63 165 | 3.81 165 | 10.2 165 | 10.8 164 | 9.31 165 |
AVG_FLOW_ROB [137] | 190.2 | 3.36 199 | 2.53 199 | 5.01 199 | 7.29 199 | 7.11 199 | 6.99 199 | 6.51 199 | 5.83 199 | 6.70 199 | 5.93 199 | 6.23 199 | 5.83 199 | 9.85 199 | 11.4 198 | 8.39 164 | 7.81 199 | 6.21 198 | 7.14 199 | 1.76 164 | 1.00 164 | 2.74 164 | 9.87 164 | 13.2 199 | 9.15 164 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |