Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
R1.0 endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it [194] | 8.2 | 1.00 54 | 5.96 62 | 0.30 5 | 1.64 7 | 9.26 2 | 0.53 8 | 2.13 3 | 7.60 3 | 0.54 9 | 0.46 4 | 5.08 4 | 0.00 1 | 10.7 7 | 18.0 7 | 3.18 5 | 1.01 1 | 6.84 2 | 0.49 3 | 0.00 1 | 0.00 1 | 0.00 1 | 3.98 3 | 12.7 2 | 2.42 3 |
RAFT-it+_RVC [198] | 9.0 | 0.99 53 | 5.88 60 | 0.31 6 | 1.34 1 | 8.58 1 | 0.49 6 | 2.04 1 | 7.24 1 | 0.25 1 | 0.69 7 | 7.34 9 | 0.00 1 | 9.78 3 | 16.6 3 | 2.50 1 | 1.23 3 | 9.31 4 | 0.04 1 | 0.00 1 | 0.02 46 | 0.00 1 | 3.92 2 | 14.3 4 | 1.48 1 |
NNF-Local [75] | 11.2 | 0.82 11 | 4.87 13 | 0.37 21 | 1.75 10 | 12.1 13 | 0.53 8 | 2.22 4 | 7.90 4 | 0.57 11 | 1.07 13 | 9.10 15 | 0.17 10 | 9.77 2 | 16.5 2 | 2.56 3 | 4.53 10 | 15.6 9 | 3.00 10 | 0.00 1 | 0.02 46 | 0.00 1 | 5.99 14 | 19.5 31 | 3.94 6 |
OFLAF [78] | 13.7 | 0.82 11 | 4.86 11 | 0.38 24 | 1.74 8 | 11.1 9 | 0.62 17 | 2.08 2 | 7.42 2 | 0.57 11 | 1.61 21 | 12.0 21 | 0.48 22 | 11.2 9 | 19.0 9 | 3.96 10 | 6.81 35 | 19.8 19 | 4.79 35 | 0.00 1 | 0.00 1 | 0.00 1 | 5.80 11 | 15.6 7 | 9.76 32 |
PMMST [112] | 14.2 | 0.65 2 | 3.86 2 | 0.05 1 | 2.23 23 | 13.5 23 | 1.21 41 | 2.81 12 | 9.66 12 | 0.83 18 | 1.29 15 | 6.70 7 | 0.42 20 | 11.7 10 | 19.1 10 | 5.55 15 | 5.50 16 | 17.8 13 | 4.52 24 | 0.00 1 | 0.02 46 | 0.00 1 | 5.44 8 | 15.8 8 | 5.70 12 |
GMFlow_RVC [196] | 16.3 | 0.95 45 | 5.62 49 | 0.39 31 | 2.38 31 | 13.1 19 | 1.53 61 | 2.60 10 | 8.95 8 | 0.87 23 | 1.03 11 | 7.71 11 | 0.16 9 | 12.8 17 | 21.1 16 | 5.00 12 | 2.57 6 | 12.5 7 | 1.90 7 | 0.00 1 | 0.00 1 | 0.00 1 | 4.65 5 | 15.2 6 | 3.34 5 |
NN-field [71] | 17.3 | 0.89 26 | 5.29 28 | 0.40 34 | 2.06 18 | 14.1 28 | 0.62 17 | 2.49 6 | 8.79 7 | 0.68 14 | 0.99 9 | 8.66 13 | 0.09 7 | 9.99 4 | 16.8 4 | 2.51 2 | 6.53 29 | 11.2 6 | 2.42 9 | 0.01 59 | 0.02 46 | 0.00 1 | 5.86 12 | 19.6 32 | 2.84 4 |
MS_RAFT+_RVC [195] | 17.8 | 1.01 58 | 6.02 65 | 0.44 52 | 3.42 71 | 11.0 8 | 3.17 108 | 2.58 7 | 9.14 10 | 0.83 18 | 0.59 5 | 6.09 5 | 0.00 1 | 8.65 1 | 14.6 1 | 2.67 4 | 1.10 2 | 5.91 1 | 0.58 4 | 0.00 1 | 0.00 1 | 0.00 1 | 3.10 1 | 9.94 1 | 2.03 2 |
MDP-Flow2 [68] | 18.5 | 0.77 5 | 4.59 5 | 0.31 6 | 1.46 3 | 9.56 3 | 0.39 1 | 2.59 8 | 9.00 9 | 0.91 25 | 2.48 60 | 17.7 68 | 0.70 59 | 14.1 29 | 23.0 28 | 8.20 35 | 5.27 12 | 18.2 14 | 4.66 27 | 0.00 1 | 0.00 1 | 0.00 1 | 5.91 13 | 16.7 11 | 8.80 19 |
RAFT-TF_RVC [179] | 23.2 | 1.46 105 | 8.57 113 | 0.52 69 | 1.85 11 | 11.6 10 | 0.64 19 | 3.40 23 | 11.8 23 | 2.26 68 | 0.43 3 | 4.75 3 | 0.00 1 | 11.9 12 | 20.1 12 | 3.81 8 | 1.48 4 | 8.71 3 | 0.34 2 | 0.00 1 | 0.00 1 | 0.00 1 | 6.79 20 | 20.2 37 | 4.72 8 |
Correlation Flow [76] | 23.6 | 0.81 8 | 4.81 9 | 0.22 2 | 2.03 15 | 13.0 16 | 0.42 2 | 5.14 63 | 15.7 59 | 0.55 10 | 1.09 14 | 8.36 12 | 0.28 15 | 16.6 51 | 26.1 51 | 10.8 59 | 7.92 47 | 22.7 34 | 4.18 21 | 0.00 1 | 0.02 46 | 0.00 1 | 5.54 9 | 17.2 12 | 5.00 10 |
WLIF-Flow [91] | 24.5 | 0.84 18 | 4.97 19 | 0.34 13 | 2.03 15 | 13.3 21 | 0.76 27 | 3.64 27 | 12.0 25 | 1.41 41 | 2.23 45 | 14.4 36 | 0.55 30 | 13.1 19 | 21.6 19 | 7.54 26 | 8.23 53 | 20.9 24 | 5.39 46 | 0.00 1 | 0.00 1 | 0.00 1 | 6.94 25 | 18.0 17 | 10.4 39 |
CoT-AMFlow [174] | 25.8 | 0.82 11 | 4.86 11 | 0.38 24 | 1.46 3 | 9.60 4 | 0.54 12 | 2.82 13 | 9.87 14 | 1.03 31 | 2.56 63 | 18.5 73 | 0.75 65 | 14.6 34 | 23.3 32 | 10.6 58 | 5.31 13 | 18.9 16 | 4.66 27 | 0.00 1 | 0.02 46 | 0.00 1 | 6.40 15 | 17.8 16 | 9.88 36 |
NNF-EAC [101] | 31.8 | 0.81 8 | 4.82 10 | 0.39 31 | 1.95 14 | 12.0 12 | 0.83 30 | 3.16 16 | 10.6 16 | 1.00 28 | 2.60 66 | 18.5 73 | 0.77 67 | 13.9 26 | 22.8 27 | 7.86 30 | 6.67 30 | 19.3 17 | 5.14 43 | 0.10 78 | 0.02 46 | 0.00 1 | 7.08 30 | 19.2 25 | 10.5 40 |
PRAFlow_RVC [177] | 32.7 | 1.20 87 | 7.06 92 | 0.55 79 | 2.87 46 | 15.5 39 | 1.25 43 | 4.68 56 | 16.0 61 | 2.63 77 | 1.04 12 | 8.82 14 | 0.13 8 | 13.3 20 | 22.1 21 | 6.20 17 | 2.14 5 | 10.6 5 | 1.68 5 | 0.00 1 | 0.02 46 | 0.00 1 | 6.57 17 | 18.4 19 | 5.73 13 |
ComponentFusion [94] | 32.7 | 0.98 50 | 5.81 58 | 0.37 21 | 1.59 6 | 10.7 7 | 0.53 8 | 2.84 14 | 9.86 13 | 0.85 22 | 1.94 29 | 13.3 24 | 0.54 28 | 15.3 44 | 24.9 44 | 10.5 57 | 6.83 36 | 26.2 62 | 5.50 49 | 0.03 68 | 0.00 1 | 0.32 79 | 6.69 18 | 18.5 20 | 9.59 27 |
TC/T-Flow [77] | 34.2 | 0.71 3 | 4.20 3 | 0.40 34 | 2.67 39 | 15.4 36 | 0.77 28 | 3.30 19 | 11.2 17 | 0.44 5 | 2.33 50 | 15.9 53 | 0.60 39 | 14.8 35 | 23.6 34 | 8.02 31 | 3.70 7 | 15.8 10 | 2.27 8 | 0.13 81 | 0.02 46 | 1.23 101 | 7.85 45 | 21.7 47 | 10.9 49 |
AGIF+OF [84] | 34.4 | 0.90 28 | 5.34 30 | 0.42 43 | 3.13 57 | 19.3 60 | 1.37 49 | 3.87 32 | 12.8 28 | 1.80 54 | 2.19 42 | 14.3 34 | 0.64 45 | 12.4 13 | 20.6 13 | 7.20 23 | 9.27 72 | 22.4 31 | 5.97 68 | 0.00 1 | 0.00 1 | 0.00 1 | 7.26 33 | 18.8 22 | 10.7 46 |
Layers++ [37] | 34.5 | 0.91 32 | 5.39 34 | 0.43 48 | 2.18 22 | 13.9 27 | 0.96 32 | 2.73 11 | 9.43 11 | 1.40 40 | 1.70 23 | 10.5 19 | 0.56 31 | 10.2 5 | 16.8 4 | 6.50 20 | 9.09 67 | 22.7 34 | 5.92 63 | 0.21 91 | 0.02 46 | 0.69 83 | 6.88 21 | 17.6 15 | 10.9 49 |
FC-2Layers-FF [74] | 35.3 | 0.87 23 | 5.16 24 | 0.42 43 | 2.70 42 | 17.8 49 | 1.20 39 | 2.59 8 | 8.73 6 | 1.39 39 | 1.88 27 | 13.3 24 | 0.50 23 | 11.1 8 | 18.0 7 | 6.07 16 | 9.16 70 | 21.3 26 | 5.89 61 | 0.04 72 | 0.02 46 | 0.22 76 | 7.48 37 | 19.4 28 | 11.1 54 |
IIOF-NLDP [129] | 36.2 | 1.01 58 | 5.97 63 | 0.24 4 | 2.82 45 | 17.3 46 | 0.66 21 | 4.36 49 | 14.3 46 | 0.43 4 | 0.99 9 | 7.36 10 | 0.24 13 | 15.0 38 | 24.3 38 | 6.98 21 | 9.70 83 | 24.0 49 | 6.32 83 | 0.01 59 | 0.02 46 | 0.00 1 | 7.22 32 | 19.9 35 | 7.14 16 |
LME [70] | 37.1 | 0.95 45 | 5.67 51 | 0.38 24 | 1.45 2 | 9.68 5 | 0.43 3 | 5.19 64 | 13.3 36 | 6.57 111 | 2.44 56 | 18.3 71 | 0.68 52 | 15.2 42 | 24.4 39 | 10.2 54 | 6.17 26 | 21.9 27 | 5.18 44 | 0.00 1 | 0.02 46 | 0.00 1 | 7.05 27 | 19.3 26 | 10.2 37 |
ALD-Flow [66] | 38.7 | 0.79 6 | 4.72 8 | 0.38 24 | 2.44 35 | 13.5 23 | 0.80 29 | 4.33 47 | 14.7 51 | 0.88 24 | 2.92 82 | 19.4 80 | 0.82 71 | 17.5 55 | 28.1 55 | 10.0 52 | 5.61 18 | 24.7 54 | 3.10 11 | 0.00 1 | 0.00 1 | 0.00 1 | 9.09 62 | 26.3 67 | 11.9 71 |
nLayers [57] | 39.8 | 0.88 24 | 5.25 26 | 0.44 52 | 2.79 44 | 15.6 41 | 1.47 55 | 4.34 48 | 14.4 47 | 2.33 70 | 1.54 19 | 11.6 20 | 0.52 26 | 10.4 6 | 17.1 6 | 5.51 14 | 8.89 60 | 19.3 17 | 5.79 59 | 0.31 101 | 0.00 1 | 1.16 99 | 7.27 34 | 19.3 26 | 11.3 60 |
MLDP_OF [87] | 40.3 | 0.94 42 | 5.51 45 | 0.36 19 | 1.74 8 | 11.7 11 | 0.44 5 | 4.05 38 | 13.1 33 | 0.50 8 | 1.48 17 | 12.3 22 | 0.29 16 | 15.4 45 | 24.7 43 | 9.15 41 | 5.54 17 | 18.2 14 | 3.11 12 | 1.54 139 | 0.05 122 | 9.31 147 | 8.33 52 | 21.4 45 | 9.39 26 |
3DFlow [133] | 40.5 | 0.92 38 | 5.49 42 | 0.34 13 | 2.26 24 | 15.2 34 | 0.54 12 | 3.57 24 | 12.4 26 | 0.47 6 | 0.31 1 | 3.40 1 | 0.01 5 | 13.6 23 | 22.2 24 | 7.25 24 | 12.2 123 | 27.4 72 | 7.12 110 | 2.77 151 | 0.02 46 | 10.0 148 | 5.36 7 | 15.8 8 | 4.88 9 |
HAST [107] | 40.9 | 0.92 38 | 5.41 36 | 0.35 16 | 3.21 60 | 13.6 25 | 1.99 84 | 2.45 5 | 8.47 5 | 0.29 2 | 2.24 46 | 14.5 39 | 0.40 19 | 11.7 10 | 19.4 11 | 3.63 6 | 11.0 109 | 24.2 50 | 6.87 103 | 2.75 150 | 0.00 1 | 11.6 152 | 4.05 4 | 13.1 3 | 4.43 7 |
PH-Flow [99] | 41.7 | 0.93 40 | 5.49 42 | 0.42 43 | 2.87 46 | 17.6 48 | 1.33 48 | 2.99 15 | 10.1 15 | 1.76 53 | 2.27 47 | 14.6 41 | 0.68 52 | 12.5 14 | 20.8 15 | 6.28 18 | 7.79 44 | 20.9 24 | 5.39 46 | 0.39 109 | 0.02 46 | 1.63 112 | 6.88 21 | 19.0 24 | 10.3 38 |
RNLOD-Flow [119] | 42.7 | 0.79 6 | 4.69 6 | 0.34 13 | 2.67 39 | 17.2 45 | 1.09 36 | 4.46 53 | 14.5 49 | 1.53 45 | 2.01 32 | 14.3 34 | 0.60 39 | 14.2 31 | 23.1 30 | 8.72 39 | 8.21 51 | 19.9 20 | 5.90 62 | 0.35 105 | 0.03 118 | 1.48 110 | 6.51 16 | 17.2 12 | 9.80 34 |
ProbFlowFields [126] | 43.9 | 1.16 81 | 6.86 88 | 0.85 110 | 2.32 26 | 14.6 30 | 1.45 53 | 4.28 45 | 14.9 53 | 2.43 73 | 1.56 20 | 9.89 16 | 0.50 23 | 18.1 61 | 29.1 62 | 11.5 63 | 4.44 9 | 20.6 21 | 4.20 22 | 0.00 1 | 0.02 46 | 0.00 1 | 8.97 59 | 25.7 60 | 9.75 30 |
IROF++ [58] | 44.2 | 0.96 47 | 5.70 56 | 0.44 52 | 3.00 53 | 19.4 61 | 1.37 49 | 3.90 34 | 12.8 28 | 1.96 59 | 2.36 53 | 15.8 52 | 0.69 57 | 14.1 29 | 23.0 28 | 8.22 36 | 9.14 69 | 25.0 55 | 6.07 74 | 0.00 1 | 0.02 46 | 0.00 1 | 7.35 35 | 20.3 38 | 10.8 47 |
SVFilterOh [109] | 45.7 | 1.07 67 | 6.27 72 | 0.44 52 | 2.07 19 | 13.1 19 | 0.72 23 | 3.24 17 | 11.2 17 | 1.05 32 | 1.99 31 | 13.8 28 | 0.56 31 | 12.6 16 | 21.1 16 | 3.80 7 | 10.5 99 | 22.4 31 | 5.97 68 | 2.31 145 | 0.39 142 | 6.95 140 | 4.87 6 | 14.8 5 | 6.01 14 |
UnDAF [187] | 45.8 | 1.31 99 | 7.53 101 | 0.31 6 | 1.92 13 | 13.0 16 | 0.49 6 | 3.82 29 | 13.3 36 | 0.99 27 | 3.04 87 | 23.5 109 | 0.73 64 | 17.7 57 | 29.0 60 | 9.21 42 | 6.67 30 | 27.6 75 | 4.70 32 | 0.00 1 | 0.02 46 | 0.00 1 | 9.06 61 | 27.8 72 | 9.60 28 |
TC-Flow [46] | 45.8 | 0.75 4 | 4.45 4 | 0.38 24 | 2.04 17 | 12.6 15 | 0.70 22 | 4.23 44 | 14.4 47 | 0.77 16 | 2.56 63 | 17.5 66 | 0.63 43 | 17.1 53 | 27.8 54 | 9.45 45 | 5.73 20 | 25.6 59 | 3.12 13 | 0.22 93 | 0.02 46 | 2.41 123 | 10.1 70 | 25.9 62 | 15.4 97 |
Efficient-NL [60] | 45.9 | 0.93 40 | 5.47 41 | 0.39 31 | 2.76 43 | 18.0 53 | 1.11 37 | 4.12 42 | 13.3 36 | 1.15 34 | 2.15 39 | 14.1 31 | 0.66 47 | 13.0 18 | 21.3 18 | 7.16 22 | 10.6 101 | 23.4 42 | 6.41 90 | 0.26 96 | 0.02 46 | 1.13 97 | 7.35 35 | 17.4 14 | 10.9 49 |
Classic+CPF [82] | 47.0 | 0.89 26 | 5.26 27 | 0.41 39 | 3.03 54 | 19.4 61 | 1.27 45 | 4.14 43 | 13.6 40 | 1.64 50 | 2.12 38 | 14.4 36 | 0.64 45 | 13.6 23 | 22.2 24 | 7.82 28 | 9.85 88 | 22.6 33 | 6.18 77 | 0.36 106 | 0.02 46 | 1.50 111 | 7.07 28 | 18.5 20 | 10.5 40 |
FESL [72] | 47.0 | 0.83 16 | 4.91 17 | 0.36 19 | 3.90 91 | 21.6 84 | 1.75 71 | 4.06 39 | 13.4 39 | 1.61 47 | 2.02 34 | 14.1 31 | 0.56 31 | 13.3 20 | 21.7 20 | 8.08 33 | 9.19 71 | 22.0 28 | 6.25 80 | 0.34 104 | 0.02 46 | 1.16 99 | 7.51 38 | 18.3 18 | 11.0 53 |
HCFN [157] | 47.6 | 0.82 11 | 4.88 15 | 0.38 24 | 1.89 12 | 12.1 13 | 0.94 31 | 3.35 21 | 11.8 23 | 1.00 28 | 1.83 26 | 14.6 41 | 0.52 26 | 15.0 38 | 24.4 39 | 8.25 38 | 6.71 32 | 23.3 40 | 3.52 18 | 2.50 148 | 0.30 136 | 10.4 150 | 9.77 68 | 26.2 66 | 15.5 98 |
WRT [146] | 47.7 | 1.11 73 | 6.61 80 | 0.35 16 | 3.70 83 | 21.1 78 | 1.28 46 | 7.27 93 | 19.2 71 | 0.68 14 | 0.35 2 | 3.88 2 | 0.01 5 | 13.5 22 | 22.1 21 | 7.40 25 | 11.2 115 | 22.9 37 | 6.52 91 | 0.03 68 | 0.02 46 | 0.25 77 | 7.71 40 | 18.8 22 | 7.93 18 |
FMOF [92] | 48.5 | 0.83 16 | 4.92 18 | 0.43 48 | 3.35 68 | 20.0 67 | 1.57 64 | 3.37 22 | 11.4 20 | 1.46 43 | 1.98 30 | 13.8 28 | 0.56 31 | 14.2 31 | 23.2 31 | 8.08 33 | 9.98 93 | 22.7 34 | 6.19 78 | 0.42 112 | 0.02 46 | 1.87 117 | 8.11 51 | 21.0 42 | 10.5 40 |
PBOFVI [189] | 48.5 | 1.12 76 | 6.59 79 | 0.37 21 | 2.67 39 | 17.8 49 | 0.73 24 | 4.91 61 | 14.9 53 | 1.02 30 | 1.33 16 | 10.3 18 | 0.32 18 | 16.3 49 | 25.8 48 | 11.6 64 | 9.73 84 | 22.2 29 | 5.52 50 | 0.06 75 | 0.13 126 | 0.20 72 | 7.01 26 | 19.8 33 | 9.12 23 |
VCN_RVC [178] | 49.0 | 1.05 63 | 6.21 69 | 0.51 66 | 3.04 55 | 19.4 61 | 1.50 57 | 4.69 57 | 16.1 62 | 2.91 80 | 2.49 61 | 16.9 61 | 0.68 52 | 17.2 54 | 28.7 58 | 7.85 29 | 7.05 39 | 23.4 42 | 3.46 17 | 0.00 1 | 0.02 46 | 0.00 1 | 8.36 54 | 26.1 65 | 9.33 25 |
HBM-GC [103] | 49.5 | 1.24 91 | 7.38 94 | 0.52 69 | 2.50 37 | 15.5 39 | 1.40 51 | 4.06 39 | 14.1 44 | 1.32 37 | 1.77 24 | 13.2 23 | 0.61 41 | 13.7 25 | 22.1 21 | 8.06 32 | 8.98 64 | 16.5 11 | 4.42 23 | 1.30 136 | 0.02 46 | 3.28 130 | 7.20 31 | 19.8 33 | 10.8 47 |
PMF [73] | 49.8 | 1.08 68 | 6.23 70 | 0.35 16 | 2.33 27 | 14.8 31 | 0.60 15 | 3.87 32 | 13.6 40 | 0.62 13 | 2.29 48 | 14.4 36 | 0.44 21 | 14.0 28 | 23.3 32 | 3.86 9 | 9.55 76 | 28.3 84 | 6.63 96 | 0.89 130 | 0.79 152 | 3.74 134 | 5.66 10 | 15.8 8 | 8.92 20 |
ProFlow_ROB [142] | 50.0 | 1.18 83 | 7.01 91 | 0.57 86 | 2.87 46 | 17.8 49 | 1.32 47 | 5.44 65 | 18.3 69 | 1.71 52 | 2.83 77 | 17.9 69 | 0.70 59 | 18.5 62 | 30.3 71 | 9.32 43 | 6.29 27 | 25.3 58 | 3.36 15 | 0.00 1 | 0.00 1 | 0.00 1 | 7.96 46 | 24.6 59 | 8.97 22 |
JOF [136] | 50.3 | 0.98 50 | 5.69 53 | 0.45 57 | 3.43 72 | 20.4 71 | 1.74 70 | 3.59 26 | 11.7 22 | 2.20 64 | 2.30 49 | 15.3 49 | 0.67 50 | 12.5 14 | 20.7 14 | 6.41 19 | 8.98 64 | 22.2 29 | 5.76 56 | 1.88 142 | 0.00 1 | 4.61 135 | 7.07 28 | 19.4 28 | 10.6 44 |
Sparse-NonSparse [56] | 50.3 | 0.88 24 | 5.21 25 | 0.40 34 | 3.16 59 | 19.8 66 | 1.53 61 | 3.90 34 | 12.9 30 | 2.00 61 | 2.18 41 | 15.2 48 | 0.66 47 | 15.6 46 | 25.4 47 | 10.1 53 | 9.38 74 | 23.7 47 | 5.97 68 | 0.31 101 | 0.00 1 | 1.28 102 | 7.74 41 | 20.9 40 | 11.2 58 |
Ramp [62] | 50.5 | 0.90 28 | 5.36 31 | 0.41 39 | 3.14 58 | 20.0 67 | 1.52 58 | 3.86 31 | 12.9 30 | 1.93 57 | 2.01 32 | 14.5 39 | 0.59 37 | 15.1 41 | 24.4 39 | 9.67 49 | 9.44 75 | 22.9 37 | 5.95 65 | 0.29 99 | 0.02 46 | 1.38 106 | 7.83 44 | 20.9 40 | 11.5 63 |
CombBMOF [111] | 51.2 | 0.91 32 | 5.38 32 | 0.33 11 | 2.30 25 | 13.4 22 | 0.64 19 | 3.33 20 | 11.5 21 | 0.78 17 | 2.08 36 | 15.3 49 | 0.77 67 | 13.9 26 | 22.3 26 | 8.24 37 | 13.0 134 | 26.2 62 | 11.4 141 | 0.56 117 | 0.02 46 | 0.86 90 | 8.93 58 | 21.1 43 | 15.6 99 |
NL-TV-NCC [25] | 52.1 | 0.96 47 | 5.68 52 | 0.22 2 | 2.93 50 | 18.4 55 | 0.59 14 | 4.37 51 | 14.6 50 | 0.47 6 | 1.63 22 | 14.6 41 | 0.17 10 | 18.6 64 | 29.8 65 | 9.76 51 | 11.8 122 | 31.2 110 | 7.70 121 | 0.12 79 | 0.00 1 | 0.30 78 | 9.40 65 | 26.0 64 | 9.75 30 |
OFH [38] | 52.7 | 0.81 8 | 4.70 7 | 0.31 6 | 2.96 52 | 17.3 46 | 1.20 39 | 6.37 78 | 19.7 75 | 1.51 44 | 2.92 82 | 20.6 89 | 0.91 73 | 20.7 84 | 32.4 87 | 14.2 77 | 6.39 28 | 31.5 112 | 3.74 19 | 0.00 1 | 0.00 1 | 0.00 1 | 11.0 81 | 33.0 99 | 12.8 76 |
LSM [39] | 53.2 | 0.86 22 | 5.13 23 | 0.40 34 | 3.22 61 | 20.3 70 | 1.54 63 | 4.08 41 | 13.6 40 | 1.93 57 | 2.09 37 | 14.9 46 | 0.63 43 | 15.6 46 | 25.3 46 | 10.2 54 | 9.58 78 | 24.6 51 | 5.95 65 | 0.30 100 | 0.02 46 | 1.43 107 | 7.97 47 | 21.7 47 | 11.1 54 |
PWC-Net_RVC [143] | 54.1 | 1.18 83 | 6.99 90 | 0.63 96 | 3.25 63 | 20.9 75 | 1.41 52 | 6.19 74 | 21.0 88 | 3.34 83 | 1.51 18 | 9.97 17 | 0.54 28 | 19.2 72 | 31.5 81 | 9.61 47 | 8.57 57 | 28.0 78 | 4.96 40 | 0.00 1 | 0.00 1 | 0.02 65 | 6.91 24 | 22.1 50 | 6.52 15 |
Sparse Occlusion [54] | 54.8 | 0.90 28 | 5.06 22 | 0.46 59 | 2.35 29 | 14.9 33 | 1.01 33 | 4.83 58 | 15.7 59 | 1.09 33 | 2.38 54 | 17.2 64 | 0.66 47 | 16.7 52 | 26.9 52 | 8.75 40 | 7.98 49 | 24.6 51 | 5.42 48 | 0.60 121 | 0.61 148 | 0.84 87 | 8.41 56 | 22.7 52 | 10.5 40 |
MDP-Flow [26] | 54.8 | 0.84 18 | 5.01 20 | 0.47 60 | 2.37 30 | 13.0 16 | 1.76 72 | 4.04 37 | 14.0 43 | 2.72 79 | 2.70 70 | 21.0 90 | 0.98 78 | 18.0 59 | 28.5 57 | 13.1 73 | 8.58 58 | 26.6 66 | 5.71 54 | 0.00 1 | 0.02 46 | 0.00 1 | 12.4 96 | 31.9 89 | 16.2 103 |
Classic+NL [31] | 54.9 | 0.91 32 | 5.38 32 | 0.45 57 | 3.22 61 | 20.4 71 | 1.49 56 | 3.97 36 | 13.1 33 | 1.97 60 | 2.33 50 | 15.0 47 | 0.68 52 | 14.9 36 | 24.0 36 | 10.2 54 | 9.83 85 | 23.9 48 | 6.24 79 | 0.33 103 | 0.02 46 | 1.28 102 | 7.80 43 | 21.2 44 | 11.1 54 |
EPPM w/o HM [86] | 54.9 | 1.16 81 | 5.61 48 | 0.33 11 | 2.33 27 | 15.4 36 | 0.60 15 | 4.28 45 | 14.7 51 | 0.32 3 | 2.20 43 | 14.7 44 | 0.59 37 | 14.3 33 | 23.6 34 | 5.47 13 | 12.2 123 | 29.9 99 | 7.04 106 | 2.28 144 | 0.03 118 | 6.80 139 | 6.72 19 | 19.4 28 | 8.96 21 |
MCPFlow_RVC [197] | 55.5 | 1.65 118 | 8.92 122 | 0.70 101 | 6.02 117 | 25.7 111 | 3.57 115 | 8.48 106 | 22.3 95 | 10.8 119 | 0.77 8 | 7.21 8 | 0.26 14 | 18.0 59 | 29.2 64 | 7.65 27 | 3.89 8 | 14.4 8 | 1.75 6 | 0.00 1 | 0.02 46 | 0.00 1 | 6.90 23 | 21.4 45 | 5.44 11 |
OAR-Flow [123] | 57.4 | 1.00 54 | 5.81 58 | 0.55 79 | 3.94 93 | 18.5 56 | 1.99 84 | 6.44 80 | 20.5 79 | 2.66 78 | 2.84 79 | 18.5 73 | 0.71 62 | 18.9 68 | 30.1 69 | 11.2 60 | 5.95 24 | 26.2 62 | 3.42 16 | 0.00 1 | 0.00 1 | 0.00 1 | 9.00 60 | 26.4 68 | 12.2 73 |
CostFilter [40] | 58.8 | 1.14 77 | 6.62 81 | 0.40 34 | 2.38 31 | 14.8 31 | 0.53 8 | 3.58 25 | 12.5 27 | 0.84 20 | 2.62 67 | 17.3 65 | 0.51 25 | 14.9 36 | 24.9 44 | 4.14 11 | 9.99 94 | 29.2 94 | 6.06 73 | 1.38 137 | 0.81 153 | 6.01 138 | 8.00 48 | 23.2 56 | 9.84 35 |
Complementary OF [21] | 58.8 | 0.91 32 | 5.39 34 | 0.43 48 | 2.42 34 | 15.2 34 | 0.74 25 | 4.36 49 | 15.5 57 | 1.16 35 | 2.63 68 | 19.5 81 | 0.76 66 | 22.5 104 | 33.0 93 | 20.1 109 | 9.92 91 | 28.5 88 | 4.80 36 | 0.00 1 | 0.00 1 | 0.00 1 | 12.6 99 | 35.6 118 | 16.9 107 |
S2D-Matching [83] | 61.7 | 1.09 70 | 6.39 76 | 0.51 66 | 3.35 68 | 20.9 75 | 1.52 58 | 5.55 68 | 17.8 67 | 2.21 65 | 1.91 28 | 13.6 27 | 0.56 31 | 15.2 42 | 24.5 42 | 9.72 50 | 10.1 96 | 23.6 45 | 6.34 85 | 0.52 114 | 0.02 46 | 2.09 121 | 7.62 39 | 20.0 36 | 11.6 66 |
IROF-TV [53] | 61.8 | 1.10 72 | 6.24 71 | 0.57 86 | 3.29 67 | 21.5 82 | 1.72 69 | 4.40 52 | 14.2 45 | 1.87 56 | 3.04 87 | 21.7 96 | 1.11 82 | 16.2 48 | 26.0 49 | 11.3 62 | 9.60 80 | 32.4 118 | 5.72 55 | 0.00 1 | 0.02 46 | 0.00 1 | 8.00 48 | 22.4 51 | 11.2 58 |
COFM [59] | 62.1 | 1.15 78 | 6.80 86 | 0.58 90 | 2.62 38 | 15.8 43 | 1.25 43 | 5.68 70 | 18.2 68 | 2.12 62 | 2.20 43 | 13.5 26 | 0.58 36 | 19.6 75 | 31.0 78 | 15.7 92 | 9.91 90 | 23.3 40 | 6.03 72 | 0.81 127 | 0.00 1 | 1.43 107 | 7.76 42 | 20.7 39 | 10.6 44 |
SimpleFlow [49] | 62.7 | 0.94 42 | 5.57 47 | 0.44 52 | 3.52 74 | 21.7 85 | 1.79 75 | 5.82 71 | 17.6 66 | 2.36 71 | 2.55 62 | 16.5 57 | 0.81 70 | 16.3 49 | 26.0 49 | 11.8 65 | 10.3 98 | 23.1 39 | 6.33 84 | 0.24 94 | 0.00 1 | 0.81 86 | 8.33 52 | 22.7 52 | 11.5 63 |
2DHMM-SAS [90] | 63.1 | 0.91 32 | 5.42 37 | 0.41 39 | 3.67 81 | 21.9 87 | 1.52 58 | 5.62 69 | 16.1 62 | 2.28 69 | 2.44 56 | 15.9 53 | 0.72 63 | 15.0 38 | 24.2 37 | 9.48 46 | 11.1 112 | 25.1 57 | 6.36 87 | 0.38 108 | 0.02 46 | 1.67 114 | 8.04 50 | 21.7 47 | 11.7 67 |
ACK-Prior [27] | 63.8 | 0.82 11 | 4.87 13 | 0.32 10 | 2.12 21 | 13.7 26 | 0.43 3 | 3.68 28 | 12.9 30 | 0.92 26 | 1.77 24 | 14.0 30 | 0.19 12 | 19.5 74 | 28.2 56 | 16.7 98 | 12.3 127 | 29.1 93 | 7.52 118 | 2.44 147 | 0.30 136 | 8.47 146 | 13.9 108 | 30.2 82 | 18.0 112 |
ROF-ND [105] | 65.4 | 1.27 95 | 6.15 68 | 0.38 24 | 4.71 104 | 18.9 58 | 1.07 35 | 4.89 59 | 15.6 58 | 1.21 36 | 0.65 6 | 6.22 6 | 0.29 16 | 19.7 76 | 30.5 73 | 14.5 79 | 11.5 120 | 26.5 65 | 6.25 80 | 0.39 109 | 0.02 46 | 0.84 87 | 12.3 95 | 31.5 87 | 13.8 87 |
TV-L1-MCT [64] | 66.4 | 0.90 28 | 5.30 29 | 0.41 39 | 3.73 85 | 22.1 88 | 1.79 75 | 4.61 55 | 15.3 55 | 1.63 49 | 2.16 40 | 14.7 44 | 0.67 50 | 17.6 56 | 27.1 53 | 15.2 88 | 11.0 109 | 25.0 55 | 6.58 95 | 0.36 106 | 0.02 46 | 2.46 125 | 9.73 67 | 23.0 54 | 16.2 103 |
S2F-IF [121] | 68.5 | 1.28 97 | 7.44 98 | 0.84 109 | 3.48 73 | 22.4 91 | 1.86 79 | 5.52 66 | 19.0 70 | 3.05 82 | 2.96 84 | 16.9 61 | 1.21 87 | 21.3 92 | 34.1 101 | 14.5 79 | 5.45 14 | 25.6 59 | 4.62 25 | 0.00 1 | 0.00 1 | 0.00 1 | 12.0 91 | 32.3 94 | 14.7 90 |
RFlow [88] | 68.6 | 0.91 32 | 5.43 38 | 0.47 60 | 2.46 36 | 15.6 41 | 1.13 38 | 6.42 79 | 19.3 74 | 1.66 51 | 2.77 73 | 21.4 94 | 1.16 85 | 20.7 84 | 31.7 83 | 18.0 104 | 9.69 82 | 30.4 103 | 6.14 75 | 0.01 59 | 0.02 46 | 0.15 69 | 10.9 80 | 30.0 81 | 13.1 79 |
Occlusion-TV-L1 [63] | 68.8 | 0.98 50 | 5.50 44 | 0.48 62 | 3.25 63 | 19.5 64 | 1.82 78 | 7.36 95 | 21.2 89 | 2.44 74 | 2.73 71 | 20.4 87 | 0.93 76 | 20.5 81 | 32.1 84 | 15.5 90 | 8.22 52 | 28.1 80 | 6.69 98 | 0.00 1 | 0.00 1 | 0.00 1 | 13.1 103 | 33.5 106 | 15.9 102 |
DeepFlow2 [106] | 69.7 | 1.04 62 | 5.76 57 | 0.54 77 | 3.86 89 | 19.7 65 | 2.02 87 | 6.79 83 | 20.5 79 | 3.55 89 | 3.64 102 | 22.5 101 | 1.44 95 | 18.8 66 | 30.1 69 | 12.0 67 | 7.01 38 | 27.7 76 | 4.65 26 | 0.00 1 | 0.02 46 | 0.00 1 | 12.6 99 | 32.0 91 | 16.9 107 |
DPOF [18] | 70.5 | 1.11 73 | 6.56 78 | 0.53 72 | 4.51 102 | 21.0 77 | 2.42 99 | 3.25 18 | 11.3 19 | 0.84 20 | 2.03 35 | 15.3 49 | 0.70 59 | 17.8 58 | 28.8 59 | 9.36 44 | 11.4 119 | 26.9 67 | 6.26 82 | 4.21 155 | 0.02 46 | 10.5 151 | 10.2 71 | 26.7 69 | 11.8 69 |
FlowFields+ [128] | 71.6 | 1.31 99 | 7.52 100 | 0.92 119 | 3.61 77 | 23.0 95 | 1.98 83 | 6.08 72 | 20.6 81 | 3.39 86 | 2.82 76 | 16.4 56 | 1.23 88 | 21.4 95 | 34.3 104 | 14.1 75 | 5.45 14 | 27.5 74 | 4.68 31 | 0.00 1 | 0.02 46 | 0.00 1 | 11.3 83 | 33.1 102 | 11.4 61 |
TF+OM [98] | 73.3 | 1.11 73 | 6.49 77 | 0.69 100 | 2.94 51 | 16.8 44 | 1.78 73 | 7.92 100 | 20.7 83 | 9.65 116 | 2.85 80 | 20.5 88 | 1.05 81 | 22.0 101 | 32.2 85 | 20.3 110 | 8.74 59 | 28.3 84 | 4.67 29 | 0.00 1 | 0.02 46 | 0.00 1 | 12.1 93 | 30.5 84 | 15.8 101 |
FlowFields [108] | 74.3 | 1.32 101 | 7.63 103 | 0.93 121 | 3.61 77 | 22.9 93 | 2.00 86 | 6.11 73 | 20.6 81 | 3.58 90 | 2.85 80 | 16.6 59 | 1.24 89 | 21.9 100 | 35.0 114 | 15.1 86 | 5.70 19 | 28.0 78 | 4.72 33 | 0.00 1 | 0.02 46 | 0.00 1 | 11.7 86 | 33.4 104 | 11.5 63 |
CRTflow [81] | 74.7 | 1.02 61 | 5.69 53 | 0.58 90 | 3.12 56 | 18.1 54 | 1.46 54 | 6.89 86 | 20.9 85 | 2.40 72 | 3.38 96 | 22.2 98 | 1.42 94 | 19.7 76 | 31.3 80 | 12.3 68 | 11.0 109 | 35.9 135 | 10.1 135 | 0.00 1 | 0.00 1 | 0.00 1 | 12.0 91 | 33.6 107 | 14.7 90 |
LiteFlowNet [138] | 75.5 | 1.49 106 | 8.56 112 | 0.62 95 | 4.27 97 | 23.7 103 | 1.92 81 | 6.82 84 | 22.9 100 | 3.44 87 | 2.47 59 | 16.3 55 | 0.62 42 | 25.7 122 | 39.8 133 | 17.5 101 | 9.55 76 | 30.2 101 | 4.00 20 | 0.00 1 | 0.00 1 | 0.00 1 | 10.7 77 | 30.5 84 | 12.2 73 |
AggregFlow [95] | 75.9 | 1.68 120 | 9.22 124 | 0.86 112 | 4.76 105 | 25.3 109 | 2.56 102 | 7.33 94 | 22.6 98 | 5.07 107 | 2.64 69 | 16.5 57 | 0.69 57 | 19.1 71 | 30.7 75 | 11.2 60 | 5.11 11 | 17.3 12 | 3.29 14 | 0.14 83 | 0.02 46 | 0.96 93 | 9.35 64 | 25.7 60 | 13.1 79 |
Steered-L1 [116] | 76.4 | 0.63 1 | 3.72 1 | 0.42 43 | 1.53 5 | 10.4 6 | 0.75 26 | 3.84 30 | 13.2 35 | 1.32 37 | 2.80 74 | 21.1 92 | 0.98 78 | 21.2 91 | 31.2 79 | 20.3 110 | 10.7 105 | 29.3 96 | 7.45 117 | 4.27 156 | 0.34 139 | 19.6 158 | 16.5 122 | 33.3 103 | 24.6 129 |
TCOF [69] | 77.4 | 1.00 54 | 5.63 50 | 0.59 93 | 3.53 75 | 21.5 82 | 1.69 68 | 7.64 98 | 22.0 93 | 3.79 93 | 2.80 74 | 19.9 85 | 0.77 67 | 21.1 89 | 32.7 89 | 13.9 74 | 7.79 44 | 20.7 22 | 5.77 57 | 0.92 131 | 0.03 118 | 3.23 129 | 8.40 55 | 23.2 56 | 11.4 61 |
ComplOF-FED-GPU [35] | 77.8 | 0.85 20 | 5.04 21 | 0.42 43 | 3.90 91 | 21.4 80 | 1.78 73 | 4.90 60 | 16.8 64 | 1.41 41 | 3.18 91 | 21.1 92 | 1.03 80 | 21.6 98 | 33.8 99 | 15.4 89 | 10.8 106 | 34.7 131 | 5.93 64 | 0.12 79 | 0.02 46 | 1.43 107 | 11.9 88 | 34.2 110 | 15.3 95 |
Adaptive [20] | 79.3 | 1.05 63 | 6.01 64 | 0.48 62 | 3.27 65 | 20.1 69 | 1.79 75 | 7.11 90 | 20.1 76 | 1.62 48 | 3.29 94 | 22.4 99 | 1.15 84 | 18.8 66 | 29.8 65 | 12.6 70 | 10.6 101 | 28.4 87 | 6.72 101 | 0.57 120 | 0.71 151 | 0.96 93 | 8.64 57 | 23.1 55 | 10.9 49 |
SRR-TVOF-NL [89] | 80.8 | 1.15 78 | 6.13 67 | 0.60 94 | 5.04 107 | 23.3 98 | 2.68 104 | 8.17 102 | 22.9 100 | 4.22 104 | 2.76 72 | 16.9 61 | 0.68 52 | 19.8 78 | 29.0 60 | 17.7 103 | 8.07 50 | 27.0 69 | 6.17 76 | 0.16 85 | 0.02 46 | 0.86 90 | 11.8 87 | 25.9 62 | 15.3 95 |
SegFlow [156] | 81.8 | 1.53 110 | 8.74 118 | 0.98 124 | 3.72 84 | 23.2 97 | 2.06 89 | 6.24 76 | 20.9 85 | 3.89 96 | 3.83 109 | 22.9 105 | 1.68 106 | 21.5 96 | 34.5 110 | 15.1 86 | 7.54 41 | 28.3 84 | 5.95 65 | 0.00 1 | 0.02 46 | 0.00 1 | 10.6 75 | 31.3 86 | 12.1 72 |
DeepFlow [85] | 81.8 | 1.19 85 | 6.04 66 | 0.57 86 | 4.41 98 | 21.3 79 | 2.41 98 | 8.35 105 | 22.9 100 | 6.63 112 | 4.03 115 | 24.5 114 | 1.69 108 | 19.0 70 | 30.9 76 | 11.8 65 | 7.29 40 | 29.5 98 | 4.88 38 | 0.00 1 | 0.02 46 | 0.00 1 | 15.7 121 | 35.1 116 | 23.4 125 |
TV-L1-improved [17] | 82.2 | 0.94 42 | 5.45 39 | 0.52 69 | 2.91 49 | 17.8 49 | 1.58 65 | 7.00 88 | 20.2 78 | 2.24 67 | 3.00 85 | 21.5 95 | 1.16 85 | 20.6 82 | 32.3 86 | 15.0 84 | 12.2 123 | 34.2 127 | 7.87 122 | 0.19 89 | 0.30 136 | 0.49 81 | 10.7 77 | 29.7 80 | 12.8 76 |
PGM-C [118] | 82.6 | 1.52 109 | 8.68 115 | 0.99 128 | 3.66 79 | 23.0 95 | 2.03 88 | 6.30 77 | 21.2 89 | 3.90 97 | 3.82 108 | 22.9 105 | 1.68 106 | 21.3 92 | 34.3 104 | 14.1 75 | 6.89 37 | 28.8 90 | 5.60 52 | 0.00 1 | 0.02 46 | 0.00 1 | 11.9 88 | 34.3 111 | 14.2 89 |
Aniso. Huber-L1 [22] | 85.1 | 1.06 65 | 5.69 53 | 0.65 97 | 5.24 109 | 25.4 110 | 3.29 110 | 8.19 103 | 21.4 92 | 4.09 102 | 3.10 89 | 21.0 90 | 0.97 77 | 18.5 62 | 29.1 62 | 12.6 70 | 9.08 66 | 27.0 69 | 5.56 51 | 0.68 123 | 0.08 125 | 2.93 128 | 9.25 63 | 24.1 58 | 11.8 69 |
CPM-Flow [114] | 85.4 | 1.53 110 | 8.72 117 | 0.98 124 | 3.74 86 | 23.5 99 | 2.08 91 | 6.22 75 | 20.9 85 | 3.88 95 | 3.78 106 | 22.5 101 | 1.64 104 | 21.3 92 | 34.4 106 | 14.2 77 | 7.87 46 | 28.8 90 | 6.40 89 | 0.00 1 | 0.02 46 | 0.00 1 | 12.5 98 | 35.6 118 | 14.9 93 |
DMF_ROB [135] | 85.4 | 1.06 65 | 6.27 72 | 0.56 82 | 4.09 94 | 20.7 74 | 2.13 93 | 7.51 96 | 23.3 104 | 3.01 81 | 3.67 103 | 23.0 108 | 1.51 98 | 20.9 87 | 32.8 91 | 16.6 97 | 10.2 97 | 30.1 100 | 7.29 113 | 0.00 1 | 0.02 46 | 0.00 1 | 14.3 116 | 35.7 120 | 17.3 111 |
Classic++ [32] | 86.1 | 1.00 54 | 5.92 61 | 0.56 82 | 3.28 66 | 19.2 59 | 1.87 80 | 6.88 85 | 20.7 83 | 3.38 85 | 3.41 98 | 23.6 111 | 1.30 90 | 20.8 86 | 33.2 96 | 15.0 84 | 10.0 95 | 31.8 114 | 6.69 98 | 0.66 122 | 0.02 46 | 2.59 126 | 11.3 83 | 29.5 77 | 13.5 85 |
Bartels [41] | 87.0 | 1.28 97 | 7.59 102 | 0.50 64 | 2.39 33 | 15.4 36 | 1.04 34 | 5.52 66 | 19.2 71 | 2.54 76 | 2.83 77 | 19.9 85 | 1.30 90 | 22.7 107 | 34.1 101 | 20.4 112 | 9.92 91 | 30.5 105 | 6.93 104 | 1.88 142 | 0.02 46 | 12.3 153 | 12.7 101 | 31.9 89 | 16.4 105 |
EpicFlow [100] | 88.2 | 1.51 107 | 8.63 114 | 0.98 124 | 3.76 87 | 23.5 99 | 2.11 92 | 7.14 91 | 23.6 106 | 3.97 99 | 3.79 107 | 22.6 103 | 1.64 104 | 21.5 96 | 34.4 106 | 14.8 82 | 8.97 63 | 29.2 94 | 6.53 92 | 0.00 1 | 0.02 46 | 0.00 1 | 12.4 96 | 34.5 112 | 15.2 94 |
CBF [12] | 88.2 | 0.85 20 | 4.89 16 | 0.43 48 | 4.99 106 | 22.3 90 | 4.63 119 | 6.60 81 | 19.2 71 | 4.08 101 | 3.61 101 | 24.5 114 | 1.49 97 | 20.0 79 | 30.9 76 | 16.2 95 | 9.67 81 | 27.4 72 | 5.64 53 | 2.65 149 | 0.37 140 | 6.97 141 | 11.5 85 | 28.4 75 | 16.9 107 |
C-RAFT_RVC [181] | 88.2 | 2.88 141 | 14.1 142 | 1.36 140 | 10.0 130 | 35.2 133 | 7.14 129 | 11.8 121 | 30.0 126 | 13.3 123 | 2.46 58 | 14.2 33 | 1.46 96 | 28.3 140 | 42.8 143 | 20.6 115 | 5.87 23 | 20.8 23 | 4.67 29 | 0.01 59 | 0.02 46 | 0.00 1 | 10.3 72 | 27.3 70 | 9.29 24 |
FF++_ROB [141] | 88.9 | 1.67 119 | 9.54 127 | 0.97 122 | 3.68 82 | 22.9 93 | 2.07 90 | 6.93 87 | 22.8 99 | 3.99 100 | 3.03 86 | 17.5 66 | 1.31 92 | 22.1 102 | 35.6 119 | 14.8 82 | 6.77 34 | 25.9 61 | 4.87 37 | 0.17 86 | 0.22 129 | 0.79 85 | 10.5 73 | 30.3 83 | 13.1 79 |
LocallyOriented [52] | 89.6 | 1.78 127 | 9.64 129 | 0.77 106 | 6.11 119 | 28.2 119 | 3.79 116 | 10.9 117 | 28.0 120 | 5.52 109 | 3.28 93 | 19.5 81 | 1.55 99 | 22.8 109 | 33.9 100 | 17.6 102 | 9.84 87 | 24.6 51 | 6.63 96 | 0.00 1 | 0.00 1 | 0.00 1 | 11.9 88 | 29.6 79 | 15.7 100 |
CLG-TV [48] | 91.1 | 1.01 58 | 5.46 40 | 0.50 64 | 4.16 96 | 23.5 99 | 2.40 97 | 7.52 97 | 21.2 89 | 2.51 75 | 3.33 95 | 22.8 104 | 1.14 83 | 20.9 87 | 32.4 87 | 15.6 91 | 8.94 62 | 31.7 113 | 6.35 86 | 1.27 135 | 1.18 156 | 3.55 132 | 11.1 82 | 28.2 74 | 13.5 85 |
CVENG22+RIC [199] | 92.6 | 1.64 117 | 9.35 126 | 1.00 129 | 4.42 99 | 26.3 113 | 2.37 95 | 8.05 101 | 25.4 109 | 3.84 94 | 3.96 112 | 23.8 112 | 1.82 110 | 24.8 116 | 37.5 125 | 21.2 121 | 8.91 61 | 30.3 102 | 6.70 100 | 0.00 1 | 0.02 46 | 0.00 1 | 10.6 75 | 32.0 91 | 11.7 67 |
TriangleFlow [30] | 92.7 | 1.19 85 | 6.73 85 | 0.53 72 | 3.88 90 | 21.8 86 | 1.64 67 | 6.61 82 | 20.1 76 | 1.59 46 | 2.35 52 | 19.3 79 | 0.89 72 | 25.6 121 | 37.3 124 | 23.5 128 | 13.4 136 | 30.5 105 | 8.48 130 | 0.81 127 | 0.17 128 | 1.33 105 | 10.7 77 | 28.1 73 | 13.1 79 |
Fusion [6] | 93.2 | 1.15 78 | 6.83 87 | 0.71 103 | 2.10 20 | 14.5 29 | 1.23 42 | 4.58 54 | 15.4 56 | 3.60 91 | 3.73 105 | 27.2 126 | 2.38 118 | 23.9 113 | 33.7 98 | 26.4 133 | 8.36 54 | 27.3 71 | 7.11 109 | 1.00 132 | 0.64 150 | 2.66 127 | 14.5 117 | 34.0 109 | 18.7 114 |
Rannacher [23] | 93.4 | 1.09 70 | 6.27 72 | 0.54 77 | 3.77 88 | 22.1 88 | 2.27 94 | 7.89 99 | 22.4 96 | 3.34 83 | 3.67 103 | 23.5 109 | 1.61 101 | 21.1 89 | 33.1 94 | 15.8 93 | 12.9 132 | 35.4 134 | 7.98 123 | 0.43 113 | 0.02 46 | 1.63 112 | 10.5 73 | 29.5 77 | 12.8 76 |
SIOF [67] | 93.7 | 1.24 91 | 6.63 82 | 0.51 66 | 5.26 110 | 26.2 112 | 3.22 109 | 11.5 118 | 26.1 111 | 12.3 121 | 4.49 119 | 27.4 129 | 2.29 116 | 22.8 109 | 33.3 97 | 23.4 127 | 8.56 56 | 28.8 90 | 7.15 111 | 0.00 1 | 0.02 46 | 0.00 1 | 13.6 107 | 32.1 93 | 23.6 127 |
ResPWCR_ROB [140] | 95.1 | 1.22 88 | 7.22 93 | 0.68 99 | 5.04 107 | 24.6 106 | 2.77 106 | 9.17 109 | 26.7 114 | 6.63 112 | 3.22 92 | 22.4 99 | 1.31 92 | 22.7 107 | 35.5 118 | 18.0 104 | 10.9 107 | 32.3 116 | 7.99 124 | 0.00 1 | 0.02 46 | 0.00 1 | 14.2 113 | 37.2 123 | 16.5 106 |
F-TV-L1 [15] | 95.8 | 1.22 88 | 6.63 82 | 0.53 72 | 5.86 115 | 24.8 108 | 3.51 114 | 9.25 110 | 23.4 105 | 3.44 87 | 3.91 110 | 24.9 116 | 1.61 101 | 20.3 80 | 31.5 81 | 16.2 95 | 11.3 117 | 30.9 108 | 7.40 116 | 0.15 84 | 0.47 145 | 0.17 70 | 9.88 69 | 27.6 71 | 11.1 54 |
Local-TV-L1 [65] | 96.7 | 1.57 112 | 7.45 99 | 0.67 98 | 7.93 123 | 28.0 117 | 5.97 125 | 12.9 125 | 26.6 113 | 12.2 120 | 6.04 136 | 31.1 135 | 3.55 135 | 18.7 65 | 29.9 68 | 12.9 72 | 9.33 73 | 28.1 80 | 5.97 68 | 0.00 1 | 0.02 46 | 0.00 1 | 21.0 139 | 37.7 125 | 37.5 144 |
BriefMatch [122] | 97.6 | 0.96 47 | 5.52 46 | 0.53 72 | 3.55 76 | 18.6 57 | 1.97 82 | 4.95 62 | 16.9 65 | 1.82 55 | 2.57 65 | 19.7 83 | 0.92 75 | 21.8 99 | 32.7 89 | 20.8 117 | 16.2 145 | 33.7 125 | 13.5 147 | 3.95 154 | 0.97 155 | 15.8 154 | 17.3 127 | 34.7 114 | 25.4 131 |
p-harmonic [29] | 97.7 | 1.08 68 | 6.28 75 | 0.55 79 | 3.66 79 | 20.5 73 | 2.48 101 | 8.22 104 | 23.0 103 | 3.92 98 | 5.04 124 | 28.4 132 | 3.51 133 | 24.8 116 | 34.1 101 | 30.1 138 | 7.78 43 | 32.3 116 | 6.54 93 | 0.19 89 | 0.44 144 | 0.00 1 | 14.2 113 | 33.0 99 | 21.8 122 |
OFRF [132] | 99.5 | 1.68 120 | 8.84 120 | 0.73 104 | 12.5 138 | 28.4 121 | 11.9 140 | 12.8 124 | 24.7 107 | 13.6 124 | 4.30 117 | 18.9 77 | 2.52 119 | 18.9 68 | 30.4 72 | 9.65 48 | 11.5 120 | 27.9 77 | 5.03 42 | 0.13 81 | 0.00 1 | 0.71 84 | 20.9 138 | 32.7 98 | 40.3 147 |
ContinualFlow_ROB [148] | 100.1 | 2.51 136 | 13.8 141 | 1.37 141 | 9.26 128 | 34.0 131 | 7.16 130 | 13.6 127 | 32.9 130 | 18.7 129 | 3.59 100 | 18.0 70 | 2.00 112 | 27.7 137 | 44.1 146 | 16.1 94 | 11.1 112 | 34.2 127 | 7.02 105 | 0.00 1 | 0.02 46 | 0.00 1 | 9.54 66 | 28.7 76 | 7.73 17 |
TriFlow [93] | 100.4 | 1.51 107 | 8.71 116 | 0.78 107 | 4.56 103 | 22.8 92 | 3.37 112 | 12.5 123 | 28.2 121 | 17.8 128 | 2.41 55 | 18.3 71 | 0.91 73 | 24.8 116 | 34.4 106 | 25.7 131 | 5.97 25 | 23.5 44 | 4.74 34 | 19.3 162 | 0.27 134 | 59.0 162 | 13.2 104 | 32.5 96 | 14.1 88 |
Dynamic MRF [7] | 101.4 | 1.26 94 | 7.42 96 | 0.57 86 | 3.39 70 | 21.4 80 | 1.58 65 | 7.00 88 | 22.5 97 | 2.22 66 | 3.40 97 | 24.1 113 | 1.69 108 | 25.9 127 | 37.6 126 | 24.8 130 | 14.4 140 | 41.5 146 | 9.85 134 | 0.09 76 | 0.00 1 | 0.96 93 | 19.2 134 | 39.4 134 | 25.5 132 |
LFNet_ROB [145] | 102.8 | 1.98 132 | 11.1 134 | 0.90 114 | 5.93 116 | 28.1 118 | 3.47 113 | 10.5 115 | 32.4 129 | 6.86 114 | 3.11 90 | 19.2 78 | 1.60 100 | 30.0 145 | 44.1 146 | 28.0 136 | 9.85 88 | 35.2 132 | 7.05 108 | 0.00 1 | 0.00 1 | 0.00 1 | 14.2 113 | 39.1 132 | 17.0 110 |
DF-Auto [113] | 103.2 | 1.84 128 | 8.87 121 | 0.90 114 | 8.40 125 | 30.1 124 | 6.82 126 | 13.3 126 | 27.9 119 | 19.6 130 | 5.29 128 | 26.6 122 | 3.01 126 | 22.2 103 | 32.9 92 | 21.0 118 | 5.80 21 | 23.6 45 | 5.02 41 | 0.18 88 | 0.61 148 | 0.00 1 | 14.8 118 | 32.4 95 | 19.9 117 |
CompactFlow_ROB [155] | 104.7 | 3.02 142 | 15.6 146 | 1.51 145 | 8.12 124 | 31.9 126 | 5.83 124 | 16.4 133 | 35.0 136 | 28.8 148 | 3.55 99 | 22.0 97 | 1.62 103 | 28.8 141 | 45.1 149 | 19.8 108 | 7.97 48 | 36.0 136 | 6.39 88 | 0.00 1 | 0.00 1 | 0.00 1 | 13.5 106 | 37.8 126 | 13.4 84 |
LSM_FLOW_RVC [182] | 104.8 | 2.85 140 | 15.4 145 | 1.28 139 | 9.47 129 | 38.2 139 | 6.84 127 | 16.1 132 | 42.4 146 | 16.1 126 | 5.15 126 | 26.4 121 | 2.93 125 | 27.9 138 | 43.6 144 | 19.7 107 | 6.74 33 | 35.3 133 | 5.33 45 | 0.00 1 | 0.00 1 | 0.00 1 | 13.2 104 | 39.0 130 | 13.2 83 |
Brox et al. [5] | 104.8 | 1.22 88 | 6.66 84 | 0.70 101 | 4.15 95 | 24.3 105 | 2.39 96 | 7.21 92 | 22.1 94 | 4.18 103 | 4.91 122 | 26.3 120 | 2.65 120 | 26.2 130 | 35.7 120 | 31.4 141 | 10.5 99 | 33.4 123 | 7.34 115 | 0.01 59 | 0.13 126 | 0.00 1 | 17.1 126 | 39.1 132 | 23.0 124 |
IRR-PWC_RVC [180] | 106.9 | 3.82 150 | 18.7 153 | 1.84 148 | 12.6 139 | 41.2 144 | 9.42 136 | 17.5 137 | 37.9 141 | 25.9 143 | 4.45 118 | 19.8 84 | 2.85 123 | 25.3 119 | 40.3 138 | 14.5 79 | 7.62 42 | 33.5 124 | 5.78 58 | 0.00 1 | 0.02 46 | 0.00 1 | 14.9 119 | 39.0 130 | 14.8 92 |
FlowNet2 [120] | 107.4 | 2.63 138 | 12.9 139 | 1.14 134 | 17.9 144 | 43.1 146 | 16.1 146 | 17.0 134 | 32.9 130 | 25.3 142 | 3.92 111 | 16.7 60 | 2.16 113 | 25.8 125 | 40.2 136 | 17.0 99 | 10.6 101 | 28.2 82 | 8.09 125 | 0.02 65 | 0.00 1 | 0.20 72 | 12.2 94 | 34.5 112 | 9.71 29 |
EAI-Flow [147] | 109.7 | 1.85 129 | 10.2 131 | 0.87 113 | 7.43 121 | 29.8 123 | 4.76 121 | 10.7 116 | 28.8 122 | 8.51 115 | 4.64 120 | 22.9 105 | 2.75 122 | 26.8 133 | 41.4 139 | 20.4 112 | 9.10 68 | 31.4 111 | 5.88 60 | 0.17 86 | 0.02 46 | 1.11 96 | 13.9 108 | 35.9 121 | 18.8 115 |
EPMNet [131] | 111.6 | 2.58 137 | 13.6 140 | 1.08 131 | 17.2 143 | 45.9 148 | 14.3 142 | 15.3 131 | 31.5 128 | 21.6 133 | 4.71 121 | 24.9 116 | 2.35 117 | 25.8 125 | 40.2 136 | 17.0 99 | 10.6 101 | 28.2 82 | 8.09 125 | 0.01 59 | 0.00 1 | 0.10 67 | 15.0 120 | 44.1 143 | 9.78 33 |
Second-order prior [8] | 112.6 | 1.24 91 | 6.93 89 | 0.58 90 | 5.26 110 | 27.0 115 | 3.34 111 | 9.68 112 | 26.8 115 | 5.39 108 | 4.25 116 | 26.1 119 | 2.25 114 | 22.5 104 | 34.4 106 | 19.0 106 | 12.9 132 | 41.2 145 | 8.26 129 | 1.14 134 | 0.07 124 | 2.41 123 | 12.7 101 | 32.5 96 | 18.2 113 |
SegOF [10] | 115.1 | 1.62 115 | 9.24 125 | 1.14 134 | 14.8 141 | 38.8 140 | 14.3 142 | 17.8 138 | 33.2 132 | 22.3 135 | 6.57 137 | 27.5 130 | 4.43 138 | 32.5 149 | 41.8 142 | 43.4 153 | 14.1 139 | 38.0 140 | 10.5 137 | 0.00 1 | 0.00 1 | 0.00 1 | 14.0 110 | 33.7 108 | 12.6 75 |
AugFNG_ROB [139] | 115.2 | 3.78 149 | 18.3 152 | 1.78 146 | 15.9 142 | 39.3 141 | 15.3 145 | 17.3 135 | 37.8 140 | 24.2 139 | 3.99 113 | 18.6 76 | 2.27 115 | 29.6 142 | 45.3 150 | 21.5 122 | 11.1 112 | 34.5 130 | 7.60 119 | 0.00 1 | 0.00 1 | 0.00 1 | 18.5 132 | 46.2 146 | 18.8 115 |
StereoOF-V1MT [117] | 116.4 | 1.42 104 | 8.08 108 | 0.56 82 | 6.56 120 | 34.1 132 | 2.73 105 | 10.0 114 | 29.8 124 | 2.19 63 | 4.91 122 | 34.6 140 | 2.66 121 | 31.4 148 | 44.5 148 | 31.4 141 | 15.8 144 | 48.0 152 | 11.6 142 | 0.05 73 | 0.00 1 | 0.52 82 | 24.0 142 | 48.7 150 | 28.5 135 |
Shiralkar [42] | 116.5 | 1.27 95 | 7.43 97 | 0.53 72 | 5.83 114 | 30.1 124 | 2.93 107 | 9.62 111 | 26.2 112 | 3.70 92 | 5.11 125 | 30.7 134 | 3.08 128 | 25.7 122 | 39.1 132 | 22.5 125 | 17.9 146 | 45.5 148 | 9.73 133 | 1.80 140 | 0.00 1 | 8.23 145 | 18.4 131 | 44.9 144 | 19.9 117 |
WOLF_ROB [144] | 117.5 | 2.17 133 | 11.1 134 | 0.90 114 | 11.0 132 | 38.1 138 | 6.99 128 | 14.3 128 | 33.5 133 | 10.3 117 | 5.21 127 | 25.8 118 | 3.01 126 | 26.8 133 | 38.9 131 | 26.6 134 | 12.4 128 | 30.4 103 | 7.26 112 | 0.09 76 | 0.00 1 | 0.84 87 | 16.8 124 | 39.6 136 | 24.5 128 |
FlowNetS+ft+v [110] | 117.8 | 1.40 103 | 7.39 95 | 0.80 108 | 5.75 113 | 23.6 102 | 4.35 118 | 11.7 120 | 27.3 117 | 12.4 122 | 5.33 129 | 27.2 126 | 3.18 130 | 25.7 122 | 35.4 117 | 26.9 135 | 8.52 55 | 32.0 115 | 6.85 102 | 2.34 146 | 1.61 159 | 10.1 149 | 14.0 110 | 34.9 115 | 20.1 120 |
CNN-flow-warp+ref [115] | 119.5 | 1.63 116 | 9.14 123 | 0.91 118 | 5.41 112 | 24.0 104 | 4.66 120 | 11.6 119 | 29.8 124 | 10.7 118 | 5.59 131 | 27.1 125 | 3.43 131 | 26.6 132 | 36.0 121 | 31.5 143 | 11.3 117 | 33.1 121 | 7.62 120 | 0.03 68 | 0.25 132 | 0.07 66 | 20.4 136 | 40.5 138 | 28.3 134 |
StereoFlow [44] | 119.6 | 7.67 159 | 21.8 156 | 3.86 155 | 51.5 162 | 74.0 163 | 46.2 159 | 43.7 163 | 63.5 163 | 36.8 154 | 51.6 161 | 79.4 163 | 47.5 160 | 26.1 128 | 38.0 128 | 21.1 119 | 5.83 22 | 26.9 67 | 4.93 39 | 0.00 1 | 0.02 46 | 0.00 1 | 20.7 137 | 38.1 128 | 29.7 136 |
2bit-BM-tele [96] | 119.7 | 1.75 123 | 9.59 128 | 0.85 110 | 4.44 100 | 24.7 107 | 2.62 103 | 8.64 107 | 25.8 110 | 4.56 105 | 3.99 113 | 27.8 131 | 1.98 111 | 22.6 106 | 33.1 94 | 20.5 114 | 14.6 141 | 32.7 120 | 10.7 138 | 5.96 159 | 1.68 160 | 21.9 160 | 14.1 112 | 33.4 104 | 19.9 117 |
Learning Flow [11] | 120.1 | 1.35 102 | 7.83 105 | 0.56 82 | 4.48 101 | 26.8 114 | 2.43 100 | 9.85 113 | 27.1 116 | 5.06 106 | 6.65 138 | 33.5 138 | 4.13 136 | 29.9 144 | 40.0 135 | 34.1 147 | 12.8 130 | 38.5 142 | 8.86 132 | 0.28 98 | 0.29 135 | 1.13 97 | 17.0 125 | 37.6 124 | 22.8 123 |
SPSA-learn [13] | 120.5 | 1.77 125 | 7.72 104 | 0.90 114 | 11.0 132 | 33.2 128 | 9.40 135 | 17.3 135 | 34.2 135 | 22.7 137 | 11.0 140 | 32.2 136 | 10.9 140 | 26.1 128 | 34.9 113 | 31.8 145 | 12.8 130 | 34.2 127 | 11.9 143 | 0.00 1 | 0.03 118 | 0.00 1 | 25.5 146 | 39.4 134 | 39.6 146 |
LDOF [28] | 120.6 | 1.59 114 | 8.06 106 | 0.97 122 | 6.08 118 | 27.9 116 | 3.79 116 | 8.98 108 | 25.2 108 | 6.05 110 | 5.90 134 | 33.2 137 | 3.14 129 | 23.5 111 | 34.5 110 | 22.7 126 | 9.83 85 | 34.0 126 | 7.30 114 | 0.86 129 | 1.28 157 | 3.67 133 | 16.7 123 | 39.7 137 | 23.5 126 |
Ad-TV-NDC [36] | 121.0 | 3.59 146 | 8.26 109 | 6.67 159 | 21.3 148 | 38.0 136 | 22.4 151 | 19.7 141 | 33.6 134 | 21.8 134 | 13.5 143 | 33.9 139 | 15.0 144 | 19.4 73 | 30.6 74 | 12.5 69 | 9.58 78 | 28.6 89 | 6.54 93 | 0.21 91 | 0.37 140 | 0.17 70 | 28.1 148 | 43.2 141 | 47.4 154 |
BlockOverlap [61] | 123.0 | 1.73 122 | 8.32 110 | 1.07 130 | 8.43 126 | 28.3 120 | 7.39 131 | 14.3 128 | 29.4 123 | 16.3 127 | 6.01 135 | 26.7 124 | 4.24 137 | 20.6 82 | 29.8 65 | 20.6 115 | 12.4 128 | 29.4 97 | 8.20 128 | 3.91 153 | 0.92 154 | 16.5 156 | 19.1 133 | 31.7 88 | 36.0 140 |
Filter Flow [19] | 124.1 | 1.97 131 | 10.2 131 | 1.14 134 | 8.79 127 | 33.9 130 | 5.66 122 | 18.8 139 | 35.7 137 | 26.2 144 | 21.9 147 | 42.4 144 | 22.0 147 | 27.9 138 | 36.8 123 | 35.0 148 | 13.2 135 | 32.6 119 | 8.11 127 | 0.05 73 | 0.02 46 | 0.37 80 | 17.5 128 | 33.0 99 | 25.2 130 |
HBpMotionGpu [43] | 125.5 | 2.47 135 | 11.8 136 | 1.09 132 | 11.4 135 | 35.3 134 | 10.0 138 | 20.3 144 | 38.5 143 | 26.3 145 | 5.67 132 | 26.6 122 | 3.51 133 | 24.1 114 | 34.8 112 | 26.1 132 | 10.9 107 | 30.7 107 | 7.04 106 | 0.27 97 | 0.05 122 | 0.89 92 | 19.3 135 | 37.1 122 | 32.8 138 |
TVL1_RVC [175] | 127.4 | 3.70 147 | 15.6 146 | 1.78 146 | 28.4 153 | 41.7 145 | 33.0 155 | 26.1 150 | 42.0 145 | 37.7 157 | 27.8 151 | 55.0 152 | 33.1 153 | 27.0 135 | 37.7 127 | 30.2 139 | 12.2 123 | 36.9 137 | 10.2 136 | 0.00 1 | 0.00 1 | 0.00 1 | 32.5 154 | 47.9 148 | 49.5 156 |
GraphCuts [14] | 127.9 | 1.57 112 | 8.32 110 | 0.92 119 | 12.3 137 | 39.3 141 | 8.40 132 | 15.2 130 | 31.3 127 | 23.1 138 | 5.40 130 | 28.8 133 | 2.88 124 | 25.4 120 | 38.0 128 | 21.1 119 | 24.5 156 | 31.1 109 | 14.4 149 | 1.86 141 | 0.02 46 | 7.91 144 | 23.9 141 | 41.6 140 | 37.4 143 |
IAOF [50] | 128.7 | 1.77 125 | 8.80 119 | 0.98 124 | 11.2 134 | 32.5 127 | 9.32 134 | 19.8 142 | 35.7 137 | 20.2 131 | 17.5 145 | 37.6 141 | 19.8 145 | 23.7 112 | 35.0 114 | 22.3 124 | 18.1 149 | 40.2 143 | 10.9 139 | 0.56 117 | 0.02 46 | 2.17 122 | 24.8 144 | 37.8 126 | 43.9 149 |
UnFlow [127] | 129.2 | 7.34 156 | 24.6 161 | 3.32 152 | 21.7 149 | 50.1 151 | 19.1 147 | 26.8 152 | 53.1 158 | 25.0 140 | 13.7 144 | 42.5 145 | 12.5 143 | 42.2 157 | 53.7 159 | 45.6 156 | 15.1 143 | 46.2 149 | 12.1 144 | 0.00 1 | 0.00 1 | 0.00 1 | 17.5 128 | 43.7 142 | 21.5 121 |
IAOF2 [51] | 130.5 | 1.85 129 | 9.64 129 | 1.13 133 | 7.56 122 | 29.4 122 | 5.66 122 | 12.2 122 | 27.5 118 | 15.7 125 | 32.6 154 | 43.3 147 | 38.7 157 | 24.3 115 | 35.0 114 | 23.9 129 | 17.9 146 | 33.1 121 | 13.0 145 | 1.11 133 | 0.25 132 | 4.83 136 | 17.8 130 | 35.5 117 | 25.9 133 |
Black & Anandan [4] | 132.3 | 1.75 123 | 8.07 107 | 0.73 104 | 11.6 136 | 36.6 135 | 8.94 133 | 18.9 140 | 36.4 139 | 20.3 132 | 12.4 142 | 40.5 143 | 12.0 142 | 26.3 131 | 36.2 122 | 30.5 140 | 13.4 136 | 37.3 138 | 11.0 140 | 0.75 125 | 0.42 143 | 1.90 119 | 21.4 140 | 38.6 129 | 32.5 137 |
Nguyen [33] | 135.2 | 2.73 139 | 11.0 133 | 1.16 138 | 33.4 156 | 38.0 136 | 43.1 158 | 24.6 148 | 41.9 144 | 32.1 151 | 28.7 152 | 46.5 148 | 32.2 152 | 29.8 143 | 39.8 133 | 35.5 149 | 13.9 138 | 40.4 144 | 13.0 145 | 0.03 68 | 0.02 46 | 0.20 72 | 31.6 149 | 46.3 147 | 50.5 157 |
Modified CLG [34] | 136.4 | 2.46 134 | 12.2 137 | 1.37 141 | 10.5 131 | 33.6 129 | 9.99 137 | 20.2 143 | 37.9 141 | 27.9 147 | 9.52 139 | 38.0 142 | 7.95 139 | 27.6 136 | 38.6 130 | 31.7 144 | 11.2 115 | 37.6 139 | 8.53 131 | 0.70 124 | 0.24 131 | 3.33 131 | 24.7 143 | 45.8 145 | 38.5 145 |
2D-CLG [1] | 138.6 | 6.98 155 | 23.0 158 | 3.54 153 | 20.1 147 | 40.7 143 | 21.4 149 | 26.6 151 | 44.0 147 | 36.7 152 | 34.7 155 | 55.1 153 | 39.7 158 | 31.1 147 | 41.5 141 | 38.2 150 | 15.0 142 | 42.0 147 | 13.6 148 | 0.02 65 | 0.02 46 | 0.12 68 | 31.7 150 | 51.0 152 | 44.9 150 |
SILK [80] | 141.5 | 3.45 145 | 15.8 148 | 2.61 150 | 19.0 145 | 44.9 147 | 19.5 148 | 23.5 147 | 44.1 148 | 26.6 146 | 12.0 141 | 42.7 146 | 11.1 141 | 35.3 152 | 46.3 153 | 44.8 154 | 18.0 148 | 49.4 153 | 14.5 150 | 1.53 138 | 0.00 1 | 5.00 137 | 32.1 153 | 50.8 151 | 47.1 153 |
GroupFlow [9] | 142.0 | 3.39 144 | 16.8 150 | 1.37 141 | 23.0 150 | 51.6 153 | 21.5 150 | 20.7 145 | 45.1 150 | 22.3 135 | 5.67 132 | 27.3 128 | 3.50 132 | 34.6 151 | 51.5 156 | 22.0 123 | 22.4 153 | 47.9 151 | 25.4 157 | 0.55 116 | 0.47 145 | 1.70 115 | 25.2 145 | 47.9 148 | 33.5 139 |
Horn & Schunck [3] | 143.9 | 3.02 142 | 12.7 138 | 1.15 137 | 14.5 140 | 45.9 148 | 11.1 139 | 22.6 146 | 44.4 149 | 25.2 141 | 21.6 146 | 47.3 149 | 22.5 148 | 34.0 150 | 43.8 145 | 43.1 152 | 19.6 150 | 51.5 155 | 18.6 153 | 0.56 117 | 0.22 129 | 1.77 116 | 34.9 156 | 55.9 156 | 46.4 152 |
Heeger++ [102] | 145.0 | 3.74 148 | 16.1 149 | 1.49 144 | 23.6 151 | 64.4 162 | 14.1 141 | 36.0 159 | 49.4 156 | 37.3 156 | 38.6 159 | 67.3 159 | 38.6 156 | 46.7 161 | 58.2 161 | 50.9 159 | 36.6 160 | 68.1 163 | 34.5 161 | 0.41 111 | 0.00 1 | 1.87 117 | 31.8 151 | 51.3 153 | 37.0 141 |
TI-DOFE [24] | 145.8 | 7.50 157 | 18.0 151 | 10.6 160 | 41.8 160 | 54.1 156 | 49.7 160 | 31.9 156 | 54.7 161 | 39.7 159 | 41.8 160 | 61.8 156 | 48.6 161 | 35.5 154 | 45.7 152 | 45.0 155 | 21.9 152 | 52.6 156 | 21.7 155 | 0.25 95 | 0.00 1 | 1.31 104 | 43.7 159 | 61.4 159 | 58.6 159 |
FFV1MT [104] | 148.3 | 4.51 152 | 19.1 154 | 2.74 151 | 19.4 146 | 58.6 160 | 14.7 144 | 40.8 161 | 53.4 160 | 50.0 162 | 38.5 158 | 73.8 162 | 37.7 154 | 46.4 160 | 56.0 160 | 56.7 162 | 33.1 159 | 66.2 160 | 31.1 159 | 0.75 125 | 0.02 46 | 2.04 120 | 31.8 151 | 51.3 153 | 37.0 141 |
H+S_RVC [176] | 149.2 | 9.14 163 | 27.7 197 | 4.78 158 | 30.6 155 | 62.4 161 | 28.2 153 | 33.9 158 | 55.7 162 | 37.0 155 | 51.7 162 | 69.5 161 | 57.6 162 | 46.2 159 | 52.7 158 | 65.6 163 | 37.1 162 | 67.0 161 | 40.3 162 | 0.02 65 | 0.02 46 | 0.20 72 | 57.5 163 | 67.8 162 | 63.1 162 |
Adaptive flow [45] | 150.5 | 4.48 151 | 15.3 144 | 1.90 149 | 37.1 158 | 47.9 150 | 40.5 156 | 28.1 153 | 45.1 150 | 37.9 158 | 23.3 149 | 53.8 151 | 24.8 149 | 30.1 146 | 41.4 139 | 28.5 137 | 22.6 154 | 46.3 150 | 15.6 151 | 17.3 161 | 5.51 162 | 58.1 161 | 26.0 147 | 41.5 139 | 40.5 148 |
Periodicity [79] | 151.0 | 6.73 154 | 29.6 198 | 3.88 156 | 24.0 152 | 52.2 154 | 25.5 152 | 36.6 160 | 47.1 153 | 40.1 160 | 23.0 148 | 60.3 155 | 20.8 146 | 53.1 163 | 69.7 163 | 49.1 158 | 36.9 161 | 67.0 161 | 33.4 160 | 0.54 115 | 0.02 46 | 7.78 143 | 34.7 155 | 64.9 161 | 46.1 151 |
SLK [47] | 151.2 | 8.22 162 | 24.0 160 | 12.3 161 | 41.4 159 | 57.7 159 | 50.8 161 | 29.7 155 | 53.3 159 | 36.7 152 | 52.4 163 | 57.7 154 | 61.8 163 | 42.6 158 | 52.1 157 | 54.9 160 | 23.9 155 | 54.4 158 | 24.4 156 | 3.11 152 | 0.00 1 | 7.07 142 | 45.8 161 | 61.9 160 | 61.9 160 |
PGAM+LK [55] | 155.4 | 7.83 160 | 22.3 157 | 13.7 162 | 29.1 154 | 54.2 157 | 31.3 154 | 25.6 149 | 48.1 155 | 29.9 150 | 29.7 153 | 68.4 160 | 28.3 151 | 38.2 155 | 50.8 155 | 43.0 151 | 25.1 157 | 56.4 159 | 21.4 154 | 6.54 160 | 0.57 147 | 19.1 157 | 38.5 157 | 60.8 158 | 51.7 158 |
FOLKI [16] | 155.9 | 5.65 153 | 23.4 159 | 4.60 157 | 35.1 157 | 52.9 155 | 42.6 157 | 28.3 154 | 52.7 157 | 29.6 149 | 24.1 150 | 53.7 150 | 27.7 150 | 38.9 156 | 49.3 154 | 47.8 157 | 25.3 158 | 54.3 157 | 27.7 158 | 5.73 158 | 1.38 158 | 20.1 159 | 43.9 160 | 60.5 157 | 62.2 161 |
HCIC-L [97] | 156.2 | 8.04 161 | 19.9 155 | 3.64 154 | 56.4 163 | 56.0 158 | 70.0 163 | 40.9 162 | 45.5 152 | 62.3 163 | 38.3 157 | 62.5 157 | 38.2 155 | 35.3 152 | 45.3 150 | 32.0 146 | 20.7 151 | 38.1 141 | 18.5 152 | 26.5 163 | 13.0 163 | 59.2 163 | 40.6 158 | 51.8 155 | 48.7 155 |
Pyramid LK [2] | 158.7 | 7.59 158 | 14.5 143 | 15.4 163 | 47.0 161 | 50.5 152 | 58.8 162 | 32.1 157 | 47.7 154 | 42.4 161 | 36.1 156 | 62.9 158 | 41.1 159 | 48.9 162 | 61.1 162 | 55.0 161 | 41.7 163 | 50.3 154 | 40.3 162 | 4.64 157 | 2.07 161 | 16.3 155 | 56.9 162 | 71.9 163 | 77.2 163 |
AdaConv-v1 [124] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
SepConv-v1 [125] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
SuperSlomo [130] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
CtxSyn [134] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
CyclicGen [149] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
TOF-M [150] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
MPRN [151] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
DAIN [152] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
FRUCnet [153] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
OFRI [154] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
FGME [158] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
MS-PFT [159] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
MEMC-Net+ [160] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
ADC [161] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
DSepConv [162] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
MAF-net [163] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
STAR-Net [164] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
AdaCoF [165] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
TC-GAN [166] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
FeFlow [167] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
DAI [168] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
SoftSplat [169] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
STSR [170] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
BMBC [171] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
GDCN [172] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
EDSC [173] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
MV_VFI [183] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
DistillNet [184] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
SepConv++ [185] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
EAFI [186] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
FLAVR [188] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
SoftsplatAug [190] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
ProBoost-Net [191] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
IDIAL [192] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
IFRNet [193] | 164.2 | 25.9 164 | 27.4 162 | 29.8 164 | 96.8 164 | 97.6 164 | 95.4 164 | 93.0 164 | 90.8 164 | 99.0 164 | 88.2 164 | 85.6 164 | 91.5 164 | 97.0 164 | 98.5 165 | 88.6 164 | 86.2 164 | 81.3 164 | 83.9 164 | 64.9 165 | 56.4 165 | 97.3 165 | 100.0 165 | 99.9 165 | 99.9 165 |
AVG_FLOW_ROB [137] | 187.3 | 73.2 199 | 62.5 199 | 69.7 199 | 98.2 199 | 97.8 199 | 97.4 199 | 99.9 199 | 99.9 199 | 99.8 199 | 92.1 199 | 87.3 199 | 92.8 199 | 98.1 199 | 97.7 164 | 97.7 199 | 87.7 199 | 86.5 199 | 83.9 164 | 58.7 164 | 25.5 164 | 95.7 164 | 98.8 164 | 99.4 164 | 99.7 164 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |