Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
A75 angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it+_RVC [198] | 3.7 | 2.35 10 | 5.14 3 | 1.49 1 | 1.33 2 | 3.88 1 | 1.41 2 | 1.30 2 | 2.55 2 | 1.45 5 | 0.66 1 | 1.28 1 | 0.59 1 | 2.09 4 | 3.03 2 | 1.39 3 | 0.89 1 | 2.36 1 | 0.90 1 | 1.38 1 | 3.15 2 | 0.80 2 | 0.91 23 | 1.37 9 | 0.74 8 |
RAFT-it [194] | 8.3 | 2.52 14 | 5.72 11 | 1.88 7 | 1.45 5 | 4.36 3 | 1.49 4 | 1.33 3 | 2.75 4 | 1.41 2 | 0.77 2 | 1.42 2 | 0.64 2 | 2.50 9 | 3.71 11 | 1.43 4 | 1.16 4 | 2.74 3 | 1.13 3 | 1.54 4 | 4.78 67 | 0.78 1 | 0.88 13 | 1.35 8 | 0.84 14 |
MS_RAFT+_RVC [195] | 13.6 | 2.61 19 | 5.14 3 | 1.61 3 | 2.45 77 | 4.73 6 | 2.84 97 | 1.47 9 | 2.80 5 | 1.72 20 | 0.84 4 | 1.72 3 | 0.71 6 | 2.00 1 | 3.01 1 | 1.25 1 | 1.07 3 | 2.58 2 | 1.20 4 | 1.48 2 | 3.08 1 | 1.19 8 | 0.95 33 | 1.28 4 | 0.85 15 |
NNF-Local [75] | 19.9 | 2.17 4 | 5.35 7 | 1.92 8 | 1.56 8 | 6.39 25 | 1.67 13 | 1.51 10 | 3.67 12 | 1.61 11 | 1.20 39 | 4.36 22 | 1.02 41 | 2.30 6 | 3.18 5 | 1.73 10 | 2.16 46 | 6.35 13 | 2.39 72 | 2.54 34 | 4.18 16 | 2.17 41 | 0.81 9 | 1.50 21 | 0.67 4 |
NN-field [71] | 21.4 | 2.31 8 | 5.94 16 | 1.98 9 | 1.83 27 | 7.21 45 | 1.97 34 | 1.54 12 | 3.55 10 | 1.68 18 | 0.96 13 | 3.04 8 | 0.75 9 | 2.30 6 | 3.25 6 | 1.69 8 | 1.72 23 | 3.81 4 | 1.65 11 | 3.12 71 | 4.76 65 | 2.60 70 | 0.79 7 | 1.58 31 | 0.59 2 |
TC/T-Flow [77] | 24.6 | 2.06 1 | 7.42 34 | 1.55 2 | 1.61 14 | 6.77 34 | 1.52 6 | 1.46 7 | 4.33 25 | 1.56 8 | 0.88 6 | 6.96 54 | 0.69 4 | 2.91 23 | 4.35 34 | 1.88 14 | 1.47 8 | 6.12 12 | 1.61 10 | 2.22 14 | 3.98 6 | 4.00 116 | 1.06 45 | 1.99 54 | 1.19 60 |
ProFlow_ROB [142] | 25.0 | 2.44 12 | 7.85 43 | 2.01 10 | 1.54 6 | 7.07 39 | 1.55 7 | 1.53 11 | 7.16 64 | 1.43 3 | 0.81 3 | 5.26 33 | 0.67 3 | 3.48 51 | 4.95 57 | 1.69 8 | 1.46 7 | 8.54 42 | 1.53 7 | 1.92 8 | 4.48 38 | 2.01 31 | 0.93 28 | 2.14 60 | 0.94 30 |
ComponentFusion [94] | 25.2 | 2.12 3 | 6.18 18 | 1.80 5 | 1.67 19 | 4.82 8 | 1.91 29 | 1.34 4 | 4.01 16 | 1.47 6 | 0.88 6 | 4.74 26 | 0.72 7 | 2.99 27 | 4.35 34 | 1.96 17 | 2.03 37 | 11.2 89 | 1.96 32 | 2.90 60 | 4.62 58 | 1.90 26 | 0.93 28 | 1.56 30 | 0.89 20 |
RAFT-TF_RVC [179] | 28.4 | 3.13 47 | 8.58 58 | 1.87 6 | 2.05 42 | 5.71 17 | 2.07 38 | 1.81 45 | 4.53 29 | 1.89 33 | 0.98 15 | 2.13 4 | 0.85 21 | 2.99 27 | 4.30 27 | 2.05 21 | 1.55 10 | 4.60 5 | 1.60 8 | 1.53 3 | 4.72 64 | 1.15 7 | 1.13 55 | 1.97 52 | 1.02 48 |
ALD-Flow [66] | 28.5 | 2.26 6 | 5.81 13 | 2.07 11 | 1.56 8 | 5.71 17 | 1.66 11 | 1.46 7 | 4.64 32 | 1.66 16 | 0.95 12 | 7.15 58 | 0.80 15 | 3.18 41 | 4.57 45 | 1.76 11 | 1.51 9 | 7.63 28 | 1.60 8 | 2.61 37 | 4.27 22 | 3.90 112 | 1.04 42 | 2.22 67 | 1.18 57 |
WLIF-Flow [91] | 28.6 | 2.63 23 | 5.51 8 | 2.41 22 | 2.14 50 | 7.08 40 | 2.32 50 | 1.63 16 | 4.19 19 | 1.84 26 | 1.05 20 | 4.21 19 | 0.88 28 | 2.92 25 | 4.37 36 | 2.30 37 | 2.02 36 | 7.21 23 | 1.89 28 | 2.73 47 | 4.27 22 | 2.78 79 | 0.84 11 | 1.37 9 | 0.83 13 |
nLayers [57] | 29.6 | 2.33 9 | 5.14 3 | 2.17 14 | 2.75 101 | 7.22 47 | 3.07 104 | 1.69 27 | 4.04 17 | 2.21 71 | 0.88 6 | 2.83 6 | 0.70 5 | 2.08 3 | 3.25 6 | 1.30 2 | 1.88 27 | 6.06 11 | 1.85 18 | 2.89 59 | 4.59 52 | 2.28 48 | 0.92 25 | 1.48 19 | 0.94 30 |
OFLAF [78] | 30.3 | 2.77 38 | 5.70 10 | 2.49 25 | 1.76 22 | 5.35 14 | 1.84 26 | 1.54 12 | 2.69 3 | 1.72 20 | 1.30 46 | 3.55 15 | 1.12 57 | 2.30 6 | 3.62 9 | 1.64 7 | 2.23 52 | 5.93 8 | 2.06 42 | 2.81 53 | 4.29 25 | 2.99 85 | 1.15 59 | 1.69 36 | 1.18 57 |
MDP-Flow2 [68] | 30.8 | 3.08 46 | 6.23 19 | 2.73 55 | 1.55 7 | 4.80 7 | 1.64 10 | 1.63 16 | 3.27 7 | 1.61 11 | 1.37 59 | 5.15 31 | 1.15 64 | 2.91 23 | 4.19 23 | 2.20 25 | 2.24 54 | 6.43 14 | 2.17 56 | 2.62 38 | 4.35 30 | 1.88 25 | 1.08 48 | 1.66 35 | 0.95 36 |
RNLOD-Flow [119] | 31.5 | 2.19 5 | 4.96 2 | 2.19 15 | 1.79 24 | 7.20 44 | 1.76 20 | 1.42 5 | 4.31 23 | 1.56 8 | 0.97 14 | 3.42 14 | 0.84 20 | 2.75 18 | 4.16 20 | 2.01 19 | 1.86 26 | 7.24 24 | 1.95 31 | 4.02 110 | 6.41 126 | 4.48 131 | 0.90 19 | 1.51 22 | 0.85 15 |
OAR-Flow [123] | 33.2 | 2.55 16 | 7.57 36 | 2.36 19 | 1.81 25 | 7.94 53 | 1.94 33 | 1.72 34 | 8.40 71 | 1.95 35 | 0.94 11 | 5.90 44 | 0.79 12 | 3.49 53 | 4.83 54 | 1.84 13 | 1.16 4 | 7.84 33 | 1.22 5 | 1.93 9 | 3.63 3 | 2.26 45 | 1.10 51 | 2.16 63 | 1.34 74 |
AGIF+OF [84] | 34.1 | 2.60 17 | 6.24 20 | 2.45 23 | 2.49 79 | 9.30 77 | 2.63 78 | 1.68 25 | 4.79 38 | 2.08 56 | 1.05 20 | 4.34 21 | 0.81 16 | 2.77 20 | 4.05 17 | 2.10 23 | 1.92 30 | 7.48 26 | 1.74 16 | 2.69 43 | 4.48 38 | 2.69 76 | 0.87 12 | 1.40 11 | 0.95 36 |
Layers++ [37] | 34.5 | 2.70 34 | 6.40 22 | 2.83 62 | 2.33 67 | 6.62 31 | 2.54 74 | 1.65 21 | 3.24 6 | 2.02 45 | 0.92 9 | 2.48 5 | 0.75 9 | 2.12 5 | 3.11 3 | 1.50 6 | 2.06 40 | 8.25 36 | 1.94 30 | 3.59 95 | 5.41 95 | 3.21 88 | 0.89 16 | 1.32 6 | 0.90 23 |
CoT-AMFlow [174] | 34.8 | 3.03 42 | 6.45 23 | 2.72 53 | 1.64 18 | 5.17 10 | 1.80 22 | 1.63 16 | 3.56 11 | 1.66 16 | 1.34 49 | 5.43 37 | 1.12 57 | 3.03 30 | 4.20 24 | 2.52 52 | 2.18 49 | 6.96 19 | 2.15 52 | 2.78 50 | 4.53 44 | 2.29 49 | 1.06 45 | 1.69 36 | 0.94 30 |
LME [70] | 35.8 | 2.90 40 | 5.83 14 | 2.30 18 | 1.60 11 | 4.45 4 | 1.74 19 | 1.71 31 | 4.14 18 | 2.00 41 | 1.35 53 | 6.61 49 | 1.13 59 | 3.07 34 | 4.32 32 | 2.57 55 | 2.08 43 | 8.09 35 | 2.00 38 | 2.78 50 | 4.53 44 | 2.29 49 | 1.06 45 | 1.74 38 | 0.96 40 |
HAST [107] | 36.4 | 2.09 2 | 4.28 1 | 1.69 4 | 1.60 11 | 5.31 13 | 1.55 7 | 1.28 1 | 2.09 1 | 1.40 1 | 0.92 9 | 3.39 12 | 0.78 11 | 2.01 2 | 3.14 4 | 1.48 5 | 2.40 68 | 8.62 44 | 2.41 74 | 4.08 112 | 7.33 148 | 7.69 151 | 1.23 66 | 1.59 33 | 1.73 93 |
TC-Flow [46] | 37.3 | 2.45 13 | 6.60 25 | 2.39 21 | 1.25 1 | 5.24 11 | 1.32 1 | 1.45 6 | 4.40 28 | 1.50 7 | 1.15 36 | 8.13 67 | 1.04 43 | 3.22 42 | 4.77 52 | 2.06 22 | 1.94 31 | 8.65 45 | 2.09 46 | 2.33 27 | 4.51 41 | 3.82 110 | 1.24 67 | 2.18 65 | 1.50 88 |
PH-Flow [99] | 39.0 | 2.62 20 | 7.58 38 | 2.53 32 | 2.13 48 | 8.78 63 | 2.37 54 | 1.70 28 | 4.39 27 | 2.06 52 | 1.08 23 | 7.06 57 | 0.85 21 | 2.72 15 | 3.91 14 | 2.04 20 | 2.06 40 | 8.33 37 | 1.96 32 | 3.48 89 | 4.62 58 | 4.03 117 | 0.90 19 | 1.41 14 | 0.88 18 |
NNF-EAC [101] | 39.3 | 3.07 44 | 6.73 27 | 2.70 52 | 1.62 17 | 5.30 12 | 1.72 17 | 1.71 31 | 3.89 15 | 1.79 23 | 1.36 56 | 6.36 48 | 1.15 64 | 3.02 29 | 4.37 36 | 2.28 35 | 2.44 71 | 6.90 18 | 2.28 66 | 2.90 60 | 4.51 41 | 2.19 42 | 1.12 53 | 1.83 44 | 0.98 42 |
Classic+CPF [82] | 39.6 | 2.65 29 | 7.22 32 | 2.53 32 | 2.37 69 | 9.14 74 | 2.51 71 | 1.67 24 | 5.05 42 | 2.03 47 | 1.01 16 | 5.38 35 | 0.79 12 | 2.90 22 | 4.17 21 | 2.33 41 | 1.88 27 | 8.44 39 | 1.70 13 | 3.19 74 | 4.60 55 | 3.72 103 | 0.92 25 | 1.40 11 | 0.95 36 |
FC-2Layers-FF [74] | 39.8 | 2.63 23 | 5.87 15 | 2.68 50 | 2.19 60 | 8.07 55 | 2.39 58 | 1.65 21 | 3.42 8 | 2.05 49 | 1.10 28 | 3.11 9 | 0.88 28 | 2.57 10 | 3.49 8 | 2.30 37 | 2.26 57 | 7.68 30 | 2.17 56 | 3.70 98 | 5.18 89 | 3.73 104 | 0.90 19 | 1.41 14 | 0.93 28 |
IROF++ [58] | 39.9 | 2.66 30 | 6.82 28 | 2.58 40 | 2.17 54 | 9.07 71 | 2.41 60 | 1.75 40 | 5.03 41 | 2.06 52 | 1.11 30 | 7.65 61 | 0.90 34 | 2.92 25 | 4.18 22 | 2.25 32 | 2.13 44 | 9.85 67 | 1.98 35 | 2.53 33 | 4.53 44 | 1.43 14 | 0.97 39 | 1.58 31 | 0.94 30 |
Sparse-NonSparse [56] | 39.9 | 2.62 20 | 7.58 38 | 2.60 42 | 2.18 56 | 8.74 61 | 2.46 67 | 1.68 25 | 4.86 39 | 2.00 41 | 1.04 18 | 7.97 65 | 0.81 16 | 3.13 38 | 4.45 40 | 2.42 47 | 1.98 34 | 8.53 41 | 1.87 22 | 3.13 72 | 4.32 29 | 3.51 96 | 0.88 13 | 1.41 14 | 0.91 24 |
JOF [136] | 42.6 | 2.52 14 | 6.01 17 | 2.37 20 | 2.40 73 | 9.13 73 | 2.66 80 | 1.63 16 | 3.82 14 | 2.17 69 | 1.02 17 | 5.46 39 | 0.79 12 | 2.69 14 | 3.93 15 | 2.24 29 | 2.16 46 | 8.05 34 | 2.20 58 | 3.97 108 | 5.74 109 | 5.45 137 | 0.82 10 | 1.33 7 | 0.82 12 |
UnDAF [187] | 42.6 | 3.07 44 | 7.26 33 | 2.72 53 | 1.61 14 | 5.77 19 | 1.71 16 | 1.66 23 | 4.22 20 | 1.63 13 | 1.37 59 | 7.83 63 | 1.13 59 | 3.07 34 | 4.30 27 | 2.30 37 | 2.32 61 | 9.86 68 | 2.15 52 | 2.79 52 | 4.54 48 | 2.26 45 | 1.14 58 | 2.85 95 | 0.94 30 |
FESL [72] | 42.9 | 2.63 23 | 5.15 6 | 2.77 59 | 2.62 94 | 9.27 76 | 2.73 85 | 1.72 34 | 4.77 36 | 2.07 55 | 1.15 36 | 3.36 11 | 0.98 39 | 2.75 18 | 3.93 15 | 2.20 25 | 1.95 32 | 7.12 21 | 1.98 35 | 3.40 84 | 5.71 108 | 2.89 81 | 0.88 13 | 1.55 27 | 0.87 17 |
COFM [59] | 43.7 | 2.28 7 | 7.19 30 | 2.08 13 | 1.78 23 | 6.57 28 | 1.93 31 | 1.56 15 | 5.33 47 | 2.19 70 | 0.86 5 | 4.90 27 | 0.73 8 | 3.76 64 | 4.80 53 | 3.87 108 | 2.03 37 | 7.67 29 | 1.72 14 | 2.76 48 | 4.21 18 | 4.04 119 | 1.62 100 | 1.87 46 | 2.04 108 |
Efficient-NL [60] | 44.1 | 2.38 11 | 5.67 9 | 2.07 11 | 2.45 77 | 8.54 58 | 2.55 75 | 1.64 20 | 4.63 31 | 1.95 35 | 1.04 18 | 5.76 42 | 0.81 16 | 2.74 16 | 4.14 19 | 1.94 16 | 2.87 88 | 8.58 43 | 2.23 60 | 3.30 79 | 5.12 86 | 3.05 86 | 1.15 59 | 1.83 44 | 1.19 60 |
PMMST [112] | 44.8 | 3.55 71 | 6.48 24 | 3.33 82 | 2.18 56 | 6.49 27 | 2.47 70 | 1.93 53 | 4.28 21 | 2.09 57 | 1.60 81 | 2.84 7 | 1.43 90 | 2.60 11 | 3.72 12 | 1.91 15 | 2.22 51 | 6.05 10 | 2.13 51 | 2.70 45 | 4.48 38 | 2.08 36 | 1.18 65 | 1.91 48 | 1.09 53 |
LSM [39] | 45.5 | 2.60 17 | 7.70 42 | 2.61 44 | 2.19 60 | 8.77 62 | 2.44 65 | 1.70 28 | 4.78 37 | 2.06 52 | 1.08 23 | 8.13 67 | 0.86 24 | 3.05 32 | 4.30 27 | 2.47 48 | 2.18 49 | 8.66 48 | 2.08 44 | 3.56 92 | 4.68 63 | 3.74 105 | 0.90 19 | 1.43 17 | 0.93 28 |
Classic+NL [31] | 47.1 | 2.63 23 | 7.57 36 | 2.64 47 | 2.18 56 | 9.04 69 | 2.41 60 | 1.71 31 | 4.70 33 | 2.09 57 | 1.08 23 | 7.69 62 | 0.88 28 | 3.04 31 | 4.31 30 | 2.41 46 | 2.27 58 | 8.65 45 | 2.09 46 | 3.79 102 | 5.12 86 | 3.81 108 | 0.89 16 | 1.44 18 | 0.89 20 |
FMOF [92] | 47.2 | 2.71 36 | 6.71 26 | 2.62 46 | 2.64 95 | 9.19 75 | 2.77 86 | 1.73 37 | 4.37 26 | 2.22 72 | 1.06 22 | 5.18 32 | 0.81 16 | 2.89 21 | 4.25 26 | 2.40 45 | 2.31 60 | 7.76 32 | 1.96 32 | 3.35 82 | 4.88 78 | 3.81 108 | 0.93 28 | 1.55 27 | 0.92 26 |
Ramp [62] | 47.4 | 2.64 28 | 7.64 41 | 2.56 36 | 2.20 63 | 8.90 66 | 2.46 67 | 1.73 37 | 4.74 35 | 2.09 57 | 1.11 30 | 6.81 53 | 0.88 28 | 3.07 34 | 4.46 41 | 2.38 44 | 2.28 59 | 8.52 40 | 2.15 52 | 3.40 84 | 4.25 19 | 4.16 127 | 0.94 31 | 1.53 24 | 0.97 41 |
PRAFlow_RVC [177] | 48.6 | 4.04 98 | 9.30 64 | 2.91 67 | 3.03 108 | 8.22 56 | 3.10 105 | 2.43 81 | 6.50 60 | 2.65 90 | 1.29 44 | 3.33 10 | 1.06 44 | 3.28 44 | 4.32 32 | 2.30 37 | 2.07 42 | 4.95 6 | 2.15 52 | 1.91 7 | 4.55 49 | 0.82 3 | 0.96 36 | 1.54 25 | 0.73 7 |
ProbFlowFields [126] | 49.1 | 3.31 58 | 13.8 96 | 2.85 64 | 2.03 38 | 6.67 33 | 2.23 45 | 1.89 51 | 6.06 53 | 2.29 76 | 1.23 42 | 5.14 30 | 0.95 37 | 3.70 60 | 5.08 60 | 2.29 36 | 1.60 14 | 7.44 25 | 1.85 18 | 2.43 32 | 4.30 26 | 2.45 63 | 1.29 72 | 2.32 71 | 1.38 78 |
2DHMM-SAS [90] | 50.6 | 2.62 20 | 7.61 40 | 2.53 32 | 2.17 54 | 10.1 87 | 2.38 56 | 1.83 46 | 6.16 56 | 2.10 61 | 1.09 26 | 8.07 66 | 0.86 24 | 3.06 33 | 4.42 39 | 2.37 43 | 2.16 46 | 9.30 56 | 2.01 39 | 3.50 90 | 4.64 60 | 4.14 126 | 0.96 36 | 1.64 34 | 0.99 45 |
SVFilterOh [109] | 51.1 | 3.48 67 | 5.72 11 | 3.45 88 | 2.38 71 | 6.06 22 | 2.41 60 | 1.93 53 | 3.46 9 | 2.05 49 | 1.53 77 | 3.71 16 | 1.27 77 | 2.65 13 | 4.10 18 | 2.00 18 | 2.47 73 | 7.08 20 | 2.28 66 | 4.60 123 | 7.10 141 | 5.92 142 | 0.73 4 | 1.16 2 | 0.70 6 |
Adaptive [20] | 51.1 | 2.63 23 | 8.08 48 | 2.23 16 | 2.18 56 | 8.66 60 | 2.27 48 | 2.04 62 | 9.57 79 | 2.09 57 | 1.12 33 | 10.6 88 | 0.87 26 | 4.47 112 | 5.30 79 | 4.44 124 | 1.55 10 | 8.65 45 | 1.43 6 | 3.32 80 | 5.51 97 | 2.14 40 | 0.77 5 | 1.52 23 | 0.75 10 |
PMF [73] | 52.3 | 3.22 55 | 6.34 21 | 2.60 42 | 1.95 34 | 6.66 32 | 1.92 30 | 1.85 47 | 4.58 30 | 1.83 25 | 1.62 82 | 4.27 20 | 1.37 84 | 2.61 12 | 3.74 13 | 1.83 12 | 3.18 97 | 9.94 71 | 3.34 103 | 5.29 140 | 8.26 155 | 5.58 141 | 0.68 3 | 1.21 3 | 0.67 4 |
TV-L1-MCT [64] | 53.2 | 2.68 32 | 6.83 29 | 2.61 44 | 2.68 96 | 10.3 90 | 2.80 90 | 1.78 43 | 5.24 44 | 2.24 73 | 1.13 34 | 5.44 38 | 0.87 26 | 3.39 49 | 4.69 50 | 2.96 77 | 2.45 72 | 9.14 53 | 2.31 70 | 2.64 40 | 4.37 32 | 2.04 33 | 1.08 48 | 1.74 38 | 1.36 76 |
S2D-Matching [83] | 53.4 | 2.69 33 | 7.86 45 | 2.68 50 | 2.19 60 | 9.11 72 | 2.44 65 | 1.77 42 | 6.11 55 | 2.04 48 | 1.13 34 | 5.86 43 | 0.91 35 | 3.17 40 | 4.41 38 | 2.50 50 | 2.41 69 | 9.09 52 | 2.25 64 | 4.00 109 | 5.16 88 | 4.07 120 | 0.91 23 | 1.40 11 | 0.95 36 |
SimpleFlow [49] | 55.2 | 2.74 37 | 8.28 53 | 2.73 55 | 2.50 80 | 9.73 85 | 2.83 96 | 1.89 51 | 6.81 62 | 2.35 79 | 1.11 30 | 10.4 85 | 0.89 33 | 3.27 43 | 4.47 42 | 2.63 58 | 3.03 91 | 8.91 51 | 2.39 72 | 3.10 70 | 4.25 19 | 2.76 78 | 0.89 16 | 1.49 20 | 0.89 20 |
IROF-TV [53] | 56.0 | 2.89 39 | 8.67 59 | 2.81 61 | 2.25 65 | 9.54 83 | 2.51 71 | 1.79 44 | 5.50 49 | 2.15 66 | 1.53 77 | 11.5 96 | 1.27 77 | 3.33 45 | 4.62 46 | 2.85 67 | 2.78 83 | 13.5 112 | 2.57 79 | 2.15 11 | 4.14 14 | 1.37 13 | 0.94 31 | 1.55 27 | 0.94 30 |
Occlusion-TV-L1 [63] | 56.0 | 3.15 49 | 8.42 55 | 2.50 26 | 2.03 38 | 7.42 49 | 2.14 42 | 2.24 73 | 9.79 81 | 2.16 67 | 1.35 53 | 9.59 76 | 1.11 53 | 4.10 90 | 5.77 109 | 3.22 88 | 1.68 22 | 9.21 55 | 2.08 44 | 2.69 43 | 4.59 52 | 1.70 21 | 1.05 43 | 2.36 74 | 0.98 42 |
PBOFVI [189] | 57.1 | 4.11 100 | 8.18 51 | 3.41 87 | 2.04 40 | 7.12 41 | 2.02 36 | 1.75 40 | 3.81 13 | 1.65 14 | 1.51 74 | 3.84 17 | 1.16 67 | 3.65 56 | 5.10 63 | 2.59 57 | 2.58 77 | 8.83 50 | 2.91 91 | 3.02 66 | 4.53 44 | 4.11 122 | 1.12 53 | 1.91 48 | 1.21 63 |
MDP-Flow [26] | 57.7 | 3.14 48 | 9.81 68 | 2.83 62 | 2.06 43 | 6.10 23 | 2.43 63 | 1.87 49 | 6.10 54 | 2.10 61 | 1.44 65 | 8.90 72 | 1.15 64 | 3.37 47 | 4.62 46 | 2.54 54 | 2.35 64 | 10.4 77 | 2.23 60 | 2.88 58 | 4.83 71 | 1.94 29 | 1.27 71 | 2.62 82 | 1.09 53 |
Correlation Flow [76] | 58.0 | 3.18 51 | 7.85 43 | 2.85 64 | 1.74 20 | 5.77 19 | 1.69 15 | 1.94 55 | 5.25 45 | 1.70 19 | 1.47 69 | 5.67 41 | 1.26 75 | 3.66 57 | 5.20 72 | 2.53 53 | 3.06 93 | 9.57 60 | 3.10 97 | 3.42 87 | 4.94 81 | 4.03 117 | 1.17 63 | 1.80 41 | 1.16 55 |
3DFlow [133] | 58.3 | 3.21 53 | 7.43 35 | 2.64 47 | 1.92 32 | 7.04 36 | 1.85 27 | 2.03 61 | 4.31 23 | 1.84 26 | 1.65 88 | 3.41 13 | 1.33 80 | 3.14 39 | 4.51 43 | 2.24 29 | 3.66 105 | 11.8 96 | 3.87 118 | 4.19 115 | 4.93 80 | 5.46 138 | 1.05 43 | 1.54 25 | 1.02 48 |
AggregFlow [95] | 60.2 | 3.29 57 | 8.49 56 | 3.14 75 | 2.70 98 | 12.2 110 | 2.68 82 | 2.32 77 | 9.03 73 | 2.88 99 | 1.44 65 | 4.19 18 | 1.25 74 | 3.48 51 | 5.09 61 | 2.19 24 | 1.55 10 | 5.36 7 | 1.68 12 | 2.56 36 | 4.78 67 | 1.77 23 | 1.54 96 | 2.15 61 | 2.16 114 |
HCFN [157] | 61.0 | 2.92 41 | 7.95 46 | 2.56 36 | 1.39 3 | 4.71 5 | 1.47 3 | 1.55 14 | 4.29 22 | 1.44 4 | 1.51 74 | 6.05 46 | 1.32 79 | 3.11 37 | 4.31 30 | 2.33 41 | 2.64 79 | 10.7 82 | 2.67 81 | 6.60 154 | 7.99 154 | 7.44 148 | 1.53 95 | 2.63 85 | 1.96 106 |
IIOF-NLDP [129] | 61.1 | 3.19 52 | 10.4 72 | 2.50 26 | 2.43 76 | 9.32 79 | 2.32 50 | 1.98 58 | 5.55 50 | 1.81 24 | 1.48 71 | 6.12 47 | 1.23 72 | 3.75 62 | 5.55 97 | 2.25 32 | 3.03 91 | 9.30 56 | 3.02 93 | 2.66 42 | 4.83 71 | 2.60 70 | 1.24 67 | 1.97 52 | 1.17 56 |
OFH [38] | 63.4 | 3.60 79 | 10.3 71 | 3.80 99 | 1.58 10 | 7.05 37 | 1.66 11 | 1.70 28 | 9.23 75 | 1.58 10 | 1.19 38 | 10.1 81 | 1.08 49 | 3.98 71 | 5.22 74 | 3.57 96 | 2.80 84 | 12.6 103 | 3.12 98 | 2.30 22 | 4.60 55 | 2.35 52 | 1.41 88 | 2.90 97 | 1.75 94 |
CostFilter [40] | 63.5 | 3.59 76 | 8.35 54 | 3.26 79 | 2.12 46 | 6.60 29 | 2.16 43 | 2.00 60 | 5.56 51 | 2.01 43 | 2.04 102 | 7.05 56 | 1.89 103 | 2.74 16 | 3.70 10 | 2.27 34 | 3.29 98 | 10.3 76 | 3.33 102 | 5.22 138 | 9.79 160 | 6.16 144 | 0.38 1 | 1.08 1 | 0.35 1 |
Classic++ [32] | 64.2 | 2.66 30 | 8.18 51 | 2.65 49 | 2.13 48 | 7.96 54 | 2.43 63 | 1.85 47 | 9.39 78 | 2.10 61 | 1.09 26 | 10.4 85 | 0.88 28 | 3.97 69 | 5.60 102 | 2.89 70 | 2.36 65 | 13.6 115 | 2.10 48 | 4.03 111 | 5.20 90 | 4.33 128 | 0.99 41 | 2.05 56 | 0.92 26 |
DeepFlow2 [106] | 64.9 | 3.44 62 | 12.6 85 | 3.36 85 | 1.98 35 | 8.60 59 | 2.10 40 | 2.38 80 | 11.1 86 | 2.60 87 | 1.34 49 | 14.6 108 | 1.11 53 | 3.53 54 | 5.09 61 | 2.23 28 | 1.66 21 | 9.90 70 | 1.77 17 | 2.76 48 | 4.06 11 | 3.40 93 | 1.72 105 | 3.21 109 | 2.13 112 |
S2F-IF [121] | 65.4 | 3.54 70 | 19.2 127 | 2.58 40 | 2.41 74 | 10.4 91 | 2.59 76 | 2.57 88 | 10.6 85 | 2.59 85 | 1.29 44 | 10.5 87 | 0.98 39 | 4.07 86 | 5.38 84 | 2.90 71 | 1.65 20 | 9.94 71 | 1.85 18 | 2.27 16 | 4.26 21 | 2.35 52 | 1.33 76 | 2.49 78 | 1.32 70 |
FlowFields+ [128] | 67.0 | 3.58 74 | 19.0 122 | 2.56 36 | 2.57 86 | 10.8 96 | 2.78 87 | 2.72 94 | 11.9 93 | 2.78 97 | 1.32 47 | 10.9 91 | 1.03 42 | 3.97 69 | 5.34 81 | 2.74 59 | 1.64 19 | 9.79 65 | 1.87 22 | 2.26 15 | 4.30 26 | 2.35 52 | 1.35 78 | 2.62 82 | 1.34 74 |
CPM-Flow [114] | 67.7 | 3.47 64 | 19.0 122 | 2.52 28 | 2.59 88 | 11.0 102 | 2.82 92 | 2.56 86 | 11.3 88 | 2.75 92 | 1.34 49 | 15.7 113 | 1.06 44 | 4.02 78 | 5.42 86 | 2.78 61 | 1.59 13 | 9.39 58 | 1.87 22 | 2.30 22 | 4.17 15 | 2.36 55 | 1.35 78 | 2.69 89 | 1.39 80 |
PGM-C [118] | 68.5 | 3.48 67 | 19.0 122 | 2.52 28 | 2.59 88 | 10.8 96 | 2.82 92 | 2.59 89 | 11.8 92 | 2.75 92 | 1.34 49 | 16.5 119 | 1.06 44 | 4.03 80 | 5.46 90 | 2.78 61 | 1.60 14 | 9.63 62 | 1.88 25 | 2.28 18 | 3.98 6 | 2.36 55 | 1.37 83 | 2.69 89 | 1.45 84 |
RFlow [88] | 69.1 | 3.62 81 | 9.91 69 | 3.53 92 | 1.83 27 | 5.50 15 | 1.93 31 | 2.14 68 | 9.57 79 | 1.86 29 | 1.32 47 | 6.75 50 | 1.14 62 | 3.98 71 | 5.35 82 | 3.24 89 | 2.39 67 | 11.7 94 | 2.24 62 | 3.45 88 | 4.60 55 | 3.63 98 | 1.64 102 | 2.90 97 | 1.91 103 |
SegFlow [156] | 69.1 | 3.47 64 | 19.0 122 | 2.52 28 | 2.59 88 | 10.9 99 | 2.82 92 | 2.55 85 | 11.4 89 | 2.75 92 | 1.36 56 | 16.2 117 | 1.06 44 | 4.05 84 | 5.44 88 | 2.91 72 | 1.63 18 | 9.70 63 | 1.88 25 | 2.30 22 | 4.19 17 | 2.36 55 | 1.35 78 | 2.50 79 | 1.43 81 |
EpicFlow [100] | 70.4 | 3.47 64 | 18.9 120 | 2.52 28 | 2.59 88 | 10.9 99 | 2.82 92 | 2.64 91 | 14.2 104 | 2.75 92 | 1.35 53 | 15.5 111 | 1.06 44 | 4.04 82 | 5.48 91 | 2.88 69 | 1.62 17 | 9.70 63 | 1.91 29 | 2.28 18 | 4.08 13 | 2.36 55 | 1.39 87 | 2.71 91 | 1.51 89 |
FlowFields [108] | 71.2 | 3.56 73 | 19.0 122 | 2.54 35 | 2.57 86 | 10.6 94 | 2.79 88 | 2.72 94 | 11.7 91 | 2.76 96 | 1.42 62 | 10.9 91 | 1.13 59 | 4.08 88 | 5.43 87 | 2.92 74 | 1.60 14 | 10.5 79 | 1.86 21 | 2.28 18 | 4.35 30 | 2.46 64 | 1.38 86 | 2.62 82 | 1.36 76 |
MLDP_OF [87] | 71.3 | 4.16 101 | 10.4 72 | 4.04 101 | 2.04 40 | 6.61 30 | 2.04 37 | 2.36 79 | 6.60 61 | 2.05 49 | 1.43 63 | 5.65 40 | 1.18 69 | 3.75 62 | 4.86 55 | 2.96 77 | 2.96 89 | 8.71 49 | 3.47 107 | 4.20 116 | 5.51 97 | 7.24 147 | 1.16 62 | 1.87 46 | 1.21 63 |
WRT [146] | 71.5 | 3.48 67 | 8.79 61 | 2.57 39 | 3.21 110 | 9.36 81 | 3.18 106 | 2.76 97 | 7.40 66 | 2.30 77 | 1.64 87 | 4.61 25 | 1.23 72 | 3.41 50 | 4.56 44 | 2.48 49 | 4.89 135 | 11.0 86 | 3.31 100 | 3.03 67 | 4.82 70 | 3.25 90 | 1.10 51 | 1.75 40 | 0.99 45 |
TV-L1-improved [17] | 73.4 | 2.70 34 | 9.05 62 | 2.29 17 | 1.85 29 | 7.06 38 | 1.97 34 | 1.94 55 | 9.28 77 | 1.90 34 | 1.10 28 | 8.96 73 | 0.85 21 | 4.07 86 | 5.60 102 | 2.75 60 | 5.44 142 | 17.3 133 | 6.29 145 | 4.75 131 | 6.82 132 | 4.73 134 | 1.13 55 | 2.68 88 | 1.06 52 |
DMF_ROB [135] | 73.5 | 3.70 83 | 15.2 105 | 3.34 83 | 2.21 64 | 9.03 68 | 2.40 59 | 2.84 101 | 13.7 103 | 2.65 90 | 1.41 61 | 16.9 123 | 1.10 51 | 3.92 67 | 5.17 70 | 3.14 85 | 2.01 35 | 10.6 80 | 2.11 50 | 2.37 30 | 3.72 5 | 2.62 73 | 1.49 94 | 2.74 92 | 1.68 92 |
CVENG22+RIC [199] | 73.7 | 3.26 56 | 18.0 114 | 2.47 24 | 2.51 81 | 12.6 112 | 2.62 77 | 2.52 84 | 15.4 110 | 2.62 89 | 1.22 41 | 16.6 121 | 0.91 35 | 4.43 108 | 5.92 118 | 3.75 104 | 1.78 24 | 11.7 94 | 2.10 48 | 2.27 16 | 4.01 9 | 2.36 55 | 1.32 75 | 3.14 106 | 1.27 67 |
Steered-L1 [116] | 73.9 | 3.21 53 | 8.15 50 | 3.11 74 | 1.39 3 | 4.13 2 | 1.51 5 | 1.73 37 | 5.20 43 | 1.65 14 | 1.28 43 | 10.3 84 | 1.11 53 | 4.05 84 | 5.35 82 | 3.55 94 | 3.10 94 | 12.6 103 | 2.59 80 | 6.15 152 | 6.90 135 | 13.1 160 | 1.73 106 | 3.04 105 | 2.39 118 |
BriefMatch [122] | 74.2 | 3.03 42 | 7.96 47 | 2.73 55 | 1.75 21 | 6.88 35 | 1.73 18 | 1.72 34 | 4.70 33 | 1.73 22 | 1.51 74 | 5.38 35 | 1.39 88 | 4.01 76 | 5.27 76 | 3.72 102 | 5.57 143 | 15.9 126 | 6.02 144 | 4.65 124 | 6.85 134 | 8.98 155 | 0.95 33 | 2.30 70 | 1.77 95 |
PWC-Net_RVC [143] | 74.7 | 4.74 113 | 14.6 100 | 3.51 91 | 2.88 104 | 8.88 65 | 2.92 101 | 2.75 96 | 9.98 83 | 3.27 107 | 1.65 88 | 4.91 28 | 1.35 81 | 4.10 90 | 5.12 67 | 2.91 72 | 2.66 81 | 10.2 75 | 2.67 81 | 1.69 6 | 4.65 62 | 1.13 6 | 1.26 70 | 2.06 57 | 1.29 68 |
CombBMOF [111] | 74.9 | 3.55 71 | 11.6 80 | 2.79 60 | 2.52 82 | 7.21 45 | 2.51 71 | 1.88 50 | 5.63 52 | 1.84 26 | 1.67 91 | 11.2 94 | 1.51 95 | 3.68 58 | 4.62 46 | 3.07 83 | 4.08 115 | 11.4 92 | 4.79 134 | 4.72 128 | 6.58 129 | 3.82 110 | 0.92 25 | 1.82 43 | 0.88 18 |
VCN_RVC [178] | 75.0 | 4.91 114 | 16.6 108 | 4.22 108 | 2.92 105 | 9.01 67 | 2.99 102 | 2.76 97 | 9.11 74 | 2.48 82 | 1.67 91 | 9.79 79 | 1.26 75 | 3.83 65 | 4.91 56 | 2.84 66 | 2.53 75 | 9.79 65 | 2.46 76 | 2.35 28 | 4.58 50 | 1.27 10 | 1.25 69 | 2.27 68 | 1.32 70 |
Sparse Occlusion [54] | 75.8 | 3.36 59 | 8.08 48 | 2.90 66 | 2.61 93 | 7.68 50 | 3.01 103 | 2.10 64 | 6.40 59 | 2.13 64 | 1.45 67 | 6.80 51 | 1.14 62 | 4.01 76 | 5.31 80 | 2.81 64 | 2.55 76 | 10.4 77 | 2.21 59 | 6.70 156 | 8.26 155 | 4.34 129 | 1.15 59 | 2.08 58 | 0.99 45 |
DeepFlow [85] | 77.2 | 3.94 91 | 12.7 86 | 4.14 106 | 2.12 46 | 9.06 70 | 2.28 49 | 2.84 101 | 12.5 97 | 3.16 104 | 1.68 93 | 15.6 112 | 1.44 92 | 3.58 55 | 5.10 63 | 2.20 25 | 1.78 24 | 11.1 87 | 1.88 25 | 2.65 41 | 4.07 12 | 3.40 93 | 2.08 125 | 3.59 126 | 3.09 130 |
EPPM w/o HM [86] | 77.8 | 4.03 96 | 13.7 95 | 3.25 78 | 1.91 31 | 7.71 51 | 1.83 24 | 2.14 68 | 7.85 69 | 1.96 37 | 1.80 95 | 10.2 82 | 1.63 99 | 3.72 61 | 4.62 46 | 3.24 89 | 3.93 112 | 13.2 110 | 3.79 116 | 4.35 120 | 5.68 107 | 7.45 149 | 0.97 39 | 1.93 51 | 0.98 42 |
MCPFlow_RVC [197] | 79.7 | 7.05 129 | 18.3 116 | 4.12 105 | 5.44 127 | 11.9 108 | 5.49 123 | 6.40 128 | 12.8 100 | 7.68 126 | 2.22 106 | 4.51 23 | 1.94 105 | 4.00 73 | 5.29 78 | 2.51 51 | 2.32 61 | 6.48 15 | 2.43 75 | 2.63 39 | 4.31 28 | 1.24 9 | 1.35 78 | 1.91 48 | 1.20 62 |
HBM-GC [103] | 80.5 | 5.52 118 | 7.21 31 | 5.03 123 | 2.96 106 | 7.15 42 | 3.23 108 | 2.79 100 | 4.90 40 | 2.88 99 | 3.12 124 | 4.92 29 | 2.97 129 | 3.37 47 | 4.23 25 | 3.46 92 | 3.80 110 | 6.63 16 | 3.52 108 | 5.86 147 | 7.23 146 | 4.53 132 | 0.64 2 | 2.02 55 | 0.64 3 |
Complementary OF [21] | 81.1 | 4.47 109 | 12.4 84 | 4.63 116 | 1.60 11 | 6.16 24 | 1.67 13 | 2.10 64 | 6.85 63 | 2.16 67 | 2.27 108 | 9.76 78 | 2.19 113 | 4.00 73 | 5.10 63 | 3.71 100 | 3.96 113 | 12.9 107 | 3.32 101 | 2.83 54 | 4.46 37 | 3.08 87 | 2.04 123 | 3.33 114 | 2.86 124 |
FF++_ROB [141] | 81.3 | 3.75 85 | 20.6 129 | 2.92 68 | 2.60 92 | 10.6 94 | 2.79 88 | 2.97 108 | 13.2 102 | 3.18 105 | 1.62 82 | 11.2 94 | 1.38 87 | 4.12 92 | 5.52 95 | 2.99 80 | 2.24 54 | 9.58 61 | 2.30 69 | 2.31 26 | 4.40 35 | 2.39 61 | 1.36 82 | 2.55 80 | 1.44 83 |
GMFlow_RVC [196] | 81.7 | 8.99 141 | 13.1 88 | 7.60 142 | 3.51 112 | 7.18 43 | 3.89 113 | 3.37 112 | 6.34 58 | 3.28 108 | 2.74 119 | 4.58 24 | 2.34 119 | 4.00 73 | 4.95 57 | 2.95 76 | 4.04 114 | 7.49 27 | 3.38 105 | 4.21 118 | 6.83 133 | 2.37 60 | 0.78 6 | 1.31 5 | 0.74 8 |
Rannacher [23] | 82.3 | 3.60 79 | 11.3 78 | 3.27 80 | 2.41 74 | 9.53 82 | 2.63 78 | 2.60 90 | 11.9 93 | 2.58 84 | 1.36 56 | 12.1 99 | 1.09 50 | 4.22 97 | 5.90 116 | 3.14 85 | 3.63 104 | 16.1 128 | 2.75 86 | 3.72 99 | 5.24 92 | 3.70 102 | 0.96 36 | 2.16 63 | 0.91 24 |
TF+OM [98] | 83.3 | 3.58 74 | 9.07 63 | 2.75 58 | 2.07 44 | 6.43 26 | 2.37 54 | 1.99 59 | 7.56 68 | 2.78 97 | 2.07 103 | 7.02 55 | 2.07 111 | 4.19 96 | 5.12 67 | 4.32 119 | 3.15 96 | 10.1 74 | 3.00 92 | 4.10 113 | 6.00 115 | 3.92 113 | 1.54 96 | 2.98 102 | 1.94 104 |
Aniso. Huber-L1 [22] | 84.2 | 3.17 50 | 9.57 66 | 3.05 71 | 3.72 113 | 11.5 106 | 4.38 116 | 2.86 104 | 10.5 84 | 3.80 112 | 1.70 94 | 11.6 97 | 1.42 89 | 4.04 82 | 5.58 99 | 2.98 79 | 2.34 63 | 9.88 69 | 2.05 41 | 4.49 122 | 5.91 113 | 3.42 95 | 1.08 48 | 2.10 59 | 1.02 48 |
F-TV-L1 [15] | 84.2 | 5.69 120 | 13.3 90 | 6.62 133 | 2.71 99 | 12.0 109 | 2.86 99 | 2.76 97 | 12.6 98 | 2.43 81 | 2.41 113 | 16.3 118 | 2.02 110 | 4.17 95 | 5.27 76 | 3.74 103 | 2.41 69 | 10.8 84 | 2.49 78 | 3.04 68 | 4.84 76 | 2.26 45 | 0.79 7 | 1.81 42 | 0.76 11 |
TCOF [69] | 84.6 | 3.95 92 | 11.0 76 | 4.20 107 | 2.56 85 | 9.31 78 | 2.68 82 | 2.71 93 | 12.8 100 | 3.34 109 | 2.30 109 | 6.80 51 | 2.33 115 | 4.50 114 | 6.28 135 | 2.58 56 | 1.89 29 | 6.02 9 | 2.06 42 | 4.72 128 | 6.30 119 | 2.58 67 | 1.37 83 | 2.63 85 | 1.22 66 |
ComplOF-FED-GPU [35] | 85.1 | 4.09 99 | 12.8 87 | 4.09 104 | 1.61 14 | 9.86 86 | 1.62 9 | 2.12 66 | 8.39 70 | 1.87 31 | 1.85 97 | 12.4 102 | 1.70 102 | 3.95 68 | 5.25 75 | 3.25 91 | 3.54 102 | 15.1 124 | 3.60 112 | 3.93 105 | 4.83 71 | 4.60 133 | 1.55 98 | 2.93 101 | 1.80 96 |
NL-TV-NCC [25] | 85.7 | 3.89 89 | 8.49 56 | 3.34 83 | 2.52 82 | 8.44 57 | 2.38 56 | 2.25 74 | 5.49 48 | 1.99 39 | 1.87 98 | 7.61 60 | 1.53 96 | 4.36 104 | 5.91 117 | 2.78 61 | 4.12 119 | 13.0 108 | 3.58 111 | 3.85 103 | 5.74 109 | 3.79 107 | 1.63 101 | 2.81 94 | 1.46 85 |
ROF-ND [105] | 86.0 | 4.03 96 | 11.1 77 | 3.48 90 | 2.33 67 | 5.09 9 | 2.22 44 | 2.19 71 | 6.22 57 | 2.02 45 | 2.30 109 | 5.92 45 | 1.68 101 | 4.23 98 | 6.03 124 | 2.94 75 | 3.70 108 | 12.2 98 | 3.05 95 | 6.21 153 | 6.93 137 | 5.53 139 | 1.43 90 | 2.21 66 | 1.32 70 |
ACK-Prior [27] | 86.7 | 4.28 103 | 9.53 65 | 3.85 100 | 1.87 30 | 5.68 16 | 1.83 24 | 1.97 57 | 5.25 45 | 1.96 37 | 1.98 101 | 5.26 33 | 1.65 100 | 4.08 88 | 5.12 67 | 3.79 107 | 4.53 131 | 13.0 108 | 3.61 113 | 5.63 142 | 6.40 124 | 8.50 153 | 1.92 119 | 2.90 97 | 2.64 121 |
LDOF [28] | 91.3 | 3.72 84 | 14.9 103 | 3.59 95 | 2.38 71 | 14.0 122 | 2.46 67 | 2.69 92 | 14.4 105 | 2.55 83 | 1.48 71 | 33.9 144 | 1.10 51 | 4.24 100 | 5.59 101 | 3.75 104 | 2.04 39 | 16.4 131 | 1.99 37 | 2.83 54 | 4.83 71 | 2.43 62 | 2.28 133 | 4.02 138 | 3.38 133 |
SRR-TVOF-NL [89] | 92.1 | 4.62 112 | 12.2 83 | 3.55 93 | 2.32 66 | 10.8 96 | 2.34 52 | 2.56 86 | 12.4 96 | 2.59 85 | 1.49 73 | 8.56 70 | 1.17 68 | 4.12 92 | 5.10 63 | 3.51 93 | 2.63 78 | 10.9 85 | 2.26 65 | 5.64 144 | 6.92 136 | 4.13 125 | 2.19 129 | 2.87 96 | 2.86 124 |
DPOF [18] | 92.2 | 4.32 104 | 16.2 107 | 3.30 81 | 2.69 97 | 10.2 88 | 2.69 84 | 2.44 83 | 7.17 65 | 2.61 88 | 1.95 100 | 10.2 82 | 1.55 97 | 3.85 66 | 5.20 72 | 3.03 82 | 2.84 86 | 11.1 87 | 2.67 81 | 4.71 127 | 4.83 71 | 8.84 154 | 1.73 106 | 3.03 104 | 1.86 100 |
CRTflow [81] | 92.2 | 3.65 82 | 14.0 98 | 3.10 73 | 2.16 52 | 7.88 52 | 2.23 45 | 2.25 74 | 11.2 87 | 1.99 39 | 1.56 79 | 12.7 103 | 1.35 81 | 4.02 78 | 5.53 96 | 3.01 81 | 6.86 149 | 19.6 145 | 8.64 151 | 3.29 77 | 5.53 100 | 3.23 89 | 2.05 124 | 3.95 137 | 2.71 122 |
LocallyOriented [52] | 92.9 | 3.46 63 | 14.6 100 | 3.01 70 | 2.84 103 | 13.3 116 | 2.85 98 | 2.92 106 | 17.6 116 | 3.05 103 | 1.63 85 | 10.6 88 | 1.43 90 | 4.23 98 | 5.79 110 | 3.19 87 | 2.48 74 | 7.69 31 | 2.87 88 | 3.41 86 | 5.63 105 | 3.25 90 | 1.65 103 | 3.48 119 | 1.86 100 |
SIOF [67] | 93.6 | 4.00 94 | 8.74 60 | 3.46 89 | 2.00 37 | 13.6 117 | 2.13 41 | 3.02 110 | 15.7 111 | 3.38 110 | 2.55 117 | 13.5 107 | 2.50 120 | 4.27 101 | 5.70 105 | 3.70 99 | 3.55 103 | 11.5 93 | 4.01 119 | 3.17 73 | 4.64 60 | 2.12 39 | 1.85 116 | 3.29 113 | 2.15 113 |
Second-order prior [8] | 93.8 | 3.40 60 | 13.6 92 | 3.19 76 | 2.16 52 | 13.8 121 | 2.34 52 | 2.43 81 | 17.1 114 | 2.26 74 | 1.20 39 | 15.7 113 | 0.96 38 | 4.44 109 | 6.10 129 | 3.08 84 | 3.41 101 | 19.7 146 | 2.67 81 | 5.42 141 | 6.02 117 | 5.40 136 | 1.44 91 | 3.44 118 | 1.48 86 |
Brox et al. [5] | 94.1 | 4.01 95 | 14.7 102 | 4.49 114 | 2.75 101 | 11.5 106 | 3.21 107 | 2.33 78 | 12.2 95 | 2.34 78 | 1.46 68 | 19.9 127 | 1.19 70 | 4.62 119 | 5.71 106 | 4.89 134 | 2.13 44 | 13.3 111 | 2.28 66 | 2.87 57 | 4.78 67 | 1.55 18 | 2.30 135 | 3.68 130 | 3.31 131 |
Bartels [41] | 94.7 | 4.23 102 | 10.7 75 | 4.70 119 | 2.37 69 | 5.83 21 | 2.66 80 | 2.21 72 | 7.42 67 | 2.42 80 | 2.59 118 | 8.46 69 | 2.53 121 | 4.33 103 | 5.50 93 | 4.37 121 | 3.69 107 | 14.6 122 | 4.80 135 | 4.75 131 | 6.30 119 | 7.59 150 | 1.13 55 | 2.33 73 | 1.32 70 |
Dynamic MRF [7] | 95.7 | 4.55 111 | 13.6 92 | 5.02 121 | 1.81 25 | 8.86 64 | 1.82 23 | 2.13 67 | 12.6 98 | 1.87 31 | 1.62 82 | 13.2 105 | 1.45 93 | 4.61 117 | 5.80 113 | 4.32 119 | 4.14 120 | 21.3 148 | 4.42 125 | 3.22 76 | 4.41 36 | 5.01 135 | 2.11 126 | 3.92 136 | 3.51 134 |
CLG-TV [48] | 97.0 | 3.59 76 | 9.91 69 | 3.24 77 | 4.16 117 | 11.1 103 | 4.96 118 | 3.12 111 | 11.5 90 | 3.97 113 | 2.31 111 | 13.0 104 | 1.99 109 | 4.56 116 | 6.11 130 | 3.95 110 | 2.85 87 | 12.2 98 | 2.78 87 | 4.23 119 | 5.87 112 | 2.86 80 | 1.17 63 | 2.45 77 | 1.04 51 |
TriangleFlow [30] | 97.5 | 3.96 93 | 11.5 79 | 4.08 103 | 2.14 50 | 10.2 88 | 2.07 38 | 2.16 70 | 9.80 82 | 1.86 29 | 1.47 69 | 9.22 74 | 1.11 53 | 5.37 143 | 7.25 152 | 4.72 130 | 4.49 130 | 13.7 117 | 4.62 130 | 3.78 101 | 7.33 148 | 4.11 122 | 1.73 106 | 3.48 119 | 2.30 115 |
p-harmonic [29] | 98.1 | 4.47 109 | 14.4 99 | 4.52 115 | 2.71 99 | 9.33 80 | 2.89 100 | 3.40 113 | 15.0 107 | 3.02 102 | 1.93 99 | 24.1 134 | 1.59 98 | 4.15 94 | 5.18 71 | 3.66 98 | 3.37 100 | 16.0 127 | 3.54 109 | 3.90 104 | 5.36 94 | 2.71 77 | 1.29 72 | 2.41 76 | 1.38 78 |
Local-TV-L1 [65] | 98.4 | 4.95 115 | 13.2 89 | 5.40 124 | 4.37 119 | 14.6 124 | 5.04 119 | 4.59 120 | 17.8 118 | 5.96 122 | 2.42 114 | 16.9 123 | 2.25 114 | 3.68 58 | 5.03 59 | 2.82 65 | 2.25 56 | 10.6 80 | 2.24 62 | 2.55 35 | 4.37 32 | 2.91 84 | 2.73 142 | 4.10 140 | 7.77 148 |
FlowNetS+ft+v [110] | 98.5 | 3.42 61 | 13.4 91 | 3.39 86 | 2.54 84 | 11.2 104 | 2.80 90 | 2.94 107 | 18.6 121 | 4.76 115 | 1.43 63 | 27.4 137 | 1.20 71 | 4.67 122 | 6.35 139 | 3.71 100 | 1.96 33 | 12.3 101 | 2.01 39 | 4.10 113 | 6.00 115 | 4.11 122 | 1.76 110 | 3.49 122 | 2.37 117 |
CNN-flow-warp+ref [115] | 99.1 | 3.90 90 | 19.8 128 | 3.73 98 | 3.40 111 | 10.9 99 | 4.21 114 | 3.85 117 | 23.8 134 | 6.07 123 | 1.65 88 | 22.4 132 | 1.37 84 | 4.38 107 | 5.58 99 | 4.08 113 | 2.23 52 | 13.8 118 | 2.33 71 | 2.41 31 | 4.27 22 | 2.24 43 | 2.43 139 | 3.66 129 | 3.64 137 |
CBF [12] | 99.3 | 3.59 76 | 10.5 74 | 3.68 97 | 4.72 121 | 10.4 91 | 6.02 128 | 2.28 76 | 9.24 76 | 2.96 101 | 1.63 85 | 12.2 100 | 1.36 83 | 4.48 113 | 5.75 108 | 3.99 112 | 2.70 82 | 10.7 82 | 2.48 77 | 6.13 151 | 7.02 138 | 5.92 142 | 1.45 93 | 2.65 87 | 1.66 91 |
DF-Auto [113] | 99.5 | 3.88 88 | 17.6 112 | 2.93 69 | 5.44 127 | 14.7 125 | 6.44 129 | 4.54 119 | 16.8 113 | 9.38 130 | 2.22 106 | 15.0 110 | 1.95 106 | 4.32 102 | 6.00 122 | 3.88 109 | 1.44 6 | 7.14 22 | 1.73 15 | 4.20 116 | 6.78 131 | 1.70 21 | 2.42 138 | 4.04 139 | 3.34 132 |
OFRF [132] | 103.3 | 4.35 105 | 9.74 67 | 4.34 109 | 5.12 125 | 13.1 115 | 5.68 126 | 3.74 116 | 14.7 106 | 5.10 116 | 2.91 122 | 11.0 93 | 2.84 126 | 3.34 46 | 4.74 51 | 2.24 29 | 3.34 99 | 9.46 59 | 3.23 99 | 3.67 97 | 5.54 101 | 5.56 140 | 3.05 146 | 3.88 134 | 9.53 153 |
StereoFlow [44] | 106.3 | 21.8 162 | 37.8 157 | 27.4 162 | 24.3 160 | 37.6 162 | 22.4 158 | 28.3 162 | 39.2 157 | 28.8 157 | 24.0 160 | 47.7 154 | 21.6 159 | 5.15 136 | 5.49 92 | 6.01 150 | 0.95 2 | 6.87 17 | 1.06 2 | 1.68 5 | 3.70 4 | 0.92 4 | 1.29 72 | 2.32 71 | 1.49 87 |
LiteFlowNet [138] | 106.9 | 6.43 123 | 24.0 135 | 4.45 112 | 3.74 114 | 10.4 91 | 3.78 110 | 4.32 118 | 15.2 109 | 3.78 111 | 2.36 112 | 8.74 71 | 1.97 108 | 4.88 129 | 6.06 125 | 4.38 122 | 4.23 123 | 14.0 119 | 3.68 114 | 3.56 92 | 5.59 104 | 1.98 30 | 1.70 104 | 2.79 93 | 1.83 97 |
TriFlow [93] | 107.3 | 4.44 106 | 13.8 96 | 3.62 96 | 3.16 109 | 9.65 84 | 3.81 111 | 2.89 105 | 19.6 124 | 6.36 124 | 2.48 116 | 7.88 64 | 2.33 115 | 4.37 106 | 5.44 88 | 4.28 118 | 2.98 90 | 8.42 38 | 3.07 96 | 11.7 161 | 7.70 152 | 21.5 161 | 1.76 110 | 2.98 102 | 1.94 104 |
Fusion [6] | 108.1 | 3.76 86 | 16.9 109 | 4.07 102 | 1.99 36 | 7.37 48 | 2.26 47 | 2.07 63 | 8.51 72 | 2.28 75 | 1.59 80 | 24.8 135 | 1.37 84 | 5.00 133 | 6.36 140 | 4.98 139 | 4.70 134 | 16.2 130 | 5.01 138 | 6.00 150 | 7.50 150 | 4.38 130 | 2.97 145 | 3.74 133 | 3.55 135 |
Learning Flow [11] | 108.1 | 3.80 87 | 11.9 81 | 3.58 94 | 3.02 107 | 13.0 114 | 3.34 109 | 2.84 101 | 17.9 119 | 3.18 105 | 1.82 96 | 34.6 147 | 1.50 94 | 5.44 147 | 7.32 153 | 4.61 127 | 3.10 94 | 18.8 141 | 3.04 94 | 3.94 106 | 6.38 123 | 3.65 100 | 1.37 83 | 3.38 116 | 1.18 57 |
C-RAFT_RVC [181] | 108.6 | 7.80 134 | 25.3 137 | 6.17 131 | 6.67 135 | 16.5 128 | 6.68 131 | 6.61 129 | 15.9 112 | 7.92 127 | 2.88 121 | 7.19 59 | 2.33 115 | 5.18 139 | 6.31 136 | 4.53 126 | 3.85 111 | 9.16 54 | 4.24 122 | 3.57 94 | 5.58 103 | 2.06 34 | 1.44 91 | 2.29 69 | 1.30 69 |
Shiralkar [42] | 109.9 | 4.46 107 | 18.3 116 | 4.36 110 | 1.93 33 | 16.4 127 | 1.87 28 | 2.99 109 | 17.6 116 | 2.01 43 | 2.10 104 | 21.0 129 | 1.96 107 | 4.36 104 | 5.72 107 | 3.55 94 | 5.65 144 | 19.4 143 | 5.11 141 | 4.90 136 | 5.57 102 | 7.14 146 | 2.11 126 | 4.71 146 | 2.53 119 |
ContinualFlow_ROB [148] | 109.9 | 7.09 130 | 26.0 140 | 5.87 128 | 6.48 134 | 13.6 117 | 7.04 135 | 7.43 132 | 21.2 129 | 9.67 131 | 3.12 124 | 10.8 90 | 2.57 124 | 5.41 145 | 6.38 141 | 4.71 128 | 6.48 148 | 15.7 125 | 7.64 149 | 2.20 12 | 4.02 10 | 1.33 12 | 1.42 89 | 2.40 75 | 1.64 90 |
StereoOF-V1MT [117] | 113.0 | 4.46 107 | 18.0 114 | 4.46 113 | 2.09 45 | 18.6 134 | 1.79 21 | 3.70 115 | 20.6 127 | 2.13 64 | 2.18 105 | 25.0 136 | 1.91 104 | 5.52 149 | 6.98 150 | 4.82 132 | 5.01 140 | 25.8 153 | 4.73 132 | 3.21 75 | 5.27 93 | 3.64 99 | 2.32 136 | 4.64 144 | 2.83 123 |
EAI-Flow [147] | 114.1 | 7.60 132 | 21.3 130 | 6.38 132 | 4.08 115 | 15.8 126 | 4.21 114 | 5.17 122 | 18.4 120 | 5.60 120 | 3.05 123 | 15.7 113 | 2.94 128 | 4.45 110 | 5.81 114 | 3.60 97 | 4.33 125 | 12.6 103 | 4.10 120 | 5.63 142 | 6.30 119 | 3.58 97 | 1.33 76 | 2.55 80 | 1.43 81 |
SegOF [10] | 114.6 | 5.62 119 | 17.1 110 | 3.08 72 | 8.33 141 | 20.9 138 | 10.1 145 | 7.44 133 | 21.7 130 | 13.3 139 | 5.42 143 | 21.0 129 | 4.47 138 | 4.81 128 | 5.51 94 | 5.74 149 | 4.97 138 | 17.1 132 | 4.83 136 | 2.12 10 | 4.38 34 | 1.46 15 | 2.17 128 | 3.23 110 | 3.74 139 |
CompactFlow_ROB [155] | 115.3 | 9.64 146 | 29.9 147 | 5.40 124 | 6.23 133 | 12.8 113 | 6.77 133 | 8.77 139 | 20.9 128 | 16.5 145 | 3.26 126 | 11.9 98 | 2.83 125 | 5.24 140 | 6.31 136 | 4.71 128 | 4.38 127 | 14.5 120 | 4.74 133 | 2.21 13 | 4.89 79 | 1.06 5 | 1.86 118 | 3.34 115 | 1.83 97 |
WOLF_ROB [144] | 116.0 | 5.28 117 | 22.2 132 | 4.65 118 | 4.15 116 | 21.9 142 | 3.81 111 | 6.02 126 | 23.6 133 | 5.35 119 | 2.47 115 | 16.5 119 | 2.33 115 | 4.50 114 | 5.65 104 | 4.12 115 | 4.15 121 | 14.8 123 | 3.83 117 | 3.00 65 | 4.84 76 | 2.67 75 | 2.25 132 | 4.11 141 | 3.66 138 |
Ad-TV-NDC [36] | 118.0 | 8.75 139 | 15.3 106 | 12.3 153 | 10.5 149 | 24.2 148 | 12.3 149 | 8.96 141 | 28.2 140 | 11.5 133 | 5.31 142 | 22.8 133 | 5.55 143 | 4.03 80 | 5.79 110 | 2.86 68 | 2.80 84 | 10.0 73 | 2.87 88 | 3.04 68 | 4.52 43 | 2.66 74 | 4.62 153 | 5.79 153 | 30.9 161 |
AugFNG_ROB [139] | 119.3 | 7.79 133 | 28.5 145 | 5.02 121 | 9.56 146 | 18.5 133 | 11.3 148 | 8.78 140 | 26.2 137 | 17.3 148 | 3.46 130 | 9.97 80 | 2.86 127 | 5.26 141 | 6.24 134 | 4.77 131 | 4.44 128 | 14.5 120 | 4.15 121 | 2.99 64 | 5.22 91 | 1.30 11 | 1.85 116 | 3.18 108 | 2.10 111 |
LSM_FLOW_RVC [182] | 120.2 | 9.44 145 | 33.6 152 | 8.15 144 | 5.61 130 | 18.8 135 | 5.66 125 | 9.75 143 | 25.6 136 | 9.07 129 | 3.27 127 | 18.6 126 | 2.55 122 | 5.14 135 | 6.44 143 | 4.22 117 | 4.26 124 | 17.3 133 | 4.70 131 | 2.70 45 | 4.99 83 | 1.92 28 | 1.74 109 | 3.57 124 | 1.85 99 |
Filter Flow [19] | 122.0 | 6.76 125 | 17.6 112 | 4.37 111 | 5.01 123 | 17.6 130 | 5.49 123 | 5.98 125 | 26.3 138 | 18.4 150 | 7.23 145 | 29.9 141 | 6.91 146 | 5.12 134 | 6.23 132 | 5.36 143 | 5.23 141 | 11.9 97 | 4.95 137 | 6.64 155 | 8.75 158 | 3.75 106 | 0.95 33 | 2.15 61 | 1.21 63 |
Modified CLG [34] | 123.0 | 6.79 126 | 24.7 136 | 6.63 134 | 7.09 137 | 17.4 129 | 9.40 141 | 10.1 144 | 29.2 142 | 16.6 146 | 4.48 139 | 27.5 138 | 3.86 134 | 4.80 126 | 6.31 136 | 4.48 125 | 2.65 80 | 17.6 136 | 2.69 85 | 2.92 62 | 4.94 81 | 2.07 35 | 3.19 148 | 5.17 149 | 5.78 144 |
LFNet_ROB [145] | 123.5 | 8.41 138 | 29.9 147 | 5.80 127 | 5.03 124 | 13.7 120 | 5.06 121 | 7.93 136 | 22.4 132 | 5.30 118 | 3.31 128 | 14.9 109 | 2.56 123 | 5.26 141 | 6.39 142 | 4.98 139 | 4.56 133 | 17.8 137 | 4.51 129 | 3.73 100 | 5.99 114 | 2.59 69 | 1.82 115 | 3.26 112 | 2.08 110 |
ResPWCR_ROB [140] | 124.0 | 8.23 136 | 22.9 133 | 6.93 135 | 4.20 118 | 12.3 111 | 4.43 117 | 5.27 123 | 15.1 108 | 5.64 121 | 3.74 132 | 17.2 125 | 3.36 131 | 4.79 125 | 5.55 97 | 5.34 142 | 4.99 139 | 13.6 115 | 5.09 140 | 4.72 128 | 6.59 130 | 2.89 81 | 2.38 137 | 3.59 126 | 2.92 126 |
IAOF2 [51] | 124.1 | 5.05 116 | 13.6 92 | 4.64 117 | 4.90 122 | 14.5 123 | 5.78 127 | 3.68 114 | 18.6 121 | 5.15 117 | 12.3 154 | 34.1 146 | 13.8 154 | 4.65 120 | 6.21 131 | 3.78 106 | 4.47 129 | 13.5 112 | 3.70 115 | 5.73 145 | 7.13 143 | 3.98 115 | 1.96 121 | 3.53 123 | 2.35 116 |
TVL1_RVC [175] | 125.8 | 13.5 153 | 26.6 142 | 16.1 157 | 14.6 153 | 23.7 147 | 16.6 154 | 16.9 152 | 36.4 153 | 25.4 155 | 11.9 153 | 33.8 143 | 12.8 152 | 4.66 121 | 6.23 132 | 3.96 111 | 2.36 65 | 16.1 128 | 2.89 90 | 2.30 22 | 4.59 52 | 1.48 16 | 5.62 157 | 6.37 154 | 12.6 156 |
BlockOverlap [61] | 126.0 | 6.80 127 | 12.1 82 | 5.94 129 | 5.51 129 | 13.6 117 | 6.58 130 | 5.32 124 | 22.2 131 | 7.30 125 | 4.20 133 | 16.7 122 | 4.06 136 | 4.45 110 | 5.39 85 | 5.11 141 | 4.91 136 | 12.5 102 | 4.34 124 | 6.77 157 | 7.13 143 | 9.52 156 | 2.02 122 | 3.24 111 | 9.49 152 |
FlowNet2 [120] | 126.1 | 8.99 141 | 25.8 138 | 7.01 136 | 9.84 147 | 19.0 136 | 10.7 146 | 7.98 137 | 20.1 125 | 13.5 140 | 4.47 138 | 9.41 75 | 4.21 137 | 5.17 137 | 6.08 127 | 4.92 136 | 4.10 117 | 11.2 89 | 4.43 126 | 5.98 149 | 7.71 153 | 2.90 83 | 1.78 112 | 2.92 100 | 1.89 102 |
EPMNet [131] | 126.5 | 8.88 140 | 26.2 141 | 7.20 139 | 9.32 145 | 18.2 131 | 10.0 144 | 7.14 130 | 18.8 123 | 12.3 136 | 4.79 140 | 12.3 101 | 4.62 141 | 5.17 137 | 6.08 127 | 4.92 136 | 4.10 117 | 11.2 89 | 4.43 126 | 4.88 135 | 7.05 140 | 2.56 66 | 1.93 120 | 3.57 124 | 2.07 109 |
IRR-PWC_RVC [180] | 126.9 | 10.2 148 | 33.8 153 | 5.99 130 | 8.45 142 | 19.0 136 | 9.43 142 | 9.62 142 | 24.4 135 | 14.7 141 | 4.25 134 | 9.71 77 | 3.53 133 | 5.42 146 | 6.06 125 | 5.64 147 | 3.68 106 | 12.2 98 | 3.37 104 | 4.84 134 | 7.66 151 | 2.25 44 | 2.23 130 | 3.62 128 | 2.59 120 |
HBpMotionGpu [43] | 127.1 | 5.92 121 | 15.0 104 | 4.79 120 | 7.78 139 | 22.4 144 | 9.04 140 | 7.17 131 | 39.2 157 | 17.3 148 | 3.31 128 | 13.4 106 | 3.14 130 | 4.71 123 | 5.88 115 | 4.84 133 | 3.74 109 | 13.5 112 | 3.54 109 | 5.96 148 | 7.17 145 | 3.68 101 | 2.24 131 | 3.43 117 | 4.65 140 |
2D-CLG [1] | 128.1 | 9.69 147 | 37.7 156 | 7.18 138 | 11.1 150 | 21.9 142 | 13.9 152 | 19.0 157 | 34.8 148 | 28.7 156 | 13.0 155 | 46.7 152 | 12.8 152 | 4.97 131 | 5.79 110 | 5.47 146 | 4.08 115 | 21.2 147 | 4.32 123 | 2.29 21 | 4.00 8 | 1.64 19 | 4.47 152 | 5.51 152 | 6.55 146 |
GraphCuts [14] | 128.4 | 6.34 122 | 17.1 110 | 5.55 126 | 5.30 126 | 20.9 138 | 5.26 122 | 6.05 127 | 20.4 126 | 12.4 137 | 2.85 120 | 20.9 128 | 2.15 112 | 4.74 124 | 5.95 120 | 4.90 135 | 8.69 153 | 12.6 103 | 5.19 142 | 5.79 146 | 6.40 124 | 6.80 145 | 2.45 140 | 3.48 119 | 3.59 136 |
SPSA-learn [13] | 128.5 | 6.87 128 | 21.3 130 | 7.92 143 | 6.02 132 | 21.1 140 | 6.96 134 | 7.55 134 | 27.5 139 | 12.7 138 | 4.44 136 | 29.2 139 | 4.59 140 | 4.80 126 | 5.92 118 | 4.93 138 | 4.94 137 | 17.3 133 | 5.02 139 | 3.37 83 | 5.01 84 | 2.29 49 | 4.14 151 | 4.97 148 | 6.49 145 |
GroupFlow [9] | 129.4 | 9.15 144 | 25.8 138 | 10.5 151 | 11.6 152 | 30.0 155 | 12.3 149 | 10.2 145 | 35.4 150 | 11.9 134 | 3.50 131 | 15.8 116 | 3.39 132 | 5.48 148 | 6.56 145 | 4.42 123 | 9.25 154 | 24.8 150 | 10.8 156 | 2.35 28 | 4.58 50 | 1.67 20 | 2.93 144 | 5.22 150 | 4.99 141 |
Black & Anandan [4] | 130.2 | 7.19 131 | 18.9 120 | 8.40 145 | 5.96 131 | 22.6 145 | 6.69 132 | 8.73 138 | 28.7 141 | 12.1 135 | 4.46 137 | 29.4 140 | 4.52 139 | 4.91 130 | 6.59 146 | 4.09 114 | 4.18 122 | 19.4 143 | 4.44 128 | 4.69 125 | 6.36 122 | 2.01 31 | 3.13 147 | 4.46 142 | 5.06 142 |
IAOF [50] | 131.2 | 6.54 124 | 18.3 116 | 7.13 137 | 6.99 136 | 18.4 132 | 7.90 138 | 7.71 135 | 32.3 145 | 8.44 128 | 8.21 148 | 31.8 142 | 9.78 150 | 4.61 117 | 6.01 123 | 4.14 116 | 4.35 126 | 18.9 142 | 3.43 106 | 4.69 125 | 6.08 118 | 3.31 92 | 3.23 149 | 4.69 145 | 15.9 159 |
2bit-BM-tele [96] | 134.2 | 8.99 141 | 18.6 119 | 10.2 148 | 4.45 120 | 11.3 105 | 5.04 119 | 4.66 121 | 17.3 115 | 4.41 114 | 5.23 141 | 21.7 131 | 5.04 142 | 4.99 132 | 5.96 121 | 5.46 145 | 6.47 147 | 18.3 138 | 7.49 148 | 7.77 159 | 8.57 157 | 12.5 159 | 2.29 134 | 3.89 135 | 2.99 129 |
Nguyen [33] | 137.4 | 8.16 135 | 23.0 134 | 7.57 141 | 16.5 156 | 22.7 146 | 19.3 156 | 16.8 151 | 36.0 151 | 20.7 153 | 13.8 156 | 39.5 148 | 14.7 156 | 5.40 144 | 6.44 143 | 6.70 151 | 4.54 132 | 18.5 140 | 5.42 143 | 3.50 90 | 5.02 85 | 2.08 36 | 4.00 150 | 5.50 151 | 8.53 150 |
UnFlow [127] | 137.9 | 19.4 161 | 44.0 161 | 10.2 148 | 11.3 151 | 21.2 141 | 12.4 151 | 18.1 154 | 36.0 151 | 15.5 143 | 7.47 147 | 34.0 145 | 6.40 145 | 7.10 157 | 7.11 151 | 8.76 156 | 8.31 152 | 24.8 150 | 9.26 152 | 5.13 137 | 6.50 127 | 1.52 17 | 1.57 99 | 3.14 106 | 2.01 107 |
Heeger++ [102] | 140.7 | 18.3 160 | 32.1 151 | 10.5 151 | 9.98 148 | 34.3 161 | 7.90 138 | 16.0 149 | 32.7 146 | 11.0 132 | 9.23 149 | 47.6 153 | 7.86 148 | 5.95 151 | 6.74 147 | 5.71 148 | 23.4 161 | 49.5 162 | 24.5 161 | 3.61 96 | 6.53 128 | 2.58 67 | 1.78 112 | 3.68 130 | 2.96 127 |
SILK [80] | 141.2 | 10.7 149 | 31.4 150 | 13.1 155 | 8.77 143 | 26.6 150 | 9.80 143 | 13.6 147 | 34.9 149 | 16.7 147 | 6.53 144 | 45.4 150 | 6.08 144 | 6.11 152 | 7.36 155 | 6.71 152 | 6.96 150 | 29.4 156 | 7.39 147 | 2.97 63 | 4.77 66 | 3.96 114 | 5.00 154 | 6.99 155 | 10.7 154 |
Horn & Schunck [3] | 141.9 | 8.40 137 | 27.2 143 | 9.62 146 | 7.28 138 | 28.3 152 | 7.55 137 | 13.3 146 | 31.9 144 | 15.8 144 | 7.35 146 | 48.5 155 | 7.69 147 | 5.84 150 | 7.34 154 | 5.45 144 | 5.80 145 | 25.8 153 | 6.79 146 | 5.25 139 | 7.11 142 | 2.11 38 | 5.21 155 | 8.30 157 | 6.66 147 |
H+S_RVC [176] | 146.5 | 14.7 155 | 45.1 162 | 10.3 150 | 14.7 154 | 29.7 154 | 15.8 153 | 23.2 160 | 40.1 160 | 29.6 160 | 31.3 161 | 52.9 159 | 32.8 161 | 6.81 155 | 6.83 149 | 10.4 160 | 13.8 159 | 34.0 159 | 16.9 159 | 2.84 56 | 5.51 97 | 2.50 65 | 8.19 160 | 8.91 158 | 8.01 149 |
FFV1MT [104] | 146.7 | 17.0 159 | 35.1 155 | 10.1 147 | 8.30 140 | 33.0 159 | 7.40 136 | 17.2 153 | 40.0 159 | 15.3 142 | 9.57 150 | 55.8 161 | 8.75 149 | 7.99 161 | 8.46 161 | 10.1 159 | 21.8 160 | 36.1 160 | 23.3 160 | 4.43 121 | 7.02 138 | 4.09 121 | 1.78 112 | 3.68 130 | 2.96 127 |
TI-DOFE [24] | 147.0 | 16.4 157 | 34.0 154 | 21.2 161 | 21.5 159 | 31.9 156 | 25.3 160 | 24.4 161 | 41.0 161 | 33.0 161 | 22.8 159 | 46.3 151 | 25.2 160 | 6.25 153 | 7.67 157 | 6.82 153 | 6.37 146 | 25.6 152 | 7.87 150 | 3.94 106 | 5.78 111 | 1.78 24 | 8.49 161 | 9.86 160 | 12.5 155 |
Periodicity [79] | 147.1 | 12.3 151 | 51.4 198 | 7.39 140 | 9.23 144 | 38.3 163 | 11.1 147 | 34.7 163 | 48.1 163 | 36.0 162 | 4.27 135 | 57.7 162 | 3.99 135 | 24.4 163 | 73.2 163 | 16.2 162 | 29.6 163 | 74.3 163 | 29.4 163 | 3.29 77 | 5.67 106 | 1.90 26 | 6.64 158 | 44.8 163 | 21.5 160 |
SLK [47] | 148.0 | 12.3 151 | 43.0 160 | 16.5 158 | 19.8 158 | 32.9 158 | 22.4 158 | 21.4 158 | 38.4 155 | 29.3 159 | 41.6 163 | 51.6 157 | 44.5 163 | 6.87 156 | 7.63 156 | 8.94 157 | 8.09 151 | 31.2 158 | 9.56 153 | 3.34 81 | 5.41 95 | 2.60 70 | 8.13 159 | 9.23 159 | 13.9 158 |
Adaptive flow [45] | 154.2 | 16.4 157 | 28.7 146 | 16.7 159 | 17.2 157 | 25.5 149 | 19.6 157 | 18.8 156 | 37.6 154 | 36.5 163 | 11.2 152 | 43.6 149 | 11.9 151 | 7.11 158 | 7.79 158 | 7.88 154 | 10.1 157 | 24.1 149 | 10.1 155 | 16.1 162 | 14.2 162 | 22.1 162 | 2.92 143 | 4.89 147 | 5.22 143 |
HCIC-L [97] | 154.9 | 24.1 163 | 31.3 149 | 12.9 154 | 27.6 162 | 28.7 153 | 69.9 163 | 16.0 149 | 30.6 143 | 23.1 154 | 18.1 158 | 55.4 160 | 17.8 158 | 7.39 159 | 8.35 160 | 8.32 155 | 12.6 158 | 18.3 138 | 14.4 158 | 25.6 163 | 23.8 163 | 23.6 163 | 2.62 141 | 4.51 143 | 9.36 151 |
PGAM+LK [55] | 155.8 | 14.0 154 | 40.6 158 | 18.8 160 | 14.9 155 | 33.1 160 | 17.8 155 | 14.4 148 | 32.9 147 | 19.3 151 | 15.7 157 | 63.6 163 | 14.9 157 | 6.36 154 | 6.81 148 | 9.14 158 | 9.83 156 | 30.7 157 | 9.83 154 | 10.4 160 | 12.2 161 | 10.3 157 | 5.30 156 | 7.26 156 | 13.0 157 |
FOLKI [16] | 156.2 | 11.0 150 | 41.0 159 | 14.5 156 | 24.9 161 | 32.3 157 | 36.7 161 | 18.7 155 | 43.8 162 | 20.5 152 | 10.9 151 | 50.5 156 | 13.8 154 | 7.42 160 | 8.28 159 | 10.6 161 | 9.75 155 | 36.9 161 | 12.1 157 | 4.77 133 | 7.29 147 | 11.0 158 | 12.2 162 | 11.4 161 | 36.4 162 |
Pyramid LK [2] | 159.0 | 15.8 156 | 28.2 144 | 30.4 163 | 35.8 163 | 28.0 151 | 49.6 162 | 22.3 159 | 38.6 156 | 29.1 158 | 31.8 162 | 51.7 158 | 39.0 162 | 18.3 162 | 24.8 162 | 24.1 163 | 26.7 162 | 28.6 155 | 26.7 162 | 7.19 158 | 8.98 159 | 7.70 152 | 32.7 163 | 40.6 162 | 57.0 163 |
AdaConv-v1 [124] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
SepConv-v1 [125] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
SuperSlomo [130] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
CtxSyn [134] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
CyclicGen [149] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
TOF-M [150] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
MPRN [151] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
DAIN [152] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
FRUCnet [153] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
OFRI [154] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
FGME [158] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
MS-PFT [159] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
MEMC-Net+ [160] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
ADC [161] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
DSepConv [162] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
MAF-net [163] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
STAR-Net [164] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
AdaCoF [165] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
TC-GAN [166] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
FeFlow [167] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
DAI [168] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
SoftSplat [169] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
STSR [170] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
BMBC [171] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
GDCN [172] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
EDSC [173] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
MV_VFI [183] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
DistillNet [184] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
SepConv++ [185] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
EAFI [186] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
FLAVR [188] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
SoftsplatAug [190] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
ProBoost-Net [191] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
IDIAL [192] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
IFRNet [193] | 164.1 | 45.2 164 | 50.1 163 | 46.0 164 | 78.3 164 | 79.6 164 | 76.9 164 | 78.3 164 | 73.0 164 | 77.6 164 | 79.2 164 | 80.8 164 | 79.6 164 | 83.7 164 | 84.3 164 | 83.6 164 | 82.1 164 | 80.6 164 | 81.5 164 | 69.6 165 | 58.5 165 | 75.3 165 | 84.4 164 | 84.7 164 | 83.9 164 |
AVG_FLOW_ROB [137] | 194.6 | 85.5 199 | 80.5 199 | 99.9 199 | 99.9 199 | 99.9 199 | 99.9 199 | 96.1 199 | 99.9 199 | 95.9 199 | 89.9 199 | 87.4 199 | 95.1 199 | 99.9 199 | 99.9 199 | 99.9 199 | 95.8 199 | 81.5 199 | 91.9 199 | 39.9 164 | 40.1 164 | 34.2 164 | 99.9 199 | 99.9 199 | 99.9 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |