Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
SD endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it+_RVC [198] | 6.0 | 0.20 19 | 0.45 39 | 0.09 3 | 0.38 3 | 0.95 7 | 0.13 1 | 0.35 1 | 0.63 1 | 0.11 1 | 0.47 15 | 1.50 24 | 0.04 4 | 0.80 1 | 0.98 1 | 0.37 3 | 0.43 4 | 1.12 4 | 0.11 1 | 0.05 1 | 0.08 1 | 0.04 2 | 0.71 3 | 1.28 4 | 0.30 2 |
RAFT-it [194] | 8.8 | 0.20 19 | 0.46 50 | 0.10 7 | 0.43 16 | 1.04 27 | 0.16 2 | 0.40 3 | 0.73 3 | 0.15 6 | 0.29 5 | 0.93 7 | 0.02 1 | 0.90 6 | 1.11 6 | 0.48 8 | 0.36 1 | 0.91 1 | 0.22 3 | 0.07 9 | 0.10 23 | 0.05 3 | 0.69 2 | 1.24 3 | 0.29 1 |
GMFlow_RVC [196] | 13.3 | 0.21 37 | 0.43 16 | 0.13 64 | 0.36 2 | 0.81 2 | 0.21 20 | 0.38 2 | 0.66 2 | 0.21 19 | 0.58 24 | 1.48 23 | 0.32 24 | 0.88 4 | 1.07 4 | 0.44 5 | 0.50 5 | 1.19 5 | 0.40 5 | 0.08 17 | 0.10 23 | 0.08 12 | 0.62 1 | 1.08 1 | 0.36 3 |
NNF-Local [75] | 13.4 | 0.20 19 | 0.44 25 | 0.10 7 | 0.38 3 | 0.90 3 | 0.17 3 | 0.48 7 | 0.87 10 | 0.14 4 | 0.41 8 | 1.24 14 | 0.09 8 | 0.82 2 | 1.02 2 | 0.34 2 | 0.73 8 | 1.77 11 | 0.54 9 | 0.11 44 | 0.12 71 | 0.13 38 | 0.80 9 | 1.37 9 | 0.45 5 |
PMMST [112] | 13.9 | 0.19 8 | 0.44 25 | 0.07 1 | 0.35 1 | 0.80 1 | 0.22 22 | 0.52 11 | 0.93 12 | 0.17 10 | 0.31 6 | 0.88 6 | 0.12 9 | 1.06 9 | 1.32 10 | 0.61 12 | 0.67 7 | 1.57 7 | 0.48 8 | 0.12 51 | 0.11 46 | 0.15 49 | 0.78 7 | 1.36 7 | 0.65 9 |
MS_RAFT+_RVC [195] | 14.1 | 0.20 19 | 0.45 39 | 0.11 22 | 0.47 29 | 1.00 22 | 0.34 73 | 0.56 18 | 1.02 18 | 0.20 13 | 0.44 14 | 1.44 21 | 0.03 3 | 0.89 5 | 1.11 6 | 0.42 4 | 0.42 2 | 1.06 3 | 0.26 4 | 0.05 1 | 0.08 1 | 0.03 1 | 0.76 5 | 1.23 2 | 0.79 13 |
RAFT-TF_RVC [179] | 20.3 | 0.26 114 | 0.57 130 | 0.12 42 | 0.42 14 | 1.01 23 | 0.20 15 | 0.47 6 | 0.83 6 | 0.28 33 | 0.24 1 | 0.76 1 | 0.02 1 | 0.91 7 | 1.11 6 | 0.44 5 | 0.42 2 | 1.04 2 | 0.19 2 | 0.07 9 | 0.11 46 | 0.05 3 | 0.78 7 | 1.35 6 | 0.48 6 |
NN-field [71] | 24.2 | 0.21 37 | 0.47 65 | 0.11 22 | 0.38 3 | 0.92 6 | 0.17 3 | 0.51 9 | 0.93 12 | 0.15 6 | 0.43 12 | 1.30 17 | 0.08 5 | 0.83 3 | 1.03 3 | 0.32 1 | 1.72 87 | 1.98 22 | 1.12 83 | 0.12 51 | 0.12 71 | 0.13 38 | 0.85 10 | 1.46 11 | 0.43 4 |
MDP-Flow2 [68] | 26.1 | 0.19 8 | 0.44 25 | 0.10 7 | 0.40 8 | 0.97 11 | 0.18 8 | 0.55 17 | 1.01 17 | 0.16 8 | 0.69 59 | 1.78 76 | 0.36 38 | 1.30 37 | 1.58 44 | 1.09 53 | 0.82 10 | 1.86 15 | 0.70 18 | 0.12 51 | 0.10 23 | 0.15 49 | 0.89 13 | 1.55 15 | 0.92 16 |
OFLAF [78] | 27.8 | 0.19 8 | 0.44 25 | 0.10 7 | 0.45 21 | 1.08 37 | 0.19 9 | 0.53 13 | 0.98 16 | 0.13 3 | 0.76 87 | 2.04 120 | 0.40 73 | 1.15 17 | 1.43 20 | 0.63 13 | 0.78 9 | 1.71 9 | 0.66 14 | 0.11 44 | 0.10 23 | 0.13 38 | 1.00 16 | 1.50 13 | 1.44 33 |
VCN_RVC [178] | 31.1 | 0.22 64 | 0.46 50 | 0.14 78 | 0.46 26 | 1.06 32 | 0.26 31 | 0.51 9 | 0.86 8 | 0.30 39 | 0.75 83 | 1.67 52 | 0.44 95 | 1.13 16 | 1.35 13 | 0.73 17 | 1.05 26 | 1.97 21 | 0.73 26 | 0.06 3 | 0.09 5 | 0.06 7 | 0.92 14 | 1.51 14 | 0.98 17 |
ComponentFusion [94] | 32.8 | 0.19 8 | 0.44 25 | 0.10 7 | 0.47 29 | 1.15 53 | 0.20 15 | 0.58 19 | 1.06 19 | 0.20 13 | 0.51 20 | 1.52 28 | 0.15 11 | 1.50 76 | 1.81 95 | 1.29 71 | 0.95 20 | 2.13 28 | 0.80 36 | 0.13 61 | 0.10 23 | 0.16 56 | 1.05 21 | 1.72 29 | 1.29 23 |
PWC-Net_RVC [143] | 35.5 | 0.21 37 | 0.42 14 | 0.14 78 | 0.51 50 | 1.17 66 | 0.28 37 | 0.78 40 | 1.34 39 | 0.31 43 | 0.55 23 | 1.40 18 | 0.35 31 | 1.25 27 | 1.50 27 | 0.80 19 | 1.94 100 | 2.01 23 | 1.34 95 | 0.06 3 | 0.11 46 | 0.05 3 | 0.87 12 | 1.48 12 | 0.68 10 |
PRAFlow_RVC [177] | 35.6 | 0.23 79 | 0.50 100 | 0.12 42 | 0.43 16 | 0.99 18 | 0.22 22 | 0.68 27 | 1.19 27 | 0.31 43 | 0.64 37 | 1.74 68 | 0.26 19 | 1.08 10 | 1.30 9 | 0.81 20 | 0.52 6 | 1.22 6 | 0.44 7 | 0.06 3 | 0.11 46 | 0.06 7 | 1.63 87 | 2.02 59 | 1.99 97 |
CoT-AMFlow [174] | 36.1 | 0.20 19 | 0.44 25 | 0.11 22 | 0.39 6 | 0.95 7 | 0.19 9 | 0.61 20 | 1.11 20 | 0.22 20 | 0.72 73 | 1.88 89 | 0.37 49 | 1.40 59 | 1.65 58 | 1.42 90 | 0.86 11 | 1.94 18 | 0.74 28 | 0.13 61 | 0.11 46 | 0.17 63 | 1.05 21 | 1.64 21 | 1.43 31 |
FlowFields+ [128] | 36.3 | 0.22 64 | 0.43 16 | 0.16 106 | 0.43 16 | 0.90 3 | 0.30 46 | 0.66 25 | 1.13 23 | 0.32 50 | 0.42 9 | 1.14 11 | 0.24 15 | 1.44 66 | 1.69 66 | 1.18 61 | 0.93 17 | 2.13 28 | 0.65 11 | 0.10 33 | 0.09 5 | 0.12 29 | 1.32 58 | 2.10 65 | 1.55 48 |
3DFlow [133] | 38.3 | 0.21 37 | 0.46 50 | 0.09 3 | 0.50 45 | 1.19 74 | 0.21 20 | 0.92 55 | 1.64 65 | 0.25 25 | 0.25 2 | 0.76 1 | 0.08 5 | 1.28 33 | 1.55 36 | 1.01 36 | 1.19 38 | 1.65 8 | 0.90 52 | 0.26 140 | 0.11 46 | 0.32 128 | 0.77 6 | 1.36 7 | 0.64 8 |
MCPFlow_RVC [197] | 38.4 | 0.23 79 | 0.45 39 | 0.15 92 | 0.50 45 | 0.99 18 | 0.33 67 | 0.54 16 | 0.86 8 | 0.40 77 | 0.49 17 | 1.45 22 | 0.31 22 | 0.92 8 | 1.10 5 | 0.46 7 | 1.04 24 | 2.65 70 | 0.40 5 | 0.06 3 | 0.11 46 | 0.06 7 | 1.62 85 | 2.01 58 | 2.01 101 |
S2F-IF [121] | 38.9 | 0.22 64 | 0.44 25 | 0.15 92 | 0.45 21 | 0.97 11 | 0.31 55 | 0.70 30 | 1.21 28 | 0.32 50 | 0.61 27 | 1.50 24 | 0.37 49 | 1.49 73 | 1.74 77 | 1.28 68 | 0.94 18 | 2.18 32 | 0.72 21 | 0.10 33 | 0.10 23 | 0.13 38 | 1.07 23 | 1.73 31 | 1.19 21 |
IROF++ [58] | 39.2 | 0.21 37 | 0.47 65 | 0.11 22 | 0.47 29 | 1.05 29 | 0.28 37 | 0.90 52 | 1.54 56 | 0.27 29 | 0.64 37 | 1.59 37 | 0.36 38 | 1.21 23 | 1.48 25 | 0.94 26 | 1.30 48 | 2.41 48 | 0.97 59 | 0.09 21 | 0.11 46 | 0.11 23 | 1.24 41 | 1.93 50 | 1.72 64 |
FlowFields [108] | 40.4 | 0.22 64 | 0.43 16 | 0.16 106 | 0.45 21 | 0.96 10 | 0.31 55 | 0.72 33 | 1.25 33 | 0.33 54 | 0.48 16 | 1.29 16 | 0.27 20 | 1.47 72 | 1.73 75 | 1.25 65 | 0.96 22 | 2.15 30 | 0.72 21 | 0.10 33 | 0.09 5 | 0.13 38 | 1.31 55 | 2.12 67 | 1.49 42 |
UnDAF [187] | 41.6 | 0.23 79 | 0.52 110 | 0.10 7 | 0.42 14 | 1.01 23 | 0.19 9 | 0.62 21 | 1.12 22 | 0.20 13 | 0.75 83 | 1.94 99 | 0.37 49 | 1.39 58 | 1.66 61 | 1.24 64 | 0.87 13 | 1.94 18 | 0.73 26 | 0.13 61 | 0.11 46 | 0.16 56 | 1.04 19 | 1.61 20 | 1.39 28 |
Correlation Flow [76] | 42.8 | 0.20 19 | 0.44 25 | 0.08 2 | 0.47 29 | 1.07 34 | 0.17 3 | 1.49 117 | 2.29 167 | 0.35 63 | 0.42 9 | 1.12 10 | 0.24 15 | 1.45 69 | 1.72 70 | 1.28 68 | 1.13 31 | 1.79 12 | 0.89 49 | 0.14 71 | 0.11 46 | 0.17 63 | 1.01 17 | 1.64 21 | 1.10 18 |
Layers++ [37] | 44.2 | 0.20 19 | 0.44 25 | 0.11 22 | 0.41 11 | 0.98 14 | 0.24 28 | 0.53 13 | 0.96 15 | 0.25 25 | 0.75 83 | 1.82 81 | 0.43 89 | 1.12 13 | 1.37 14 | 0.88 21 | 1.39 56 | 2.27 38 | 1.09 82 | 0.16 86 | 0.13 96 | 0.18 69 | 1.25 44 | 1.87 45 | 1.80 72 |
WLIF-Flow [91] | 44.3 | 0.20 19 | 0.45 39 | 0.10 7 | 0.41 11 | 0.95 7 | 0.23 26 | 0.76 37 | 1.34 39 | 0.27 29 | 0.63 32 | 1.59 37 | 0.34 27 | 1.32 43 | 1.61 51 | 1.06 44 | 1.46 66 | 2.55 62 | 0.98 62 | 0.15 79 | 0.10 23 | 0.19 75 | 1.54 78 | 2.33 85 | 1.89 85 |
NNF-EAC [101] | 44.3 | 0.19 8 | 0.44 25 | 0.11 22 | 0.43 16 | 0.99 18 | 0.24 28 | 0.69 29 | 1.22 29 | 0.20 13 | 0.68 53 | 1.72 62 | 0.37 49 | 1.24 26 | 1.51 29 | 0.98 31 | 1.15 33 | 1.87 17 | 0.89 49 | 0.13 61 | 0.12 71 | 0.16 56 | 1.97 113 | 3.11 136 | 1.94 89 |
CombBMOF [111] | 44.4 | 0.21 37 | 0.46 50 | 0.10 7 | 0.49 40 | 1.10 38 | 0.20 15 | 0.70 30 | 1.24 31 | 0.16 8 | 0.61 27 | 1.58 36 | 0.36 38 | 1.29 34 | 1.56 38 | 0.99 34 | 1.33 49 | 1.85 14 | 1.13 84 | 0.16 86 | 0.15 120 | 0.18 69 | 1.43 70 | 2.33 85 | 1.30 25 |
ResPWCR_ROB [140] | 45.0 | 0.22 64 | 0.40 8 | 0.15 92 | 0.47 29 | 0.98 14 | 0.30 46 | 0.83 47 | 1.37 44 | 0.40 77 | 0.50 19 | 1.18 12 | 0.29 21 | 1.26 30 | 1.47 24 | 1.08 51 | 3.07 118 | 1.81 13 | 2.36 121 | 0.10 33 | 0.11 46 | 0.15 49 | 1.25 44 | 1.85 41 | 1.46 38 |
NL-TV-NCC [25] | 47.2 | 0.20 19 | 0.44 25 | 0.09 3 | 0.47 29 | 1.07 34 | 0.19 9 | 1.16 88 | 1.95 132 | 0.31 43 | 0.53 21 | 1.42 19 | 0.24 15 | 1.37 55 | 1.61 51 | 1.14 56 | 2.07 106 | 2.39 47 | 1.47 101 | 0.16 86 | 0.09 5 | 0.19 75 | 1.24 41 | 1.93 50 | 1.29 23 |
C-RAFT_RVC [181] | 47.8 | 0.27 121 | 0.48 80 | 0.18 123 | 0.60 91 | 1.13 44 | 0.43 104 | 0.81 42 | 1.34 39 | 0.44 89 | 0.60 26 | 1.56 32 | 0.36 38 | 1.23 24 | 1.42 17 | 1.02 38 | 0.91 16 | 2.10 25 | 0.79 35 | 0.10 33 | 0.12 71 | 0.12 29 | 0.85 10 | 1.40 10 | 0.69 11 |
LME [70] | 48.2 | 0.21 37 | 0.48 80 | 0.11 22 | 0.40 8 | 0.99 18 | 0.17 3 | 0.89 49 | 1.50 53 | 0.68 121 | 0.68 53 | 1.63 47 | 0.50 115 | 1.33 45 | 1.56 38 | 1.29 71 | 1.17 35 | 2.77 76 | 0.83 39 | 0.13 61 | 0.11 46 | 0.17 63 | 1.07 23 | 1.68 25 | 1.39 28 |
FC-2Layers-FF [74] | 48.2 | 0.20 19 | 0.45 39 | 0.11 22 | 0.51 50 | 1.18 68 | 0.28 37 | 0.53 13 | 0.94 14 | 0.24 23 | 0.79 100 | 2.00 110 | 0.43 89 | 1.18 19 | 1.43 20 | 0.89 22 | 1.44 61 | 2.63 67 | 0.99 64 | 0.16 86 | 0.12 71 | 0.19 75 | 1.09 28 | 1.69 26 | 1.45 35 |
FESL [72] | 48.5 | 0.20 19 | 0.46 50 | 0.10 7 | 0.54 64 | 1.16 61 | 0.31 55 | 0.82 45 | 1.43 46 | 0.27 29 | 0.64 37 | 1.60 44 | 0.34 27 | 1.23 24 | 1.49 26 | 0.96 28 | 1.38 55 | 2.51 59 | 0.92 54 | 0.16 86 | 0.13 96 | 0.22 92 | 1.33 60 | 1.98 56 | 1.53 44 |
PH-Flow [99] | 48.8 | 0.21 37 | 0.46 50 | 0.12 42 | 0.53 59 | 1.14 48 | 0.31 55 | 0.65 23 | 1.16 24 | 0.26 28 | 0.76 87 | 1.95 101 | 0.39 64 | 1.16 18 | 1.42 17 | 0.90 23 | 0.88 14 | 1.95 20 | 0.67 15 | 0.20 122 | 0.13 96 | 0.30 123 | 1.10 30 | 1.64 21 | 1.60 53 |
AGIF+OF [84] | 49.3 | 0.21 37 | 0.46 50 | 0.11 22 | 0.54 64 | 1.16 61 | 0.29 42 | 0.98 67 | 1.65 66 | 0.34 58 | 0.63 32 | 1.57 33 | 0.35 31 | 1.19 22 | 1.45 22 | 0.91 24 | 1.41 58 | 2.25 37 | 1.01 71 | 0.15 79 | 0.10 23 | 0.19 75 | 1.41 68 | 2.04 61 | 1.85 81 |
nLayers [57] | 49.5 | 0.20 19 | 0.46 50 | 0.11 22 | 0.43 16 | 0.98 14 | 0.25 30 | 0.67 26 | 1.18 26 | 0.29 36 | 0.90 118 | 2.34 143 | 0.52 118 | 1.25 27 | 1.53 34 | 0.93 25 | 1.33 49 | 2.21 33 | 0.94 58 | 0.14 71 | 0.12 71 | 0.18 69 | 1.22 38 | 1.96 53 | 1.51 43 |
ProbFlowFields [126] | 50.1 | 0.23 79 | 0.48 80 | 0.15 92 | 0.48 37 | 1.12 40 | 0.32 62 | 0.74 35 | 1.32 36 | 0.32 50 | 0.42 9 | 1.25 15 | 0.22 13 | 1.60 102 | 1.91 127 | 1.33 79 | 1.04 24 | 2.47 56 | 0.70 18 | 0.09 21 | 0.08 1 | 0.11 23 | 1.46 71 | 2.43 94 | 1.46 38 |
LSM [39] | 51.7 | 0.20 19 | 0.45 39 | 0.12 42 | 0.54 64 | 1.16 61 | 0.32 62 | 0.91 54 | 1.53 54 | 0.34 58 | 0.62 30 | 1.55 31 | 0.36 38 | 1.31 41 | 1.57 40 | 1.07 48 | 1.42 59 | 2.41 48 | 0.99 64 | 0.17 103 | 0.11 46 | 0.22 92 | 1.25 44 | 1.83 39 | 1.72 64 |
EPPM w/o HM [86] | 53.1 | 0.22 64 | 0.44 25 | 0.11 22 | 0.46 26 | 1.07 34 | 0.19 9 | 0.81 42 | 1.43 46 | 0.20 13 | 0.66 46 | 1.72 62 | 0.36 38 | 1.18 19 | 1.45 22 | 0.64 14 | 2.02 104 | 2.80 80 | 1.44 99 | 0.28 147 | 0.13 96 | 0.37 138 | 1.19 36 | 1.80 35 | 1.66 58 |
ProFlow_ROB [142] | 53.2 | 0.22 64 | 0.49 93 | 0.12 42 | 0.52 55 | 1.18 68 | 0.33 67 | 0.94 59 | 1.66 67 | 0.30 39 | 0.68 53 | 1.73 65 | 0.33 25 | 1.51 81 | 1.81 95 | 1.18 61 | 1.29 47 | 2.62 66 | 0.76 30 | 0.07 9 | 0.09 5 | 0.08 12 | 1.34 62 | 2.14 72 | 1.48 41 |
Sparse-NonSparse [56] | 53.8 | 0.21 37 | 0.46 50 | 0.12 42 | 0.54 64 | 1.17 66 | 0.32 62 | 0.93 57 | 1.56 57 | 0.34 58 | 0.64 37 | 1.60 44 | 0.36 38 | 1.33 45 | 1.59 48 | 1.07 48 | 1.43 60 | 2.48 57 | 0.99 64 | 0.17 103 | 0.10 23 | 0.22 92 | 1.24 41 | 1.82 37 | 1.70 62 |
HAST [107] | 54.3 | 0.21 37 | 0.47 65 | 0.10 7 | 0.49 40 | 1.04 27 | 0.33 67 | 0.44 5 | 0.80 5 | 0.11 1 | 0.89 117 | 2.41 148 | 0.37 49 | 1.08 10 | 1.34 11 | 0.54 9 | 1.99 101 | 2.75 73 | 1.58 105 | 0.26 140 | 0.16 132 | 0.37 138 | 0.72 4 | 1.29 5 | 0.55 7 |
PMF [73] | 54.8 | 0.21 37 | 0.47 65 | 0.11 22 | 0.45 21 | 1.03 25 | 0.20 15 | 0.48 7 | 0.85 7 | 0.14 4 | 0.80 103 | 2.12 127 | 0.38 61 | 1.12 13 | 1.38 16 | 0.54 9 | 3.68 126 | 2.46 53 | 2.72 127 | 0.21 127 | 0.21 151 | 0.28 118 | 1.04 19 | 1.55 15 | 1.55 48 |
Classic+CPF [82] | 54.9 | 0.21 37 | 0.46 50 | 0.12 42 | 0.54 64 | 1.16 61 | 0.28 37 | 1.01 73 | 1.69 70 | 0.33 54 | 0.63 32 | 1.59 37 | 0.35 31 | 1.30 37 | 1.57 40 | 1.05 42 | 1.45 62 | 2.37 43 | 0.97 59 | 0.19 114 | 0.11 46 | 0.28 118 | 1.27 49 | 1.88 47 | 1.80 72 |
Ramp [62] | 55.5 | 0.21 37 | 0.46 50 | 0.12 42 | 0.50 45 | 1.10 38 | 0.31 55 | 0.87 48 | 1.49 51 | 0.34 58 | 0.63 32 | 1.57 33 | 0.35 31 | 1.30 37 | 1.57 40 | 1.09 53 | 1.52 75 | 2.75 73 | 1.02 73 | 0.20 122 | 0.12 71 | 0.33 131 | 1.22 38 | 1.81 36 | 1.72 64 |
CostFilter [40] | 55.7 | 0.21 37 | 0.47 65 | 0.11 22 | 0.47 29 | 1.05 29 | 0.22 22 | 0.43 4 | 0.75 4 | 0.18 11 | 0.76 87 | 1.95 101 | 0.38 61 | 1.12 13 | 1.37 14 | 0.56 11 | 3.23 120 | 2.45 51 | 2.50 123 | 0.22 130 | 0.20 150 | 0.31 127 | 1.20 37 | 1.85 41 | 1.55 48 |
IROF-TV [53] | 55.9 | 0.21 37 | 0.46 50 | 0.13 64 | 0.51 50 | 1.13 44 | 0.33 67 | 0.98 67 | 1.60 61 | 0.30 39 | 0.71 64 | 1.77 74 | 0.40 73 | 1.33 45 | 1.60 49 | 1.10 55 | 1.51 71 | 3.56 123 | 0.99 64 | 0.08 17 | 0.10 23 | 0.10 20 | 1.31 55 | 2.07 62 | 1.74 68 |
HCFN [157] | 57.1 | 0.18 4 | 0.39 5 | 0.11 22 | 0.49 40 | 1.16 61 | 0.31 55 | 0.65 23 | 1.17 25 | 0.23 21 | 0.80 103 | 2.03 116 | 0.42 84 | 1.26 30 | 1.52 30 | 1.01 36 | 1.11 30 | 2.21 33 | 0.72 21 | 0.25 139 | 0.18 145 | 0.37 138 | 1.37 64 | 2.10 65 | 1.85 81 |
TC/T-Flow [77] | 57.2 | 0.17 2 | 0.38 2 | 0.11 22 | 0.60 91 | 1.24 90 | 0.33 67 | 1.00 72 | 1.72 74 | 0.20 13 | 0.75 83 | 2.02 114 | 0.36 38 | 1.44 66 | 1.66 61 | 1.38 85 | 0.94 18 | 2.11 26 | 0.81 37 | 0.15 79 | 0.13 96 | 0.24 104 | 1.27 49 | 1.89 48 | 1.45 35 |
Classic+NL [31] | 57.8 | 0.21 37 | 0.47 65 | 0.12 42 | 0.53 59 | 1.15 53 | 0.32 62 | 0.96 64 | 1.62 62 | 0.35 63 | 0.65 43 | 1.63 47 | 0.36 38 | 1.27 32 | 1.52 30 | 1.03 40 | 1.53 76 | 2.77 76 | 0.98 62 | 0.17 103 | 0.12 71 | 0.23 97 | 1.27 49 | 1.87 45 | 1.78 71 |
Efficient-NL [60] | 58.8 | 0.21 37 | 0.47 65 | 0.11 22 | 0.47 29 | 1.06 32 | 0.27 33 | 1.07 77 | 1.79 116 | 0.31 43 | 0.66 46 | 1.66 50 | 0.37 49 | 1.25 27 | 1.52 30 | 0.94 26 | 4.42 132 | 3.42 111 | 2.99 132 | 0.18 109 | 0.12 71 | 0.26 113 | 1.07 23 | 1.60 18 | 1.19 21 |
Sparse Occlusion [54] | 59.8 | 0.20 19 | 0.44 25 | 0.13 64 | 0.45 21 | 1.03 25 | 0.26 31 | 1.26 96 | 2.12 147 | 0.35 63 | 0.71 64 | 1.80 77 | 0.37 49 | 1.41 61 | 1.69 66 | 1.05 42 | 0.90 15 | 2.03 24 | 0.67 15 | 0.19 114 | 0.22 155 | 0.23 97 | 1.31 55 | 2.07 62 | 1.55 48 |
MDP-Flow [26] | 59.9 | 0.18 4 | 0.38 2 | 0.12 42 | 0.39 6 | 0.90 3 | 0.29 42 | 0.62 21 | 1.11 20 | 0.33 54 | 0.63 32 | 1.73 65 | 0.31 22 | 1.63 111 | 1.72 70 | 1.99 143 | 1.73 89 | 1.86 15 | 1.40 98 | 0.13 61 | 0.13 96 | 0.15 49 | 2.01 117 | 2.98 120 | 2.17 155 |
SRR-TVOF-NL [89] | 60.2 | 0.21 37 | 0.43 16 | 0.14 78 | 0.70 116 | 1.41 118 | 0.46 110 | 1.01 73 | 1.69 70 | 0.39 76 | 0.64 37 | 1.50 24 | 0.34 27 | 1.42 64 | 1.62 54 | 1.55 105 | 0.95 20 | 2.23 36 | 0.70 18 | 0.16 86 | 0.15 120 | 0.21 88 | 1.07 23 | 1.60 18 | 1.40 30 |
JOF [136] | 60.7 | 0.22 64 | 0.50 100 | 0.13 64 | 0.57 81 | 1.12 40 | 0.41 100 | 0.75 36 | 1.31 35 | 0.30 39 | 0.66 46 | 1.71 59 | 0.34 27 | 1.08 10 | 1.34 11 | 0.68 16 | 1.20 39 | 2.11 26 | 0.88 47 | 0.24 135 | 0.15 120 | 0.30 123 | 1.57 79 | 2.34 87 | 1.80 72 |
LiteFlowNet [138] | 61.1 | 0.25 110 | 0.49 93 | 0.15 92 | 0.55 71 | 1.18 68 | 0.32 62 | 0.89 49 | 1.49 51 | 0.34 58 | 0.71 64 | 1.59 37 | 0.42 84 | 1.44 66 | 1.65 58 | 1.31 76 | 1.15 33 | 2.56 63 | 0.64 10 | 0.07 9 | 0.11 46 | 0.08 12 | 1.61 84 | 2.13 69 | 2.01 101 |
IIOF-NLDP [129] | 61.3 | 0.22 64 | 0.48 80 | 0.10 7 | 0.53 59 | 1.21 79 | 0.20 15 | 1.24 95 | 2.03 137 | 0.45 92 | 0.31 6 | 0.85 5 | 0.17 12 | 1.35 52 | 1.63 55 | 1.06 44 | 3.29 121 | 2.82 81 | 2.32 119 | 0.10 33 | 0.10 23 | 0.13 38 | 1.58 80 | 2.13 69 | 2.04 106 |
CompactFlow_ROB [155] | 61.5 | 0.27 121 | 0.50 100 | 0.19 129 | 0.58 84 | 1.13 44 | 0.40 94 | 0.96 64 | 1.43 46 | 0.72 124 | 0.61 27 | 1.42 19 | 0.40 73 | 1.33 45 | 1.54 35 | 1.02 38 | 1.03 23 | 2.35 41 | 0.72 21 | 0.06 3 | 0.09 5 | 0.05 3 | 1.73 98 | 2.19 78 | 2.29 162 |
TV-L1-MCT [64] | 61.7 | 0.21 37 | 0.48 80 | 0.12 42 | 0.56 77 | 1.19 74 | 0.30 46 | 1.05 76 | 1.79 116 | 0.35 63 | 0.62 30 | 1.54 29 | 0.35 31 | 1.35 52 | 1.61 51 | 1.14 56 | 1.46 66 | 2.50 58 | 1.00 70 | 0.15 79 | 0.10 23 | 0.36 136 | 1.33 60 | 1.94 52 | 1.83 77 |
ROF-ND [105] | 62.0 | 0.23 79 | 0.46 50 | 0.11 22 | 0.56 77 | 1.13 44 | 0.31 55 | 1.15 85 | 1.90 128 | 0.33 54 | 0.27 4 | 0.76 1 | 0.14 10 | 1.49 73 | 1.76 80 | 1.39 87 | 1.09 27 | 2.21 33 | 0.83 39 | 0.19 114 | 0.13 96 | 0.23 97 | 1.58 80 | 2.17 77 | 1.82 76 |
PGM-C [118] | 63.4 | 0.24 99 | 0.47 65 | 0.17 112 | 0.55 71 | 1.22 81 | 0.36 78 | 0.78 40 | 1.35 43 | 0.36 68 | 0.77 92 | 1.83 83 | 0.47 104 | 1.52 85 | 1.80 87 | 1.31 76 | 1.17 35 | 2.64 68 | 0.76 30 | 0.09 21 | 0.09 5 | 0.12 29 | 1.27 49 | 1.97 54 | 1.54 46 |
COFM [59] | 63.8 | 0.23 79 | 0.52 110 | 0.13 64 | 0.52 55 | 1.14 48 | 0.30 46 | 0.89 49 | 1.56 57 | 0.31 43 | 0.84 114 | 2.18 132 | 0.42 84 | 1.50 76 | 1.75 79 | 1.51 98 | 0.86 11 | 1.73 10 | 0.75 29 | 0.19 114 | 0.11 46 | 0.25 108 | 1.07 23 | 1.65 24 | 1.44 33 |
FMOF [92] | 64.8 | 0.20 19 | 0.45 39 | 0.12 42 | 0.58 84 | 1.25 94 | 0.30 46 | 0.72 33 | 1.26 34 | 0.23 21 | 0.67 51 | 1.66 50 | 0.37 49 | 1.30 37 | 1.57 40 | 1.00 35 | 4.83 141 | 2.73 72 | 3.46 143 | 0.19 114 | 0.11 46 | 0.35 134 | 1.59 82 | 2.34 87 | 1.69 61 |
DPOF [18] | 65.7 | 0.23 79 | 0.47 65 | 0.14 78 | 0.60 91 | 1.21 79 | 0.41 100 | 0.52 11 | 0.92 11 | 0.19 12 | 0.71 64 | 1.73 65 | 0.44 95 | 1.18 19 | 1.42 17 | 0.73 17 | 3.53 125 | 2.98 91 | 2.25 118 | 0.38 152 | 0.13 96 | 0.47 147 | 0.95 15 | 1.58 17 | 0.78 12 |
SegFlow [156] | 65.7 | 0.24 99 | 0.48 80 | 0.17 112 | 0.56 77 | 1.23 83 | 0.37 81 | 0.77 38 | 1.34 39 | 0.36 68 | 0.78 96 | 1.86 87 | 0.47 104 | 1.53 86 | 1.80 87 | 1.34 80 | 1.50 69 | 2.46 53 | 1.08 79 | 0.09 21 | 0.09 5 | 0.12 29 | 1.15 34 | 1.75 32 | 1.46 38 |
SVFilterOh [109] | 66.6 | 0.22 64 | 0.49 93 | 0.12 42 | 0.51 50 | 1.18 68 | 0.23 26 | 0.68 27 | 1.24 31 | 0.24 23 | 0.76 87 | 2.02 114 | 0.37 49 | 1.33 45 | 1.65 58 | 0.66 15 | 3.09 119 | 3.20 99 | 2.02 114 | 0.27 145 | 0.16 132 | 0.35 134 | 1.01 17 | 1.71 27 | 1.17 19 |
RNLOD-Flow [119] | 68.5 | 0.19 8 | 0.43 16 | 0.10 7 | 0.51 50 | 1.15 53 | 0.29 42 | 1.17 89 | 1.96 134 | 0.35 63 | 0.71 64 | 1.88 89 | 0.37 49 | 1.65 114 | 2.00 148 | 1.36 83 | 1.24 41 | 2.58 65 | 0.87 45 | 0.18 109 | 0.15 120 | 0.26 113 | 1.22 38 | 1.86 44 | 1.67 59 |
CPM-Flow [114] | 69.2 | 0.24 99 | 0.48 80 | 0.17 112 | 0.55 71 | 1.22 81 | 0.37 81 | 0.77 38 | 1.33 38 | 0.36 68 | 0.77 92 | 1.84 84 | 0.47 104 | 1.51 81 | 1.78 84 | 1.25 65 | 1.36 53 | 2.45 51 | 1.02 73 | 0.09 21 | 0.09 5 | 0.12 29 | 1.53 77 | 2.34 87 | 1.91 86 |
ACK-Prior [27] | 69.3 | 0.18 4 | 0.39 5 | 0.10 7 | 0.46 26 | 1.05 29 | 0.19 9 | 0.82 45 | 1.46 49 | 0.25 25 | 0.59 25 | 1.65 49 | 0.22 13 | 1.50 76 | 1.74 77 | 1.42 90 | 6.47 161 | 4.94 158 | 4.41 160 | 0.28 147 | 0.17 137 | 0.37 138 | 1.67 89 | 2.35 90 | 1.62 54 |
ContinualFlow_ROB [148] | 69.5 | 0.28 124 | 0.52 110 | 0.19 129 | 0.63 100 | 1.15 53 | 0.43 104 | 1.09 79 | 1.77 113 | 0.60 110 | 0.81 107 | 1.91 95 | 0.42 84 | 1.31 41 | 1.52 30 | 0.97 30 | 1.72 87 | 2.16 31 | 1.25 90 | 0.06 3 | 0.10 23 | 0.07 11 | 1.26 47 | 1.85 41 | 1.32 26 |
ALD-Flow [66] | 70.8 | 0.18 4 | 0.39 5 | 0.10 7 | 0.63 100 | 1.30 97 | 0.36 78 | 0.98 67 | 1.71 73 | 0.28 33 | 0.82 109 | 2.00 110 | 0.39 64 | 1.59 96 | 1.84 104 | 1.57 109 | 1.63 83 | 3.34 106 | 0.93 55 | 0.14 71 | 0.12 71 | 0.22 92 | 1.29 53 | 1.98 56 | 1.65 56 |
2DHMM-SAS [90] | 71.0 | 0.21 37 | 0.46 50 | 0.12 42 | 0.57 81 | 1.23 83 | 0.30 46 | 1.42 109 | 2.07 143 | 0.55 104 | 0.65 43 | 1.59 37 | 0.36 38 | 1.29 34 | 1.55 36 | 1.06 44 | 1.51 71 | 2.46 53 | 1.02 73 | 0.19 114 | 0.12 71 | 0.30 123 | 1.64 88 | 2.41 92 | 1.96 93 |
MLDP_OF [87] | 71.3 | 0.20 19 | 0.43 16 | 0.11 22 | 0.41 11 | 0.97 11 | 0.17 3 | 1.14 84 | 1.87 122 | 0.31 43 | 0.73 75 | 1.97 105 | 0.36 38 | 1.38 57 | 1.66 61 | 1.16 58 | 1.24 41 | 3.11 95 | 0.76 30 | 0.26 140 | 0.13 96 | 0.45 145 | 2.97 188 | 2.32 84 | 2.42 168 |
TCOF [69] | 72.2 | 0.21 37 | 0.44 25 | 0.13 64 | 0.52 55 | 1.15 53 | 0.30 46 | 1.59 125 | 2.33 176 | 0.58 108 | 0.68 53 | 1.72 62 | 0.39 64 | 1.58 94 | 1.82 99 | 1.55 105 | 1.24 41 | 2.33 40 | 0.86 43 | 0.22 130 | 0.12 71 | 0.39 142 | 1.13 33 | 1.75 32 | 1.45 35 |
EpicFlow [100] | 73.0 | 0.23 79 | 0.47 65 | 0.17 112 | 0.55 71 | 1.23 83 | 0.37 81 | 1.07 77 | 1.81 119 | 0.40 77 | 0.71 64 | 1.69 54 | 0.44 95 | 1.54 87 | 1.81 95 | 1.34 80 | 1.70 86 | 2.64 68 | 1.18 87 | 0.09 21 | 0.09 5 | 0.12 29 | 1.46 71 | 2.12 67 | 1.84 79 |
Complementary OF [21] | 73.6 | 0.19 8 | 0.41 9 | 0.12 42 | 0.49 40 | 1.14 48 | 0.22 22 | 0.95 60 | 1.67 69 | 0.27 29 | 0.76 87 | 2.03 116 | 0.38 61 | 1.73 131 | 1.91 127 | 1.91 136 | 6.38 160 | 4.41 152 | 4.34 159 | 0.10 33 | 0.09 5 | 0.16 56 | 1.42 69 | 2.15 73 | 1.81 75 |
OAR-Flow [123] | 74.0 | 0.20 19 | 0.43 16 | 0.14 78 | 0.85 132 | 1.47 126 | 0.61 131 | 1.15 85 | 1.89 126 | 0.40 77 | 0.80 103 | 1.97 105 | 0.39 64 | 1.62 106 | 1.87 112 | 1.53 102 | 1.51 71 | 3.29 105 | 0.83 39 | 0.09 21 | 0.10 23 | 0.12 29 | 1.17 35 | 1.83 39 | 1.43 31 |
LSM_FLOW_RVC [182] | 74.4 | 0.31 134 | 0.55 125 | 0.21 137 | 0.80 127 | 1.53 132 | 0.53 119 | 1.23 93 | 1.88 124 | 0.61 112 | 0.93 122 | 2.19 133 | 0.53 121 | 1.29 34 | 1.50 27 | 1.04 41 | 1.09 27 | 2.57 64 | 0.65 11 | 0.07 9 | 0.09 5 | 0.08 12 | 1.10 30 | 1.71 27 | 1.17 19 |
EPMNet [131] | 74.5 | 0.31 134 | 0.60 135 | 0.18 123 | 0.84 131 | 1.41 118 | 0.59 127 | 0.90 52 | 1.40 45 | 0.56 106 | 0.69 59 | 1.81 78 | 0.39 64 | 1.34 50 | 1.58 44 | 0.98 31 | 1.82 92 | 2.37 43 | 1.58 105 | 0.11 44 | 0.14 114 | 0.11 23 | 1.09 28 | 1.72 29 | 0.86 14 |
OFH [38] | 75.6 | 0.19 8 | 0.41 9 | 0.12 42 | 0.56 77 | 1.23 83 | 0.34 73 | 1.39 107 | 2.10 145 | 0.37 72 | 0.82 109 | 2.24 135 | 0.40 73 | 1.60 102 | 1.84 104 | 1.61 112 | 1.85 96 | 3.78 130 | 1.46 100 | 0.09 21 | 0.09 5 | 0.11 23 | 1.35 63 | 2.15 73 | 1.58 52 |
FF++_ROB [141] | 76.5 | 0.25 110 | 0.51 107 | 0.16 106 | 0.52 55 | 1.15 53 | 0.35 77 | 0.96 64 | 1.58 60 | 0.41 83 | 0.43 12 | 1.10 9 | 0.24 15 | 1.46 70 | 1.72 70 | 1.20 63 | 3.50 124 | 2.77 76 | 2.53 124 | 0.12 51 | 0.12 71 | 0.18 69 | 1.78 100 | 2.41 92 | 2.53 174 |
TC-Flow [46] | 76.7 | 0.17 2 | 0.38 2 | 0.10 7 | 0.50 45 | 1.15 53 | 0.27 33 | 1.09 79 | 1.88 124 | 0.29 36 | 0.77 92 | 2.01 112 | 0.39 64 | 1.54 87 | 1.80 87 | 1.43 93 | 2.11 108 | 3.56 123 | 1.17 86 | 0.15 79 | 0.12 71 | 0.25 108 | 1.69 90 | 2.50 99 | 2.24 160 |
ComplOF-FED-GPU [35] | 77.1 | 0.19 8 | 0.41 9 | 0.12 42 | 0.59 88 | 1.24 90 | 0.36 78 | 0.95 60 | 1.66 67 | 0.28 33 | 0.79 100 | 2.03 116 | 0.40 73 | 1.57 92 | 1.80 87 | 1.58 111 | 4.00 129 | 3.34 106 | 2.67 126 | 0.14 71 | 0.11 46 | 0.23 97 | 1.46 71 | 2.27 82 | 1.74 68 |
SimpleFlow [49] | 78.4 | 0.21 37 | 0.47 65 | 0.12 42 | 0.55 71 | 1.20 76 | 0.34 73 | 1.45 110 | 2.19 154 | 0.41 83 | 0.66 46 | 1.68 53 | 0.35 31 | 1.41 61 | 1.69 66 | 1.16 58 | 5.06 145 | 4.23 148 | 3.40 140 | 0.16 86 | 0.12 71 | 0.23 97 | 1.29 53 | 1.97 54 | 1.70 62 |
EAI-Flow [147] | 79.1 | 0.26 114 | 0.49 93 | 0.17 112 | 0.65 106 | 1.24 90 | 0.47 113 | 0.99 70 | 1.53 54 | 0.48 95 | 0.64 37 | 1.50 24 | 0.41 79 | 1.50 76 | 1.72 70 | 1.25 65 | 2.20 109 | 2.83 83 | 1.62 108 | 0.16 86 | 0.10 23 | 0.21 88 | 1.40 66 | 2.19 78 | 1.67 59 |
HBM-GC [103] | 80.2 | 0.24 99 | 0.54 122 | 0.12 42 | 0.48 37 | 1.12 40 | 0.33 67 | 0.99 70 | 1.74 75 | 0.32 50 | 0.73 75 | 1.84 84 | 0.44 95 | 1.40 59 | 1.68 65 | 1.30 74 | 2.49 113 | 2.29 39 | 2.03 116 | 0.21 127 | 0.13 96 | 0.25 108 | 1.59 82 | 2.45 95 | 1.97 94 |
AggregFlow [95] | 80.8 | 0.29 127 | 0.63 146 | 0.16 106 | 0.86 133 | 1.58 135 | 0.60 129 | 0.93 57 | 1.62 62 | 0.42 86 | 0.74 78 | 1.91 95 | 0.37 49 | 1.51 81 | 1.80 87 | 1.29 71 | 1.09 27 | 2.36 42 | 0.65 11 | 0.13 61 | 0.13 96 | 0.21 88 | 1.32 58 | 2.02 59 | 1.62 54 |
FlowNet2 [120] | 81.0 | 0.35 144 | 0.68 150 | 0.19 129 | 0.89 136 | 1.58 135 | 0.60 129 | 0.95 60 | 1.48 50 | 0.63 116 | 0.71 64 | 1.84 84 | 0.41 79 | 1.34 50 | 1.58 44 | 0.98 31 | 1.82 92 | 2.37 43 | 1.58 105 | 0.12 51 | 0.16 132 | 0.13 38 | 1.10 30 | 1.82 37 | 0.89 15 |
PBOFVI [189] | 82.0 | 0.23 79 | 0.52 110 | 0.11 22 | 0.61 98 | 1.38 112 | 0.27 33 | 1.54 121 | 2.41 187 | 0.43 87 | 0.68 53 | 1.75 69 | 0.37 49 | 1.50 76 | 1.77 83 | 1.38 85 | 1.91 99 | 2.84 84 | 1.34 95 | 0.16 86 | 0.14 114 | 0.19 75 | 1.26 47 | 1.89 48 | 1.65 56 |
S2D-Matching [83] | 83.1 | 0.24 99 | 0.53 116 | 0.14 78 | 0.63 100 | 1.31 101 | 0.34 73 | 1.26 96 | 2.06 141 | 0.40 77 | 0.67 51 | 1.69 54 | 0.35 31 | 1.43 65 | 1.72 70 | 1.16 58 | 1.58 78 | 2.84 84 | 1.02 73 | 0.21 127 | 0.12 71 | 0.32 128 | 1.40 66 | 2.08 64 | 1.97 94 |
IRR-PWC_RVC [180] | 84.2 | 0.34 143 | 0.61 139 | 0.22 143 | 0.78 124 | 1.40 115 | 0.52 117 | 1.11 81 | 1.74 75 | 0.77 130 | 0.49 17 | 1.19 13 | 0.33 25 | 1.35 52 | 1.58 44 | 1.08 51 | 1.87 97 | 3.64 126 | 1.52 103 | 0.10 33 | 0.13 96 | 0.10 20 | 1.73 98 | 2.24 81 | 2.00 99 |
WRT [146] | 86.0 | 0.23 79 | 0.51 107 | 0.09 3 | 0.63 100 | 1.39 113 | 0.28 37 | 1.61 128 | 2.23 162 | 0.61 112 | 0.26 3 | 0.78 4 | 0.08 5 | 1.32 43 | 1.60 49 | 1.06 44 | 5.85 156 | 4.20 147 | 4.07 154 | 0.15 79 | 0.09 5 | 0.19 75 | 3.74 195 | 2.13 69 | 3.77 195 |
Occlusion-TV-L1 [63] | 86.2 | 0.22 64 | 0.47 65 | 0.13 64 | 0.53 59 | 1.18 68 | 0.38 87 | 1.58 123 | 2.36 183 | 0.54 103 | 0.74 78 | 1.76 72 | 0.42 84 | 1.55 91 | 1.81 95 | 1.35 82 | 1.60 80 | 2.98 91 | 1.22 89 | 0.09 21 | 0.11 46 | 0.09 18 | 2.10 122 | 3.06 131 | 2.16 153 |
RFlow [88] | 86.6 | 0.20 19 | 0.43 16 | 0.12 42 | 0.48 37 | 1.12 40 | 0.30 46 | 1.45 110 | 2.21 157 | 0.36 68 | 0.95 125 | 2.47 152 | 0.50 115 | 1.69 120 | 1.92 132 | 1.81 127 | 1.27 45 | 2.82 81 | 0.88 47 | 0.15 79 | 0.12 71 | 0.24 104 | 1.99 115 | 2.96 117 | 2.11 113 |
SegOF [10] | 88.0 | 0.24 99 | 0.48 80 | 0.18 123 | 0.71 117 | 1.35 110 | 0.58 125 | 1.31 100 | 1.92 129 | 0.73 125 | 0.54 22 | 1.09 8 | 0.41 79 | 1.62 106 | 1.79 86 | 1.64 114 | 5.27 147 | 4.17 146 | 3.63 146 | 0.07 9 | 0.10 23 | 0.10 20 | 1.49 74 | 2.48 97 | 1.35 27 |
DeepFlow2 [106] | 88.1 | 0.21 37 | 0.45 39 | 0.14 78 | 0.71 117 | 1.32 103 | 0.52 117 | 1.17 89 | 1.92 129 | 0.41 83 | 0.83 113 | 1.99 108 | 0.47 104 | 1.54 87 | 1.80 87 | 1.44 95 | 1.45 62 | 3.38 110 | 0.91 53 | 0.12 51 | 0.11 46 | 0.18 69 | 2.00 116 | 2.93 115 | 2.04 106 |
Aniso. Huber-L1 [22] | 90.0 | 0.23 79 | 0.48 80 | 0.15 92 | 0.60 91 | 1.26 95 | 0.39 91 | 1.66 135 | 2.29 167 | 0.50 98 | 0.69 59 | 1.59 37 | 0.39 64 | 1.59 96 | 1.82 99 | 1.55 105 | 1.21 40 | 2.86 86 | 0.72 21 | 0.19 114 | 0.14 114 | 0.29 122 | 1.72 94 | 2.64 101 | 1.84 79 |
DMF_ROB [135] | 90.5 | 0.21 37 | 0.43 16 | 0.14 78 | 0.63 100 | 1.35 110 | 0.40 94 | 1.26 96 | 2.03 137 | 0.44 89 | 0.80 103 | 1.90 92 | 0.47 104 | 1.62 106 | 1.86 109 | 1.64 114 | 2.91 117 | 4.14 145 | 2.19 117 | 0.10 33 | 0.09 5 | 0.13 38 | 1.96 111 | 2.86 111 | 2.06 109 |
CBF [12] | 90.5 | 0.19 8 | 0.41 9 | 0.12 42 | 0.55 71 | 1.14 48 | 0.45 107 | 1.36 105 | 2.04 139 | 0.47 94 | 0.81 107 | 2.01 112 | 0.44 95 | 1.65 114 | 1.91 127 | 1.68 116 | 1.13 31 | 2.54 61 | 0.76 30 | 0.29 150 | 0.17 137 | 0.42 143 | 1.91 105 | 2.85 110 | 2.10 112 |
Steered-L1 [116] | 92.3 | 0.16 1 | 0.34 1 | 0.11 22 | 0.40 8 | 0.98 14 | 0.27 33 | 0.92 55 | 1.62 62 | 0.31 43 | 0.78 96 | 2.05 122 | 0.40 73 | 1.62 106 | 1.86 109 | 1.77 121 | 6.13 159 | 3.96 138 | 4.33 158 | 0.40 153 | 0.17 137 | 0.79 155 | 2.44 139 | 3.04 128 | 2.98 183 |
LFNet_ROB [145] | 92.5 | 0.26 114 | 0.46 50 | 0.18 123 | 0.58 84 | 1.24 90 | 0.38 87 | 1.15 85 | 1.82 120 | 0.51 101 | 0.71 64 | 1.59 37 | 0.46 103 | 1.70 123 | 1.88 118 | 1.77 121 | 1.82 92 | 3.91 135 | 1.56 104 | 0.08 17 | 0.10 23 | 0.11 23 | 2.06 119 | 3.03 126 | 2.26 161 |
CVENG22+RIC [199] | 92.8 | 0.24 99 | 0.49 93 | 0.17 112 | 0.60 91 | 1.29 96 | 0.38 87 | 1.22 92 | 2.00 136 | 0.43 87 | 0.77 92 | 1.81 78 | 0.47 104 | 2.17 161 | 2.42 161 | 2.10 155 | 1.63 83 | 3.07 94 | 1.18 87 | 0.09 21 | 0.09 5 | 0.12 29 | 1.62 85 | 2.48 97 | 1.85 81 |
Adaptive [20] | 93.4 | 0.23 79 | 0.50 100 | 0.14 78 | 0.57 81 | 1.30 97 | 0.39 91 | 1.72 142 | 2.49 192 | 0.56 106 | 0.74 78 | 1.71 59 | 0.43 89 | 1.49 73 | 1.76 80 | 1.30 74 | 1.45 62 | 2.53 60 | 0.99 64 | 0.17 103 | 0.17 137 | 0.20 85 | 1.91 105 | 2.83 108 | 2.00 99 |
AugFNG_ROB [139] | 93.7 | 0.33 139 | 0.57 130 | 0.22 143 | 0.68 111 | 1.23 83 | 0.55 122 | 1.29 99 | 1.87 122 | 0.75 127 | 0.70 63 | 1.69 54 | 0.43 89 | 1.51 81 | 1.66 61 | 1.53 102 | 2.08 107 | 3.79 131 | 1.71 110 | 0.09 21 | 0.12 71 | 0.08 12 | 1.71 93 | 2.15 73 | 2.03 104 |
TF+OM [98] | 94.3 | 0.21 37 | 0.45 39 | 0.13 64 | 0.54 64 | 1.18 68 | 0.39 91 | 0.95 60 | 1.56 57 | 0.76 129 | 0.71 64 | 1.76 72 | 0.45 101 | 1.85 152 | 2.02 153 | 1.99 143 | 2.23 110 | 3.65 127 | 1.29 93 | 0.16 86 | 0.15 120 | 0.19 75 | 1.86 102 | 2.74 105 | 2.13 151 |
OFRF [132] | 95.7 | 0.29 127 | 0.60 135 | 0.17 112 | 1.24 156 | 1.64 145 | 1.18 156 | 1.61 128 | 2.24 163 | 0.91 137 | 0.73 75 | 1.71 59 | 0.49 113 | 1.37 55 | 1.63 55 | 0.96 28 | 1.50 69 | 2.44 50 | 0.84 42 | 0.17 103 | 0.15 120 | 0.25 108 | 1.38 65 | 1.75 32 | 1.72 64 |
CRTflow [81] | 96.0 | 0.21 37 | 0.42 14 | 0.14 78 | 0.67 109 | 1.40 115 | 0.37 81 | 1.59 125 | 2.32 175 | 0.55 104 | 0.97 126 | 2.37 146 | 0.53 121 | 1.63 111 | 1.91 127 | 1.54 104 | 1.60 80 | 3.74 129 | 0.89 49 | 0.11 44 | 0.11 46 | 0.16 56 | 1.93 108 | 2.97 118 | 2.01 101 |
SIOF [67] | 97.1 | 0.24 99 | 0.52 110 | 0.13 64 | 0.68 111 | 1.40 115 | 0.48 114 | 1.50 119 | 2.15 150 | 0.83 131 | 0.82 109 | 1.94 99 | 0.49 113 | 1.66 118 | 1.88 118 | 1.80 126 | 1.35 52 | 2.87 87 | 0.97 59 | 0.12 51 | 0.11 46 | 0.15 49 | 1.72 94 | 2.55 100 | 1.99 97 |
Brox et al. [5] | 98.0 | 0.22 64 | 0.45 39 | 0.15 92 | 0.68 111 | 1.58 135 | 0.40 94 | 1.11 81 | 1.89 126 | 0.40 77 | 0.93 122 | 2.16 130 | 0.51 117 | 1.78 141 | 1.95 139 | 2.00 146 | 2.88 115 | 3.52 120 | 2.02 114 | 0.08 17 | 0.11 46 | 0.09 18 | 1.97 113 | 2.81 107 | 1.94 89 |
LocallyOriented [52] | 98.3 | 0.29 127 | 0.60 135 | 0.15 92 | 0.77 122 | 1.42 121 | 0.57 124 | 1.63 133 | 2.29 167 | 0.49 97 | 0.66 46 | 1.57 33 | 0.41 79 | 1.59 96 | 1.80 87 | 1.55 105 | 3.32 122 | 3.50 116 | 2.32 119 | 0.11 44 | 0.11 46 | 0.16 56 | 1.72 94 | 2.45 95 | 2.03 104 |
DeepFlow [85] | 101.5 | 0.23 79 | 0.48 80 | 0.15 92 | 0.78 124 | 1.34 107 | 0.62 133 | 1.23 93 | 1.95 132 | 0.75 127 | 0.99 132 | 2.47 152 | 0.54 125 | 1.54 87 | 1.82 99 | 1.37 84 | 1.51 71 | 3.51 119 | 0.93 55 | 0.12 51 | 0.10 23 | 0.18 69 | 2.18 126 | 3.03 126 | 2.13 151 |
p-harmonic [29] | 102.1 | 0.23 79 | 0.48 80 | 0.15 92 | 0.54 64 | 1.20 76 | 0.40 94 | 1.62 131 | 2.29 167 | 0.61 112 | 0.78 96 | 1.75 69 | 0.53 121 | 1.75 134 | 1.92 132 | 1.99 143 | 1.45 62 | 3.28 103 | 0.99 64 | 0.16 86 | 0.15 120 | 0.16 56 | 2.17 125 | 3.06 131 | 2.12 114 |
CLG-TV [48] | 102.7 | 0.23 79 | 0.49 93 | 0.14 78 | 0.59 88 | 1.30 97 | 0.37 81 | 1.67 137 | 2.39 185 | 0.48 95 | 0.74 78 | 1.70 58 | 0.41 79 | 1.64 113 | 1.90 125 | 1.52 100 | 1.55 77 | 3.54 121 | 0.93 55 | 0.23 133 | 0.19 148 | 0.36 136 | 1.89 103 | 2.88 113 | 1.95 92 |
Classic++ [32] | 103.8 | 0.22 64 | 0.48 80 | 0.15 92 | 0.60 91 | 1.34 107 | 0.38 87 | 1.35 104 | 2.10 145 | 0.44 89 | 0.84 114 | 2.08 125 | 0.44 95 | 1.59 96 | 1.88 118 | 1.39 87 | 1.47 68 | 3.17 97 | 1.04 78 | 0.20 122 | 0.14 114 | 0.27 116 | 2.11 123 | 3.01 124 | 2.17 155 |
TriFlow [93] | 104.5 | 0.25 110 | 0.53 116 | 0.15 92 | 0.66 108 | 1.48 127 | 0.45 107 | 1.36 105 | 2.04 139 | 0.89 136 | 0.68 53 | 1.77 74 | 0.39 64 | 1.82 148 | 1.98 144 | 1.93 139 | 1.33 49 | 2.96 90 | 0.87 45 | 0.65 160 | 0.21 151 | 0.69 153 | 1.49 74 | 2.20 80 | 1.53 44 |
DF-Auto [113] | 105.6 | 0.30 133 | 0.57 130 | 0.18 123 | 0.88 135 | 1.46 125 | 0.67 136 | 1.33 102 | 2.07 143 | 0.84 134 | 0.82 109 | 1.95 101 | 0.45 101 | 1.72 129 | 1.95 139 | 1.79 123 | 1.24 41 | 2.77 76 | 0.69 17 | 0.13 61 | 0.17 137 | 0.12 29 | 1.93 108 | 2.89 114 | 1.94 89 |
Fusion [6] | 107.3 | 0.23 79 | 0.48 80 | 0.16 106 | 0.50 45 | 1.23 83 | 0.30 46 | 0.81 42 | 1.32 36 | 0.38 73 | 0.72 73 | 1.92 97 | 0.47 104 | 1.83 150 | 2.04 155 | 2.00 146 | 5.51 150 | 3.26 101 | 3.93 150 | 0.20 122 | 0.19 148 | 0.26 113 | 2.56 143 | 3.51 153 | 2.80 180 |
TriangleFlow [30] | 107.8 | 0.25 110 | 0.55 125 | 0.13 64 | 0.69 114 | 1.53 132 | 0.40 94 | 1.47 115 | 2.19 154 | 0.38 73 | 0.74 78 | 1.87 88 | 0.43 89 | 1.81 145 | 2.00 148 | 1.98 141 | 2.41 112 | 2.89 88 | 1.74 111 | 0.19 114 | 0.18 145 | 0.24 104 | 1.52 76 | 2.29 83 | 1.86 84 |
Filter Flow [19] | 110.0 | 0.28 124 | 0.54 122 | 0.19 129 | 0.69 114 | 1.31 101 | 0.51 116 | 1.45 110 | 1.98 135 | 1.02 144 | 1.13 140 | 1.82 81 | 1.04 144 | 1.71 125 | 1.83 102 | 2.04 148 | 1.28 46 | 2.37 43 | 1.01 71 | 0.16 86 | 0.16 132 | 0.17 63 | 2.29 130 | 2.98 120 | 2.12 114 |
TV-L1-improved [17] | 111.0 | 0.22 64 | 0.47 65 | 0.14 78 | 0.53 59 | 1.20 76 | 0.37 81 | 1.71 141 | 2.48 191 | 0.60 110 | 0.98 129 | 2.45 149 | 0.54 125 | 1.61 104 | 1.87 112 | 1.50 97 | 4.77 139 | 3.84 133 | 3.21 134 | 0.18 109 | 0.17 137 | 0.22 92 | 1.96 111 | 2.94 116 | 2.08 111 |
WOLF_ROB [144] | 111.2 | 0.29 127 | 0.55 125 | 0.17 112 | 1.09 146 | 1.84 192 | 0.77 139 | 1.70 138 | 2.22 159 | 0.69 123 | 0.78 96 | 1.69 54 | 0.52 118 | 1.62 106 | 1.80 87 | 1.75 120 | 4.28 131 | 3.50 116 | 2.94 131 | 0.10 33 | 0.10 23 | 0.19 75 | 1.70 91 | 2.15 73 | 2.16 153 |
UnFlow [127] | 111.2 | 0.48 157 | 0.77 194 | 0.33 155 | 0.78 124 | 1.33 104 | 0.63 135 | 1.40 108 | 1.85 121 | 0.73 125 | 1.03 134 | 1.90 92 | 0.85 139 | 1.75 134 | 1.87 112 | 1.92 138 | 2.31 111 | 3.59 125 | 1.62 108 | 0.07 9 | 0.10 23 | 0.06 7 | 1.90 104 | 3.09 133 | 1.83 77 |
Second-order prior [8] | 111.3 | 0.22 64 | 0.47 65 | 0.14 78 | 0.65 106 | 1.33 104 | 0.46 110 | 1.64 134 | 2.30 172 | 0.52 102 | 0.79 100 | 1.89 91 | 0.48 112 | 1.66 118 | 1.89 123 | 1.70 117 | 1.78 91 | 3.44 113 | 1.47 101 | 0.23 133 | 0.14 114 | 0.32 128 | 2.04 118 | 2.83 108 | 2.44 169 |
Local-TV-L1 [65] | 111.5 | 0.28 124 | 0.53 116 | 0.17 112 | 1.04 141 | 1.49 129 | 0.91 151 | 1.80 146 | 2.24 163 | 1.00 143 | 0.92 121 | 2.16 130 | 0.54 125 | 1.94 156 | 1.87 112 | 1.41 89 | 1.18 37 | 2.67 71 | 0.81 37 | 0.12 51 | 0.10 23 | 0.14 47 | 2.34 133 | 3.52 154 | 2.36 164 |
F-TV-L1 [15] | 111.5 | 0.26 114 | 0.54 122 | 0.15 92 | 0.86 133 | 1.50 130 | 0.61 131 | 1.73 143 | 2.31 173 | 0.65 118 | 1.00 133 | 2.46 150 | 0.52 118 | 1.57 92 | 1.84 104 | 1.42 90 | 1.66 85 | 3.42 111 | 1.15 85 | 0.14 71 | 0.18 145 | 0.13 38 | 1.95 110 | 2.97 118 | 1.76 70 |
BriefMatch [122] | 111.5 | 0.19 8 | 0.41 9 | 0.12 42 | 0.58 84 | 1.14 48 | 0.44 106 | 0.70 30 | 1.22 29 | 0.29 36 | 0.90 118 | 2.24 135 | 0.47 104 | 1.87 154 | 2.09 156 | 2.21 159 | 5.67 153 | 3.28 103 | 4.16 155 | 0.52 157 | 0.25 158 | 1.06 196 | 3.09 191 | 3.30 149 | 4.34 197 |
GraphCuts [14] | 112.4 | 0.24 99 | 0.47 65 | 0.17 112 | 1.17 153 | 1.72 185 | 0.90 150 | 1.12 83 | 1.70 72 | 0.83 131 | 0.69 59 | 1.60 44 | 0.39 64 | 1.46 70 | 1.69 66 | 1.31 76 | 6.11 158 | 3.97 139 | 4.27 156 | 0.24 135 | 0.13 96 | 0.34 133 | 2.36 135 | 3.16 141 | 2.54 175 |
Shiralkar [42] | 112.5 | 0.23 79 | 0.45 39 | 0.13 64 | 0.72 120 | 1.43 122 | 0.46 110 | 1.70 138 | 2.33 176 | 0.61 112 | 0.91 120 | 2.03 116 | 0.57 130 | 1.61 104 | 1.83 102 | 1.57 109 | 1.89 98 | 3.02 93 | 1.26 91 | 0.24 135 | 0.13 96 | 0.33 131 | 2.28 128 | 3.05 129 | 2.20 158 |
Rannacher [23] | 114.4 | 0.23 79 | 0.50 100 | 0.15 92 | 0.59 88 | 1.33 104 | 0.41 100 | 1.76 144 | 2.51 195 | 0.64 117 | 0.97 126 | 2.38 147 | 0.53 121 | 1.59 96 | 1.86 109 | 1.43 93 | 4.79 140 | 3.91 135 | 3.22 135 | 0.17 103 | 0.13 96 | 0.24 104 | 1.83 101 | 2.86 111 | 2.06 109 |
Bartels [41] | 115.5 | 0.23 79 | 0.50 100 | 0.13 64 | 0.49 40 | 1.15 53 | 0.29 42 | 1.01 73 | 1.78 114 | 0.38 73 | 1.07 138 | 2.60 191 | 0.63 132 | 1.71 125 | 1.97 143 | 1.82 128 | 4.54 135 | 3.85 134 | 3.40 140 | 0.28 147 | 0.14 114 | 0.51 151 | 2.36 135 | 3.22 144 | 2.66 177 |
StereoFlow [44] | 117.6 | 0.52 159 | 0.77 194 | 0.38 194 | 1.21 155 | 1.73 187 | 0.91 151 | 1.49 117 | 1.92 129 | 0.99 142 | 1.41 152 | 2.88 195 | 1.03 143 | 1.59 96 | 1.84 104 | 1.52 100 | 1.36 53 | 3.16 96 | 0.78 34 | 0.07 9 | 0.09 5 | 0.08 12 | 2.06 119 | 3.00 122 | 2.17 155 |
Dynamic MRF [7] | 119.1 | 0.24 99 | 0.52 110 | 0.14 78 | 0.62 99 | 1.43 122 | 0.40 94 | 1.33 102 | 2.16 152 | 0.45 92 | 0.94 124 | 2.23 134 | 0.58 131 | 1.81 145 | 2.01 151 | 1.91 136 | 4.83 141 | 4.05 143 | 3.55 145 | 0.14 71 | 0.09 5 | 0.23 97 | 2.75 149 | 3.57 157 | 2.97 182 |
FlowNetS+ft+v [110] | 120.0 | 0.24 99 | 0.50 100 | 0.16 106 | 0.77 122 | 1.48 127 | 0.58 125 | 1.66 135 | 2.31 173 | 0.83 131 | 0.98 129 | 2.15 128 | 0.65 133 | 1.70 123 | 1.92 132 | 1.74 118 | 1.62 82 | 3.49 115 | 1.08 79 | 0.26 140 | 0.25 158 | 0.47 147 | 1.70 91 | 2.64 101 | 1.91 86 |
IAOF2 [51] | 120.1 | 0.26 114 | 0.53 116 | 0.20 134 | 0.80 127 | 1.59 140 | 0.56 123 | 1.58 123 | 2.33 176 | 0.86 135 | 1.18 145 | 1.81 78 | 1.13 148 | 1.65 114 | 1.90 125 | 1.62 113 | 1.83 95 | 2.75 73 | 1.34 95 | 0.24 135 | 0.15 120 | 0.47 147 | 1.92 107 | 2.66 103 | 1.98 96 |
TVL1_RVC [175] | 121.4 | 0.39 149 | 0.64 147 | 0.28 150 | 1.04 141 | 1.55 134 | 0.87 146 | 2.01 189 | 2.38 184 | 1.11 150 | 1.13 140 | 1.95 101 | 1.01 142 | 1.69 120 | 1.89 123 | 1.79 123 | 1.59 79 | 3.22 100 | 1.08 79 | 0.09 21 | 0.10 23 | 0.11 23 | 2.38 137 | 3.14 140 | 2.49 173 |
CNN-flow-warp+ref [115] | 122.8 | 0.26 114 | 0.53 116 | 0.18 123 | 0.60 91 | 1.23 83 | 0.50 115 | 1.48 116 | 2.21 157 | 0.67 119 | 0.98 129 | 2.29 141 | 0.54 125 | 1.77 140 | 1.96 141 | 1.93 139 | 2.58 114 | 3.93 137 | 1.75 112 | 0.11 44 | 0.13 96 | 0.19 75 | 2.88 186 | 3.40 151 | 3.07 184 |
StereoOF-V1MT [117] | 124.7 | 0.26 114 | 0.53 116 | 0.13 64 | 0.93 138 | 1.74 188 | 0.53 119 | 1.60 127 | 2.25 165 | 0.50 98 | 0.85 116 | 1.90 92 | 0.55 129 | 1.76 137 | 1.92 132 | 1.84 132 | 4.73 137 | 4.08 144 | 3.26 136 | 0.11 44 | 0.11 46 | 0.20 85 | 3.05 190 | 3.57 157 | 3.12 186 |
Learning Flow [11] | 127.8 | 0.23 79 | 0.49 93 | 0.13 64 | 0.64 105 | 1.44 124 | 0.41 100 | 1.46 113 | 2.20 156 | 0.50 98 | 1.15 142 | 2.26 139 | 0.86 141 | 2.05 159 | 2.32 160 | 2.04 148 | 5.24 146 | 5.18 162 | 3.43 142 | 0.16 86 | 0.17 137 | 0.28 118 | 2.47 141 | 3.29 148 | 2.39 166 |
HCIC-L [97] | 128.0 | 0.45 153 | 0.67 148 | 0.32 152 | 1.95 196 | 1.93 194 | 2.05 196 | 1.32 101 | 1.76 112 | 0.93 138 | 1.65 156 | 2.25 137 | 1.65 158 | 1.41 61 | 1.64 57 | 1.07 48 | 2.04 105 | 2.90 89 | 1.81 113 | 0.94 163 | 0.42 164 | 1.62 199 | 1.72 94 | 2.39 91 | 1.54 46 |
2D-CLG [1] | 128.9 | 0.47 155 | 0.75 193 | 0.32 152 | 0.74 121 | 1.30 97 | 0.62 133 | 1.89 184 | 2.29 167 | 1.15 154 | 1.26 148 | 1.97 105 | 1.16 149 | 1.80 144 | 1.92 132 | 2.04 148 | 4.75 138 | 3.83 132 | 3.27 137 | 0.10 33 | 0.08 1 | 0.14 47 | 2.34 133 | 3.00 122 | 2.44 169 |
Ad-TV-NDC [36] | 129.6 | 0.38 148 | 0.62 144 | 0.32 152 | 1.53 193 | 1.77 190 | 1.42 193 | 2.25 195 | 2.56 197 | 1.17 155 | 0.97 126 | 1.75 69 | 0.85 139 | 1.58 94 | 1.88 118 | 1.28 68 | 1.39 56 | 3.26 101 | 0.86 43 | 0.14 71 | 0.13 96 | 0.15 49 | 2.80 185 | 3.12 138 | 3.41 190 |
IAOF [50] | 130.0 | 0.27 121 | 0.51 107 | 0.20 134 | 1.10 148 | 1.70 183 | 0.82 142 | 2.57 198 | 2.92 199 | 1.22 158 | 1.15 142 | 1.93 98 | 1.09 146 | 1.65 114 | 1.88 118 | 1.74 118 | 1.77 90 | 3.35 108 | 1.02 73 | 0.18 109 | 0.12 71 | 0.28 118 | 2.44 139 | 2.78 106 | 2.86 181 |
GroupFlow [9] | 130.3 | 0.33 139 | 0.60 135 | 0.22 143 | 1.08 144 | 1.71 184 | 0.85 143 | 1.61 128 | 2.13 148 | 0.94 139 | 0.65 43 | 1.54 29 | 0.43 89 | 2.01 158 | 2.22 159 | 1.45 96 | 5.60 151 | 4.02 141 | 3.86 148 | 0.26 140 | 0.16 132 | 0.46 146 | 2.08 121 | 2.72 104 | 2.41 167 |
Nguyen [33] | 130.6 | 0.33 139 | 0.59 134 | 0.21 137 | 1.00 140 | 1.60 142 | 0.81 141 | 2.10 190 | 2.46 189 | 1.13 152 | 1.32 149 | 2.07 124 | 1.22 150 | 1.73 131 | 1.92 132 | 1.89 135 | 2.00 102 | 3.97 139 | 1.33 94 | 0.13 61 | 0.12 71 | 0.17 63 | 2.31 131 | 3.02 125 | 2.34 163 |
H+S_RVC [176] | 130.9 | 0.51 158 | 0.74 157 | 0.35 191 | 0.91 137 | 1.39 113 | 0.70 138 | 1.79 145 | 2.15 150 | 1.10 149 | 1.56 155 | 2.06 123 | 1.47 155 | 1.72 129 | 1.78 84 | 1.86 133 | 2.90 116 | 3.55 122 | 2.41 122 | 0.14 71 | 0.12 71 | 0.17 63 | 2.66 145 | 3.11 136 | 2.78 179 |
Modified CLG [34] | 134.5 | 0.31 134 | 0.57 130 | 0.21 137 | 0.67 109 | 1.34 107 | 0.53 119 | 1.89 184 | 2.34 181 | 1.11 150 | 1.06 136 | 2.28 140 | 0.75 137 | 1.82 148 | 1.99 146 | 2.06 151 | 3.91 127 | 4.32 150 | 2.86 129 | 0.16 86 | 0.13 96 | 0.27 116 | 2.14 124 | 3.09 133 | 2.21 159 |
LDOF [28] | 135.4 | 0.29 127 | 0.61 139 | 0.17 112 | 0.81 129 | 1.58 135 | 0.59 127 | 1.17 89 | 1.78 114 | 0.67 119 | 2.17 160 | 5.16 199 | 1.57 156 | 1.78 141 | 2.01 151 | 1.86 133 | 4.52 134 | 4.42 153 | 3.33 138 | 0.22 130 | 0.22 155 | 0.47 147 | 2.21 127 | 3.27 147 | 1.92 88 |
Heeger++ [102] | 136.4 | 0.37 147 | 0.61 139 | 0.26 147 | 1.16 151 | 1.68 181 | 0.88 148 | 1.53 120 | 2.06 141 | 0.68 121 | 1.50 154 | 2.25 137 | 1.31 153 | 1.76 137 | 1.73 75 | 2.06 151 | 4.14 130 | 3.70 128 | 2.93 130 | 0.16 86 | 0.12 71 | 0.21 88 | 3.19 192 | 3.52 154 | 3.50 192 |
Horn & Schunck [3] | 136.4 | 0.36 145 | 0.62 144 | 0.23 146 | 0.98 139 | 1.58 135 | 0.77 139 | 1.88 183 | 2.26 166 | 1.13 152 | 1.36 151 | 2.15 128 | 1.22 150 | 1.69 120 | 1.84 104 | 1.83 130 | 3.92 128 | 4.34 151 | 2.78 128 | 0.16 86 | 0.15 120 | 0.23 97 | 2.40 138 | 3.05 129 | 2.38 165 |
SPSA-learn [13] | 137.0 | 0.33 139 | 0.61 139 | 0.21 137 | 1.09 146 | 1.83 191 | 0.85 143 | 1.82 182 | 2.33 176 | 1.05 145 | 1.23 146 | 2.31 142 | 1.06 145 | 1.79 143 | 1.96 141 | 1.98 141 | 5.61 152 | 4.52 154 | 3.84 147 | 0.12 51 | 0.10 23 | 0.15 49 | 2.48 142 | 3.21 143 | 2.45 171 |
Black & Anandan [4] | 138.3 | 0.31 134 | 0.55 125 | 0.20 134 | 1.08 144 | 1.68 181 | 0.85 143 | 2.00 187 | 2.41 187 | 1.07 147 | 1.03 134 | 1.99 108 | 0.83 138 | 1.71 125 | 1.91 127 | 1.82 128 | 4.64 136 | 5.05 159 | 3.01 133 | 0.20 122 | 0.17 137 | 0.30 123 | 2.28 128 | 3.09 133 | 2.04 106 |
TI-DOFE [24] | 139.2 | 0.46 154 | 0.69 152 | 0.35 191 | 1.16 151 | 1.59 140 | 1.03 154 | 2.17 193 | 2.39 185 | 1.27 159 | 1.43 153 | 2.04 120 | 1.34 154 | 1.71 125 | 1.87 112 | 1.83 130 | 3.36 123 | 4.03 142 | 2.58 125 | 0.13 61 | 0.12 71 | 0.20 85 | 2.67 146 | 3.12 138 | 2.76 178 |
HBpMotionGpu [43] | 141.6 | 0.36 145 | 0.67 148 | 0.21 137 | 1.07 143 | 1.85 193 | 0.88 148 | 2.00 187 | 2.49 192 | 1.08 148 | 1.16 144 | 2.81 194 | 0.68 134 | 1.89 155 | 2.10 157 | 2.08 153 | 2.01 103 | 3.19 98 | 1.27 92 | 0.16 86 | 0.15 120 | 0.19 75 | 2.32 132 | 3.18 142 | 2.48 172 |
2bit-BM-tele [96] | 142.8 | 0.31 134 | 0.61 139 | 0.21 137 | 0.71 117 | 1.62 144 | 0.45 107 | 1.55 122 | 2.33 176 | 0.58 108 | 1.09 139 | 2.57 190 | 0.72 136 | 1.76 137 | 2.03 154 | 1.79 123 | 5.05 144 | 3.45 114 | 3.88 149 | 0.43 155 | 0.22 155 | 0.69 153 | 2.73 148 | 3.58 159 | 3.20 187 |
BlockOverlap [61] | 146.6 | 0.29 127 | 0.56 129 | 0.19 129 | 0.82 130 | 1.41 118 | 0.69 137 | 1.70 138 | 2.22 159 | 0.94 139 | 1.06 136 | 2.54 189 | 0.70 135 | 1.81 145 | 1.99 146 | 2.18 156 | 5.46 148 | 3.35 108 | 3.96 151 | 0.67 161 | 0.32 161 | 1.47 198 | 2.67 146 | 3.22 144 | 3.31 189 |
FFV1MT [104] | 150.0 | 0.41 151 | 0.72 154 | 0.27 149 | 1.11 149 | 1.76 189 | 0.87 146 | 1.62 131 | 2.13 148 | 0.94 139 | 2.02 159 | 2.68 193 | 1.87 160 | 2.00 157 | 1.87 112 | 2.60 161 | 4.48 133 | 4.68 155 | 3.35 139 | 0.18 109 | 0.15 120 | 0.25 108 | 3.19 192 | 3.52 154 | 3.50 192 |
AdaConv-v1 [124] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
SepConv-v1 [125] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
SuperSlomo [130] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
CtxSyn [134] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
CyclicGen [149] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
TOF-M [150] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
MPRN [151] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
DAIN [152] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
FRUCnet [153] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
OFRI [154] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
FGME [158] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
MS-PFT [159] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
MEMC-Net+ [160] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
ADC [161] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
DSepConv [162] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
MAF-net [163] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
STAR-Net [164] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
AdaCoF [165] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
TC-GAN [166] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
FeFlow [167] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
DAI [168] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
SoftSplat [169] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
STSR [170] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
BMBC [171] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
GDCN [172] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
EDSC [173] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
MV_VFI [183] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
DistillNet [184] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
SepConv++ [185] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
EAFI [186] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
FLAVR [188] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
SoftsplatAug [190] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
ProBoost-Net [191] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
IDIAL [192] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
IFRNet [193] | 153.5 | 0.54 160 | 0.74 157 | 0.34 156 | 1.43 157 | 1.67 146 | 1.23 157 | 1.80 146 | 1.75 77 | 1.42 162 | 2.28 162 | 2.51 154 | 2.32 163 | 3.78 162 | 3.95 162 | 3.85 163 | 7.12 164 | 5.61 164 | 5.15 163 | 1.19 165 | 0.66 165 | 0.88 156 | 2.75 149 | 3.69 160 | 2.12 114 |
Adaptive flow [45] | 153.7 | 0.44 152 | 0.69 152 | 0.26 147 | 1.43 157 | 1.72 185 | 1.31 192 | 1.91 186 | 2.22 159 | 1.33 160 | 1.35 150 | 2.10 126 | 1.28 152 | 1.74 133 | 2.00 148 | 1.51 98 | 4.85 143 | 3.50 116 | 3.49 144 | 0.70 162 | 0.36 162 | 0.97 195 | 2.62 144 | 3.33 150 | 2.57 176 |
SILK [80] | 156.2 | 0.39 149 | 0.68 150 | 0.30 151 | 1.19 154 | 1.60 142 | 1.10 155 | 2.19 194 | 2.47 190 | 1.19 156 | 1.25 147 | 2.36 145 | 1.10 147 | 1.84 151 | 1.98 144 | 2.18 156 | 5.84 155 | 5.17 161 | 4.03 153 | 0.45 156 | 0.12 71 | 0.96 194 | 3.03 189 | 3.47 152 | 3.24 188 |
SLK [47] | 157.6 | 0.47 155 | 0.73 156 | 0.44 196 | 1.13 150 | 1.51 131 | 1.02 153 | 2.12 191 | 2.34 181 | 1.19 156 | 1.72 157 | 2.35 144 | 1.60 157 | 1.86 153 | 1.92 132 | 2.20 158 | 5.75 154 | 4.91 157 | 4.02 152 | 0.32 151 | 0.12 71 | 0.44 144 | 3.61 194 | 4.02 195 | 3.71 194 |
PGAM+LK [55] | 163.3 | 0.66 197 | 0.72 154 | 1.02 198 | 1.64 194 | 2.08 196 | 1.67 194 | 1.46 113 | 1.79 116 | 1.05 145 | 2.59 199 | 3.23 197 | 2.39 198 | 1.75 134 | 1.76 80 | 2.09 154 | 6.62 162 | 4.24 149 | 5.02 162 | 0.40 153 | 0.21 151 | 0.57 152 | 2.95 187 | 3.22 144 | 3.48 191 |
FOLKI [16] | 178.3 | 0.55 195 | 0.95 197 | 0.41 195 | 2.45 197 | 2.14 197 | 2.44 197 | 2.12 191 | 2.50 194 | 1.33 160 | 1.75 158 | 2.61 192 | 1.67 159 | 2.10 160 | 2.15 158 | 2.52 160 | 5.86 157 | 5.06 160 | 4.32 157 | 0.52 157 | 0.21 151 | 0.95 193 | 5.03 199 | 4.59 196 | 8.32 199 |
AVG_FLOW_ROB [137] | 187.0 | 2.42 199 | 1.69 199 | 2.86 199 | 2.71 198 | 2.31 198 | 2.73 198 | 2.33 196 | 2.17 153 | 2.42 199 | 2.55 198 | 2.99 196 | 2.53 199 | 4.72 198 | 4.99 198 | 4.32 198 | 5.48 149 | 4.84 156 | 4.44 161 | 0.97 164 | 0.36 162 | 0.94 192 | 4.09 196 | 5.68 197 | 3.07 184 |
Pyramid LK [2] | 187.5 | 0.68 198 | 0.87 196 | 0.77 197 | 1.94 195 | 1.95 195 | 1.92 195 | 2.43 197 | 2.59 198 | 1.60 197 | 2.36 197 | 2.46 150 | 2.27 162 | 4.19 197 | 4.59 197 | 3.80 162 | 7.35 199 | 5.52 163 | 5.19 198 | 0.57 159 | 0.26 160 | 1.19 197 | 4.63 197 | 5.72 198 | 4.02 196 |
Periodicity [79] | 187.7 | 0.59 196 | 1.02 198 | 0.35 191 | 2.90 199 | 3.18 199 | 3.12 199 | 2.61 199 | 2.53 196 | 2.05 198 | 2.19 161 | 3.28 198 | 2.08 161 | 7.58 199 | 8.15 199 | 6.70 199 | 7.02 163 | 6.03 199 | 5.54 199 | 0.27 145 | 0.15 120 | 0.92 191 | 4.68 198 | 6.02 199 | 4.37 198 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |