Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
R2.0 endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
NNF-Local [75] | 8.9 | 0.19 30 | 1.11 34 | 0.00 1 | 0.73 5 | 5.01 5 | 0.12 5 | 1.08 5 | 3.84 4 | 0.00 1 | 0.54 12 | 4.91 14 | 0.02 9 | 4.35 3 | 7.43 3 | 0.89 2 | 1.53 7 | 8.39 8 | 1.54 10 | 0.00 1 | 0.00 1 | 0.00 1 | 3.65 15 | 12.4 30 | 1.32 7 |
RAFT-it+_RVC [198] | 9.7 | 0.21 51 | 1.23 51 | 0.03 61 | 0.66 4 | 4.99 4 | 0.00 1 | 0.75 1 | 2.67 1 | 0.12 10 | 0.44 9 | 4.66 12 | 0.00 1 | 4.34 2 | 7.32 2 | 0.99 3 | 0.57 2 | 4.30 3 | 0.01 1 | 0.00 1 | 0.00 1 | 0.00 1 | 2.09 4 | 7.69 4 | 0.73 3 |
RAFT-it [194] | 10.2 | 0.19 30 | 1.14 37 | 0.03 61 | 0.89 12 | 5.66 12 | 0.11 4 | 1.12 6 | 4.00 7 | 0.37 33 | 0.19 6 | 2.07 6 | 0.00 1 | 5.27 5 | 8.96 5 | 1.62 8 | 0.52 1 | 3.21 1 | 0.46 3 | 0.00 1 | 0.00 1 | 0.00 1 | 1.66 2 | 6.10 2 | 0.42 1 |
GMFlow_RVC [196] | 10.5 | 0.18 21 | 1.08 28 | 0.03 61 | 0.55 1 | 4.15 1 | 0.01 2 | 0.90 2 | 3.13 2 | 0.44 40 | 0.64 15 | 4.63 11 | 0.14 15 | 5.33 6 | 8.98 6 | 1.54 7 | 1.40 6 | 7.49 7 | 1.35 7 | 0.00 1 | 0.00 1 | 0.00 1 | 1.77 3 | 6.47 3 | 0.99 4 |
PMMST [112] | 13.4 | 0.20 38 | 1.20 45 | 0.03 61 | 0.57 2 | 4.20 2 | 0.21 16 | 1.12 6 | 3.98 6 | 0.06 5 | 0.16 5 | 1.79 5 | 0.00 1 | 6.17 10 | 10.4 10 | 2.09 11 | 2.24 10 | 10.3 12 | 3.42 39 | 0.00 1 | 0.00 1 | 0.00 1 | 3.14 9 | 10.1 12 | 3.34 14 |
NN-field [71] | 15.9 | 0.23 71 | 1.37 73 | 0.00 1 | 0.64 3 | 4.87 3 | 0.07 3 | 1.23 10 | 4.31 8 | 0.03 3 | 0.60 14 | 5.03 15 | 0.04 10 | 4.24 1 | 7.24 1 | 0.70 1 | 5.93 70 | 6.73 6 | 2.33 18 | 0.00 1 | 0.00 1 | 0.00 1 | 3.87 19 | 13.1 42 | 1.27 6 |
MS_RAFT+_RVC [195] | 17.2 | 0.18 21 | 1.06 23 | 0.05 92 | 1.35 38 | 5.59 11 | 0.87 79 | 1.60 16 | 5.66 17 | 0.77 69 | 0.35 8 | 3.84 9 | 0.00 1 | 4.51 4 | 7.68 4 | 1.17 5 | 0.58 3 | 3.30 2 | 0.49 4 | 0.00 1 | 0.00 1 | 0.00 1 | 1.31 1 | 4.47 1 | 0.49 2 |
OFLAF [78] | 18.9 | 0.20 38 | 1.21 46 | 0.00 1 | 0.92 15 | 5.66 12 | 0.25 21 | 1.22 8 | 4.32 9 | 0.12 10 | 1.03 31 | 8.42 33 | 0.22 42 | 7.31 17 | 12.4 17 | 2.79 15 | 3.20 23 | 11.6 15 | 3.15 34 | 0.00 1 | 0.00 1 | 0.00 1 | 3.66 16 | 9.73 11 | 7.15 36 |
RAFT-TF_RVC [179] | 22.0 | 0.31 107 | 1.83 111 | 0.03 61 | 0.90 13 | 5.96 16 | 0.14 7 | 1.80 23 | 6.24 24 | 1.47 107 | 0.13 3 | 1.41 3 | 0.00 1 | 5.34 7 | 9.09 7 | 1.25 6 | 0.68 4 | 4.55 4 | 0.15 2 | 0.00 1 | 0.00 1 | 0.00 1 | 2.62 6 | 9.40 7 | 1.08 5 |
MCPFlow_RVC [197] | 23.8 | 0.21 51 | 1.24 56 | 0.03 61 | 1.42 45 | 7.49 30 | 0.49 43 | 2.10 26 | 7.32 27 | 0.99 84 | 0.50 11 | 4.52 10 | 0.20 34 | 6.02 8 | 10.2 9 | 1.15 4 | 1.57 8 | 8.53 9 | 0.63 5 | 0.00 1 | 0.00 1 | 0.00 1 | 3.75 17 | 11.2 18 | 3.21 12 |
ComponentFusion [94] | 25.2 | 0.17 15 | 1.02 19 | 0.03 61 | 0.93 16 | 6.31 18 | 0.23 20 | 1.48 13 | 5.26 13 | 0.22 18 | 0.68 16 | 6.90 23 | 0.05 11 | 10.5 55 | 17.2 58 | 7.34 57 | 3.34 25 | 15.8 45 | 3.80 52 | 0.00 1 | 0.00 1 | 0.00 1 | 3.81 18 | 11.2 18 | 6.45 30 |
MDP-Flow2 [68] | 25.6 | 0.18 21 | 1.07 25 | 0.03 61 | 0.82 7 | 5.18 6 | 0.20 14 | 1.31 11 | 4.69 11 | 0.09 8 | 1.24 66 | 11.0 76 | 0.24 52 | 9.23 41 | 15.2 44 | 5.96 42 | 2.65 14 | 11.8 17 | 3.56 43 | 0.00 1 | 0.00 1 | 0.00 1 | 3.61 14 | 11.1 16 | 5.40 22 |
Layers++ [37] | 25.7 | 0.15 7 | 0.90 10 | 0.00 1 | 0.88 11 | 6.28 17 | 0.29 25 | 1.61 18 | 5.50 16 | 0.95 83 | 0.92 26 | 5.94 17 | 0.24 52 | 6.07 9 | 9.99 8 | 3.95 22 | 6.14 76 | 15.3 38 | 5.23 96 | 0.00 1 | 0.00 1 | 0.00 1 | 4.11 23 | 10.5 13 | 7.50 46 |
TC/T-Flow [77] | 25.9 | 0.11 2 | 0.67 2 | 0.00 1 | 1.63 60 | 8.48 41 | 0.45 37 | 2.21 29 | 7.45 30 | 0.16 14 | 1.20 59 | 10.2 68 | 0.16 16 | 9.34 44 | 14.9 40 | 6.04 43 | 1.76 9 | 9.86 11 | 1.36 8 | 0.00 1 | 0.00 1 | 0.00 1 | 4.64 35 | 12.6 33 | 7.19 37 |
PRAFlow_RVC [177] | 26.5 | 0.27 92 | 1.59 93 | 0.04 86 | 0.96 17 | 6.49 20 | 0.20 14 | 2.36 34 | 8.21 40 | 1.24 96 | 0.78 20 | 6.10 18 | 0.12 13 | 6.74 14 | 11.3 13 | 3.17 16 | 1.15 5 | 6.29 5 | 1.19 6 | 0.00 1 | 0.00 1 | 0.00 1 | 3.33 10 | 9.65 10 | 2.98 10 |
VCN_RVC [178] | 29.4 | 0.22 62 | 1.30 64 | 0.00 1 | 1.26 32 | 8.68 44 | 0.35 29 | 1.51 15 | 5.37 15 | 0.76 68 | 1.00 28 | 7.56 27 | 0.17 25 | 8.68 33 | 14.6 35 | 3.68 19 | 4.80 51 | 11.9 18 | 2.78 26 | 0.00 1 | 0.00 1 | 0.00 1 | 4.42 30 | 14.3 56 | 5.70 25 |
PWC-Net_RVC [143] | 30.5 | 0.15 7 | 0.89 8 | 0.01 37 | 1.39 44 | 10.0 64 | 0.40 34 | 2.59 50 | 8.97 53 | 0.71 67 | 0.59 13 | 4.66 12 | 0.16 16 | 9.75 51 | 16.4 53 | 4.25 24 | 6.09 73 | 15.2 35 | 3.22 35 | 0.00 1 | 0.00 1 | 0.00 1 | 3.57 13 | 12.1 28 | 3.32 13 |
CombBMOF [111] | 30.8 | 0.20 38 | 1.18 40 | 0.03 61 | 1.05 21 | 6.42 19 | 0.16 8 | 1.66 20 | 5.67 18 | 0.01 2 | 0.79 21 | 6.82 22 | 0.16 16 | 7.66 20 | 12.5 19 | 4.37 26 | 8.16 113 | 15.3 38 | 7.67 142 | 0.00 1 | 0.00 1 | 0.00 1 | 4.31 27 | 11.0 15 | 7.79 51 |
3DFlow [133] | 31.7 | 0.26 86 | 1.57 91 | 0.00 1 | 1.31 36 | 9.13 52 | 0.31 27 | 2.56 48 | 8.87 50 | 0.25 20 | 0.11 2 | 1.19 2 | 0.00 1 | 8.69 34 | 14.2 32 | 5.21 34 | 8.16 113 | 15.8 45 | 4.22 61 | 0.00 1 | 0.00 1 | 0.00 1 | 2.86 7 | 9.33 6 | 2.36 9 |
NNF-EAC [101] | 31.7 | 0.17 15 | 1.03 20 | 0.01 37 | 1.01 18 | 5.78 15 | 0.38 33 | 1.81 24 | 6.09 22 | 0.13 12 | 1.27 70 | 11.4 80 | 0.24 52 | 8.50 29 | 14.2 32 | 5.00 33 | 4.85 53 | 12.2 20 | 4.55 72 | 0.00 1 | 0.00 1 | 0.00 1 | 4.77 39 | 13.1 42 | 7.37 40 |
WLIF-Flow [91] | 32.5 | 0.20 38 | 1.21 46 | 0.01 37 | 0.91 14 | 5.77 14 | 0.26 23 | 2.30 32 | 7.50 31 | 0.38 35 | 1.10 41 | 8.71 37 | 0.25 66 | 8.40 28 | 14.0 28 | 4.94 32 | 4.91 55 | 13.0 25 | 3.79 51 | 0.00 1 | 0.00 1 | 0.00 1 | 4.98 45 | 12.6 33 | 8.37 65 |
MLDP_OF [87] | 33.0 | 0.17 15 | 1.00 17 | 0.00 1 | 0.82 7 | 5.37 9 | 0.13 6 | 2.62 51 | 8.28 42 | 0.15 13 | 1.01 30 | 8.41 32 | 0.17 25 | 8.84 35 | 14.4 34 | 5.24 36 | 2.41 12 | 11.1 13 | 1.54 10 | 0.29 140 | 0.00 1 | 1.28 143 | 5.41 58 | 12.9 39 | 5.66 24 |
FC-2Layers-FF [74] | 33.5 | 0.19 30 | 1.10 31 | 0.00 1 | 1.53 52 | 10.0 64 | 0.68 61 | 1.47 12 | 5.05 12 | 0.37 33 | 1.07 37 | 8.29 31 | 0.22 42 | 6.46 11 | 10.5 11 | 3.24 17 | 6.93 91 | 15.2 35 | 5.43 103 | 0.00 1 | 0.00 1 | 0.00 1 | 4.89 41 | 12.6 33 | 7.93 53 |
HCFN [157] | 33.6 | 0.14 5 | 0.84 5 | 0.03 61 | 1.28 35 | 8.07 37 | 0.64 57 | 1.63 19 | 5.81 21 | 0.33 26 | 1.13 45 | 9.21 52 | 0.18 29 | 8.94 37 | 14.6 35 | 5.43 37 | 3.71 33 | 12.6 22 | 2.36 19 | 0.00 1 | 0.00 1 | 0.00 1 | 5.79 68 | 15.5 61 | 10.6 100 |
CoT-AMFlow [174] | 33.8 | 0.18 21 | 1.09 29 | 0.03 61 | 0.81 6 | 5.19 7 | 0.26 23 | 1.74 22 | 6.17 23 | 0.70 66 | 1.28 72 | 11.4 80 | 0.25 66 | 9.52 48 | 15.2 44 | 7.79 63 | 2.74 15 | 12.4 21 | 3.73 49 | 0.00 1 | 0.00 1 | 0.00 1 | 4.20 25 | 11.7 24 | 7.48 43 |
nLayers [57] | 34.1 | 0.19 30 | 1.13 36 | 0.00 1 | 1.04 20 | 7.08 28 | 0.31 27 | 2.42 40 | 8.37 45 | 0.50 43 | 1.10 41 | 8.82 39 | 0.38 84 | 6.91 15 | 11.4 15 | 3.98 23 | 6.52 82 | 12.6 22 | 5.28 98 | 0.00 1 | 0.00 1 | 0.00 1 | 4.63 34 | 12.5 32 | 8.25 61 |
FlowFields+ [128] | 35.0 | 0.15 7 | 0.88 7 | 0.01 37 | 1.38 42 | 8.90 49 | 0.68 61 | 2.23 31 | 7.99 34 | 0.44 40 | 0.70 17 | 6.60 21 | 0.20 34 | 12.0 67 | 19.4 70 | 7.65 62 | 2.62 13 | 16.5 60 | 1.82 14 | 0.00 1 | 0.00 1 | 0.00 1 | 5.64 65 | 18.0 78 | 5.92 27 |
IIOF-NLDP [129] | 35.0 | 0.32 112 | 1.90 114 | 0.00 1 | 1.27 33 | 8.57 42 | 0.16 8 | 3.02 65 | 9.58 60 | 0.20 15 | 0.48 10 | 3.49 8 | 0.13 14 | 9.15 39 | 14.9 40 | 4.86 30 | 6.07 72 | 14.8 34 | 4.05 59 | 0.00 1 | 0.00 1 | 0.00 1 | 4.43 31 | 12.0 26 | 5.52 23 |
Correlation Flow [76] | 35.4 | 0.25 82 | 1.46 83 | 0.00 1 | 1.10 25 | 7.16 29 | 0.22 18 | 4.18 86 | 12.3 82 | 0.35 30 | 0.74 18 | 5.14 16 | 0.22 42 | 11.5 62 | 17.7 60 | 9.04 78 | 4.12 42 | 13.1 26 | 2.69 24 | 0.00 1 | 0.00 1 | 0.00 1 | 3.48 11 | 10.9 14 | 3.71 17 |
UnDAF [187] | 36.3 | 0.26 86 | 1.57 91 | 0.03 61 | 0.83 9 | 5.28 8 | 0.25 21 | 1.60 16 | 5.70 19 | 0.38 35 | 1.27 70 | 11.2 79 | 0.24 52 | 9.48 46 | 15.5 49 | 6.61 50 | 2.81 18 | 12.7 24 | 3.69 47 | 0.00 1 | 0.00 1 | 0.00 1 | 4.13 24 | 11.7 24 | 7.21 39 |
PH-Flow [99] | 37.9 | 0.20 38 | 1.16 38 | 0.00 1 | 1.36 39 | 7.94 35 | 0.53 47 | 1.69 21 | 5.76 20 | 0.64 60 | 1.10 41 | 8.60 36 | 0.24 52 | 6.59 12 | 11.1 12 | 3.26 18 | 3.52 29 | 11.6 15 | 3.39 37 | 0.13 130 | 0.00 1 | 0.44 125 | 4.21 26 | 11.4 21 | 7.94 56 |
PMF [73] | 38.6 | 0.20 38 | 1.19 42 | 0.03 61 | 1.06 24 | 6.51 21 | 0.18 11 | 1.50 14 | 5.33 14 | 0.09 8 | 1.26 69 | 9.04 46 | 0.23 46 | 7.32 18 | 12.4 17 | 1.91 9 | 5.47 62 | 16.3 52 | 4.67 76 | 0.09 124 | 0.00 1 | 0.25 120 | 3.51 12 | 9.50 8 | 6.99 34 |
AGIF+OF [84] | 38.6 | 0.21 51 | 1.25 60 | 0.00 1 | 1.48 50 | 8.75 46 | 0.37 31 | 2.50 45 | 8.15 38 | 0.38 35 | 1.14 48 | 8.88 40 | 0.23 46 | 7.56 19 | 12.5 19 | 4.30 25 | 6.71 85 | 15.2 35 | 4.99 87 | 0.00 1 | 0.00 1 | 0.00 1 | 5.07 49 | 13.0 41 | 8.68 73 |
IROF++ [58] | 39.1 | 0.23 71 | 1.37 73 | 0.00 1 | 1.37 41 | 8.26 39 | 0.45 37 | 2.40 38 | 7.86 32 | 0.51 46 | 1.16 55 | 9.50 59 | 0.24 52 | 8.06 24 | 13.2 23 | 4.86 30 | 5.64 67 | 16.4 55 | 4.51 70 | 0.00 1 | 0.00 1 | 0.00 1 | 4.62 32 | 12.7 38 | 7.93 53 |
HAST [107] | 39.8 | 0.21 51 | 1.27 62 | 0.03 61 | 1.55 55 | 6.58 22 | 0.85 77 | 1.07 4 | 3.84 4 | 0.06 5 | 1.18 58 | 9.57 61 | 0.19 32 | 6.70 13 | 11.3 13 | 2.10 12 | 5.68 68 | 14.2 30 | 5.14 94 | 0.01 106 | 0.00 1 | 0.05 109 | 2.21 5 | 7.87 5 | 2.21 8 |
ProbFlowFields [126] | 40.7 | 0.20 38 | 1.18 40 | 0.03 61 | 1.25 30 | 7.90 34 | 0.64 57 | 2.55 47 | 8.95 51 | 1.08 89 | 0.25 7 | 2.68 7 | 0.05 11 | 12.5 78 | 19.9 76 | 8.91 76 | 2.82 19 | 15.8 45 | 2.70 25 | 0.00 1 | 0.00 1 | 0.00 1 | 5.90 71 | 18.1 79 | 6.95 33 |
SVFilterOh [109] | 43.3 | 0.22 62 | 1.31 65 | 0.05 92 | 1.14 27 | 6.84 25 | 0.30 26 | 2.13 27 | 7.39 28 | 0.69 65 | 0.86 22 | 7.24 25 | 0.16 16 | 8.17 25 | 13.8 26 | 2.18 13 | 6.69 83 | 15.3 38 | 4.47 69 | 0.27 139 | 0.00 1 | 0.74 130 | 2.89 8 | 9.59 9 | 3.97 19 |
TC-Flow [46] | 43.5 | 0.13 3 | 0.77 3 | 0.00 1 | 1.38 42 | 8.10 38 | 0.47 40 | 2.97 64 | 10.0 65 | 0.34 28 | 1.36 80 | 10.5 74 | 0.25 66 | 11.2 59 | 18.1 62 | 7.49 59 | 3.36 26 | 17.1 69 | 1.78 13 | 0.00 1 | 0.00 1 | 0.00 1 | 6.35 77 | 17.8 77 | 10.0 95 |
EPPM w/o HM [86] | 43.6 | 0.21 51 | 1.25 60 | 0.03 61 | 1.05 21 | 6.95 27 | 0.19 12 | 2.42 40 | 8.24 41 | 0.08 7 | 1.00 28 | 7.81 29 | 0.21 39 | 7.69 21 | 13.0 21 | 2.55 14 | 6.45 81 | 18.5 84 | 4.04 58 | 0.43 147 | 0.00 1 | 0.76 131 | 3.98 21 | 11.1 16 | 7.10 35 |
CostFilter [40] | 44.0 | 0.22 62 | 1.32 69 | 0.03 61 | 1.16 28 | 6.61 23 | 0.22 18 | 1.22 8 | 4.37 10 | 0.21 17 | 1.29 73 | 10.2 68 | 0.21 39 | 7.77 22 | 13.2 23 | 2.07 10 | 5.43 60 | 15.9 49 | 3.96 57 | 0.07 121 | 0.00 1 | 0.12 114 | 4.75 38 | 13.5 49 | 7.19 37 |
FlowFields [108] | 46.8 | 0.16 12 | 0.97 13 | 0.02 56 | 1.54 54 | 9.90 63 | 0.72 65 | 2.38 36 | 8.48 47 | 0.58 57 | 1.03 31 | 9.05 47 | 0.31 76 | 12.5 78 | 20.3 83 | 8.76 75 | 3.16 22 | 18.0 83 | 3.08 33 | 0.00 1 | 0.00 1 | 0.00 1 | 6.22 75 | 19.0 82 | 6.76 31 |
ALD-Flow [66] | 46.9 | 0.14 5 | 0.85 6 | 0.01 37 | 1.70 63 | 8.34 40 | 0.50 44 | 2.94 62 | 9.96 64 | 0.38 35 | 1.68 92 | 13.0 90 | 0.32 78 | 11.8 66 | 18.8 67 | 8.42 72 | 2.93 20 | 16.4 55 | 1.70 12 | 0.00 1 | 0.00 1 | 0.00 1 | 5.91 73 | 17.4 73 | 8.45 68 |
C-RAFT_RVC [181] | 47.9 | 0.21 51 | 1.24 56 | 0.03 61 | 2.91 114 | 12.3 91 | 1.74 116 | 3.29 69 | 11.4 73 | 1.02 86 | 0.77 19 | 6.11 19 | 0.17 25 | 12.6 81 | 19.9 76 | 9.24 84 | 2.33 11 | 11.5 14 | 1.98 15 | 0.00 1 | 0.00 1 | 0.00 1 | 4.04 22 | 13.5 49 | 3.38 15 |
COFM [59] | 48.2 | 0.28 96 | 1.64 96 | 0.06 98 | 1.31 36 | 7.81 32 | 0.57 52 | 3.57 76 | 12.0 79 | 1.10 91 | 0.91 25 | 7.78 28 | 0.16 16 | 11.7 65 | 18.5 66 | 10.3 96 | 4.05 39 | 13.7 29 | 4.28 64 | 0.00 1 | 0.00 1 | 0.00 1 | 3.96 20 | 11.5 22 | 6.40 29 |
WRT [146] | 48.4 | 0.37 118 | 2.21 122 | 0.00 1 | 1.78 68 | 11.7 80 | 0.42 36 | 5.99 115 | 14.9 105 | 0.52 49 | 0.10 1 | 1.14 1 | 0.00 1 | 9.05 38 | 14.7 38 | 5.43 37 | 8.84 126 | 15.6 42 | 4.60 75 | 0.00 1 | 0.00 1 | 0.00 1 | 5.13 51 | 12.2 29 | 5.72 26 |
RNLOD-Flow [119] | 48.5 | 0.17 15 | 1.03 20 | 0.00 1 | 1.50 51 | 9.63 58 | 0.56 51 | 3.15 68 | 10.1 67 | 0.56 55 | 1.14 48 | 9.02 45 | 0.20 34 | 9.73 50 | 15.7 50 | 6.54 49 | 5.43 60 | 14.7 32 | 4.56 74 | 0.06 119 | 0.00 1 | 0.34 121 | 4.41 28 | 11.3 20 | 7.56 47 |
LSM [39] | 48.6 | 0.21 51 | 1.23 51 | 0.00 1 | 1.88 77 | 11.5 78 | 0.82 74 | 2.45 42 | 8.04 35 | 0.52 49 | 1.12 44 | 9.06 48 | 0.23 46 | 9.27 43 | 15.1 43 | 6.05 44 | 7.21 96 | 16.5 60 | 5.47 104 | 0.00 1 | 0.00 1 | 0.00 1 | 5.29 55 | 13.8 52 | 8.49 70 |
Sparse-NonSparse [56] | 48.8 | 0.22 62 | 1.31 65 | 0.00 1 | 1.87 75 | 11.4 77 | 0.80 72 | 2.47 44 | 8.05 36 | 0.52 49 | 1.15 54 | 8.89 41 | 0.24 52 | 9.37 45 | 15.3 46 | 5.94 41 | 7.18 94 | 16.3 52 | 5.47 104 | 0.00 1 | 0.00 1 | 0.00 1 | 5.08 50 | 13.1 42 | 8.42 66 |
S2F-IF [121] | 49.0 | 0.18 21 | 1.07 25 | 0.02 56 | 1.53 52 | 10.0 64 | 0.72 65 | 2.37 35 | 8.45 46 | 0.54 52 | 1.21 60 | 9.59 62 | 0.35 80 | 12.7 83 | 20.3 83 | 9.20 83 | 3.41 27 | 17.7 78 | 3.70 48 | 0.00 1 | 0.00 1 | 0.00 1 | 5.36 57 | 16.5 67 | 6.13 28 |
FMOF [92] | 50.0 | 0.20 38 | 1.19 42 | 0.00 1 | 1.61 58 | 9.42 55 | 0.53 47 | 2.03 25 | 6.86 25 | 0.22 18 | 1.04 33 | 8.71 37 | 0.16 16 | 8.59 30 | 14.0 28 | 4.44 27 | 7.80 106 | 16.2 50 | 5.73 113 | 0.09 124 | 0.00 1 | 0.81 133 | 5.75 67 | 14.6 59 | 8.44 67 |
HBM-GC [103] | 50.0 | 0.29 99 | 1.72 103 | 0.03 61 | 1.36 39 | 8.81 47 | 0.71 64 | 2.92 60 | 10.0 65 | 0.79 70 | 1.21 60 | 8.97 43 | 0.37 82 | 8.90 36 | 14.6 35 | 5.72 40 | 5.58 65 | 9.50 10 | 3.51 42 | 0.00 1 | 0.00 1 | 0.00 1 | 5.23 54 | 15.1 60 | 8.28 62 |
LME [70] | 50.2 | 0.24 75 | 1.40 77 | 0.04 86 | 0.84 10 | 5.51 10 | 0.21 16 | 3.70 78 | 8.78 48 | 5.39 125 | 1.38 82 | 11.0 76 | 0.37 82 | 9.52 48 | 15.3 46 | 7.58 60 | 3.73 34 | 16.9 67 | 4.43 67 | 0.00 1 | 0.00 1 | 0.00 1 | 4.62 32 | 12.6 33 | 7.77 50 |
MDP-Flow [26] | 50.8 | 0.13 3 | 0.78 4 | 0.00 1 | 1.05 21 | 6.71 24 | 0.64 57 | 2.31 33 | 8.09 37 | 1.26 97 | 1.35 78 | 12.5 89 | 0.28 71 | 10.4 54 | 16.8 56 | 7.29 55 | 5.39 59 | 16.9 67 | 4.89 83 | 0.00 1 | 0.00 1 | 0.00 1 | 8.69 112 | 21.5 102 | 12.1 112 |
DPOF [18] | 50.8 | 0.17 15 | 0.99 15 | 0.00 1 | 2.06 90 | 10.3 69 | 0.92 84 | 0.99 3 | 3.51 3 | 0.05 4 | 1.08 38 | 9.87 66 | 0.17 25 | 8.25 27 | 13.8 26 | 3.72 20 | 9.58 136 | 18.7 85 | 5.78 114 | 1.06 153 | 0.00 1 | 2.93 151 | 4.41 28 | 13.4 48 | 3.94 18 |
NL-TV-NCC [25] | 50.8 | 0.24 75 | 1.43 81 | 0.01 37 | 1.43 47 | 9.86 62 | 0.16 8 | 3.10 67 | 10.1 67 | 0.20 15 | 1.13 45 | 9.56 60 | 0.16 16 | 11.5 62 | 18.3 65 | 7.31 56 | 8.51 118 | 20.7 111 | 4.68 77 | 0.00 1 | 0.00 1 | 0.00 1 | 5.59 63 | 16.1 64 | 5.10 21 |
FESL [72] | 51.1 | 0.23 71 | 1.35 72 | 0.00 1 | 1.71 65 | 9.38 54 | 0.54 49 | 2.22 30 | 7.40 29 | 0.31 22 | 1.08 38 | 9.18 50 | 0.16 16 | 7.97 23 | 13.0 21 | 4.61 28 | 7.68 103 | 16.5 60 | 5.87 116 | 0.09 124 | 0.00 1 | 0.17 117 | 4.96 44 | 12.4 30 | 8.31 63 |
Classic+NL [31] | 51.8 | 0.23 71 | 1.34 71 | 0.01 37 | 1.93 80 | 11.7 80 | 0.80 72 | 2.57 49 | 8.35 43 | 0.58 57 | 1.22 63 | 9.29 55 | 0.24 52 | 8.66 32 | 14.1 30 | 5.48 39 | 7.52 101 | 16.3 52 | 5.42 101 | 0.00 1 | 0.00 1 | 0.00 1 | 5.06 47 | 12.9 39 | 8.47 69 |
ResPWCR_ROB [140] | 53.5 | 0.19 30 | 1.10 31 | 0.00 1 | 1.62 59 | 9.55 56 | 0.40 34 | 3.47 74 | 11.6 77 | 1.29 102 | 1.04 33 | 8.53 35 | 0.22 42 | 11.3 60 | 18.2 63 | 7.48 58 | 6.92 90 | 17.5 76 | 5.48 106 | 0.00 1 | 0.00 1 | 0.00 1 | 6.95 85 | 20.1 90 | 8.98 80 |
Classic+CPF [82] | 54.5 | 0.21 51 | 1.23 51 | 0.01 37 | 1.47 49 | 8.95 50 | 0.37 31 | 2.73 53 | 8.84 49 | 0.35 30 | 1.14 48 | 9.32 56 | 0.23 46 | 8.60 31 | 14.1 30 | 5.23 35 | 8.01 110 | 16.4 55 | 5.26 97 | 0.20 136 | 0.00 1 | 0.86 135 | 4.71 36 | 12.0 26 | 8.34 64 |
ProFlow_ROB [142] | 55.0 | 0.28 96 | 1.66 97 | 0.01 37 | 1.65 62 | 10.1 68 | 0.73 67 | 3.30 70 | 11.4 73 | 0.64 60 | 1.35 78 | 10.4 72 | 0.23 46 | 12.1 68 | 19.8 74 | 6.97 54 | 3.91 37 | 16.6 64 | 2.12 16 | 0.00 1 | 0.00 1 | 0.00 1 | 5.60 64 | 16.8 70 | 7.48 43 |
Efficient-NL [60] | 55.2 | 0.22 62 | 1.29 63 | 0.00 1 | 1.25 30 | 7.99 36 | 0.48 42 | 2.92 60 | 9.31 54 | 0.31 22 | 1.23 65 | 9.67 65 | 0.31 76 | 8.23 26 | 13.5 25 | 4.72 29 | 8.45 117 | 17.1 69 | 6.06 119 | 0.12 129 | 0.00 1 | 0.54 127 | 4.71 36 | 11.6 23 | 7.75 49 |
JOF [136] | 55.3 | 0.31 107 | 1.77 109 | 0.07 110 | 1.97 85 | 10.7 71 | 1.00 89 | 2.14 28 | 7.04 26 | 0.60 59 | 1.13 45 | 8.98 44 | 0.24 52 | 7.05 16 | 11.9 16 | 3.77 21 | 6.22 78 | 14.7 32 | 5.04 89 | 0.01 106 | 0.00 1 | 0.00 1 | 4.83 40 | 13.1 42 | 8.17 60 |
Complementary OF [21] | 56.7 | 0.15 7 | 0.89 8 | 0.00 1 | 1.43 47 | 8.69 45 | 0.35 29 | 2.54 46 | 8.95 51 | 0.28 21 | 1.45 84 | 12.4 86 | 0.28 71 | 14.9 114 | 21.6 107 | 15.4 120 | 7.75 104 | 17.6 77 | 3.64 45 | 0.00 1 | 0.00 1 | 0.00 1 | 7.27 93 | 22.2 111 | 9.59 90 |
SRR-TVOF-NL [89] | 56.8 | 0.19 30 | 1.05 22 | 0.03 61 | 3.08 116 | 13.8 110 | 1.68 114 | 3.97 82 | 12.4 83 | 0.84 71 | 1.22 63 | 9.35 58 | 0.20 34 | 11.5 62 | 16.7 55 | 12.3 106 | 2.79 16 | 13.5 27 | 3.68 46 | 0.00 1 | 0.00 1 | 0.00 1 | 5.69 66 | 13.1 42 | 10.1 96 |
LiteFlowNet [138] | 57.7 | 0.31 107 | 1.86 112 | 0.03 61 | 1.96 84 | 11.5 78 | 0.68 61 | 3.06 66 | 10.4 69 | 0.51 46 | 0.89 24 | 6.31 20 | 0.19 32 | 13.1 86 | 20.9 89 | 8.46 73 | 5.32 58 | 16.5 60 | 2.97 31 | 0.00 1 | 0.00 1 | 0.00 1 | 6.37 78 | 17.6 76 | 8.62 71 |
IROF-TV [53] | 58.9 | 0.22 62 | 1.24 56 | 0.01 37 | 1.83 73 | 11.9 84 | 0.87 79 | 2.96 63 | 9.37 55 | 0.50 43 | 1.70 93 | 14.6 100 | 0.46 90 | 9.51 47 | 15.4 48 | 6.49 48 | 4.78 50 | 22.9 126 | 4.55 72 | 0.00 1 | 0.00 1 | 0.00 1 | 5.17 52 | 14.4 58 | 8.73 75 |
Ramp [62] | 59.1 | 0.21 51 | 1.24 56 | 0.00 1 | 1.77 67 | 11.1 74 | 0.79 70 | 2.39 37 | 7.95 33 | 0.55 54 | 1.17 57 | 9.16 49 | 0.24 52 | 9.25 42 | 14.9 40 | 6.31 46 | 7.18 94 | 15.7 43 | 5.42 101 | 0.19 135 | 0.00 1 | 0.96 137 | 5.18 53 | 13.3 47 | 8.87 79 |
OFH [38] | 59.7 | 0.17 15 | 1.00 17 | 0.00 1 | 1.80 70 | 9.80 60 | 0.66 60 | 4.49 92 | 13.2 94 | 0.47 42 | 1.62 90 | 13.6 95 | 0.35 80 | 13.2 89 | 20.8 88 | 10.2 94 | 3.85 35 | 20.4 108 | 2.41 21 | 0.00 1 | 0.00 1 | 0.00 1 | 7.06 89 | 21.6 104 | 9.31 85 |
ROF-ND [105] | 60.4 | 0.29 99 | 1.73 105 | 0.01 37 | 2.75 110 | 11.0 72 | 0.73 67 | 3.45 73 | 10.7 70 | 0.51 46 | 0.13 3 | 1.44 4 | 0.00 1 | 12.2 70 | 18.8 67 | 10.5 97 | 6.28 80 | 17.1 69 | 4.80 81 | 0.00 1 | 0.00 1 | 0.00 1 | 8.30 108 | 21.5 102 | 9.38 86 |
PBOFVI [189] | 61.2 | 0.37 118 | 2.18 120 | 0.00 1 | 1.95 83 | 12.6 98 | 0.54 49 | 4.00 83 | 11.7 78 | 0.57 56 | 0.94 27 | 6.98 24 | 0.24 52 | 11.0 58 | 16.9 57 | 9.27 85 | 8.10 111 | 15.7 43 | 4.40 66 | 0.01 106 | 0.00 1 | 0.00 1 | 5.06 47 | 13.9 53 | 7.93 53 |
OAR-Flow [123] | 61.8 | 0.19 30 | 1.12 35 | 0.06 98 | 2.86 111 | 12.0 85 | 1.41 109 | 4.36 89 | 13.9 97 | 1.43 106 | 1.51 86 | 11.7 83 | 0.23 46 | 12.6 81 | 20.0 80 | 8.47 74 | 2.80 17 | 16.4 55 | 1.37 9 | 0.00 1 | 0.00 1 | 0.00 1 | 5.56 62 | 16.7 68 | 8.15 59 |
FF++_ROB [141] | 63.0 | 0.29 99 | 1.66 97 | 0.06 98 | 1.74 66 | 11.3 76 | 0.84 76 | 3.66 77 | 12.1 81 | 1.40 105 | 1.14 48 | 9.66 64 | 0.33 79 | 12.4 73 | 20.1 82 | 8.17 69 | 3.96 38 | 15.4 41 | 2.67 23 | 0.00 1 | 0.00 1 | 0.00 1 | 5.83 70 | 16.3 65 | 9.01 81 |
TCOF [69] | 63.5 | 0.18 21 | 1.06 23 | 0.00 1 | 1.56 56 | 9.24 53 | 0.60 54 | 4.63 95 | 12.8 90 | 0.89 74 | 1.34 77 | 12.4 86 | 0.20 34 | 12.4 73 | 19.6 73 | 9.52 87 | 6.02 71 | 14.3 31 | 5.03 88 | 0.34 145 | 0.00 1 | 1.23 142 | 4.94 42 | 13.6 51 | 8.00 57 |
TV-L1-MCT [64] | 64.3 | 0.22 62 | 1.33 70 | 0.00 1 | 1.64 61 | 9.85 61 | 0.52 45 | 2.86 59 | 9.38 56 | 0.32 25 | 1.14 48 | 8.89 41 | 0.24 52 | 10.6 56 | 16.4 53 | 9.05 79 | 8.81 124 | 17.2 73 | 5.12 93 | 0.08 123 | 0.00 1 | 0.84 134 | 5.93 74 | 14.3 56 | 10.1 96 |
ACK-Prior [27] | 65.1 | 0.15 7 | 0.91 11 | 0.00 1 | 1.21 29 | 7.63 31 | 0.19 12 | 2.41 39 | 8.36 44 | 0.35 30 | 1.25 68 | 10.5 74 | 0.18 29 | 12.4 73 | 18.0 61 | 11.2 99 | 9.00 130 | 19.4 97 | 6.39 126 | 0.17 133 | 0.00 1 | 1.01 139 | 9.72 121 | 20.1 90 | 13.3 117 |
CRTflow [81] | 65.6 | 0.18 21 | 0.99 15 | 0.03 61 | 1.70 63 | 9.09 51 | 0.59 53 | 4.56 93 | 12.8 90 | 0.68 62 | 2.03 110 | 15.1 106 | 0.64 100 | 12.4 73 | 20.0 80 | 8.26 70 | 4.42 43 | 24.0 131 | 3.47 40 | 0.00 1 | 0.00 1 | 0.00 1 | 7.88 100 | 22.0 110 | 10.4 99 |
2DHMM-SAS [90] | 65.7 | 0.20 38 | 1.21 46 | 0.00 1 | 1.80 70 | 10.4 70 | 0.63 56 | 4.15 84 | 11.3 72 | 0.86 72 | 1.24 66 | 9.61 63 | 0.25 66 | 9.18 40 | 14.8 39 | 6.44 47 | 8.98 129 | 17.3 74 | 4.98 85 | 0.13 130 | 0.00 1 | 0.69 129 | 5.55 61 | 14.2 55 | 9.22 83 |
PGM-C [118] | 66.1 | 0.20 38 | 1.19 42 | 0.07 110 | 1.87 75 | 11.8 83 | 0.85 77 | 2.76 54 | 9.82 63 | 0.92 79 | 1.99 106 | 15.1 106 | 0.74 109 | 13.1 86 | 21.2 92 | 9.19 82 | 3.52 29 | 19.2 93 | 2.47 22 | 0.00 1 | 0.00 1 | 0.00 1 | 6.38 79 | 19.5 86 | 8.65 72 |
SegFlow [156] | 67.1 | 0.21 51 | 1.23 51 | 0.07 110 | 1.94 81 | 12.1 86 | 0.89 81 | 2.78 57 | 9.81 62 | 1.02 86 | 1.99 106 | 15.0 104 | 0.74 109 | 13.4 94 | 21.4 99 | 10.1 90 | 4.64 47 | 18.9 89 | 3.07 32 | 0.00 1 | 0.00 1 | 0.00 1 | 5.47 59 | 16.8 70 | 7.48 43 |
SimpleFlow [49] | 68.5 | 0.22 62 | 1.31 65 | 0.00 1 | 1.78 68 | 11.0 72 | 0.82 74 | 4.30 88 | 12.5 86 | 1.22 95 | 1.16 55 | 9.20 51 | 0.24 52 | 9.84 53 | 15.8 51 | 6.94 53 | 8.51 118 | 17.3 74 | 6.11 122 | 0.09 124 | 0.00 1 | 0.39 123 | 5.01 46 | 14.1 54 | 8.00 57 |
CPM-Flow [114] | 69.2 | 0.21 51 | 1.23 51 | 0.07 110 | 1.92 79 | 12.1 86 | 0.89 81 | 2.64 52 | 9.39 57 | 0.92 79 | 1.96 103 | 14.8 101 | 0.72 107 | 13.1 86 | 21.2 92 | 8.92 77 | 4.84 52 | 19.1 92 | 3.40 38 | 0.00 1 | 0.00 1 | 0.00 1 | 6.92 84 | 20.5 93 | 9.43 88 |
Sparse Occlusion [54] | 69.5 | 0.24 75 | 1.38 75 | 0.06 98 | 1.27 33 | 7.83 33 | 0.45 37 | 3.42 71 | 11.1 71 | 0.33 26 | 1.52 88 | 11.4 80 | 0.28 71 | 10.9 57 | 17.6 59 | 6.76 52 | 4.10 41 | 16.2 50 | 4.27 63 | 0.03 111 | 0.17 156 | 0.15 115 | 5.90 71 | 15.7 62 | 8.69 74 |
ComplOF-FED-GPU [35] | 70.4 | 0.19 30 | 1.10 31 | 0.03 61 | 2.32 97 | 12.5 96 | 0.92 84 | 2.76 54 | 9.65 61 | 0.31 22 | 1.65 91 | 13.1 91 | 0.38 84 | 13.4 94 | 21.2 92 | 10.2 94 | 8.60 122 | 22.8 124 | 4.22 61 | 0.00 1 | 0.00 1 | 0.00 1 | 7.44 94 | 22.4 112 | 9.81 91 |
EpicFlow [100] | 73.8 | 0.20 38 | 1.17 39 | 0.07 110 | 1.91 78 | 12.1 86 | 0.90 83 | 3.70 78 | 12.7 88 | 0.89 74 | 1.96 103 | 14.8 101 | 0.74 109 | 13.4 94 | 21.3 97 | 9.97 89 | 6.71 85 | 19.3 95 | 3.90 54 | 0.00 1 | 0.00 1 | 0.00 1 | 7.03 86 | 20.1 90 | 9.91 92 |
TF+OM [98] | 75.4 | 0.16 12 | 0.98 14 | 0.01 37 | 1.85 74 | 10.0 64 | 1.15 101 | 4.71 99 | 12.6 87 | 5.84 126 | 1.79 98 | 14.0 98 | 0.69 104 | 15.4 120 | 22.1 112 | 16.5 126 | 5.62 66 | 19.8 102 | 3.95 56 | 0.00 1 | 0.00 1 | 0.00 1 | 8.18 105 | 20.6 95 | 12.0 111 |
S2D-Matching [83] | 75.8 | 0.33 114 | 1.92 116 | 0.06 98 | 2.04 88 | 12.4 93 | 0.79 70 | 4.15 84 | 13.0 92 | 1.09 90 | 1.09 40 | 8.04 30 | 0.24 52 | 9.82 52 | 15.9 52 | 6.68 51 | 7.85 107 | 16.4 55 | 5.58 108 | 0.20 136 | 0.00 1 | 0.96 137 | 4.94 42 | 12.6 33 | 8.81 77 |
DeepFlow2 [106] | 75.8 | 0.26 86 | 1.53 88 | 0.08 119 | 2.56 105 | 11.7 80 | 1.30 107 | 3.73 80 | 11.5 76 | 0.90 76 | 1.99 106 | 15.1 106 | 0.65 102 | 12.3 71 | 19.5 72 | 9.07 80 | 4.57 45 | 18.7 85 | 2.81 28 | 0.00 1 | 0.00 1 | 0.00 1 | 8.01 104 | 21.0 97 | 10.8 103 |
AggregFlow [95] | 76.8 | 0.53 129 | 2.62 137 | 0.12 133 | 2.72 108 | 13.2 103 | 1.45 110 | 3.90 81 | 13.0 92 | 1.85 112 | 1.06 36 | 9.26 53 | 0.18 29 | 12.1 68 | 19.4 70 | 7.83 65 | 3.05 21 | 12.1 19 | 2.29 17 | 0.04 117 | 0.00 1 | 0.44 125 | 5.82 69 | 15.9 63 | 9.26 84 |
ContinualFlow_ROB [148] | 77.6 | 0.26 86 | 1.50 85 | 0.02 56 | 3.07 115 | 15.6 117 | 1.24 103 | 5.35 106 | 16.3 120 | 3.58 122 | 1.36 80 | 10.4 72 | 0.21 39 | 13.9 103 | 22.7 117 | 7.58 60 | 8.27 116 | 19.4 97 | 5.84 115 | 0.00 1 | 0.00 1 | 0.00 1 | 5.35 56 | 17.5 74 | 4.42 20 |
Adaptive [20] | 77.8 | 0.29 99 | 1.72 103 | 0.06 98 | 2.04 88 | 12.5 96 | 1.13 99 | 5.51 109 | 14.7 103 | 0.68 62 | 1.83 99 | 13.9 97 | 0.59 98 | 12.7 83 | 19.9 76 | 10.1 90 | 7.15 92 | 18.9 89 | 4.08 60 | 0.00 1 | 0.00 1 | 0.00 1 | 6.38 79 | 16.4 66 | 8.82 78 |
IRR-PWC_RVC [180] | 78.3 | 0.49 127 | 2.34 128 | 0.11 130 | 4.76 133 | 20.4 136 | 2.29 124 | 6.66 125 | 17.5 127 | 7.60 136 | 0.88 23 | 8.47 34 | 0.16 16 | 13.0 85 | 21.0 91 | 7.81 64 | 3.54 31 | 19.9 103 | 2.36 19 | 0.00 1 | 0.00 1 | 0.00 1 | 7.77 97 | 22.6 115 | 6.89 32 |
CompactFlow_ROB [155] | 79.8 | 0.20 38 | 1.21 46 | 0.04 86 | 2.54 104 | 13.2 103 | 1.01 90 | 5.96 114 | 15.9 116 | 7.15 133 | 1.38 82 | 11.1 78 | 0.50 93 | 14.3 107 | 23.2 124 | 9.15 81 | 4.08 40 | 21.0 114 | 3.62 44 | 0.00 1 | 0.00 1 | 0.00 1 | 8.21 106 | 22.4 112 | 10.6 100 |
LFNet_ROB [145] | 82.0 | 0.25 82 | 1.50 85 | 0.04 86 | 1.94 81 | 12.3 91 | 0.95 87 | 4.69 97 | 14.9 105 | 1.47 107 | 1.14 48 | 9.32 56 | 0.51 94 | 16.3 128 | 24.6 139 | 15.5 121 | 5.01 56 | 22.7 122 | 3.48 41 | 0.00 1 | 0.00 1 | 0.00 1 | 8.24 107 | 23.7 124 | 11.4 108 |
Steered-L1 [116] | 82.3 | 0.10 1 | 0.59 1 | 0.01 37 | 1.01 18 | 6.84 25 | 0.52 45 | 2.76 54 | 9.44 58 | 0.91 77 | 1.78 96 | 14.9 103 | 0.51 94 | 14.0 106 | 20.5 85 | 15.2 118 | 9.02 131 | 19.9 103 | 6.57 130 | 1.07 154 | 0.00 1 | 7.19 155 | 12.1 130 | 22.9 117 | 20.6 136 |
DMF_ROB [135] | 82.4 | 0.18 21 | 1.07 25 | 0.03 61 | 2.32 97 | 12.7 99 | 1.10 96 | 4.84 101 | 15.1 112 | 1.27 100 | 2.06 113 | 15.9 113 | 0.75 113 | 13.7 99 | 21.2 92 | 12.3 106 | 7.35 99 | 21.7 118 | 5.05 90 | 0.00 1 | 0.00 1 | 0.00 1 | 8.30 108 | 21.8 107 | 11.1 105 |
RFlow [88] | 83.1 | 0.20 38 | 1.21 46 | 0.01 37 | 1.58 57 | 9.77 59 | 0.77 69 | 4.69 97 | 13.5 95 | 0.34 28 | 2.30 124 | 17.7 125 | 0.80 116 | 14.3 107 | 21.4 99 | 15.1 117 | 5.47 62 | 20.9 113 | 4.98 85 | 0.01 106 | 0.00 1 | 0.15 115 | 7.91 102 | 21.0 97 | 10.6 100 |
EAI-Flow [147] | 84.7 | 0.27 92 | 1.59 93 | 0.06 98 | 3.31 118 | 15.7 118 | 1.68 114 | 5.29 104 | 15.9 116 | 2.31 115 | 1.73 95 | 13.1 91 | 0.59 98 | 14.9 114 | 23.3 126 | 11.0 98 | 4.60 46 | 17.7 78 | 2.85 29 | 0.00 1 | 0.00 1 | 0.00 1 | 7.19 91 | 19.6 88 | 11.2 107 |
TriangleFlow [30] | 85.0 | 0.24 75 | 1.39 76 | 0.00 1 | 2.50 103 | 14.3 111 | 0.98 88 | 4.46 91 | 12.7 88 | 0.41 39 | 1.49 85 | 12.2 85 | 0.42 88 | 15.8 123 | 23.1 121 | 16.4 124 | 8.57 120 | 17.7 78 | 4.86 82 | 0.03 111 | 0.00 1 | 0.05 109 | 6.59 81 | 17.3 72 | 9.55 89 |
Occlusion-TV-L1 [63] | 85.5 | 0.27 92 | 1.55 90 | 0.06 98 | 1.99 87 | 12.1 86 | 1.14 100 | 5.42 107 | 14.9 105 | 0.93 81 | 1.83 99 | 14.0 98 | 0.49 92 | 13.6 98 | 21.2 92 | 11.5 101 | 6.13 75 | 19.6 101 | 5.37 100 | 0.00 1 | 0.00 1 | 0.00 1 | 9.19 115 | 23.4 123 | 11.5 109 |
DeepFlow [85] | 85.9 | 0.34 117 | 1.74 107 | 0.09 121 | 2.87 112 | 12.4 93 | 1.56 111 | 4.42 90 | 12.4 83 | 2.69 119 | 2.20 118 | 16.1 115 | 0.81 117 | 12.3 71 | 19.8 74 | 8.36 71 | 4.85 53 | 20.1 105 | 2.95 30 | 0.00 1 | 0.00 1 | 0.00 1 | 9.35 116 | 23.3 122 | 12.7 114 |
Aniso. Huber-L1 [22] | 86.0 | 0.29 99 | 1.66 97 | 0.06 98 | 2.43 102 | 13.1 102 | 1.12 98 | 5.68 110 | 14.3 101 | 1.27 100 | 1.56 89 | 12.4 86 | 0.30 75 | 12.4 73 | 19.2 69 | 10.1 90 | 4.70 49 | 17.1 69 | 4.45 68 | 0.17 133 | 0.00 1 | 0.89 136 | 6.28 76 | 16.7 68 | 8.80 76 |
CBF [12] | 87.4 | 0.18 21 | 1.09 29 | 0.01 37 | 2.37 100 | 12.9 100 | 1.94 119 | 4.28 87 | 12.0 79 | 1.13 93 | 1.97 105 | 16.1 115 | 0.66 103 | 13.3 93 | 20.5 85 | 12.7 110 | 5.89 69 | 18.8 88 | 4.73 78 | 0.45 149 | 0.00 1 | 1.33 145 | 7.67 96 | 18.9 81 | 12.7 114 |
CVENG22+RIC [199] | 88.0 | 0.22 62 | 1.31 65 | 0.06 98 | 2.33 99 | 14.3 111 | 1.02 91 | 4.56 93 | 14.6 102 | 0.91 77 | 2.05 111 | 15.3 109 | 0.83 119 | 16.5 131 | 24.4 137 | 16.4 124 | 6.74 88 | 21.7 118 | 5.60 109 | 0.00 1 | 0.00 1 | 0.00 1 | 7.03 86 | 20.8 96 | 9.21 82 |
OFRF [132] | 88.7 | 0.54 131 | 2.51 132 | 0.12 133 | 7.58 146 | 15.8 119 | 7.13 151 | 7.71 130 | 15.0 108 | 5.91 128 | 1.78 96 | 9.27 54 | 1.09 128 | 11.3 60 | 18.2 63 | 6.18 45 | 6.74 88 | 13.5 27 | 2.79 27 | 0.00 1 | 0.00 1 | 0.00 1 | 12.7 132 | 19.0 82 | 27.9 146 |
LocallyOriented [52] | 88.9 | 0.49 127 | 2.66 138 | 0.06 98 | 3.28 117 | 15.4 115 | 1.91 118 | 6.59 122 | 16.9 122 | 1.20 94 | 1.29 73 | 10.1 67 | 0.52 97 | 14.6 110 | 21.5 102 | 12.6 108 | 7.79 105 | 16.7 65 | 4.33 65 | 0.00 1 | 0.00 1 | 0.00 1 | 7.87 99 | 19.1 84 | 11.1 105 |
LSM_FLOW_RVC [182] | 90.6 | 0.40 120 | 2.35 129 | 0.10 127 | 3.70 122 | 20.0 135 | 2.10 121 | 6.26 119 | 19.4 135 | 2.49 117 | 2.47 127 | 15.7 111 | 1.00 125 | 13.5 97 | 21.9 110 | 8.02 66 | 3.57 32 | 20.6 109 | 3.27 36 | 0.00 1 | 0.00 1 | 0.00 1 | 6.80 82 | 21.6 104 | 7.68 48 |
TV-L1-improved [17] | 91.0 | 0.25 82 | 1.46 83 | 0.07 110 | 1.82 72 | 11.1 74 | 1.02 91 | 5.46 108 | 15.0 108 | 1.32 103 | 2.26 121 | 16.4 118 | 0.79 115 | 13.8 101 | 21.5 102 | 11.8 102 | 9.40 133 | 23.6 130 | 6.48 127 | 0.00 1 | 0.00 1 | 0.00 1 | 7.89 101 | 21.3 101 | 10.3 98 |
DF-Auto [113] | 91.9 | 0.61 137 | 2.33 127 | 0.10 127 | 4.04 126 | 15.3 114 | 2.49 128 | 6.59 122 | 14.8 104 | 6.66 130 | 1.84 101 | 15.0 104 | 0.51 94 | 14.9 114 | 21.5 102 | 16.8 128 | 3.47 28 | 16.7 65 | 3.82 53 | 0.00 1 | 0.00 1 | 0.00 1 | 7.99 103 | 19.5 86 | 11.6 110 |
FlowNet2 [120] | 92.0 | 0.74 142 | 3.32 145 | 0.12 133 | 5.00 135 | 17.2 125 | 2.46 127 | 6.13 117 | 15.0 108 | 5.85 127 | 1.29 73 | 10.3 71 | 0.40 87 | 13.2 89 | 21.6 107 | 8.11 67 | 7.27 97 | 17.7 78 | 6.06 119 | 0.00 1 | 0.00 1 | 0.05 109 | 5.52 60 | 17.5 74 | 3.70 16 |
TriFlow [93] | 92.5 | 0.27 92 | 1.62 95 | 0.01 37 | 2.27 96 | 13.2 103 | 1.24 103 | 7.10 127 | 16.9 122 | 7.37 134 | 1.31 76 | 11.7 83 | 0.43 89 | 17.3 135 | 23.4 130 | 20.6 137 | 3.24 24 | 15.8 45 | 3.91 55 | 4.67 161 | 0.00 1 | 18.1 161 | 6.86 83 | 18.1 79 | 7.89 52 |
EPMNet [131] | 94.0 | 0.64 140 | 3.15 142 | 0.09 121 | 5.25 136 | 18.8 131 | 2.74 133 | 5.08 103 | 14.0 98 | 2.76 120 | 1.51 86 | 13.3 93 | 0.28 71 | 13.2 89 | 21.6 107 | 8.11 67 | 7.27 97 | 17.7 78 | 6.06 119 | 0.00 1 | 0.00 1 | 0.02 108 | 7.03 86 | 23.1 118 | 3.19 11 |
Brox et al. [5] | 94.6 | 0.25 82 | 1.45 82 | 0.03 61 | 2.22 95 | 13.7 109 | 1.07 94 | 3.44 72 | 11.4 73 | 0.68 62 | 2.20 118 | 16.7 122 | 0.72 107 | 17.8 140 | 23.4 130 | 24.6 146 | 8.90 128 | 24.6 134 | 6.63 131 | 0.00 1 | 0.00 1 | 0.00 1 | 10.6 125 | 25.9 132 | 14.8 124 |
CLG-TV [48] | 94.8 | 0.31 107 | 1.67 101 | 0.06 98 | 2.10 92 | 13.0 101 | 0.92 84 | 5.33 105 | 14.2 100 | 1.04 88 | 1.71 94 | 13.7 96 | 0.38 84 | 13.9 103 | 21.4 99 | 12.0 103 | 5.20 57 | 22.7 122 | 5.07 91 | 0.20 136 | 0.00 1 | 1.01 139 | 7.85 98 | 19.4 85 | 9.91 92 |
Bartels [41] | 95.6 | 0.24 75 | 1.40 77 | 0.01 37 | 1.42 45 | 8.88 48 | 0.62 55 | 3.51 75 | 12.4 83 | 1.00 85 | 2.26 121 | 15.8 112 | 0.95 122 | 15.5 121 | 23.3 126 | 15.8 123 | 7.99 109 | 23.0 127 | 5.20 95 | 0.33 142 | 0.00 1 | 1.92 148 | 9.95 123 | 24.0 125 | 13.7 119 |
SegOF [10] | 96.6 | 0.24 75 | 1.41 79 | 0.05 92 | 4.72 132 | 21.4 137 | 3.68 137 | 9.28 137 | 19.5 136 | 4.83 123 | 1.05 35 | 7.42 26 | 0.78 114 | 20.7 150 | 27.1 148 | 28.6 151 | 10.4 140 | 26.0 138 | 7.80 143 | 0.00 1 | 0.00 1 | 0.00 1 | 7.25 92 | 20.0 89 | 7.44 42 |
Fusion [6] | 96.8 | 0.24 75 | 1.41 79 | 0.05 92 | 1.13 26 | 8.57 42 | 0.47 40 | 2.45 42 | 8.15 38 | 0.93 81 | 2.12 117 | 18.3 131 | 1.21 129 | 16.2 127 | 23.1 121 | 19.6 135 | 6.72 87 | 18.7 85 | 5.67 111 | 0.07 121 | 0.15 154 | 0.10 113 | 10.4 124 | 24.9 129 | 14.6 123 |
Classic++ [32] | 97.9 | 0.26 86 | 1.50 85 | 0.07 110 | 2.08 91 | 12.2 90 | 1.03 93 | 4.84 101 | 14.0 98 | 1.26 97 | 2.07 115 | 16.1 115 | 0.64 100 | 13.9 103 | 22.5 114 | 10.1 90 | 6.11 74 | 23.1 128 | 5.28 98 | 0.06 119 | 0.00 1 | 0.34 121 | 8.66 111 | 21.7 106 | 11.0 104 |
Rannacher [23] | 99.3 | 0.33 114 | 1.95 117 | 0.07 110 | 2.21 94 | 13.4 107 | 1.29 106 | 5.78 111 | 15.6 114 | 1.48 109 | 2.51 129 | 17.8 126 | 0.95 122 | 14.5 109 | 22.5 114 | 12.2 105 | 9.72 137 | 24.8 135 | 6.66 132 | 0.00 1 | 0.00 1 | 0.00 1 | 7.50 95 | 21.1 100 | 9.97 94 |
BriefMatch [122] | 101.2 | 0.16 12 | 0.94 12 | 0.01 37 | 1.97 85 | 9.60 57 | 1.10 96 | 2.79 58 | 9.56 59 | 0.54 52 | 2.11 116 | 15.6 110 | 0.70 105 | 14.6 110 | 21.5 102 | 15.2 118 | 10.4 140 | 22.0 120 | 8.36 146 | 2.52 160 | 0.62 164 | 13.7 160 | 13.6 139 | 25.5 131 | 22.0 140 |
AugFNG_ROB [139] | 101.3 | 0.57 135 | 2.19 121 | 0.11 130 | 4.08 128 | 16.3 122 | 2.52 130 | 8.00 132 | 19.2 134 | 8.51 138 | 1.21 60 | 10.2 68 | 0.26 70 | 16.5 131 | 25.6 145 | 13.4 112 | 7.17 93 | 24.2 132 | 5.99 117 | 0.00 1 | 0.00 1 | 0.00 1 | 8.96 114 | 25.1 130 | 9.39 87 |
Local-TV-L1 [65] | 102.1 | 0.53 129 | 2.10 118 | 0.12 133 | 4.96 134 | 18.0 129 | 3.44 136 | 8.54 135 | 16.7 121 | 6.16 129 | 2.47 127 | 18.5 133 | 1.01 127 | 12.5 78 | 19.9 76 | 9.65 88 | 5.53 64 | 19.5 99 | 4.95 84 | 0.00 1 | 0.00 1 | 0.00 1 | 13.4 136 | 24.2 126 | 27.1 145 |
SIOF [67] | 102.7 | 0.42 123 | 2.28 123 | 0.08 119 | 3.55 121 | 17.7 128 | 2.05 120 | 8.15 133 | 17.9 130 | 7.78 137 | 2.41 126 | 17.9 127 | 1.00 125 | 15.5 121 | 22.7 117 | 17.8 132 | 4.67 48 | 19.5 99 | 4.77 80 | 0.00 1 | 0.00 1 | 0.00 1 | 9.35 116 | 21.8 107 | 17.7 130 |
Second-order prior [8] | 106.0 | 0.26 86 | 1.53 88 | 0.05 92 | 2.88 113 | 15.5 116 | 1.60 112 | 5.87 112 | 15.3 113 | 1.11 92 | 2.21 120 | 17.2 124 | 0.94 121 | 13.8 101 | 21.3 97 | 12.6 108 | 7.46 100 | 27.8 144 | 5.71 112 | 0.16 132 | 0.00 1 | 0.76 131 | 8.65 110 | 21.0 97 | 13.9 121 |
p-harmonic [29] | 106.1 | 0.29 99 | 1.73 105 | 0.02 56 | 2.16 93 | 13.2 103 | 1.33 108 | 5.87 112 | 15.8 115 | 1.59 110 | 2.55 130 | 17.9 127 | 1.49 132 | 17.0 133 | 22.7 117 | 23.3 143 | 4.53 44 | 21.5 117 | 4.53 71 | 0.03 111 | 0.02 153 | 0.00 1 | 9.65 120 | 23.2 121 | 15.0 125 |
Dynamic MRF [7] | 106.8 | 0.30 106 | 1.79 110 | 0.04 86 | 2.37 100 | 14.9 113 | 1.09 95 | 4.81 100 | 15.0 108 | 0.86 72 | 2.66 131 | 18.2 130 | 1.25 130 | 17.6 138 | 25.7 146 | 18.1 133 | 10.9 145 | 30.4 149 | 7.45 139 | 0.00 1 | 0.00 1 | 0.00 1 | 15.1 142 | 29.9 147 | 21.9 139 |
Shiralkar [42] | 107.2 | 0.28 96 | 1.66 97 | 0.02 56 | 3.80 124 | 19.8 134 | 1.78 117 | 6.50 120 | 16.1 119 | 1.26 97 | 3.17 135 | 20.8 137 | 1.56 134 | 16.3 128 | 25.1 143 | 14.5 115 | 12.4 149 | 29.4 147 | 6.20 123 | 0.00 1 | 0.00 1 | 0.00 1 | 12.6 131 | 30.1 148 | 13.8 120 |
CNN-flow-warp+ref [115] | 109.9 | 0.33 114 | 1.91 115 | 0.09 121 | 2.72 108 | 12.4 93 | 2.32 125 | 6.77 126 | 18.9 133 | 2.09 113 | 2.28 123 | 16.4 118 | 0.82 118 | 17.7 139 | 23.9 134 | 22.8 142 | 9.40 133 | 24.3 133 | 6.73 133 | 0.00 1 | 0.00 1 | 0.00 1 | 14.0 140 | 26.8 138 | 20.2 135 |
F-TV-L1 [15] | 110.4 | 0.46 124 | 2.58 134 | 0.07 110 | 4.05 127 | 16.2 121 | 2.21 122 | 6.59 122 | 15.9 116 | 1.39 104 | 2.35 125 | 17.9 127 | 0.88 120 | 13.7 99 | 21.5 102 | 11.4 100 | 7.53 102 | 21.1 116 | 4.75 79 | 0.03 111 | 0.17 156 | 0.05 109 | 7.15 90 | 20.5 93 | 7.39 41 |
GraphCuts [14] | 112.7 | 0.29 99 | 1.67 101 | 0.16 141 | 6.77 143 | 22.4 141 | 3.81 138 | 7.73 131 | 17.2 125 | 9.04 139 | 1.86 102 | 16.8 123 | 0.46 90 | 15.8 123 | 24.0 135 | 14.1 114 | 20.2 158 | 22.8 124 | 12.5 155 | 0.00 1 | 0.00 1 | 0.00 1 | 13.4 136 | 27.0 141 | 23.4 142 |
StereoOF-V1MT [117] | 113.6 | 0.41 121 | 2.35 129 | 0.04 86 | 4.27 130 | 21.6 138 | 1.66 113 | 6.25 118 | 17.7 128 | 0.50 43 | 3.13 134 | 23.2 141 | 1.41 131 | 19.4 147 | 27.9 152 | 20.7 139 | 11.6 147 | 32.5 151 | 7.60 141 | 0.00 1 | 0.00 1 | 0.00 1 | 16.7 146 | 32.8 151 | 21.3 137 |
HBpMotionGpu [43] | 116.6 | 0.80 144 | 2.79 140 | 0.18 142 | 5.57 137 | 23.8 145 | 4.00 139 | 13.1 146 | 27.8 152 | 11.6 146 | 2.05 111 | 16.4 118 | 0.74 109 | 17.9 141 | 25.1 143 | 22.3 141 | 6.69 83 | 21.0 114 | 6.04 118 | 0.00 1 | 0.00 1 | 0.00 1 | 14.1 141 | 27.7 142 | 25.1 143 |
Ad-TV-NDC [36] | 117.0 | 0.79 143 | 2.68 139 | 0.12 133 | 13.0 154 | 26.5 147 | 12.9 154 | 12.9 145 | 22.0 140 | 9.24 140 | 5.02 140 | 20.3 136 | 4.82 140 | 13.2 89 | 20.5 85 | 9.43 86 | 6.17 77 | 20.3 107 | 5.07 91 | 0.03 111 | 0.00 1 | 0.00 1 | 20.5 151 | 26.9 139 | 40.8 158 |
Filter Flow [19] | 117.7 | 0.58 136 | 2.59 135 | 0.11 130 | 4.48 131 | 19.7 132 | 2.66 132 | 12.1 140 | 23.7 143 | 13.5 151 | 14.5 151 | 30.4 147 | 15.0 151 | 18.7 146 | 23.7 133 | 27.5 150 | 8.11 112 | 20.7 111 | 6.48 127 | 0.00 1 | 0.00 1 | 0.00 1 | 11.0 127 | 21.9 109 | 17.2 128 |
StereoFlow [44] | 118.0 | 2.82 162 | 6.92 161 | 1.29 161 | 21.5 160 | 42.6 163 | 13.8 155 | 20.5 161 | 33.3 162 | 20.4 157 | 20.6 158 | 51.2 161 | 18.6 156 | 14.9 114 | 22.6 116 | 13.7 113 | 3.89 36 | 18.9 89 | 3.74 50 | 0.00 1 | 0.00 1 | 0.00 1 | 11.3 129 | 25.9 132 | 18.7 133 |
WOLF_ROB [144] | 119.0 | 0.56 133 | 3.04 141 | 0.09 121 | 6.60 140 | 23.5 143 | 3.40 135 | 8.20 134 | 18.2 132 | 2.44 116 | 2.06 113 | 13.3 93 | 0.98 124 | 16.4 130 | 23.3 126 | 18.2 134 | 9.74 138 | 19.2 93 | 6.28 125 | 0.01 106 | 0.00 1 | 0.20 119 | 9.49 118 | 23.1 118 | 14.3 122 |
Modified CLG [34] | 120.3 | 0.62 138 | 2.54 133 | 0.12 133 | 3.52 120 | 18.7 130 | 2.59 131 | 12.2 142 | 23.5 142 | 12.5 148 | 3.25 136 | 20.1 135 | 2.03 136 | 18.6 145 | 25.0 142 | 25.0 147 | 8.86 127 | 26.9 143 | 7.14 137 | 0.00 1 | 0.00 1 | 0.00 1 | 13.4 136 | 29.8 146 | 21.8 138 |
2bit-BM-tele [96] | 121.7 | 0.54 131 | 2.59 135 | 0.20 143 | 2.58 106 | 16.3 122 | 1.26 105 | 6.04 116 | 17.8 129 | 2.26 114 | 2.77 133 | 19.7 134 | 1.50 133 | 15.8 123 | 23.3 126 | 16.5 126 | 8.58 121 | 22.4 121 | 5.62 110 | 1.37 156 | 0.00 1 | 5.84 154 | 10.7 126 | 24.8 128 | 16.5 127 |
Learning Flow [11] | 122.0 | 0.32 112 | 1.89 113 | 0.01 37 | 2.61 107 | 16.0 120 | 1.21 102 | 6.52 121 | 17.9 130 | 1.65 111 | 4.69 139 | 24.9 144 | 3.14 139 | 20.8 151 | 27.4 151 | 26.9 149 | 10.9 145 | 28.6 146 | 7.90 144 | 0.10 128 | 0.00 1 | 0.64 128 | 13.3 135 | 28.5 145 | 18.1 131 |
SPSA-learn [13] | 123.8 | 0.86 146 | 3.30 144 | 0.28 149 | 6.02 139 | 22.0 139 | 4.09 140 | 10.6 138 | 21.3 138 | 9.82 144 | 5.83 143 | 22.9 139 | 5.66 144 | 17.9 141 | 23.4 130 | 23.4 144 | 10.2 139 | 25.0 136 | 8.09 145 | 0.00 1 | 0.00 1 | 0.00 1 | 15.9 145 | 28.1 143 | 23.3 141 |
FlowNetS+ft+v [110] | 124.2 | 0.31 107 | 1.76 108 | 0.09 121 | 3.39 119 | 13.5 108 | 2.49 128 | 7.24 128 | 16.9 122 | 5.12 124 | 3.32 137 | 18.3 131 | 2.07 137 | 17.1 134 | 23.2 124 | 20.3 136 | 6.23 79 | 23.2 129 | 5.50 107 | 0.35 146 | 0.52 161 | 1.50 147 | 8.79 113 | 23.1 118 | 13.6 118 |
IAOF2 [51] | 125.3 | 0.47 126 | 2.28 123 | 0.33 150 | 3.77 123 | 16.3 122 | 2.22 123 | 7.40 129 | 17.2 125 | 7.06 132 | 14.7 152 | 29.4 146 | 16.6 153 | 15.2 119 | 23.0 120 | 14.7 116 | 10.5 142 | 20.6 109 | 7.03 136 | 0.32 141 | 0.00 1 | 2.00 150 | 11.2 128 | 22.6 115 | 15.4 126 |
UnFlow [127] | 125.4 | 1.88 156 | 6.59 158 | 0.87 157 | 6.75 142 | 27.2 148 | 4.57 142 | 12.5 144 | 27.9 153 | 7.37 134 | 5.65 142 | 21.0 138 | 5.26 142 | 22.5 154 | 30.2 155 | 26.4 148 | 9.48 135 | 30.5 150 | 7.32 138 | 0.00 1 | 0.00 1 | 0.00 1 | 9.58 119 | 26.9 139 | 12.3 113 |
TVL1_RVC [175] | 127.2 | 1.04 148 | 3.71 147 | 0.27 148 | 9.05 148 | 24.7 146 | 7.74 152 | 14.6 149 | 25.4 147 | 12.6 149 | 10.6 146 | 31.1 149 | 11.5 148 | 17.4 136 | 24.5 138 | 20.6 137 | 9.21 132 | 25.5 137 | 6.84 134 | 0.00 1 | 0.00 1 | 0.00 1 | 21.9 153 | 31.0 149 | 39.9 156 |
LDOF [28] | 127.2 | 0.41 121 | 2.31 126 | 0.09 121 | 3.85 125 | 17.3 126 | 2.32 125 | 4.68 96 | 13.5 95 | 2.59 118 | 3.97 138 | 24.8 143 | 2.14 138 | 16.1 126 | 23.1 121 | 17.6 130 | 8.24 115 | 26.0 138 | 6.50 129 | 0.33 142 | 0.34 158 | 1.95 149 | 9.77 122 | 26.7 136 | 12.9 116 |
Nguyen [33] | 128.0 | 0.83 145 | 3.37 146 | 0.22 144 | 7.27 145 | 22.1 140 | 6.46 146 | 15.4 152 | 26.8 150 | 12.4 147 | 17.6 155 | 30.4 147 | 20.2 158 | 18.5 144 | 24.7 140 | 24.5 145 | 8.82 125 | 28.5 145 | 8.81 148 | 0.00 1 | 0.00 1 | 0.00 1 | 18.9 150 | 31.7 150 | 29.4 148 |
IAOF [50] | 128.7 | 0.46 124 | 2.11 119 | 0.10 127 | 6.63 141 | 19.7 132 | 4.61 143 | 13.8 148 | 23.3 141 | 9.33 141 | 9.91 145 | 23.2 141 | 11.3 147 | 14.8 113 | 22.2 113 | 15.5 121 | 10.6 143 | 26.8 142 | 6.99 135 | 0.05 118 | 0.00 1 | 0.42 124 | 18.0 149 | 24.4 127 | 35.4 154 |
BlockOverlap [61] | 130.2 | 0.62 138 | 2.30 125 | 0.14 140 | 4.11 129 | 17.6 127 | 3.02 134 | 9.12 136 | 19.6 137 | 6.97 131 | 2.74 132 | 16.5 121 | 1.72 135 | 14.7 112 | 20.9 89 | 16.8 128 | 7.89 108 | 19.3 95 | 6.25 124 | 2.12 157 | 0.52 161 | 10.9 159 | 15.2 143 | 22.4 112 | 32.3 152 |
GroupFlow [9] | 130.6 | 0.56 133 | 3.20 143 | 0.05 92 | 9.79 150 | 32.3 154 | 7.11 150 | 11.4 139 | 24.6 144 | 9.68 143 | 2.01 109 | 16.0 114 | 0.70 105 | 19.8 148 | 29.9 154 | 12.0 103 | 15.2 155 | 32.5 151 | 15.4 157 | 0.33 142 | 0.00 1 | 1.11 141 | 13.2 134 | 28.4 144 | 17.2 128 |
2D-CLG [1] | 131.5 | 1.77 155 | 6.22 156 | 0.51 155 | 5.91 138 | 22.4 141 | 4.54 141 | 16.4 153 | 28.6 155 | 18.1 156 | 17.9 156 | 35.8 152 | 19.9 157 | 20.4 149 | 25.8 147 | 29.3 152 | 12.0 148 | 29.6 148 | 11.4 152 | 0.00 1 | 0.00 1 | 0.00 1 | 17.7 148 | 32.8 151 | 26.2 144 |
Heeger++ [102] | 132.6 | 0.95 147 | 4.26 150 | 0.26 147 | 11.8 153 | 39.5 161 | 6.54 147 | 12.3 143 | 24.7 146 | 3.51 121 | 10.7 147 | 37.1 154 | 8.97 145 | 30.7 160 | 36.7 160 | 39.2 158 | 21.4 160 | 46.3 161 | 18.3 160 | 0.00 1 | 0.00 1 | 0.00 1 | 24.4 155 | 37.0 154 | 31.9 150 |
FFV1MT [104] | 136.2 | 1.42 151 | 6.80 160 | 0.25 145 | 10.3 151 | 35.9 158 | 6.76 149 | 18.0 155 | 30.0 157 | 16.5 153 | 17.2 154 | 51.3 162 | 16.2 152 | 31.5 161 | 37.1 161 | 43.2 162 | 20.9 159 | 44.0 160 | 17.2 158 | 0.00 1 | 0.00 1 | 0.00 1 | 24.4 155 | 37.0 154 | 31.9 150 |
TI-DOFE [24] | 136.4 | 1.58 153 | 5.19 153 | 0.36 152 | 16.8 156 | 34.3 156 | 17.7 157 | 19.3 160 | 30.2 159 | 21.6 159 | 23.3 159 | 39.1 156 | 27.6 159 | 21.1 152 | 27.1 148 | 29.5 153 | 14.4 153 | 35.1 155 | 12.1 154 | 0.00 1 | 0.00 1 | 0.00 1 | 27.2 159 | 40.8 158 | 41.2 159 |
H+S_RVC [176] | 138.8 | 2.45 161 | 6.66 159 | 0.87 157 | 10.3 151 | 34.2 155 | 6.70 148 | 17.8 154 | 31.4 160 | 16.6 155 | 29.5 163 | 41.8 158 | 33.2 163 | 27.7 159 | 31.9 157 | 42.8 161 | 24.2 161 | 48.0 162 | 25.0 161 | 0.00 1 | 0.00 1 | 0.00 1 | 38.2 162 | 44.9 161 | 45.2 160 |
Black & Anandan [4] | 140.4 | 0.68 141 | 2.46 131 | 0.13 139 | 7.01 144 | 23.6 144 | 4.65 144 | 12.1 140 | 21.6 139 | 9.40 142 | 5.45 141 | 23.1 140 | 4.84 141 | 17.5 137 | 24.3 136 | 21.6 140 | 10.6 143 | 26.6 141 | 7.49 140 | 0.43 147 | 0.15 154 | 1.31 144 | 12.7 132 | 26.7 136 | 18.8 134 |
Horn & Schunck [3] | 140.8 | 1.05 149 | 4.22 149 | 0.25 145 | 7.74 147 | 29.1 151 | 5.17 145 | 13.6 147 | 24.6 144 | 10.8 145 | 12.7 149 | 36.1 153 | 12.8 149 | 21.4 153 | 27.3 150 | 30.9 155 | 13.9 152 | 35.2 156 | 11.6 153 | 0.03 111 | 0.00 1 | 0.17 117 | 22.3 154 | 37.9 156 | 31.7 149 |
SILK [80] | 144.5 | 1.05 149 | 4.27 151 | 0.44 153 | 9.69 149 | 27.9 149 | 8.93 153 | 15.2 151 | 26.9 151 | 13.1 150 | 6.14 144 | 25.9 145 | 5.57 143 | 23.0 155 | 29.2 153 | 34.1 156 | 12.6 150 | 33.9 153 | 9.78 150 | 0.81 152 | 0.00 1 | 3.50 152 | 21.5 152 | 33.3 153 | 34.5 153 |
HCIC-L [97] | 146.4 | 1.95 157 | 6.24 157 | 0.99 160 | 28.7 162 | 32.2 153 | 35.8 162 | 18.6 158 | 26.2 148 | 25.7 162 | 25.4 162 | 46.6 160 | 27.7 160 | 15.1 118 | 21.9 110 | 12.7 110 | 8.77 123 | 20.2 106 | 9.24 149 | 6.40 163 | 0.49 160 | 23.0 163 | 15.3 144 | 26.4 135 | 18.4 132 |
SLK [47] | 149.7 | 1.44 152 | 5.58 154 | 0.49 154 | 14.4 155 | 35.8 157 | 14.8 156 | 18.5 156 | 30.1 158 | 21.4 158 | 24.6 160 | 35.7 151 | 27.7 160 | 26.3 158 | 31.9 157 | 39.4 159 | 15.6 156 | 38.8 158 | 13.6 156 | 0.55 151 | 0.00 1 | 1.35 146 | 31.7 160 | 41.0 159 | 49.0 161 |
Adaptive flow [45] | 150.6 | 1.75 154 | 5.07 152 | 0.34 151 | 18.4 158 | 28.3 150 | 18.5 159 | 18.5 156 | 28.6 155 | 22.9 160 | 13.3 150 | 37.4 155 | 13.9 150 | 17.9 141 | 24.7 140 | 17.7 131 | 12.9 151 | 26.2 140 | 8.68 147 | 5.20 162 | 0.61 163 | 22.8 162 | 16.7 146 | 26.0 134 | 28.2 147 |
PGAM+LK [55] | 150.9 | 2.98 163 | 6.17 155 | 6.36 198 | 16.8 156 | 36.2 159 | 17.8 158 | 14.7 150 | 26.5 149 | 14.5 152 | 19.1 157 | 53.9 163 | 18.3 155 | 23.1 156 | 30.6 156 | 29.9 154 | 14.4 153 | 36.8 157 | 11.1 151 | 1.07 154 | 0.00 1 | 4.16 153 | 25.9 157 | 40.1 157 | 40.3 157 |
FOLKI [16] | 151.5 | 1.98 158 | 7.18 162 | 0.87 157 | 24.5 161 | 36.3 160 | 30.3 161 | 18.7 159 | 32.4 161 | 16.5 153 | 15.2 153 | 33.2 150 | 18.1 154 | 26.0 157 | 32.3 159 | 36.0 157 | 17.7 157 | 40.6 159 | 17.9 159 | 2.33 159 | 0.00 1 | 10.6 157 | 33.9 161 | 43.6 160 | 52.7 162 |
Periodicity [79] | 152.3 | 2.36 160 | 9.12 163 | 0.79 156 | 19.1 159 | 40.7 162 | 20.6 160 | 28.2 163 | 35.2 163 | 26.8 163 | 11.2 148 | 40.6 157 | 10.3 146 | 42.3 163 | 55.4 163 | 41.1 160 | 31.7 162 | 56.3 163 | 27.7 162 | 0.54 150 | 0.00 1 | 7.78 156 | 26.1 158 | 51.0 162 | 36.2 155 |
Pyramid LK [2] | 161.3 | 2.31 159 | 4.20 148 | 3.47 197 | 31.6 163 | 32.0 152 | 40.4 163 | 21.0 162 | 28.5 154 | 24.0 161 | 24.6 160 | 43.7 159 | 28.6 162 | 37.5 162 | 46.6 162 | 43.7 163 | 33.1 163 | 34.2 154 | 31.3 163 | 2.17 158 | 0.47 159 | 10.7 158 | 46.5 163 | 57.3 163 | 67.2 163 |
AdaConv-v1 [124] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
SepConv-v1 [125] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
SuperSlomo [130] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
CtxSyn [134] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
CyclicGen [149] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
TOF-M [150] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
MPRN [151] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
DAIN [152] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
FRUCnet [153] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
OFRI [154] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
FGME [158] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
MS-PFT [159] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
MEMC-Net+ [160] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
ADC [161] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
DSepConv [162] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
MAF-net [163] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
STAR-Net [164] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
AdaCoF [165] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
TC-GAN [166] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
FeFlow [167] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
DAI [168] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
SoftSplat [169] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
STSR [170] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
BMBC [171] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
GDCN [172] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
EDSC [173] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
MV_VFI [183] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
DistillNet [184] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
SepConv++ [185] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
EAFI [186] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
FLAVR [188] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
SoftsplatAug [190] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
ProBoost-Net [191] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
IDIAL [192] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
IFRNet [193] | 164.3 | 6.16 164 | 11.8 164 | 2.11 162 | 91.0 164 | 93.3 164 | 87.2 164 | 83.4 164 | 79.4 164 | 87.3 164 | 47.3 164 | 64.4 164 | 46.2 164 | 89.6 164 | 93.2 165 | 73.3 164 | 69.7 165 | 60.5 164 | 67.1 165 | 41.7 165 | 14.2 165 | 92.5 165 | 99.6 165 | 98.7 165 | 100.0 165 |
AVG_FLOW_ROB [137] | 179.1 | 41.6 199 | 34.9 199 | 54.2 199 | 94.7 199 | 94.6 199 | 92.2 199 | 90.3 199 | 88.2 199 | 90.3 199 | 80.5 199 | 73.8 199 | 82.4 199 | 91.3 199 | 92.4 164 | 87.0 199 | 67.7 164 | 60.9 199 | 64.7 164 | 20.2 164 | 0.00 1 | 42.1 164 | 93.8 164 | 92.8 164 | 98.2 164 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |