Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
A50 endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it+_RVC [198] | 3.0 | 0.04 5 | 0.06 2 | 0.03 1 | 0.06 1 | 0.17 2 | 0.06 1 | 0.11 6 | 0.10 3 | 0.12 3 | 0.03 1 | 0.04 1 | 0.03 1 | 0.14 11 | 0.23 12 | 0.09 5 | 0.03 1 | 0.08 1 | 0.03 1 | 0.04 1 | 0.07 3 | 0.07 3 | 0.14 1 | 0.24 3 | 0.12 2 |
RAFT-it [194] | 5.5 | 0.04 5 | 0.07 10 | 0.03 1 | 0.07 6 | 0.17 2 | 0.07 6 | 0.11 6 | 0.11 11 | 0.12 3 | 0.03 1 | 0.05 2 | 0.03 1 | 0.15 18 | 0.26 25 | 0.10 11 | 0.04 2 | 0.09 2 | 0.04 2 | 0.04 1 | 0.08 6 | 0.06 1 | 0.14 1 | 0.24 3 | 0.13 5 |
MS_RAFT+_RVC [195] | 10.1 | 0.04 5 | 0.06 2 | 0.03 1 | 0.10 57 | 0.19 7 | 0.12 94 | 0.11 6 | 0.11 11 | 0.13 25 | 0.03 1 | 0.06 3 | 0.03 1 | 0.12 4 | 0.18 3 | 0.08 1 | 0.04 2 | 0.09 2 | 0.05 5 | 0.04 1 | 0.06 1 | 0.07 3 | 0.14 1 | 0.21 1 | 0.13 5 |
NNF-Local [75] | 17.5 | 0.04 5 | 0.06 2 | 0.03 1 | 0.07 6 | 0.22 21 | 0.07 6 | 0.10 1 | 0.11 11 | 0.11 1 | 0.05 29 | 0.13 18 | 0.04 10 | 0.14 11 | 0.23 12 | 0.11 18 | 0.08 53 | 0.15 17 | 0.09 74 | 0.07 37 | 0.08 6 | 0.14 60 | 0.14 1 | 0.27 19 | 0.12 2 |
NN-field [71] | 17.7 | 0.04 5 | 0.06 2 | 0.04 8 | 0.08 16 | 0.25 37 | 0.08 13 | 0.10 1 | 0.11 11 | 0.12 3 | 0.04 8 | 0.13 18 | 0.04 10 | 0.13 6 | 0.22 6 | 0.10 11 | 0.07 25 | 0.13 6 | 0.07 21 | 0.09 83 | 0.09 25 | 0.17 77 | 0.14 1 | 0.28 30 | 0.11 1 |
ComponentFusion [94] | 17.8 | 0.03 1 | 0.07 10 | 0.03 1 | 0.07 6 | 0.20 12 | 0.07 6 | 0.11 6 | 0.11 11 | 0.12 3 | 0.03 1 | 0.17 52 | 0.03 1 | 0.14 11 | 0.25 20 | 0.10 11 | 0.07 25 | 0.28 91 | 0.06 9 | 0.07 37 | 0.10 58 | 0.10 20 | 0.16 8 | 0.27 19 | 0.15 8 |
TC/T-Flow [77] | 18.2 | 0.03 1 | 0.07 10 | 0.03 1 | 0.06 1 | 0.25 37 | 0.06 1 | 0.11 6 | 0.12 33 | 0.12 3 | 0.03 1 | 0.12 14 | 0.03 1 | 0.13 6 | 0.25 20 | 0.08 1 | 0.05 6 | 0.17 31 | 0.05 5 | 0.05 6 | 0.07 3 | 0.22 106 | 0.18 38 | 0.32 48 | 0.19 58 |
ALD-Flow [66] | 18.5 | 0.04 5 | 0.07 10 | 0.04 8 | 0.07 6 | 0.19 7 | 0.07 6 | 0.11 6 | 0.11 11 | 0.12 3 | 0.04 8 | 0.12 14 | 0.04 10 | 0.13 6 | 0.25 20 | 0.09 5 | 0.05 6 | 0.16 23 | 0.06 9 | 0.06 12 | 0.08 6 | 0.22 106 | 0.18 38 | 0.34 53 | 0.20 67 |
WLIF-Flow [91] | 19.9 | 0.04 5 | 0.07 10 | 0.05 23 | 0.08 16 | 0.24 25 | 0.09 29 | 0.11 6 | 0.11 11 | 0.13 25 | 0.05 29 | 0.13 18 | 0.04 10 | 0.15 18 | 0.24 18 | 0.11 18 | 0.07 25 | 0.16 23 | 0.07 21 | 0.07 37 | 0.09 25 | 0.16 67 | 0.16 8 | 0.23 2 | 0.15 8 |
TC-Flow [46] | 20.1 | 0.04 5 | 0.08 31 | 0.04 8 | 0.06 1 | 0.18 4 | 0.06 1 | 0.11 6 | 0.11 11 | 0.12 3 | 0.04 8 | 0.10 8 | 0.04 10 | 0.13 6 | 0.26 25 | 0.09 5 | 0.06 12 | 0.20 50 | 0.07 21 | 0.05 6 | 0.08 6 | 0.20 98 | 0.18 38 | 0.34 53 | 0.20 67 |
RNLOD-Flow [119] | 20.2 | 0.04 5 | 0.06 2 | 0.04 8 | 0.07 6 | 0.24 25 | 0.07 6 | 0.11 6 | 0.10 3 | 0.12 3 | 0.04 8 | 0.11 10 | 0.04 10 | 0.13 6 | 0.22 6 | 0.09 5 | 0.07 25 | 0.16 23 | 0.07 21 | 0.09 83 | 0.11 85 | 0.23 116 | 0.16 8 | 0.25 6 | 0.15 8 |
ProFlow_ROB [142] | 20.4 | 0.04 5 | 0.08 31 | 0.04 8 | 0.06 1 | 0.24 25 | 0.06 1 | 0.11 6 | 0.13 44 | 0.12 3 | 0.03 1 | 0.08 5 | 0.03 1 | 0.18 52 | 0.35 63 | 0.10 11 | 0.05 6 | 0.19 44 | 0.05 5 | 0.05 6 | 0.11 85 | 0.11 27 | 0.16 8 | 0.30 44 | 0.15 8 |
MDP-Flow2 [68] | 21.1 | 0.05 38 | 0.08 31 | 0.05 23 | 0.07 6 | 0.19 7 | 0.07 6 | 0.11 6 | 0.11 11 | 0.12 3 | 0.05 29 | 0.12 14 | 0.05 46 | 0.15 18 | 0.23 12 | 0.11 18 | 0.08 53 | 0.14 9 | 0.07 21 | 0.07 37 | 0.09 25 | 0.12 34 | 0.18 38 | 0.25 6 | 0.16 16 |
nLayers [57] | 22.5 | 0.04 5 | 0.05 1 | 0.04 8 | 0.11 82 | 0.24 25 | 0.12 94 | 0.11 6 | 0.10 3 | 0.13 25 | 0.04 8 | 0.08 5 | 0.04 10 | 0.12 4 | 0.18 3 | 0.09 5 | 0.07 25 | 0.12 4 | 0.06 9 | 0.08 62 | 0.09 25 | 0.15 64 | 0.17 19 | 0.27 19 | 0.17 28 |
CoT-AMFlow [174] | 22.9 | 0.05 38 | 0.08 31 | 0.05 23 | 0.08 16 | 0.20 12 | 0.08 13 | 0.11 6 | 0.11 11 | 0.12 3 | 0.05 29 | 0.14 25 | 0.05 46 | 0.15 18 | 0.23 12 | 0.11 18 | 0.08 53 | 0.14 9 | 0.07 21 | 0.07 37 | 0.09 25 | 0.13 44 | 0.18 38 | 0.25 6 | 0.16 16 |
OAR-Flow [123] | 23.7 | 0.04 5 | 0.09 46 | 0.05 23 | 0.07 6 | 0.24 25 | 0.07 6 | 0.11 6 | 0.13 44 | 0.13 25 | 0.04 8 | 0.11 10 | 0.04 10 | 0.16 34 | 0.30 51 | 0.10 11 | 0.04 2 | 0.15 17 | 0.04 2 | 0.05 6 | 0.06 1 | 0.14 60 | 0.18 38 | 0.36 60 | 0.21 73 |
OFLAF [78] | 23.8 | 0.05 38 | 0.07 10 | 0.05 23 | 0.08 16 | 0.20 12 | 0.08 13 | 0.10 1 | 0.09 2 | 0.12 3 | 0.05 29 | 0.11 10 | 0.04 10 | 0.11 1 | 0.17 1 | 0.09 5 | 0.09 73 | 0.15 17 | 0.08 53 | 0.07 37 | 0.08 6 | 0.18 83 | 0.19 57 | 0.26 12 | 0.19 58 |
UnDAF [187] | 24.9 | 0.05 38 | 0.08 31 | 0.05 23 | 0.08 16 | 0.20 12 | 0.08 13 | 0.11 6 | 0.11 11 | 0.12 3 | 0.05 29 | 0.13 18 | 0.05 46 | 0.15 18 | 0.26 25 | 0.11 18 | 0.08 53 | 0.17 31 | 0.07 21 | 0.07 37 | 0.08 6 | 0.13 44 | 0.18 38 | 0.30 44 | 0.16 16 |
Layers++ [37] | 25.0 | 0.04 5 | 0.07 10 | 0.05 23 | 0.10 57 | 0.24 25 | 0.11 79 | 0.11 6 | 0.10 3 | 0.13 25 | 0.04 8 | 0.08 5 | 0.04 10 | 0.11 1 | 0.18 3 | 0.08 1 | 0.07 25 | 0.14 9 | 0.07 21 | 0.09 83 | 0.10 58 | 0.19 91 | 0.17 19 | 0.25 6 | 0.17 28 |
NNF-EAC [101] | 25.8 | 0.05 38 | 0.08 31 | 0.05 23 | 0.08 16 | 0.20 12 | 0.08 13 | 0.11 6 | 0.11 11 | 0.12 3 | 0.05 29 | 0.14 25 | 0.05 46 | 0.15 18 | 0.23 12 | 0.11 18 | 0.08 53 | 0.14 9 | 0.08 53 | 0.07 37 | 0.08 6 | 0.13 44 | 0.19 57 | 0.28 30 | 0.17 28 |
HAST [107] | 26.0 | 0.03 1 | 0.06 2 | 0.03 1 | 0.06 1 | 0.18 4 | 0.06 1 | 0.10 1 | 0.08 1 | 0.11 1 | 0.04 8 | 0.10 8 | 0.03 1 | 0.11 1 | 0.17 1 | 0.08 1 | 0.08 53 | 0.17 31 | 0.08 53 | 0.09 83 | 0.12 105 | 0.36 152 | 0.18 38 | 0.24 3 | 0.21 73 |
LME [70] | 26.5 | 0.05 38 | 0.07 10 | 0.04 8 | 0.08 16 | 0.19 7 | 0.08 13 | 0.11 6 | 0.12 33 | 0.13 25 | 0.05 29 | 0.18 62 | 0.05 46 | 0.16 34 | 0.26 25 | 0.11 18 | 0.07 25 | 0.18 40 | 0.07 21 | 0.07 37 | 0.09 25 | 0.13 44 | 0.18 38 | 0.27 19 | 0.16 16 |
IROF++ [58] | 27.2 | 0.04 5 | 0.07 10 | 0.05 23 | 0.09 28 | 0.30 66 | 0.10 47 | 0.11 6 | 0.12 33 | 0.13 25 | 0.05 29 | 0.16 42 | 0.04 10 | 0.15 18 | 0.26 25 | 0.12 33 | 0.07 25 | 0.21 55 | 0.07 21 | 0.07 37 | 0.09 25 | 0.09 13 | 0.17 19 | 0.28 30 | 0.17 28 |
Efficient-NL [60] | 27.3 | 0.04 5 | 0.06 2 | 0.04 8 | 0.09 28 | 0.30 66 | 0.09 29 | 0.11 6 | 0.11 11 | 0.13 25 | 0.04 8 | 0.14 25 | 0.04 10 | 0.14 11 | 0.23 12 | 0.11 18 | 0.07 25 | 0.16 23 | 0.07 21 | 0.09 83 | 0.09 25 | 0.20 98 | 0.18 38 | 0.28 30 | 0.18 48 |
AGIF+OF [84] | 27.8 | 0.04 5 | 0.07 10 | 0.04 8 | 0.10 57 | 0.33 76 | 0.10 47 | 0.11 6 | 0.12 33 | 0.13 25 | 0.04 8 | 0.17 52 | 0.04 10 | 0.15 18 | 0.25 20 | 0.11 18 | 0.07 25 | 0.17 31 | 0.07 21 | 0.07 37 | 0.10 58 | 0.16 67 | 0.16 8 | 0.26 12 | 0.16 16 |
RAFT-TF_RVC [179] | 28.4 | 0.05 38 | 0.09 46 | 0.04 8 | 0.09 28 | 0.23 23 | 0.09 29 | 0.12 49 | 0.13 44 | 0.13 25 | 0.04 8 | 0.07 4 | 0.03 1 | 0.21 69 | 0.34 59 | 0.14 58 | 0.07 25 | 0.15 17 | 0.08 53 | 0.04 1 | 0.08 6 | 0.08 6 | 0.17 19 | 0.35 58 | 0.15 8 |
Classic+CPF [82] | 28.8 | 0.04 5 | 0.07 10 | 0.05 23 | 0.09 28 | 0.31 70 | 0.10 47 | 0.11 6 | 0.12 33 | 0.13 25 | 0.04 8 | 0.16 42 | 0.04 10 | 0.16 34 | 0.26 25 | 0.13 41 | 0.07 25 | 0.16 23 | 0.07 21 | 0.07 37 | 0.09 25 | 0.23 116 | 0.16 8 | 0.26 12 | 0.16 16 |
PH-Flow [99] | 30.0 | 0.04 5 | 0.08 31 | 0.05 23 | 0.09 28 | 0.29 59 | 0.09 29 | 0.11 6 | 0.12 33 | 0.13 25 | 0.04 8 | 0.17 52 | 0.04 10 | 0.15 18 | 0.26 25 | 0.13 41 | 0.07 25 | 0.19 44 | 0.07 21 | 0.08 62 | 0.08 6 | 0.23 116 | 0.17 19 | 0.27 19 | 0.16 16 |
Sparse-NonSparse [56] | 30.5 | 0.04 5 | 0.08 31 | 0.05 23 | 0.09 28 | 0.28 50 | 0.10 47 | 0.11 6 | 0.12 33 | 0.13 25 | 0.04 8 | 0.17 52 | 0.04 10 | 0.16 34 | 0.28 38 | 0.12 33 | 0.07 25 | 0.17 31 | 0.07 21 | 0.08 62 | 0.08 6 | 0.22 106 | 0.17 19 | 0.26 12 | 0.17 28 |
COFM [59] | 31.3 | 0.03 1 | 0.07 10 | 0.04 8 | 0.07 6 | 0.21 17 | 0.08 13 | 0.11 6 | 0.10 3 | 0.13 25 | 0.03 1 | 0.13 18 | 0.03 1 | 0.17 43 | 0.28 38 | 0.19 90 | 0.07 25 | 0.14 9 | 0.07 21 | 0.06 12 | 0.09 25 | 0.22 106 | 0.23 97 | 0.36 60 | 0.29 116 |
FC-2Layers-FF [74] | 33.1 | 0.04 5 | 0.07 10 | 0.05 23 | 0.09 28 | 0.27 46 | 0.10 47 | 0.11 6 | 0.10 3 | 0.14 58 | 0.05 29 | 0.12 14 | 0.04 10 | 0.14 11 | 0.22 6 | 0.12 33 | 0.08 53 | 0.15 17 | 0.08 53 | 0.10 109 | 0.10 58 | 0.23 116 | 0.17 19 | 0.26 12 | 0.17 28 |
LSM [39] | 33.4 | 0.04 5 | 0.07 10 | 0.05 23 | 0.09 28 | 0.28 50 | 0.10 47 | 0.11 6 | 0.11 11 | 0.13 25 | 0.05 29 | 0.16 42 | 0.04 10 | 0.15 18 | 0.27 36 | 0.13 41 | 0.08 53 | 0.17 31 | 0.08 53 | 0.09 83 | 0.09 25 | 0.23 116 | 0.17 19 | 0.26 12 | 0.17 28 |
2DHMM-SAS [90] | 34.5 | 0.04 5 | 0.08 31 | 0.05 23 | 0.09 28 | 0.31 70 | 0.09 29 | 0.11 6 | 0.12 33 | 0.14 58 | 0.04 8 | 0.17 52 | 0.04 10 | 0.16 34 | 0.28 38 | 0.13 41 | 0.07 25 | 0.21 55 | 0.07 21 | 0.08 62 | 0.08 6 | 0.23 116 | 0.17 19 | 0.28 30 | 0.17 28 |
Ramp [62] | 34.6 | 0.04 5 | 0.08 31 | 0.05 23 | 0.09 28 | 0.28 50 | 0.10 47 | 0.11 6 | 0.11 11 | 0.14 58 | 0.05 29 | 0.16 42 | 0.04 10 | 0.16 34 | 0.28 38 | 0.13 41 | 0.08 53 | 0.17 31 | 0.08 53 | 0.08 62 | 0.08 6 | 0.22 106 | 0.17 19 | 0.27 19 | 0.17 28 |
JOF [136] | 34.9 | 0.04 5 | 0.07 10 | 0.04 8 | 0.09 28 | 0.29 59 | 0.11 79 | 0.11 6 | 0.10 3 | 0.14 58 | 0.04 8 | 0.15 33 | 0.04 10 | 0.14 11 | 0.22 6 | 0.11 18 | 0.08 53 | 0.16 23 | 0.08 53 | 0.09 83 | 0.11 85 | 0.31 145 | 0.17 19 | 0.25 6 | 0.17 28 |
FMOF [92] | 35.2 | 0.04 5 | 0.07 10 | 0.05 23 | 0.10 57 | 0.32 73 | 0.10 47 | 0.11 6 | 0.11 11 | 0.14 58 | 0.04 8 | 0.16 42 | 0.04 10 | 0.15 18 | 0.26 25 | 0.13 41 | 0.07 25 | 0.15 17 | 0.07 21 | 0.09 83 | 0.10 58 | 0.25 130 | 0.17 19 | 0.29 41 | 0.16 16 |
PMMST [112] | 35.7 | 0.06 72 | 0.09 46 | 0.06 72 | 0.09 28 | 0.24 25 | 0.10 47 | 0.11 6 | 0.12 33 | 0.13 25 | 0.06 75 | 0.11 10 | 0.06 83 | 0.14 11 | 0.22 6 | 0.10 11 | 0.08 53 | 0.14 9 | 0.07 21 | 0.07 37 | 0.08 6 | 0.12 34 | 0.19 57 | 0.29 41 | 0.18 48 |
Classic+NL [31] | 37.4 | 0.04 5 | 0.07 10 | 0.05 23 | 0.09 28 | 0.29 59 | 0.10 47 | 0.11 6 | 0.11 11 | 0.14 58 | 0.05 29 | 0.15 33 | 0.04 10 | 0.15 18 | 0.26 25 | 0.13 41 | 0.08 53 | 0.18 40 | 0.08 53 | 0.10 109 | 0.10 58 | 0.23 116 | 0.17 19 | 0.27 19 | 0.17 28 |
TV-L1-MCT [64] | 38.2 | 0.04 5 | 0.07 10 | 0.04 8 | 0.10 57 | 0.33 76 | 0.11 79 | 0.11 6 | 0.11 11 | 0.14 58 | 0.05 29 | 0.16 42 | 0.04 10 | 0.17 43 | 0.29 45 | 0.16 72 | 0.08 53 | 0.21 55 | 0.08 53 | 0.07 37 | 0.09 25 | 0.11 27 | 0.18 38 | 0.28 30 | 0.18 48 |
ProbFlowFields [126] | 38.5 | 0.05 38 | 0.14 88 | 0.05 23 | 0.09 28 | 0.26 42 | 0.09 29 | 0.12 49 | 0.14 52 | 0.14 58 | 0.04 8 | 0.17 52 | 0.04 10 | 0.17 43 | 0.29 45 | 0.13 41 | 0.06 12 | 0.17 31 | 0.06 9 | 0.06 12 | 0.09 25 | 0.13 44 | 0.19 57 | 0.36 60 | 0.20 67 |
S2D-Matching [83] | 39.8 | 0.04 5 | 0.07 10 | 0.05 23 | 0.09 28 | 0.28 50 | 0.10 47 | 0.11 6 | 0.11 11 | 0.14 58 | 0.05 29 | 0.15 33 | 0.05 46 | 0.15 18 | 0.26 25 | 0.13 41 | 0.08 53 | 0.18 40 | 0.08 53 | 0.10 109 | 0.10 58 | 0.24 125 | 0.17 19 | 0.27 19 | 0.18 48 |
FESL [72] | 40.8 | 0.04 5 | 0.06 2 | 0.05 23 | 0.10 57 | 0.34 84 | 0.10 47 | 0.11 6 | 0.11 11 | 0.13 25 | 0.05 29 | 0.14 25 | 0.05 46 | 0.17 43 | 0.26 25 | 0.16 72 | 0.08 53 | 0.14 9 | 0.08 53 | 0.09 83 | 0.11 85 | 0.20 98 | 0.17 19 | 0.28 30 | 0.18 48 |
SimpleFlow [49] | 41.2 | 0.04 5 | 0.08 31 | 0.05 23 | 0.10 57 | 0.31 70 | 0.11 79 | 0.12 49 | 0.13 44 | 0.14 58 | 0.05 29 | 0.17 52 | 0.04 10 | 0.16 34 | 0.28 38 | 0.15 63 | 0.08 53 | 0.17 31 | 0.08 53 | 0.08 62 | 0.08 6 | 0.17 77 | 0.17 19 | 0.27 19 | 0.17 28 |
Occlusion-TV-L1 [63] | 44.3 | 0.05 38 | 0.09 46 | 0.05 23 | 0.09 28 | 0.27 46 | 0.09 29 | 0.12 49 | 0.15 58 | 0.13 25 | 0.05 29 | 0.18 62 | 0.05 46 | 0.21 69 | 0.37 72 | 0.19 90 | 0.06 12 | 0.20 50 | 0.07 21 | 0.07 37 | 0.09 25 | 0.09 13 | 0.19 57 | 0.43 81 | 0.19 58 |
Classic++ [32] | 45.0 | 0.04 5 | 0.08 31 | 0.05 23 | 0.09 28 | 0.25 37 | 0.10 47 | 0.11 6 | 0.13 44 | 0.14 58 | 0.05 29 | 0.17 52 | 0.04 10 | 0.17 43 | 0.35 63 | 0.13 41 | 0.08 53 | 0.25 76 | 0.08 53 | 0.09 83 | 0.10 58 | 0.24 125 | 0.18 38 | 0.32 48 | 0.17 28 |
Adaptive [20] | 46.5 | 0.04 5 | 0.08 31 | 0.04 8 | 0.09 28 | 0.29 59 | 0.09 29 | 0.12 49 | 0.15 58 | 0.13 25 | 0.05 29 | 0.19 65 | 0.04 10 | 0.32 128 | 0.47 104 | 0.28 123 | 0.06 12 | 0.19 44 | 0.05 5 | 0.09 83 | 0.11 85 | 0.18 83 | 0.16 8 | 0.28 30 | 0.16 16 |
PBOFVI [189] | 47.3 | 0.06 72 | 0.10 55 | 0.07 91 | 0.10 57 | 0.24 25 | 0.10 47 | 0.11 6 | 0.11 11 | 0.12 3 | 0.05 29 | 0.16 42 | 0.05 46 | 0.18 52 | 0.29 45 | 0.10 11 | 0.09 73 | 0.21 55 | 0.10 86 | 0.08 62 | 0.09 25 | 0.27 136 | 0.17 19 | 0.28 30 | 0.19 58 |
Correlation Flow [76] | 47.5 | 0.05 38 | 0.09 46 | 0.06 72 | 0.08 16 | 0.24 25 | 0.08 13 | 0.11 6 | 0.13 44 | 0.12 3 | 0.05 29 | 0.17 52 | 0.05 46 | 0.17 43 | 0.28 38 | 0.12 33 | 0.11 94 | 0.25 76 | 0.11 93 | 0.08 62 | 0.09 25 | 0.25 130 | 0.19 57 | 0.29 41 | 0.19 58 |
SVFilterOh [109] | 47.8 | 0.05 38 | 0.07 10 | 0.05 23 | 0.10 57 | 0.25 37 | 0.10 47 | 0.12 49 | 0.11 11 | 0.13 25 | 0.06 75 | 0.20 72 | 0.05 46 | 0.15 18 | 0.22 6 | 0.11 18 | 0.09 73 | 0.16 23 | 0.08 53 | 0.12 133 | 0.16 150 | 0.32 146 | 0.16 8 | 0.26 12 | 0.16 16 |
MDP-Flow [26] | 48.2 | 0.05 38 | 0.11 65 | 0.06 72 | 0.09 28 | 0.24 25 | 0.10 47 | 0.12 49 | 0.14 52 | 0.13 25 | 0.05 29 | 0.21 77 | 0.05 46 | 0.19 58 | 0.32 54 | 0.16 72 | 0.07 25 | 0.25 76 | 0.07 21 | 0.07 37 | 0.10 58 | 0.11 27 | 0.19 57 | 0.40 72 | 0.18 48 |
IROF-TV [53] | 48.5 | 0.05 38 | 0.08 31 | 0.05 23 | 0.10 57 | 0.32 73 | 0.10 47 | 0.11 6 | 0.12 33 | 0.14 58 | 0.06 75 | 0.21 77 | 0.05 46 | 0.24 89 | 0.35 63 | 0.22 109 | 0.10 84 | 0.28 91 | 0.09 74 | 0.06 12 | 0.08 6 | 0.08 6 | 0.17 19 | 0.27 19 | 0.17 28 |
BriefMatch [122] | 50.4 | 0.05 38 | 0.10 55 | 0.05 23 | 0.08 16 | 0.23 23 | 0.08 13 | 0.10 1 | 0.10 3 | 0.12 3 | 0.05 29 | 0.14 25 | 0.05 46 | 0.18 52 | 0.34 59 | 0.11 18 | 0.14 118 | 0.34 105 | 0.15 125 | 0.10 109 | 0.12 105 | 0.29 140 | 0.16 8 | 0.38 67 | 0.17 28 |
AggregFlow [95] | 50.9 | 0.05 38 | 0.07 10 | 0.05 23 | 0.10 57 | 0.38 100 | 0.11 79 | 0.13 75 | 0.16 64 | 0.15 84 | 0.06 75 | 0.16 42 | 0.06 83 | 0.15 18 | 0.30 51 | 0.11 18 | 0.06 12 | 0.12 4 | 0.07 21 | 0.07 37 | 0.08 6 | 0.10 20 | 0.25 108 | 0.41 75 | 0.30 121 |
OFH [38] | 51.5 | 0.06 72 | 0.10 55 | 0.07 91 | 0.08 16 | 0.21 17 | 0.08 13 | 0.11 6 | 0.15 58 | 0.12 3 | 0.04 8 | 0.14 25 | 0.04 10 | 0.19 58 | 0.37 72 | 0.16 72 | 0.09 73 | 0.32 102 | 0.10 86 | 0.06 12 | 0.11 85 | 0.16 67 | 0.20 71 | 0.44 86 | 0.22 78 |
PRAFlow_RVC [177] | 54.4 | 0.07 100 | 0.11 65 | 0.06 72 | 0.13 103 | 0.33 76 | 0.13 102 | 0.13 75 | 0.17 70 | 0.15 84 | 0.05 29 | 0.13 18 | 0.04 10 | 0.24 89 | 0.37 72 | 0.16 72 | 0.09 73 | 0.16 23 | 0.09 74 | 0.05 6 | 0.09 25 | 0.08 6 | 0.16 8 | 0.33 52 | 0.12 2 |
DeepFlow2 [106] | 54.5 | 0.06 72 | 0.12 73 | 0.07 91 | 0.09 28 | 0.28 50 | 0.09 29 | 0.12 49 | 0.18 76 | 0.14 58 | 0.05 29 | 0.22 82 | 0.05 46 | 0.16 34 | 0.32 54 | 0.11 18 | 0.06 12 | 0.19 44 | 0.07 21 | 0.07 37 | 0.08 6 | 0.19 91 | 0.24 105 | 0.47 91 | 0.28 111 |
HCFN [157] | 55.1 | 0.05 38 | 0.09 46 | 0.05 23 | 0.07 6 | 0.18 4 | 0.08 13 | 0.11 6 | 0.14 52 | 0.12 3 | 0.05 29 | 0.13 18 | 0.05 46 | 0.17 43 | 0.29 45 | 0.13 41 | 0.09 73 | 0.30 97 | 0.09 74 | 0.14 141 | 0.15 142 | 0.33 149 | 0.20 71 | 0.40 72 | 0.24 90 |
IIOF-NLDP [129] | 57.0 | 0.05 38 | 0.11 65 | 0.05 23 | 0.10 57 | 0.37 96 | 0.09 29 | 0.12 49 | 0.16 64 | 0.12 3 | 0.05 29 | 0.20 72 | 0.05 46 | 0.18 52 | 0.31 53 | 0.12 33 | 0.11 94 | 0.30 97 | 0.11 93 | 0.08 62 | 0.10 58 | 0.16 67 | 0.20 71 | 0.36 60 | 0.19 58 |
3DFlow [133] | 58.8 | 0.05 38 | 0.09 46 | 0.05 23 | 0.09 28 | 0.26 42 | 0.08 13 | 0.12 49 | 0.14 52 | 0.13 25 | 0.07 95 | 0.19 65 | 0.06 83 | 0.15 18 | 0.24 18 | 0.11 18 | 0.13 113 | 0.39 119 | 0.12 102 | 0.10 109 | 0.12 105 | 0.37 153 | 0.18 38 | 0.28 30 | 0.17 28 |
PMF [73] | 60.2 | 0.05 38 | 0.08 31 | 0.05 23 | 0.10 57 | 0.25 37 | 0.10 47 | 0.13 75 | 0.14 52 | 0.15 84 | 0.06 75 | 0.14 25 | 0.06 83 | 0.17 43 | 0.29 45 | 0.13 41 | 0.09 73 | 0.30 97 | 0.09 74 | 0.14 141 | 0.15 142 | 0.30 141 | 0.16 8 | 0.25 6 | 0.15 8 |
RFlow [88] | 60.8 | 0.06 72 | 0.13 78 | 0.07 91 | 0.10 57 | 0.21 17 | 0.10 47 | 0.12 49 | 0.17 70 | 0.13 25 | 0.05 29 | 0.21 77 | 0.05 46 | 0.20 65 | 0.37 72 | 0.14 58 | 0.08 53 | 0.23 68 | 0.08 53 | 0.08 62 | 0.09 25 | 0.20 98 | 0.22 88 | 0.39 69 | 0.24 90 |
TV-L1-improved [17] | 60.9 | 0.04 5 | 0.09 46 | 0.04 8 | 0.08 16 | 0.24 25 | 0.08 13 | 0.12 49 | 0.15 58 | 0.13 25 | 0.05 29 | 0.18 62 | 0.04 10 | 0.22 77 | 0.40 85 | 0.13 41 | 0.15 126 | 0.41 124 | 0.17 138 | 0.11 125 | 0.13 117 | 0.25 130 | 0.18 38 | 0.38 67 | 0.18 48 |
CVENG22+RIC [199] | 61.9 | 0.05 38 | 0.15 93 | 0.05 23 | 0.10 57 | 0.42 113 | 0.10 47 | 0.13 75 | 0.25 107 | 0.15 84 | 0.05 29 | 0.29 102 | 0.04 10 | 0.26 103 | 0.54 122 | 0.21 101 | 0.06 12 | 0.22 62 | 0.07 21 | 0.06 12 | 0.09 25 | 0.13 44 | 0.19 57 | 0.47 91 | 0.19 58 |
Steered-L1 [116] | 62.1 | 0.06 72 | 0.11 65 | 0.06 72 | 0.07 6 | 0.16 1 | 0.08 13 | 0.11 6 | 0.13 44 | 0.12 3 | 0.05 29 | 0.17 52 | 0.05 46 | 0.19 58 | 0.36 66 | 0.14 58 | 0.09 73 | 0.28 91 | 0.09 74 | 0.12 133 | 0.13 117 | 0.46 157 | 0.21 78 | 0.47 91 | 0.23 85 |
S2F-IF [121] | 64.5 | 0.05 38 | 0.18 115 | 0.05 23 | 0.10 57 | 0.40 110 | 0.10 47 | 0.13 75 | 0.26 110 | 0.15 84 | 0.05 29 | 0.30 103 | 0.04 10 | 0.26 103 | 0.52 118 | 0.19 90 | 0.06 12 | 0.24 72 | 0.06 9 | 0.06 12 | 0.09 25 | 0.13 44 | 0.21 78 | 0.54 107 | 0.22 78 |
SegFlow [156] | 65.9 | 0.05 38 | 0.17 109 | 0.05 23 | 0.11 82 | 0.39 104 | 0.11 79 | 0.13 75 | 0.23 99 | 0.15 84 | 0.05 29 | 0.31 107 | 0.05 46 | 0.24 89 | 0.48 109 | 0.19 90 | 0.06 12 | 0.20 50 | 0.06 9 | 0.06 12 | 0.09 25 | 0.13 44 | 0.21 78 | 0.53 104 | 0.23 85 |
DMF_ROB [135] | 66.4 | 0.06 72 | 0.15 93 | 0.07 91 | 0.09 28 | 0.30 66 | 0.10 47 | 0.13 75 | 0.21 90 | 0.15 84 | 0.05 29 | 0.27 94 | 0.05 46 | 0.23 83 | 0.43 95 | 0.19 90 | 0.07 25 | 0.23 68 | 0.07 21 | 0.06 12 | 0.07 3 | 0.16 67 | 0.23 97 | 0.55 110 | 0.27 107 |
PGM-C [118] | 66.5 | 0.05 38 | 0.17 109 | 0.05 23 | 0.11 82 | 0.39 104 | 0.11 79 | 0.13 75 | 0.24 102 | 0.15 84 | 0.05 29 | 0.31 107 | 0.05 46 | 0.24 89 | 0.48 109 | 0.19 90 | 0.06 12 | 0.20 50 | 0.06 9 | 0.06 12 | 0.09 25 | 0.13 44 | 0.21 78 | 0.56 115 | 0.23 85 |
CPM-Flow [114] | 66.8 | 0.05 38 | 0.17 109 | 0.05 23 | 0.11 82 | 0.39 104 | 0.11 79 | 0.13 75 | 0.23 99 | 0.15 84 | 0.05 29 | 0.31 107 | 0.05 46 | 0.24 89 | 0.48 109 | 0.19 90 | 0.06 12 | 0.19 44 | 0.06 9 | 0.06 12 | 0.09 25 | 0.13 44 | 0.22 88 | 0.57 120 | 0.23 85 |
EpicFlow [100] | 67.4 | 0.05 38 | 0.17 109 | 0.05 23 | 0.11 82 | 0.40 110 | 0.11 79 | 0.13 75 | 0.24 102 | 0.15 84 | 0.05 29 | 0.31 107 | 0.05 46 | 0.24 89 | 0.48 109 | 0.19 90 | 0.06 12 | 0.21 55 | 0.06 9 | 0.06 12 | 0.09 25 | 0.13 44 | 0.22 88 | 0.56 115 | 0.23 85 |
DeepFlow [85] | 68.0 | 0.06 72 | 0.13 78 | 0.09 120 | 0.10 57 | 0.29 59 | 0.10 47 | 0.12 49 | 0.20 84 | 0.15 84 | 0.06 75 | 0.23 87 | 0.06 83 | 0.17 43 | 0.34 59 | 0.12 33 | 0.07 25 | 0.23 68 | 0.07 21 | 0.07 37 | 0.08 6 | 0.19 91 | 0.26 119 | 0.55 110 | 0.33 125 |
Sparse Occlusion [54] | 69.2 | 0.06 72 | 0.10 55 | 0.05 23 | 0.11 82 | 0.28 50 | 0.12 94 | 0.12 49 | 0.15 58 | 0.13 25 | 0.06 75 | 0.19 65 | 0.05 46 | 0.21 69 | 0.33 57 | 0.15 63 | 0.11 94 | 0.22 62 | 0.09 74 | 0.17 158 | 0.16 150 | 0.22 106 | 0.19 57 | 0.32 48 | 0.17 28 |
TF+OM [98] | 70.9 | 0.06 72 | 0.09 46 | 0.05 23 | 0.11 82 | 0.19 7 | 0.12 94 | 0.12 49 | 0.12 33 | 0.15 84 | 0.08 104 | 0.14 25 | 0.08 107 | 0.16 34 | 0.27 36 | 0.15 63 | 0.11 94 | 0.18 40 | 0.12 102 | 0.10 109 | 0.13 117 | 0.22 106 | 0.22 88 | 0.45 87 | 0.25 99 |
MLDP_OF [87] | 71.0 | 0.07 100 | 0.15 93 | 0.07 91 | 0.10 57 | 0.27 46 | 0.10 47 | 0.12 49 | 0.17 70 | 0.13 25 | 0.06 75 | 0.19 65 | 0.05 46 | 0.23 83 | 0.37 72 | 0.15 63 | 0.11 94 | 0.24 72 | 0.12 102 | 0.09 83 | 0.11 85 | 0.28 137 | 0.18 38 | 0.30 44 | 0.20 67 |
WRT [146] | 71.0 | 0.06 72 | 0.10 55 | 0.05 23 | 0.13 103 | 0.39 104 | 0.13 102 | 0.13 75 | 0.20 84 | 0.14 58 | 0.06 75 | 0.22 82 | 0.05 46 | 0.19 58 | 0.29 45 | 0.13 41 | 0.11 94 | 0.34 105 | 0.10 86 | 0.09 83 | 0.11 85 | 0.19 91 | 0.19 57 | 0.34 53 | 0.17 28 |
Second-order prior [8] | 71.2 | 0.05 38 | 0.13 78 | 0.06 72 | 0.09 28 | 0.34 84 | 0.08 13 | 0.13 75 | 0.27 113 | 0.14 58 | 0.04 8 | 0.15 33 | 0.04 10 | 0.25 100 | 0.49 114 | 0.13 41 | 0.10 84 | 0.58 143 | 0.08 53 | 0.12 133 | 0.12 105 | 0.25 130 | 0.19 57 | 0.47 91 | 0.18 48 |
FlowFields+ [128] | 71.4 | 0.05 38 | 0.19 120 | 0.05 23 | 0.11 82 | 0.42 113 | 0.11 79 | 0.14 100 | 0.29 120 | 0.15 84 | 0.05 29 | 0.32 111 | 0.04 10 | 0.27 108 | 0.54 122 | 0.21 101 | 0.05 6 | 0.27 84 | 0.06 9 | 0.06 12 | 0.10 58 | 0.12 34 | 0.21 78 | 0.56 115 | 0.22 78 |
FlowFields [108] | 72.3 | 0.05 38 | 0.18 115 | 0.05 23 | 0.11 82 | 0.42 113 | 0.11 79 | 0.14 100 | 0.28 116 | 0.15 84 | 0.05 29 | 0.32 111 | 0.05 46 | 0.27 108 | 0.54 122 | 0.21 101 | 0.05 6 | 0.27 84 | 0.06 9 | 0.06 12 | 0.10 58 | 0.12 34 | 0.21 78 | 0.56 115 | 0.21 73 |
PWC-Net_RVC [143] | 72.8 | 0.07 100 | 0.16 102 | 0.06 72 | 0.13 103 | 0.36 92 | 0.13 102 | 0.14 100 | 0.23 99 | 0.15 84 | 0.05 29 | 0.15 33 | 0.05 46 | 0.28 113 | 0.51 117 | 0.17 83 | 0.10 84 | 0.31 101 | 0.09 74 | 0.05 6 | 0.09 25 | 0.08 6 | 0.19 57 | 0.36 60 | 0.19 58 |
TriangleFlow [30] | 73.7 | 0.05 38 | 0.10 55 | 0.06 72 | 0.10 57 | 0.33 76 | 0.09 29 | 0.13 75 | 0.19 81 | 0.13 25 | 0.04 8 | 0.15 33 | 0.04 10 | 0.31 125 | 0.58 128 | 0.22 109 | 0.14 118 | 0.37 114 | 0.15 125 | 0.08 62 | 0.13 117 | 0.16 67 | 0.21 78 | 0.42 77 | 0.24 90 |
FF++_ROB [141] | 75.0 | 0.05 38 | 0.19 120 | 0.05 23 | 0.11 82 | 0.42 113 | 0.11 79 | 0.14 100 | 0.28 116 | 0.16 102 | 0.06 75 | 0.32 111 | 0.06 83 | 0.27 108 | 0.54 122 | 0.21 101 | 0.06 12 | 0.26 82 | 0.07 21 | 0.06 12 | 0.09 25 | 0.12 34 | 0.20 71 | 0.48 96 | 0.21 73 |
Rannacher [23] | 75.3 | 0.06 72 | 0.12 73 | 0.07 91 | 0.11 82 | 0.30 66 | 0.11 79 | 0.13 75 | 0.19 81 | 0.15 84 | 0.06 75 | 0.27 94 | 0.05 46 | 0.22 77 | 0.41 90 | 0.15 63 | 0.11 94 | 0.34 105 | 0.10 86 | 0.09 83 | 0.10 58 | 0.18 83 | 0.18 38 | 0.37 65 | 0.18 48 |
CostFilter [40] | 75.8 | 0.06 72 | 0.10 55 | 0.06 72 | 0.11 82 | 0.27 46 | 0.11 79 | 0.13 75 | 0.16 64 | 0.15 84 | 0.08 104 | 0.15 33 | 0.09 115 | 0.18 52 | 0.32 54 | 0.13 41 | 0.10 84 | 0.36 112 | 0.10 86 | 0.14 141 | 0.17 156 | 0.33 149 | 0.15 7 | 0.32 48 | 0.15 8 |
ComplOF-FED-GPU [35] | 75.9 | 0.07 100 | 0.15 93 | 0.08 108 | 0.08 16 | 0.26 42 | 0.08 13 | 0.12 49 | 0.18 76 | 0.12 3 | 0.07 95 | 0.15 33 | 0.07 100 | 0.22 77 | 0.45 99 | 0.16 72 | 0.12 107 | 0.40 121 | 0.12 102 | 0.09 83 | 0.10 58 | 0.23 116 | 0.21 78 | 0.47 91 | 0.24 90 |
FlowNetS+ft+v [110] | 76.2 | 0.05 38 | 0.12 73 | 0.06 72 | 0.10 57 | 0.33 76 | 0.10 47 | 0.13 75 | 0.22 96 | 0.16 102 | 0.05 29 | 0.27 94 | 0.05 46 | 0.25 100 | 0.46 103 | 0.20 98 | 0.07 25 | 0.27 84 | 0.07 21 | 0.10 109 | 0.12 105 | 0.18 83 | 0.22 88 | 0.52 101 | 0.27 107 |
LDOF [28] | 76.3 | 0.06 72 | 0.14 88 | 0.07 91 | 0.10 57 | 0.36 92 | 0.10 47 | 0.13 75 | 0.25 107 | 0.14 58 | 0.06 75 | 0.33 114 | 0.05 46 | 0.22 77 | 0.41 90 | 0.22 109 | 0.07 25 | 0.25 76 | 0.07 21 | 0.07 37 | 0.10 58 | 0.13 44 | 0.26 119 | 0.62 124 | 0.35 129 |
CombBMOF [111] | 76.5 | 0.06 72 | 0.14 88 | 0.05 23 | 0.11 82 | 0.35 91 | 0.10 47 | 0.12 49 | 0.16 64 | 0.13 25 | 0.06 75 | 0.22 82 | 0.06 83 | 0.24 89 | 0.39 80 | 0.14 58 | 0.14 118 | 0.33 103 | 0.15 125 | 0.11 125 | 0.13 117 | 0.23 116 | 0.18 38 | 0.35 58 | 0.17 28 |
ACK-Prior [27] | 76.8 | 0.07 100 | 0.11 65 | 0.07 91 | 0.09 28 | 0.22 21 | 0.09 29 | 0.12 49 | 0.13 44 | 0.13 25 | 0.07 95 | 0.19 65 | 0.06 83 | 0.20 65 | 0.34 59 | 0.14 58 | 0.13 113 | 0.29 95 | 0.12 102 | 0.11 125 | 0.11 85 | 0.42 156 | 0.25 108 | 0.40 72 | 0.28 111 |
Complementary OF [21] | 77.3 | 0.07 100 | 0.15 93 | 0.08 108 | 0.09 28 | 0.21 17 | 0.09 29 | 0.12 49 | 0.16 64 | 0.14 58 | 0.08 104 | 0.16 42 | 0.08 107 | 0.20 65 | 0.38 77 | 0.17 83 | 0.11 94 | 0.33 103 | 0.11 93 | 0.07 37 | 0.10 58 | 0.18 83 | 0.26 119 | 0.56 115 | 0.35 129 |
TCOF [69] | 77.4 | 0.06 72 | 0.12 73 | 0.07 91 | 0.12 99 | 0.34 84 | 0.12 94 | 0.14 100 | 0.21 90 | 0.16 102 | 0.09 117 | 0.19 65 | 0.10 118 | 0.24 89 | 0.45 99 | 0.12 33 | 0.07 25 | 0.13 6 | 0.08 53 | 0.11 125 | 0.12 105 | 0.12 34 | 0.20 71 | 0.37 65 | 0.18 48 |
EPPM w/o HM [86] | 77.9 | 0.06 72 | 0.16 102 | 0.06 72 | 0.10 57 | 0.34 84 | 0.09 29 | 0.13 75 | 0.22 96 | 0.13 25 | 0.06 75 | 0.20 72 | 0.07 100 | 0.23 83 | 0.36 66 | 0.16 72 | 0.12 107 | 0.40 121 | 0.12 102 | 0.09 83 | 0.12 105 | 0.37 153 | 0.18 38 | 0.34 53 | 0.17 28 |
VCN_RVC [178] | 78.0 | 0.08 115 | 0.19 120 | 0.07 91 | 0.13 103 | 0.38 100 | 0.13 102 | 0.14 100 | 0.27 113 | 0.14 58 | 0.05 29 | 0.26 91 | 0.05 46 | 0.27 108 | 0.47 104 | 0.16 72 | 0.10 84 | 0.35 111 | 0.10 86 | 0.06 12 | 0.11 85 | 0.08 6 | 0.18 38 | 0.43 81 | 0.16 16 |
Aniso. Huber-L1 [22] | 78.1 | 0.05 38 | 0.11 65 | 0.05 23 | 0.15 111 | 0.38 100 | 0.17 114 | 0.13 75 | 0.20 84 | 0.17 107 | 0.06 75 | 0.33 114 | 0.06 83 | 0.21 69 | 0.36 66 | 0.16 72 | 0.09 73 | 0.22 62 | 0.09 74 | 0.11 125 | 0.11 85 | 0.18 83 | 0.19 57 | 0.34 53 | 0.20 67 |
F-TV-L1 [15] | 78.9 | 0.09 119 | 0.17 109 | 0.12 134 | 0.12 99 | 0.34 84 | 0.13 102 | 0.12 49 | 0.18 76 | 0.14 58 | 0.08 104 | 0.24 88 | 0.08 107 | 0.26 103 | 0.42 94 | 0.21 101 | 0.08 53 | 0.25 76 | 0.08 53 | 0.08 62 | 0.10 58 | 0.18 83 | 0.17 19 | 0.31 47 | 0.16 16 |
Brox et al. [5] | 80.0 | 0.06 72 | 0.15 93 | 0.08 108 | 0.11 82 | 0.33 76 | 0.12 94 | 0.13 75 | 0.21 90 | 0.14 58 | 0.05 29 | 0.28 98 | 0.05 46 | 0.28 113 | 0.44 96 | 0.43 145 | 0.07 25 | 0.27 84 | 0.07 21 | 0.08 62 | 0.10 58 | 0.09 13 | 0.26 119 | 0.63 126 | 0.39 136 |
LocallyOriented [52] | 82.0 | 0.05 38 | 0.10 55 | 0.05 23 | 0.12 99 | 0.46 119 | 0.12 94 | 0.14 100 | 0.24 102 | 0.16 102 | 0.07 95 | 0.20 72 | 0.06 83 | 0.23 83 | 0.44 96 | 0.17 83 | 0.08 53 | 0.22 62 | 0.09 74 | 0.09 83 | 0.11 85 | 0.17 77 | 0.23 97 | 0.46 89 | 0.26 105 |
CRTflow [81] | 83.1 | 0.06 72 | 0.14 88 | 0.06 72 | 0.10 57 | 0.29 59 | 0.10 47 | 0.12 49 | 0.20 84 | 0.13 25 | 0.06 75 | 0.21 77 | 0.06 83 | 0.20 65 | 0.38 77 | 0.15 63 | 0.24 153 | 0.50 134 | 0.27 152 | 0.08 62 | 0.11 85 | 0.17 77 | 0.25 108 | 0.54 107 | 0.32 123 |
SIOF [67] | 83.1 | 0.07 100 | 0.11 65 | 0.07 91 | 0.10 57 | 0.28 50 | 0.10 47 | 0.15 115 | 0.17 70 | 0.20 119 | 0.08 104 | 0.19 65 | 0.09 115 | 0.24 89 | 0.41 90 | 0.21 101 | 0.11 94 | 0.22 62 | 0.11 93 | 0.09 83 | 0.09 25 | 0.14 60 | 0.25 108 | 0.43 81 | 0.28 111 |
DPOF [18] | 83.2 | 0.06 72 | 0.16 102 | 0.05 23 | 0.11 82 | 0.37 96 | 0.10 47 | 0.13 75 | 0.20 84 | 0.15 84 | 0.07 95 | 0.28 98 | 0.06 83 | 0.21 69 | 0.41 90 | 0.15 63 | 0.09 73 | 0.25 76 | 0.09 74 | 0.09 83 | 0.10 58 | 0.48 158 | 0.25 108 | 0.45 87 | 0.29 116 |
NL-TV-NCC [25] | 84.3 | 0.06 72 | 0.11 65 | 0.06 72 | 0.11 82 | 0.34 84 | 0.10 47 | 0.12 49 | 0.15 58 | 0.13 25 | 0.07 95 | 0.22 82 | 0.06 83 | 0.27 108 | 0.45 99 | 0.15 63 | 0.15 126 | 0.36 112 | 0.13 116 | 0.10 109 | 0.14 130 | 0.22 106 | 0.22 88 | 0.41 75 | 0.22 78 |
GMFlow_RVC [196] | 85.6 | 0.12 136 | 0.16 102 | 0.11 128 | 0.17 115 | 0.33 76 | 0.18 116 | 0.17 119 | 0.21 90 | 0.19 116 | 0.08 104 | 0.15 33 | 0.07 100 | 0.26 103 | 0.39 80 | 0.17 83 | 0.15 126 | 0.21 55 | 0.14 120 | 0.09 83 | 0.13 117 | 0.11 27 | 0.14 1 | 0.27 19 | 0.13 5 |
CBF [12] | 85.9 | 0.06 72 | 0.13 78 | 0.07 91 | 0.19 117 | 0.36 92 | 0.25 126 | 0.12 49 | 0.17 70 | 0.14 58 | 0.05 29 | 0.24 88 | 0.05 46 | 0.23 83 | 0.39 80 | 0.18 87 | 0.10 84 | 0.22 62 | 0.11 93 | 0.14 141 | 0.14 130 | 0.25 130 | 0.22 88 | 0.42 77 | 0.24 90 |
SRR-TVOF-NL [89] | 85.9 | 0.06 72 | 0.13 78 | 0.06 72 | 0.10 57 | 0.33 76 | 0.10 47 | 0.13 75 | 0.22 96 | 0.14 58 | 0.06 75 | 0.25 90 | 0.05 46 | 0.24 89 | 0.40 85 | 0.15 63 | 0.10 84 | 0.29 95 | 0.09 74 | 0.15 150 | 0.14 130 | 0.24 125 | 0.27 125 | 0.42 77 | 0.31 122 |
DF-Auto [113] | 86.7 | 0.06 72 | 0.13 78 | 0.05 23 | 0.20 121 | 0.49 122 | 0.24 124 | 0.14 100 | 0.26 110 | 0.21 122 | 0.08 104 | 0.33 114 | 0.08 107 | 0.21 69 | 0.36 66 | 0.24 115 | 0.05 6 | 0.13 6 | 0.06 9 | 0.10 109 | 0.13 117 | 0.09 13 | 0.28 128 | 0.54 107 | 0.40 138 |
Local-TV-L1 [65] | 86.8 | 0.08 115 | 0.15 93 | 0.11 128 | 0.19 117 | 0.39 104 | 0.22 121 | 0.14 100 | 0.25 107 | 0.17 107 | 0.08 104 | 0.39 123 | 0.09 115 | 0.18 52 | 0.33 57 | 0.13 41 | 0.07 25 | 0.21 55 | 0.07 21 | 0.06 12 | 0.08 6 | 0.18 83 | 0.28 128 | 0.63 126 | 0.49 143 |
Dynamic MRF [7] | 87.0 | 0.07 100 | 0.16 102 | 0.08 108 | 0.09 28 | 0.28 50 | 0.09 29 | 0.12 49 | 0.19 81 | 0.14 58 | 0.06 75 | 0.26 91 | 0.06 83 | 0.28 113 | 0.53 120 | 0.22 109 | 0.13 113 | 0.56 142 | 0.14 120 | 0.08 62 | 0.09 25 | 0.24 125 | 0.22 88 | 0.55 110 | 0.27 107 |
CNN-flow-warp+ref [115] | 87.6 | 0.06 72 | 0.16 102 | 0.07 91 | 0.13 103 | 0.38 100 | 0.15 109 | 0.14 100 | 0.26 110 | 0.18 112 | 0.06 75 | 0.42 125 | 0.06 83 | 0.26 103 | 0.45 99 | 0.35 138 | 0.07 25 | 0.27 84 | 0.07 21 | 0.06 12 | 0.09 25 | 0.10 20 | 0.28 128 | 0.66 131 | 0.37 134 |
CLG-TV [48] | 90.4 | 0.06 72 | 0.12 73 | 0.06 72 | 0.17 115 | 0.36 92 | 0.21 119 | 0.14 100 | 0.20 84 | 0.19 116 | 0.08 104 | 0.47 134 | 0.08 107 | 0.23 83 | 0.40 85 | 0.21 101 | 0.10 84 | 0.27 84 | 0.11 93 | 0.10 109 | 0.11 85 | 0.13 44 | 0.20 71 | 0.39 69 | 0.21 73 |
Fusion [6] | 91.0 | 0.05 38 | 0.18 115 | 0.06 72 | 0.09 28 | 0.29 59 | 0.09 29 | 0.13 75 | 0.18 76 | 0.14 58 | 0.05 29 | 0.28 98 | 0.05 46 | 0.29 118 | 0.44 96 | 0.30 128 | 0.14 118 | 0.38 116 | 0.15 125 | 0.14 141 | 0.15 142 | 0.19 91 | 0.34 146 | 0.51 100 | 0.41 139 |
Bartels [41] | 91.2 | 0.07 100 | 0.10 55 | 0.08 108 | 0.12 99 | 0.24 25 | 0.14 107 | 0.13 75 | 0.14 52 | 0.17 107 | 0.10 119 | 0.20 72 | 0.11 123 | 0.21 69 | 0.39 80 | 0.20 98 | 0.11 94 | 0.26 82 | 0.16 131 | 0.11 125 | 0.13 117 | 0.32 146 | 0.19 57 | 0.39 69 | 0.22 78 |
ROF-ND [105] | 91.5 | 0.07 100 | 0.13 78 | 0.07 91 | 0.13 103 | 0.26 42 | 0.12 94 | 0.12 49 | 0.17 70 | 0.13 25 | 0.08 104 | 0.30 103 | 0.07 100 | 0.22 77 | 0.38 77 | 0.18 87 | 0.16 134 | 0.30 97 | 0.12 102 | 0.14 141 | 0.14 130 | 0.30 141 | 0.22 88 | 0.48 96 | 0.20 67 |
MCPFlow_RVC [197] | 96.1 | 0.10 124 | 0.17 109 | 0.07 91 | 0.23 127 | 0.55 128 | 0.23 123 | 0.23 137 | 0.41 128 | 0.34 140 | 0.08 104 | 0.16 42 | 0.07 100 | 0.35 130 | 0.58 128 | 0.21 101 | 0.12 107 | 0.24 72 | 0.12 102 | 0.08 62 | 0.10 58 | 0.11 27 | 0.21 78 | 0.43 81 | 0.15 8 |
Learning Flow [11] | 96.3 | 0.06 72 | 0.13 78 | 0.06 72 | 0.14 109 | 0.37 96 | 0.15 109 | 0.13 75 | 0.21 90 | 0.17 107 | 0.07 95 | 0.34 118 | 0.06 83 | 0.28 113 | 0.55 126 | 0.27 121 | 0.11 94 | 0.38 116 | 0.11 93 | 0.10 109 | 0.12 105 | 0.17 77 | 0.21 78 | 0.50 98 | 0.22 78 |
HBM-GC [103] | 97.0 | 0.10 124 | 0.13 78 | 0.10 126 | 0.16 113 | 0.28 50 | 0.16 111 | 0.15 115 | 0.16 64 | 0.17 107 | 0.12 125 | 0.22 82 | 0.12 127 | 0.19 58 | 0.25 20 | 0.16 72 | 0.14 118 | 0.19 44 | 0.13 116 | 0.15 150 | 0.16 150 | 0.30 141 | 0.25 108 | 0.28 30 | 0.25 99 |
p-harmonic [29] | 97.5 | 0.07 100 | 0.20 123 | 0.08 108 | 0.11 82 | 0.34 84 | 0.11 79 | 0.14 100 | 0.28 116 | 0.16 102 | 0.06 75 | 0.46 133 | 0.06 83 | 0.30 120 | 0.47 104 | 0.29 125 | 0.11 94 | 0.40 121 | 0.11 93 | 0.10 109 | 0.12 105 | 0.17 77 | 0.20 71 | 0.42 77 | 0.19 58 |
OFRF [132] | 101.4 | 0.07 100 | 0.10 55 | 0.08 108 | 0.19 117 | 0.43 117 | 0.20 117 | 0.14 100 | 0.21 90 | 0.18 112 | 0.10 119 | 0.21 77 | 0.10 118 | 0.19 58 | 0.40 85 | 0.12 33 | 0.12 107 | 0.39 119 | 0.12 102 | 0.09 83 | 0.11 85 | 0.28 137 | 0.31 138 | 0.55 110 | 0.60 146 |
TriFlow [93] | 104.5 | 0.07 100 | 0.13 78 | 0.06 72 | 0.14 109 | 0.32 73 | 0.16 111 | 0.14 100 | 0.18 76 | 0.20 119 | 0.10 119 | 0.28 98 | 0.10 118 | 0.22 77 | 0.36 66 | 0.24 115 | 0.11 94 | 0.20 50 | 0.11 93 | 0.18 159 | 0.14 130 | 1.18 162 | 0.30 135 | 0.58 121 | 0.37 134 |
StereoOF-V1MT [117] | 107.4 | 0.07 100 | 0.24 131 | 0.08 108 | 0.09 28 | 0.56 129 | 0.09 29 | 0.15 115 | 0.49 137 | 0.14 58 | 0.07 95 | 0.47 134 | 0.07 100 | 0.43 138 | 0.82 145 | 0.33 131 | 0.13 113 | 0.91 152 | 0.13 116 | 0.08 62 | 0.11 85 | 0.19 91 | 0.26 119 | 0.95 150 | 0.28 111 |
Shiralkar [42] | 107.5 | 0.06 72 | 0.26 136 | 0.08 108 | 0.09 28 | 0.40 110 | 0.09 29 | 0.14 100 | 0.37 124 | 0.14 58 | 0.07 95 | 0.42 125 | 0.07 100 | 0.30 120 | 0.62 130 | 0.20 98 | 0.18 143 | 0.83 148 | 0.17 138 | 0.10 109 | 0.12 105 | 0.33 149 | 0.24 105 | 0.80 142 | 0.27 107 |
SegOF [10] | 108.7 | 0.08 115 | 0.15 93 | 0.06 72 | 0.36 142 | 0.64 138 | 0.43 147 | 0.18 125 | 0.34 123 | 0.35 142 | 0.15 135 | 0.42 125 | 0.13 128 | 0.42 137 | 0.68 135 | 0.72 152 | 0.10 84 | 0.50 134 | 0.12 102 | 0.06 12 | 0.10 58 | 0.09 13 | 0.23 97 | 0.55 110 | 0.24 90 |
Ad-TV-NDC [36] | 110.9 | 0.12 136 | 0.20 123 | 0.20 154 | 0.34 141 | 0.57 132 | 0.41 144 | 0.20 131 | 0.38 125 | 0.27 131 | 0.14 131 | 0.48 138 | 0.16 137 | 0.21 69 | 0.36 66 | 0.16 72 | 0.10 84 | 0.23 68 | 0.10 86 | 0.08 62 | 0.09 25 | 0.16 67 | 0.34 146 | 0.80 142 | 0.81 151 |
LiteFlowNet [138] | 111.4 | 0.09 119 | 0.29 142 | 0.08 108 | 0.16 113 | 0.48 120 | 0.16 111 | 0.18 125 | 0.39 126 | 0.18 112 | 0.08 104 | 0.27 94 | 0.08 107 | 0.40 135 | 0.72 136 | 0.29 125 | 0.14 118 | 0.46 131 | 0.13 116 | 0.09 83 | 0.14 130 | 0.10 20 | 0.24 105 | 0.53 104 | 0.24 90 |
WOLF_ROB [144] | 112.8 | 0.08 115 | 0.27 138 | 0.08 108 | 0.15 111 | 0.62 135 | 0.14 107 | 0.17 119 | 0.48 134 | 0.18 112 | 0.08 104 | 0.38 122 | 0.08 107 | 0.35 130 | 0.64 133 | 0.31 129 | 0.13 113 | 0.44 130 | 0.12 102 | 0.07 37 | 0.11 85 | 0.13 44 | 0.28 128 | 0.71 138 | 0.34 127 |
Modified CLG [34] | 113.8 | 0.10 124 | 0.23 127 | 0.10 126 | 0.29 137 | 0.56 129 | 0.37 139 | 0.20 131 | 0.52 139 | 0.29 136 | 0.19 145 | 0.72 144 | 0.20 143 | 0.28 113 | 0.53 120 | 0.33 131 | 0.07 25 | 0.37 114 | 0.08 53 | 0.07 37 | 0.10 58 | 0.11 27 | 0.33 142 | 0.83 144 | 0.63 148 |
ContinualFlow_ROB [148] | 114.5 | 0.11 131 | 0.23 127 | 0.09 120 | 0.28 135 | 0.58 133 | 0.29 133 | 0.27 146 | 0.51 138 | 0.34 140 | 0.13 129 | 0.42 125 | 0.11 123 | 0.47 141 | 0.84 147 | 0.24 115 | 0.25 154 | 0.60 145 | 0.25 150 | 0.06 12 | 0.09 25 | 0.07 3 | 0.23 97 | 0.46 89 | 0.24 90 |
BlockOverlap [61] | 116.2 | 0.12 136 | 0.16 102 | 0.12 134 | 0.25 131 | 0.39 104 | 0.29 133 | 0.19 130 | 0.24 102 | 0.25 128 | 0.16 139 | 0.35 120 | 0.17 141 | 0.19 58 | 0.28 38 | 0.18 87 | 0.15 126 | 0.24 72 | 0.14 120 | 0.15 150 | 0.15 142 | 0.37 153 | 0.25 108 | 0.50 98 | 0.39 136 |
StereoFlow [44] | 117.1 | 0.30 162 | 0.57 163 | 0.36 161 | 1.03 162 | 1.75 163 | 0.92 159 | 0.81 162 | 1.43 163 | 0.51 157 | 1.05 161 | 2.03 161 | 0.92 160 | 0.53 151 | 0.72 136 | 0.44 146 | 0.04 2 | 0.14 9 | 0.04 2 | 0.04 1 | 0.10 58 | 0.06 1 | 0.27 125 | 0.60 122 | 0.32 123 |
IAOF2 [51] | 118.1 | 0.07 100 | 0.14 88 | 0.07 91 | 0.21 122 | 0.43 117 | 0.25 126 | 0.17 119 | 0.24 102 | 0.22 123 | 0.40 151 | 0.75 146 | 0.66 156 | 0.31 125 | 0.47 104 | 0.27 121 | 0.15 126 | 0.34 105 | 0.16 131 | 0.14 141 | 0.13 117 | 0.20 98 | 0.25 108 | 0.52 101 | 0.29 116 |
CompactFlow_ROB [155] | 120.5 | 0.15 151 | 0.28 140 | 0.09 120 | 0.28 135 | 0.62 135 | 0.30 136 | 0.28 148 | 0.61 140 | 0.44 150 | 0.15 135 | 0.40 124 | 0.14 131 | 0.48 145 | 0.86 149 | 0.35 138 | 0.16 134 | 0.61 146 | 0.16 131 | 0.06 12 | 0.10 58 | 0.08 6 | 0.25 108 | 0.66 131 | 0.24 90 |
HBpMotionGpu [43] | 120.7 | 0.09 119 | 0.15 93 | 0.09 120 | 0.32 140 | 0.49 122 | 0.38 141 | 0.17 119 | 0.32 122 | 0.28 134 | 0.14 131 | 0.35 120 | 0.14 131 | 0.25 100 | 0.40 85 | 0.22 109 | 0.14 118 | 0.27 84 | 0.14 120 | 0.15 150 | 0.13 117 | 0.24 125 | 0.29 134 | 0.60 122 | 0.44 141 |
TVL1_RVC [175] | 121.9 | 0.19 156 | 0.31 145 | 0.28 159 | 0.55 155 | 0.75 144 | 0.71 156 | 0.34 153 | 0.68 145 | 0.45 152 | 0.42 153 | 1.13 151 | 0.53 153 | 0.29 118 | 0.52 118 | 0.33 131 | 0.07 25 | 0.42 126 | 0.08 53 | 0.06 12 | 0.10 58 | 0.08 6 | 0.44 152 | 0.94 149 | 0.96 155 |
SPSA-learn [13] | 122.2 | 0.10 124 | 0.26 136 | 0.12 134 | 0.24 130 | 0.50 124 | 0.28 132 | 0.18 125 | 0.40 127 | 0.27 131 | 0.12 125 | 0.55 142 | 0.14 131 | 0.30 120 | 0.47 104 | 0.38 142 | 0.12 107 | 0.41 124 | 0.14 120 | 0.09 83 | 0.11 85 | 0.15 64 | 0.34 146 | 0.64 129 | 0.64 149 |
Filter Flow [19] | 122.7 | 0.09 119 | 0.18 115 | 0.08 108 | 0.22 125 | 0.53 127 | 0.24 124 | 0.17 119 | 0.28 116 | 0.24 126 | 0.16 139 | 0.47 134 | 0.16 137 | 0.32 128 | 0.48 109 | 0.38 142 | 0.17 139 | 0.34 105 | 0.16 131 | 0.18 159 | 0.19 160 | 0.22 106 | 0.23 97 | 0.43 81 | 0.25 99 |
LSM_FLOW_RVC [182] | 122.7 | 0.14 148 | 0.41 154 | 0.13 141 | 0.26 132 | 0.73 142 | 0.26 128 | 0.24 141 | 0.81 151 | 0.24 126 | 0.11 123 | 0.50 140 | 0.11 123 | 0.45 140 | 0.82 145 | 0.32 130 | 0.16 134 | 0.59 144 | 0.17 138 | 0.07 37 | 0.11 85 | 0.12 34 | 0.23 97 | 0.67 134 | 0.22 78 |
EAI-Flow [147] | 123.2 | 0.11 131 | 0.24 131 | 0.12 134 | 0.19 117 | 0.50 124 | 0.17 114 | 0.15 115 | 0.43 129 | 0.20 119 | 0.11 123 | 0.42 125 | 0.11 123 | 0.38 132 | 0.74 139 | 0.26 119 | 0.15 126 | 0.42 126 | 0.15 125 | 0.15 150 | 0.14 130 | 0.22 106 | 0.23 97 | 0.62 124 | 0.25 99 |
Black & Anandan [4] | 123.6 | 0.10 124 | 0.25 134 | 0.15 148 | 0.23 127 | 0.56 129 | 0.26 128 | 0.18 125 | 0.45 132 | 0.26 130 | 0.13 129 | 0.68 143 | 0.15 136 | 0.31 125 | 0.49 114 | 0.34 135 | 0.12 107 | 0.49 133 | 0.12 102 | 0.11 125 | 0.13 117 | 0.10 20 | 0.30 135 | 0.63 126 | 0.48 142 |
C-RAFT_RVC [181] | 124.8 | 0.13 143 | 0.23 127 | 0.12 134 | 0.29 137 | 0.72 140 | 0.29 133 | 0.26 144 | 0.48 134 | 0.36 143 | 0.12 125 | 0.30 103 | 0.10 118 | 0.47 141 | 0.81 144 | 0.34 135 | 0.17 139 | 0.34 105 | 0.18 142 | 0.10 109 | 0.13 117 | 0.14 60 | 0.26 119 | 0.53 104 | 0.25 99 |
2D-CLG [1] | 125.3 | 0.12 136 | 0.28 140 | 0.11 128 | 0.44 151 | 0.72 140 | 0.55 153 | 0.30 149 | 0.74 146 | 0.40 146 | 0.48 155 | 1.17 152 | 0.62 155 | 0.38 132 | 0.67 134 | 0.57 148 | 0.09 73 | 0.51 138 | 0.12 102 | 0.06 12 | 0.09 25 | 0.12 34 | 0.44 152 | 1.04 153 | 0.88 154 |
IAOF [50] | 125.6 | 0.09 119 | 0.18 115 | 0.12 134 | 0.27 134 | 0.48 120 | 0.34 138 | 0.18 125 | 0.44 130 | 0.25 128 | 0.18 143 | 0.53 141 | 0.25 147 | 0.30 120 | 0.50 116 | 0.26 119 | 0.14 118 | 0.53 139 | 0.12 102 | 0.12 133 | 0.11 85 | 0.20 98 | 0.30 135 | 0.65 130 | 0.60 146 |
GroupFlow [9] | 125.8 | 0.10 124 | 0.25 134 | 0.14 146 | 0.40 147 | 1.06 153 | 0.44 149 | 0.23 137 | 0.80 150 | 0.37 145 | 0.12 125 | 0.45 131 | 0.13 128 | 0.52 150 | 1.05 156 | 0.24 115 | 0.22 151 | 0.89 151 | 0.25 150 | 0.06 12 | 0.09 25 | 0.09 13 | 0.31 138 | 0.93 148 | 0.43 140 |
LFNet_ROB [145] | 126.2 | 0.11 131 | 0.41 154 | 0.09 120 | 0.22 125 | 0.60 134 | 0.20 117 | 0.23 137 | 0.65 142 | 0.19 116 | 0.10 119 | 0.49 139 | 0.10 118 | 0.50 148 | 0.84 147 | 0.44 146 | 0.17 139 | 0.54 140 | 0.16 131 | 0.10 109 | 0.15 142 | 0.12 34 | 0.25 108 | 0.68 135 | 0.25 99 |
2bit-BM-tele [96] | 126.4 | 0.15 151 | 0.20 123 | 0.19 153 | 0.23 127 | 0.37 96 | 0.26 128 | 0.20 131 | 0.27 113 | 0.23 124 | 0.18 143 | 0.30 103 | 0.19 142 | 0.24 89 | 0.39 80 | 0.22 109 | 0.20 148 | 0.38 116 | 0.23 148 | 0.16 155 | 0.17 156 | 0.50 160 | 0.25 108 | 0.52 101 | 0.35 129 |
GraphCuts [14] | 126.5 | 0.10 124 | 0.20 123 | 0.11 128 | 0.21 122 | 0.64 138 | 0.22 121 | 0.17 119 | 0.30 121 | 0.27 131 | 0.09 117 | 0.45 131 | 0.08 107 | 0.30 120 | 0.55 126 | 0.29 125 | 0.16 134 | 0.28 91 | 0.16 131 | 0.13 140 | 0.13 117 | 0.30 141 | 0.37 149 | 0.69 137 | 0.56 144 |
AugFNG_ROB [139] | 129.2 | 0.12 136 | 0.27 138 | 0.09 120 | 0.37 143 | 0.77 145 | 0.42 146 | 0.23 137 | 0.66 143 | 0.31 137 | 0.14 131 | 0.34 118 | 0.13 128 | 0.51 149 | 0.88 152 | 0.33 131 | 0.15 126 | 0.50 134 | 0.17 138 | 0.09 83 | 0.12 105 | 0.13 44 | 0.33 142 | 0.90 147 | 0.34 127 |
ResPWCR_ROB [140] | 131.5 | 0.13 143 | 0.32 147 | 0.12 134 | 0.21 122 | 0.51 126 | 0.21 119 | 0.22 134 | 0.48 134 | 0.23 124 | 0.14 131 | 0.47 134 | 0.14 131 | 0.38 132 | 0.62 130 | 0.34 135 | 0.19 147 | 0.54 140 | 0.18 142 | 0.12 133 | 0.15 142 | 0.16 67 | 0.32 141 | 0.68 135 | 0.36 133 |
SILK [80] | 134.5 | 0.13 143 | 0.31 145 | 0.21 155 | 0.37 143 | 0.82 146 | 0.43 147 | 0.22 134 | 0.77 148 | 0.31 137 | 0.20 146 | 0.73 145 | 0.22 145 | 0.53 151 | 0.86 149 | 0.79 155 | 0.21 149 | 0.97 153 | 0.21 147 | 0.06 12 | 0.10 58 | 0.15 64 | 0.44 152 | 1.03 151 | 0.86 153 |
IRR-PWC_RVC [180] | 135.2 | 0.14 148 | 0.30 143 | 0.11 128 | 0.37 143 | 0.74 143 | 0.40 143 | 0.30 149 | 0.66 143 | 0.43 148 | 0.15 135 | 0.42 125 | 0.14 131 | 0.43 138 | 0.73 138 | 0.28 123 | 0.18 143 | 0.50 134 | 0.16 131 | 0.14 141 | 0.16 150 | 0.16 67 | 0.31 138 | 0.71 138 | 0.33 125 |
Nguyen [33] | 135.5 | 0.12 136 | 0.23 127 | 0.13 141 | 0.60 156 | 0.63 137 | 0.87 158 | 0.26 144 | 0.61 140 | 0.36 143 | 0.40 151 | 0.84 148 | 0.51 152 | 0.40 135 | 0.63 132 | 0.59 149 | 0.17 139 | 0.48 132 | 0.20 146 | 0.10 109 | 0.10 58 | 0.16 67 | 0.40 151 | 0.84 145 | 1.04 157 |
EPMNet [131] | 136.4 | 0.13 143 | 0.30 143 | 0.13 141 | 0.38 146 | 0.90 149 | 0.41 144 | 0.25 143 | 0.44 130 | 0.43 148 | 0.15 135 | 0.33 114 | 0.16 137 | 0.47 141 | 0.75 141 | 0.35 138 | 0.18 143 | 0.42 126 | 0.19 144 | 0.14 141 | 0.15 142 | 0.21 105 | 0.28 128 | 0.85 146 | 0.26 105 |
Horn & Schunck [3] | 137.0 | 0.11 131 | 0.35 149 | 0.16 150 | 0.26 132 | 0.87 148 | 0.27 131 | 0.22 134 | 0.83 153 | 0.28 134 | 0.17 142 | 0.87 149 | 0.22 145 | 0.48 145 | 0.78 143 | 0.70 151 | 0.15 126 | 1.07 155 | 0.15 125 | 0.12 133 | 0.14 130 | 0.10 20 | 0.47 155 | 1.26 156 | 0.84 152 |
FlowNet2 [120] | 137.6 | 0.13 143 | 0.24 131 | 0.13 141 | 0.40 147 | 0.83 147 | 0.44 149 | 0.27 146 | 0.46 133 | 0.45 152 | 0.16 139 | 0.26 91 | 0.16 137 | 0.47 141 | 0.75 141 | 0.35 138 | 0.18 143 | 0.42 126 | 0.19 144 | 0.16 155 | 0.18 158 | 0.25 130 | 0.28 128 | 0.66 131 | 0.28 111 |
UnFlow [127] | 143.2 | 0.23 160 | 0.39 152 | 0.16 150 | 0.53 154 | 1.01 151 | 0.54 152 | 0.46 156 | 1.10 157 | 0.46 154 | 0.21 147 | 0.79 147 | 0.20 143 | 0.77 157 | 1.12 159 | 0.85 156 | 0.27 155 | 0.87 150 | 0.28 153 | 0.12 133 | 0.14 130 | 0.11 27 | 0.27 125 | 0.77 141 | 0.35 129 |
Periodicity [79] | 143.7 | 0.14 148 | 0.32 147 | 0.11 128 | 0.29 137 | 1.16 155 | 0.31 137 | 0.51 158 | 0.74 146 | 0.66 159 | 0.49 156 | 1.53 156 | 0.43 150 | 1.23 163 | 2.67 163 | 0.95 158 | 0.41 158 | 3.18 199 | 0.37 157 | 0.08 62 | 0.14 130 | 0.09 13 | 0.48 156 | 2.09 162 | 0.79 150 |
SLK [47] | 144.8 | 0.11 131 | 0.50 161 | 0.17 152 | 0.77 159 | 1.27 159 | 1.02 161 | 0.30 149 | 1.11 158 | 0.44 150 | 1.08 163 | 1.23 154 | 1.28 163 | 0.77 157 | 1.07 157 | 1.27 160 | 0.21 149 | 1.22 157 | 0.28 153 | 0.07 37 | 0.14 130 | 0.12 34 | 0.80 161 | 1.44 158 | 1.95 161 |
TI-DOFE [24] | 145.0 | 0.22 159 | 0.42 157 | 0.38 162 | 0.80 160 | 1.16 155 | 0.99 160 | 0.46 156 | 1.15 161 | 0.59 158 | 0.72 158 | 1.38 155 | 0.96 161 | 0.53 151 | 0.86 149 | 0.76 154 | 0.16 134 | 1.12 156 | 0.23 148 | 0.09 83 | 0.12 105 | 0.10 20 | 0.75 159 | 1.45 159 | 1.48 159 |
Heeger++ [102] | 145.9 | 0.21 158 | 0.46 159 | 0.13 141 | 0.47 152 | 1.50 162 | 0.38 141 | 0.76 161 | 0.99 156 | 0.79 161 | 0.76 159 | 1.54 157 | 0.72 158 | 0.89 161 | 1.26 161 | 1.06 159 | 0.68 163 | 1.77 161 | 0.68 163 | 0.08 62 | 0.16 150 | 0.13 44 | 0.33 142 | 1.07 154 | 0.29 116 |
FOLKI [16] | 149.0 | 0.12 136 | 0.43 158 | 0.22 157 | 0.47 152 | 1.13 154 | 0.69 155 | 0.24 141 | 1.11 158 | 0.32 139 | 0.22 148 | 1.12 150 | 0.29 148 | 0.58 154 | 0.97 154 | 0.90 157 | 0.22 151 | 1.29 159 | 0.32 156 | 0.09 83 | 0.16 150 | 0.28 137 | 0.68 158 | 1.55 160 | 2.32 162 |
FFV1MT [104] | 149.9 | 0.18 155 | 0.39 152 | 0.15 148 | 0.41 149 | 1.31 160 | 0.37 139 | 0.81 162 | 1.12 160 | 1.00 162 | 0.77 160 | 2.09 162 | 0.75 159 | 0.87 159 | 1.24 160 | 1.40 162 | 0.64 162 | 1.64 160 | 0.64 162 | 0.11 125 | 0.14 130 | 0.20 98 | 0.33 142 | 1.07 154 | 0.29 116 |
H+S_RVC [176] | 151.2 | 0.15 151 | 0.54 162 | 0.14 146 | 0.64 157 | 1.42 161 | 0.68 154 | 0.54 159 | 1.16 162 | 0.49 156 | 1.05 161 | 1.58 158 | 1.23 162 | 0.88 160 | 1.09 158 | 1.60 163 | 0.46 159 | 1.88 162 | 0.59 161 | 0.08 62 | 0.15 142 | 0.19 91 | 1.30 162 | 1.70 161 | 1.68 160 |
Adaptive flow [45] | 152.4 | 0.25 161 | 0.35 149 | 0.33 160 | 0.64 157 | 0.92 150 | 0.73 157 | 0.36 154 | 0.82 152 | 0.47 155 | 0.39 150 | 1.17 152 | 0.43 150 | 0.48 145 | 0.74 139 | 0.42 144 | 0.38 157 | 0.86 149 | 0.38 158 | 0.33 162 | 0.26 162 | 1.16 161 | 0.38 150 | 0.75 140 | 0.56 144 |
PGAM+LK [55] | 155.3 | 0.17 154 | 0.48 160 | 0.23 158 | 0.43 150 | 1.18 157 | 0.50 151 | 0.32 152 | 0.94 155 | 0.41 147 | 0.37 149 | 2.27 163 | 0.38 149 | 0.64 155 | 1.03 155 | 0.73 153 | 0.32 156 | 1.28 158 | 0.28 153 | 0.23 161 | 0.23 161 | 0.49 159 | 0.61 157 | 1.42 157 | 1.13 158 |
HCIC-L [97] | 157.5 | 0.31 163 | 0.41 154 | 0.21 155 | 1.17 163 | 1.24 158 | 1.42 163 | 0.72 160 | 0.78 149 | 1.35 163 | 0.69 157 | 1.72 159 | 0.69 157 | 0.73 156 | 0.88 152 | 0.69 150 | 0.53 160 | 0.71 147 | 0.52 160 | 0.58 163 | 0.44 163 | 1.19 163 | 0.75 159 | 1.03 151 | 1.00 156 |
Pyramid LK [2] | 157.9 | 0.20 157 | 0.36 151 | 0.40 163 | 0.87 161 | 1.02 152 | 1.40 162 | 0.38 155 | 0.91 154 | 0.71 160 | 0.43 154 | 1.73 160 | 0.61 154 | 0.94 162 | 1.69 162 | 1.39 161 | 0.55 161 | 1.01 154 | 0.50 159 | 0.16 155 | 0.18 158 | 0.32 146 | 1.59 163 | 2.85 163 | 4.45 163 |
AdaConv-v1 [124] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
SepConv-v1 [125] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
SuperSlomo [130] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
CtxSyn [134] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
CyclicGen [149] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
TOF-M [150] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
MPRN [151] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
DAIN [152] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
FRUCnet [153] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
OFRI [154] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
FGME [158] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
MS-PFT [159] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
MEMC-Net+ [160] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
ADC [161] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
DSepConv [162] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
MAF-net [163] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
STAR-Net [164] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
AdaCoF [165] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
TC-GAN [166] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
FeFlow [167] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
DAI [168] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
SoftSplat [169] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
STSR [170] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
BMBC [171] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
GDCN [172] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
EDSC [173] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
MV_VFI [183] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
DistillNet [184] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
SepConv++ [185] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
EAFI [186] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
FLAVR [188] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
SoftsplatAug [190] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
ProBoost-Net [191] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
IDIAL [192] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
IFRNet [193] | 164.3 | 0.86 164 | 0.85 164 | 0.90 164 | 4.02 164 | 4.67 164 | 3.77 164 | 2.99 164 | 2.69 164 | 3.45 164 | 1.75 164 | 3.37 164 | 1.75 164 | 6.24 165 | 6.82 164 | 6.91 165 | 5.00 165 | 2.89 164 | 4.51 165 | 1.61 165 | 1.10 165 | 3.12 165 | 7.52 164 | 8.25 164 | 8.00 164 |
AVG_FLOW_ROB [137] | 187.3 | 1.66 199 | 1.43 199 | 2.36 199 | 5.38 199 | 5.70 199 | 4.66 199 | 4.35 199 | 3.64 199 | 5.11 199 | 4.26 199 | 3.71 199 | 4.38 199 | 4.81 164 | 6.90 199 | 4.21 164 | 3.76 164 | 2.72 163 | 3.38 164 | 1.19 164 | 0.81 164 | 1.79 164 | 7.80 199 | 8.75 199 | 8.04 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |