Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
R0.5 endpoint error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it+_RVC [198] | 4.2 | 1.67 4 | 9.52 5 | 0.33 1 | 3.06 2 | 17.8 1 | 1.87 12 | 4.08 6 | 12.9 4 | 0.71 2 | 0.90 4 | 9.59 5 | 0.00 1 | 18.9 7 | 28.9 6 | 7.47 1 | 2.38 3 | 15.7 4 | 0.56 1 | 0.01 2 | 0.10 20 | 0.00 1 | 8.07 2 | 25.7 5 | 4.47 1 |
RAFT-it [194] | 7.9 | 1.95 19 | 10.7 20 | 0.45 3 | 3.70 7 | 20.1 3 | 1.95 15 | 3.66 2 | 12.6 3 | 0.71 2 | 0.67 1 | 7.46 1 | 0.00 1 | 20.8 11 | 31.2 12 | 9.94 10 | 1.53 1 | 10.2 2 | 0.56 1 | 0.13 12 | 1.26 53 | 0.00 1 | 8.25 3 | 25.0 3 | 6.04 3 |
MS_RAFT+_RVC [195] | 11.7 | 1.91 18 | 10.2 13 | 0.48 4 | 7.80 67 | 21.3 5 | 7.98 105 | 3.91 4 | 13.1 5 | 1.43 12 | 0.87 3 | 8.97 3 | 0.01 4 | 16.2 1 | 23.6 1 | 8.26 5 | 2.04 2 | 9.19 1 | 1.05 3 | 0.01 2 | 0.08 17 | 0.00 1 | 7.44 1 | 20.0 1 | 5.74 2 |
OFLAF [78] | 18.4 | 1.67 4 | 9.54 6 | 0.81 18 | 4.12 12 | 23.1 10 | 2.26 22 | 3.43 1 | 11.8 1 | 1.47 13 | 2.31 18 | 15.3 15 | 0.67 16 | 18.1 3 | 27.2 4 | 8.68 7 | 12.6 51 | 27.0 19 | 6.93 40 | 0.78 39 | 1.08 46 | 3.37 47 | 11.6 14 | 25.9 6 | 16.2 30 |
MDP-Flow2 [68] | 19.8 | 1.76 9 | 9.93 10 | 0.86 20 | 3.26 3 | 20.6 4 | 1.44 3 | 4.04 5 | 13.6 6 | 1.26 8 | 3.09 38 | 21.8 43 | 0.88 30 | 22.4 20 | 32.2 16 | 14.3 21 | 9.15 21 | 23.6 9 | 5.83 20 | 2.18 66 | 0.32 25 | 4.78 61 | 10.8 9 | 26.3 7 | 15.0 20 |
NNF-Local [75] | 21.2 | 1.75 8 | 9.66 7 | 0.87 21 | 4.56 20 | 27.6 22 | 2.46 26 | 4.52 8 | 15.6 11 | 2.18 25 | 2.57 26 | 18.4 27 | 0.86 27 | 18.8 6 | 29.2 7 | 8.22 4 | 9.37 24 | 24.2 12 | 5.22 15 | 0.95 43 | 2.02 91 | 1.90 33 | 10.6 8 | 31.8 32 | 8.21 5 |
NN-field [71] | 24.2 | 2.01 25 | 11.0 25 | 1.10 38 | 5.74 34 | 30.7 40 | 3.21 36 | 4.57 9 | 15.7 12 | 2.22 27 | 1.81 12 | 15.7 17 | 0.54 13 | 19.0 8 | 29.4 8 | 8.42 6 | 10.5 32 | 20.3 6 | 3.83 7 | 1.43 50 | 2.03 92 | 3.72 49 | 10.1 5 | 31.1 27 | 6.81 4 |
PMMST [112] | 26.3 | 1.43 2 | 8.08 2 | 0.38 2 | 6.05 40 | 28.6 27 | 4.40 49 | 6.13 27 | 19.1 24 | 4.02 50 | 2.21 14 | 11.7 6 | 1.09 42 | 21.2 12 | 30.5 11 | 13.2 16 | 9.59 26 | 23.8 10 | 5.71 18 | 2.28 69 | 1.95 86 | 4.36 55 | 11.8 15 | 29.1 13 | 13.1 16 |
CoT-AMFlow [174] | 26.5 | 1.81 12 | 10.4 17 | 0.97 27 | 3.71 8 | 22.1 8 | 2.09 18 | 4.36 7 | 14.8 7 | 1.65 15 | 3.25 41 | 23.2 51 | 0.98 37 | 23.2 23 | 32.8 20 | 17.2 43 | 8.90 19 | 24.3 13 | 5.88 21 | 2.67 75 | 1.51 62 | 5.54 67 | 11.2 10 | 27.5 10 | 15.7 25 |
RAFT-TF_RVC [179] | 26.8 | 3.24 81 | 16.0 80 | 0.97 27 | 4.98 22 | 24.9 14 | 3.20 35 | 5.76 20 | 19.1 24 | 3.46 41 | 0.70 2 | 7.82 2 | 0.00 1 | 24.3 31 | 37.2 41 | 9.60 9 | 3.05 4 | 15.3 3 | 1.22 4 | 0.17 16 | 1.71 77 | 0.02 5 | 14.3 43 | 36.3 52 | 9.67 9 |
WLIF-Flow [91] | 30.2 | 1.80 11 | 9.97 11 | 0.94 23 | 6.24 43 | 28.7 29 | 4.52 51 | 5.74 19 | 18.5 18 | 3.13 35 | 3.03 37 | 19.9 33 | 1.01 39 | 21.9 13 | 32.0 15 | 14.1 19 | 12.4 48 | 27.2 20 | 6.44 24 | 3.40 92 | 0.07 10 | 8.69 89 | 11.4 12 | 26.8 8 | 15.7 25 |
ComponentFusion [94] | 31.4 | 1.73 7 | 9.92 9 | 0.77 15 | 3.75 9 | 22.3 9 | 2.27 23 | 5.02 13 | 17.1 14 | 2.21 26 | 2.87 31 | 19.3 31 | 0.93 31 | 24.1 26 | 35.1 29 | 18.6 51 | 12.4 48 | 39.0 91 | 8.29 74 | 2.41 70 | 0.13 23 | 4.73 60 | 11.9 18 | 30.0 22 | 15.5 24 |
Correlation Flow [76] | 32.2 | 1.96 21 | 10.9 23 | 0.66 10 | 4.21 14 | 25.5 18 | 1.35 2 | 6.69 39 | 20.7 35 | 0.94 4 | 1.68 10 | 13.3 11 | 0.48 12 | 25.4 37 | 36.9 38 | 16.3 35 | 13.5 68 | 32.5 46 | 7.88 64 | 2.82 80 | 1.63 68 | 10.8 99 | 11.3 11 | 29.7 17 | 9.89 10 |
NNF-EAC [101] | 34.2 | 1.95 19 | 10.5 18 | 1.10 38 | 4.29 16 | 25.1 16 | 2.20 19 | 5.06 14 | 16.6 13 | 1.81 18 | 3.94 68 | 23.4 54 | 1.63 69 | 22.5 21 | 32.5 19 | 14.7 24 | 11.3 39 | 25.8 15 | 6.81 34 | 2.71 77 | 2.13 94 | 4.63 59 | 12.4 22 | 30.2 24 | 16.5 32 |
Layers++ [37] | 34.6 | 1.85 15 | 10.1 12 | 1.03 33 | 6.26 44 | 27.9 25 | 4.58 53 | 4.88 12 | 15.2 9 | 3.65 44 | 2.26 16 | 14.4 13 | 0.68 18 | 17.8 2 | 25.4 2 | 12.2 12 | 13.3 61 | 28.3 24 | 6.81 34 | 4.53 103 | 2.71 113 | 7.34 80 | 13.2 31 | 29.7 17 | 19.2 57 |
LME [70] | 35.2 | 1.89 17 | 10.6 19 | 0.75 13 | 3.53 5 | 21.3 5 | 1.83 11 | 7.04 52 | 18.6 21 | 8.24 87 | 3.10 40 | 23.0 50 | 0.86 27 | 24.8 33 | 35.5 31 | 17.9 47 | 10.1 29 | 30.1 35 | 6.46 25 | 2.67 75 | 1.51 62 | 5.54 67 | 12.8 24 | 30.9 26 | 17.7 43 |
UnDAF [187] | 36.9 | 2.25 43 | 12.7 49 | 0.95 26 | 3.90 10 | 24.5 12 | 1.80 9 | 5.11 15 | 17.4 15 | 1.40 11 | 3.64 57 | 27.5 75 | 0.93 31 | 25.9 46 | 37.9 45 | 15.5 32 | 10.1 29 | 32.1 44 | 5.80 19 | 2.52 71 | 1.78 78 | 4.83 62 | 13.4 34 | 36.1 49 | 15.4 23 |
PBOFVI [189] | 37.1 | 1.83 14 | 10.3 16 | 0.55 5 | 4.52 19 | 28.4 26 | 1.52 5 | 6.11 26 | 18.9 22 | 1.33 10 | 1.61 9 | 13.0 10 | 0.42 9 | 25.7 41 | 36.4 34 | 17.3 44 | 13.6 74 | 31.1 40 | 8.72 83 | 4.23 101 | 3.80 123 | 15.1 121 | 11.8 15 | 30.4 25 | 13.5 18 |
HAST [107] | 37.3 | 1.57 3 | 8.65 3 | 0.60 6 | 5.82 38 | 24.9 14 | 3.84 41 | 3.85 3 | 12.5 2 | 0.41 1 | 2.82 30 | 18.8 28 | 0.58 14 | 18.7 5 | 27.9 5 | 8.00 2 | 15.9 110 | 32.6 47 | 9.69 98 | 9.89 143 | 4.87 137 | 36.9 153 | 8.55 4 | 22.0 2 | 9.33 7 |
RNLOD-Flow [119] | 37.5 | 1.68 6 | 9.49 4 | 0.75 13 | 5.76 35 | 30.6 39 | 3.18 33 | 6.58 36 | 21.1 39 | 2.92 32 | 2.61 27 | 17.5 24 | 0.74 21 | 22.0 14 | 32.8 20 | 14.9 27 | 11.5 41 | 28.0 23 | 7.37 51 | 5.53 118 | 4.17 128 | 15.2 123 | 11.8 15 | 27.7 11 | 15.1 21 |
nLayers [57] | 37.7 | 1.40 1 | 7.64 1 | 0.64 8 | 8.47 79 | 30.5 38 | 7.07 93 | 6.80 45 | 20.0 30 | 5.79 76 | 2.13 13 | 14.7 14 | 0.78 24 | 18.3 4 | 26.0 3 | 12.2 12 | 12.9 57 | 25.6 14 | 6.84 36 | 1.93 62 | 2.24 98 | 3.35 46 | 14.5 46 | 32.0 35 | 20.9 69 |
PRAFlow_RVC [177] | 38.2 | 2.23 41 | 12.5 46 | 0.67 11 | 9.04 87 | 36.1 72 | 6.17 80 | 7.97 62 | 23.4 56 | 6.47 78 | 1.37 6 | 12.4 7 | 0.14 5 | 27.0 50 | 39.9 53 | 15.9 34 | 3.98 5 | 16.6 5 | 2.91 5 | 0.20 20 | 1.93 84 | 0.10 11 | 14.0 42 | 34.5 44 | 11.8 12 |
GMFlow_RVC [196] | 38.8 | 3.34 85 | 15.7 78 | 1.50 79 | 9.84 97 | 35.0 58 | 8.75 109 | 6.94 49 | 20.3 31 | 5.19 70 | 1.51 8 | 12.6 8 | 0.20 7 | 27.9 53 | 40.9 61 | 14.5 22 | 5.55 6 | 21.1 7 | 3.25 6 | 0.14 13 | 1.38 56 | 0.02 5 | 10.2 6 | 28.1 12 | 9.20 6 |
ProFlow_ROB [142] | 39.2 | 2.91 74 | 15.3 75 | 1.30 53 | 5.38 26 | 30.3 37 | 3.10 30 | 8.14 64 | 26.3 66 | 3.45 40 | 3.50 50 | 23.3 53 | 0.98 37 | 29.0 65 | 42.5 69 | 17.0 40 | 8.52 15 | 33.1 50 | 4.71 11 | 0.00 1 | 0.02 1 | 0.00 1 | 12.1 20 | 36.2 50 | 12.3 13 |
FC-2Layers-FF [74] | 39.4 | 1.81 12 | 9.71 8 | 1.07 36 | 6.99 52 | 33.9 54 | 4.71 54 | 4.71 10 | 15.0 8 | 3.63 43 | 2.67 28 | 18.3 26 | 0.87 29 | 20.6 10 | 29.7 9 | 14.5 22 | 13.3 61 | 28.4 25 | 7.26 47 | 5.67 122 | 1.82 79 | 14.9 118 | 12.9 28 | 29.4 14 | 18.4 51 |
SVFilterOh [109] | 40.5 | 2.18 36 | 11.4 30 | 0.78 16 | 5.94 39 | 29.2 31 | 3.13 31 | 4.85 11 | 15.2 9 | 2.01 22 | 2.35 19 | 17.4 22 | 0.63 15 | 20.4 9 | 30.1 10 | 8.12 3 | 14.7 99 | 29.5 31 | 8.51 80 | 10.3 144 | 3.98 126 | 31.3 143 | 12.0 19 | 26.9 9 | 13.4 17 |
TC/T-Flow [77] | 41.3 | 2.19 38 | 11.8 38 | 1.21 48 | 5.00 23 | 29.4 32 | 1.89 14 | 5.57 17 | 18.5 18 | 1.28 9 | 3.63 56 | 23.7 57 | 1.24 49 | 24.1 26 | 35.4 30 | 15.2 30 | 7.02 8 | 25.8 15 | 5.43 16 | 3.79 96 | 2.13 94 | 19.3 132 | 14.6 49 | 36.2 50 | 17.9 46 |
3DFlow [133] | 41.5 | 1.97 22 | 10.7 20 | 0.63 7 | 5.21 24 | 29.9 35 | 1.88 13 | 5.17 16 | 17.4 15 | 1.02 5 | 1.00 5 | 9.03 4 | 0.18 6 | 22.3 19 | 32.8 20 | 13.2 16 | 19.1 132 | 42.2 110 | 12.7 121 | 11.7 152 | 1.61 66 | 31.8 146 | 11.5 13 | 29.9 20 | 9.34 8 |
AGIF+OF [84] | 41.6 | 1.99 24 | 10.9 23 | 1.16 43 | 8.96 84 | 37.8 78 | 6.95 88 | 6.31 30 | 20.4 32 | 3.86 48 | 2.89 32 | 19.1 29 | 0.93 31 | 22.1 15 | 32.4 17 | 14.8 25 | 12.9 57 | 28.6 27 | 6.79 33 | 3.48 95 | 0.08 17 | 8.67 88 | 12.8 24 | 29.9 20 | 17.5 39 |
TC-Flow [46] | 42.8 | 2.04 26 | 11.0 25 | 0.94 23 | 3.69 6 | 23.4 11 | 1.68 6 | 5.96 25 | 19.9 29 | 1.06 6 | 3.73 60 | 23.6 56 | 1.24 49 | 25.7 41 | 38.0 46 | 14.8 25 | 8.99 20 | 34.6 56 | 5.03 14 | 2.82 80 | 2.47 105 | 15.9 127 | 16.0 59 | 38.1 59 | 22.0 73 |
HBM-GC [103] | 43.0 | 2.10 31 | 10.8 22 | 0.94 23 | 7.69 66 | 31.9 47 | 6.10 78 | 6.21 29 | 18.5 18 | 3.82 46 | 2.22 15 | 15.5 16 | 0.78 24 | 22.1 15 | 31.8 13 | 14.2 20 | 13.3 61 | 24.1 11 | 7.49 55 | 8.91 140 | 1.87 80 | 21.4 136 | 12.7 23 | 31.1 27 | 16.7 35 |
IIOF-NLDP [129] | 45.3 | 2.63 61 | 13.9 61 | 1.09 37 | 7.53 63 | 38.0 81 | 3.28 37 | 6.98 51 | 22.1 48 | 1.85 20 | 2.28 17 | 15.7 17 | 0.95 35 | 25.2 35 | 37.6 44 | 12.5 14 | 13.4 66 | 35.9 66 | 8.72 83 | 0.78 39 | 0.39 31 | 3.57 48 | 15.4 56 | 37.7 56 | 15.1 21 |
ALD-Flow [66] | 45.7 | 2.22 40 | 11.8 38 | 1.02 32 | 4.33 17 | 24.7 13 | 2.04 17 | 6.35 32 | 20.9 36 | 1.56 14 | 3.67 58 | 24.0 61 | 1.10 43 | 25.8 43 | 37.5 43 | 15.8 33 | 8.24 11 | 32.7 49 | 4.68 9 | 3.06 85 | 2.62 112 | 16.6 129 | 15.6 58 | 39.3 62 | 19.8 62 |
ProbFlowFields [126] | 46.8 | 3.29 83 | 17.1 86 | 1.88 99 | 6.54 46 | 29.8 33 | 5.50 65 | 7.69 59 | 23.8 58 | 6.90 80 | 3.09 38 | 17.1 20 | 1.28 51 | 27.8 52 | 39.5 52 | 19.2 57 | 6.56 7 | 27.2 20 | 5.00 13 | 0.09 9 | 0.03 5 | 0.86 22 | 17.1 66 | 39.4 63 | 17.5 39 |
IROF++ [58] | 47.6 | 2.18 36 | 11.5 34 | 1.33 56 | 7.91 68 | 36.5 73 | 5.96 73 | 6.71 41 | 21.7 45 | 4.85 68 | 3.62 55 | 22.8 46 | 1.63 69 | 24.2 29 | 34.9 28 | 17.1 42 | 13.3 61 | 33.4 52 | 7.82 62 | 0.55 35 | 1.09 47 | 1.01 25 | 12.8 24 | 32.9 39 | 16.7 35 |
FESL [72] | 49.2 | 1.86 16 | 10.2 13 | 0.99 29 | 10.4 106 | 39.3 90 | 7.94 102 | 6.79 44 | 21.2 41 | 4.35 57 | 2.39 21 | 16.2 19 | 0.76 23 | 24.2 29 | 34.7 26 | 19.2 57 | 12.6 51 | 27.7 22 | 7.10 46 | 3.35 90 | 2.20 97 | 8.03 84 | 14.5 46 | 31.2 29 | 17.6 42 |
HCFN [157] | 49.6 | 1.97 22 | 11.4 30 | 0.83 19 | 3.40 4 | 21.7 7 | 1.76 8 | 5.64 18 | 19.6 27 | 1.83 19 | 2.80 29 | 20.6 36 | 0.71 19 | 25.1 34 | 36.8 37 | 16.3 35 | 11.6 42 | 36.5 71 | 7.26 47 | 11.4 151 | 7.50 152 | 35.3 152 | 17.6 72 | 42.4 68 | 25.3 91 |
FMOF [92] | 49.8 | 2.09 29 | 11.2 29 | 1.44 70 | 9.20 88 | 37.9 79 | 6.96 89 | 6.14 28 | 19.5 26 | 3.82 46 | 2.52 24 | 17.4 22 | 0.73 20 | 24.1 26 | 34.8 27 | 17.7 46 | 13.5 68 | 28.4 25 | 6.99 43 | 4.64 106 | 1.63 68 | 14.5 115 | 14.5 46 | 32.7 37 | 17.2 38 |
Classic+CPF [82] | 49.9 | 2.16 34 | 11.6 35 | 1.42 68 | 8.04 71 | 36.6 74 | 5.76 69 | 6.70 40 | 21.8 47 | 3.86 48 | 3.02 36 | 21.2 41 | 1.14 45 | 23.6 25 | 34.2 25 | 17.0 40 | 13.4 66 | 29.1 28 | 7.03 45 | 4.58 105 | 1.50 61 | 13.6 111 | 12.9 28 | 29.7 17 | 17.5 39 |
MLDP_OF [87] | 50.7 | 2.46 54 | 13.6 58 | 1.14 42 | 4.43 18 | 27.8 24 | 1.99 16 | 6.80 45 | 21.7 45 | 1.89 21 | 2.52 24 | 19.6 32 | 0.75 22 | 28.2 54 | 40.4 56 | 19.2 57 | 11.8 44 | 29.6 32 | 9.40 93 | 8.30 138 | 2.15 96 | 31.7 145 | 13.3 32 | 33.4 42 | 15.9 27 |
PH-Flow [99] | 50.9 | 2.30 47 | 12.2 42 | 1.45 72 | 7.61 64 | 35.2 60 | 5.81 70 | 5.92 24 | 19.0 23 | 4.67 66 | 3.52 51 | 22.1 44 | 1.49 61 | 23.4 24 | 33.9 24 | 16.3 35 | 12.4 48 | 29.4 30 | 6.87 37 | 4.88 110 | 2.25 100 | 14.0 113 | 12.2 21 | 30.1 23 | 16.6 33 |
Efficient-NL [60] | 52.1 | 2.41 52 | 11.8 38 | 1.55 84 | 8.28 75 | 35.4 63 | 5.90 71 | 6.72 42 | 20.9 36 | 3.78 45 | 2.95 35 | 19.1 29 | 1.20 47 | 22.1 15 | 32.4 17 | 15.3 31 | 14.6 95 | 31.0 39 | 8.05 69 | 3.32 88 | 2.40 104 | 7.02 76 | 13.6 37 | 29.6 15 | 18.2 48 |
PMF [73] | 52.2 | 2.30 47 | 12.8 50 | 1.01 30 | 5.64 33 | 31.4 44 | 2.51 27 | 6.83 47 | 22.5 53 | 1.72 17 | 3.26 42 | 21.1 38 | 0.94 34 | 24.3 31 | 36.7 36 | 9.56 8 | 14.4 91 | 40.0 97 | 8.40 77 | 7.45 135 | 8.62 155 | 24.8 137 | 10.4 7 | 25.6 4 | 12.7 14 |
WRT [146] | 53.1 | 2.74 66 | 13.5 55 | 0.68 12 | 10.0 102 | 40.0 92 | 5.90 71 | 9.48 74 | 24.9 63 | 2.26 28 | 1.42 7 | 12.9 9 | 0.47 11 | 22.7 22 | 33.5 23 | 13.6 18 | 16.4 114 | 36.2 69 | 9.46 94 | 4.01 97 | 0.45 34 | 10.3 95 | 15.4 56 | 35.3 47 | 13.0 15 |
OAR-Flow [123] | 53.4 | 2.96 75 | 15.1 74 | 1.58 86 | 6.72 49 | 31.3 43 | 4.10 46 | 9.12 72 | 27.1 70 | 4.72 67 | 3.73 60 | 23.9 59 | 1.17 46 | 28.3 56 | 40.8 58 | 17.6 45 | 8.30 12 | 33.5 54 | 4.69 10 | 0.25 23 | 0.17 24 | 2.56 40 | 17.5 71 | 40.5 65 | 22.6 76 |
JOF [136] | 54.6 | 2.08 27 | 11.0 25 | 1.19 45 | 7.97 70 | 35.7 69 | 6.06 77 | 5.84 22 | 18.1 17 | 4.57 64 | 3.34 46 | 21.1 38 | 1.52 63 | 22.1 15 | 31.9 14 | 15.0 29 | 14.2 85 | 29.3 29 | 8.17 70 | 10.6 147 | 4.81 135 | 30.7 142 | 12.8 24 | 29.6 15 | 17.7 43 |
Sparse-NonSparse [56] | 54.7 | 2.11 32 | 11.7 36 | 1.39 62 | 7.47 62 | 35.1 59 | 5.75 68 | 6.48 34 | 21.2 41 | 4.34 55 | 3.52 51 | 22.9 47 | 1.38 56 | 26.1 47 | 37.3 42 | 19.6 64 | 13.5 68 | 31.2 42 | 7.42 52 | 5.02 114 | 1.18 51 | 13.5 110 | 13.5 35 | 31.7 30 | 18.8 55 |
OFH [38] | 55.0 | 2.82 69 | 13.9 61 | 2.01 100 | 4.91 21 | 28.6 27 | 2.33 24 | 8.97 71 | 28.0 75 | 2.88 31 | 4.00 71 | 27.0 72 | 1.43 59 | 31.0 76 | 44.5 81 | 22.7 71 | 10.5 32 | 41.8 108 | 6.88 38 | 0.03 5 | 0.02 1 | 0.27 16 | 17.1 66 | 46.4 87 | 19.2 57 |
Ramp [62] | 55.9 | 2.21 39 | 12.1 41 | 1.45 72 | 7.45 61 | 35.5 66 | 5.63 67 | 6.33 31 | 20.6 34 | 4.23 52 | 3.43 47 | 22.5 45 | 1.38 56 | 25.8 43 | 37.0 39 | 19.3 61 | 13.5 68 | 30.3 36 | 7.45 53 | 4.89 111 | 1.97 88 | 15.1 121 | 13.1 30 | 31.9 33 | 18.0 47 |
NL-TV-NCC [25] | 56.0 | 2.25 43 | 11.7 36 | 0.78 16 | 6.94 51 | 35.5 66 | 2.54 28 | 6.48 34 | 21.1 39 | 1.08 7 | 2.48 23 | 21.5 42 | 0.46 10 | 31.5 79 | 46.7 95 | 16.7 38 | 17.3 118 | 41.0 106 | 10.2 102 | 4.41 102 | 0.10 20 | 10.1 94 | 18.4 74 | 43.2 72 | 18.2 48 |
LSM [39] | 56.0 | 2.24 42 | 12.4 44 | 1.39 62 | 7.37 59 | 35.4 63 | 5.47 64 | 6.61 37 | 21.6 44 | 4.24 53 | 3.46 49 | 23.8 58 | 1.30 53 | 25.8 43 | 37.0 39 | 19.3 61 | 13.7 75 | 32.1 44 | 7.36 50 | 5.34 117 | 1.11 49 | 14.5 115 | 13.7 40 | 32.3 36 | 18.2 48 |
Sparse Occlusion [54] | 57.2 | 2.14 33 | 11.4 30 | 1.03 33 | 7.32 57 | 31.0 41 | 6.11 79 | 7.29 56 | 22.9 55 | 2.48 30 | 3.29 43 | 22.9 47 | 1.03 40 | 26.9 49 | 39.4 50 | 14.9 27 | 13.0 59 | 33.3 51 | 7.63 58 | 7.80 136 | 8.76 158 | 12.2 106 | 14.8 51 | 34.8 46 | 16.9 37 |
Classic+NL [31] | 57.2 | 2.08 27 | 11.4 30 | 1.35 58 | 7.33 58 | 35.9 70 | 5.30 61 | 6.47 33 | 21.0 38 | 4.53 62 | 3.59 53 | 22.9 47 | 1.49 61 | 25.4 37 | 36.3 33 | 19.4 63 | 13.8 78 | 31.1 40 | 7.57 56 | 5.78 124 | 2.32 103 | 15.0 119 | 13.5 35 | 31.9 33 | 18.7 54 |
IROF-TV [53] | 59.5 | 2.51 57 | 13.5 55 | 1.41 66 | 8.08 72 | 38.7 87 | 6.19 83 | 6.97 50 | 22.3 50 | 4.43 59 | 4.23 74 | 28.8 81 | 1.72 74 | 28.3 56 | 39.9 53 | 22.6 70 | 13.8 78 | 40.0 97 | 8.01 67 | 0.23 21 | 0.39 31 | 0.67 19 | 13.7 40 | 33.6 43 | 17.8 45 |
TV-L1-MCT [64] | 60.8 | 2.09 29 | 11.1 28 | 1.39 62 | 9.67 91 | 39.0 89 | 7.35 94 | 7.11 54 | 22.3 50 | 4.27 54 | 2.94 34 | 20.7 37 | 1.13 44 | 28.4 58 | 39.4 50 | 25.8 88 | 16.0 112 | 35.0 59 | 9.27 90 | 1.27 48 | 0.57 36 | 7.24 78 | 14.8 51 | 33.2 41 | 23.3 81 |
RFlow [88] | 60.9 | 2.42 53 | 13.5 55 | 1.16 43 | 3.98 11 | 25.2 17 | 1.81 10 | 8.89 70 | 27.5 72 | 3.13 35 | 3.45 48 | 26.8 70 | 1.60 67 | 30.5 74 | 43.6 73 | 24.5 81 | 14.2 85 | 38.1 83 | 7.94 66 | 3.36 91 | 1.65 71 | 8.47 87 | 16.9 65 | 42.3 67 | 20.5 67 |
S2D-Matching [83] | 61.1 | 2.39 50 | 13.0 51 | 1.52 81 | 7.22 55 | 35.6 68 | 5.13 59 | 7.63 58 | 24.4 60 | 4.38 58 | 3.30 44 | 20.5 35 | 1.35 55 | 25.3 36 | 36.0 32 | 19.2 57 | 14.1 82 | 31.5 43 | 7.77 61 | 6.21 128 | 2.24 98 | 16.9 130 | 13.6 37 | 31.7 30 | 19.3 59 |
COFM [59] | 61.5 | 2.51 57 | 13.9 61 | 1.42 68 | 5.54 29 | 28.9 30 | 3.40 38 | 7.79 61 | 23.6 57 | 4.53 62 | 2.90 33 | 18.2 25 | 0.95 35 | 29.1 66 | 40.8 58 | 25.4 85 | 15.5 106 | 30.7 38 | 9.39 92 | 4.69 107 | 1.23 52 | 15.4 126 | 16.8 64 | 37.1 53 | 21.8 72 |
Occlusion-TV-L1 [63] | 63.2 | 2.47 55 | 13.1 52 | 1.12 40 | 6.32 45 | 32.2 49 | 4.45 50 | 9.86 78 | 28.3 76 | 4.44 60 | 3.86 66 | 26.7 69 | 1.43 59 | 31.9 85 | 44.3 79 | 27.1 94 | 11.3 39 | 35.3 63 | 10.4 106 | 0.47 33 | 1.16 50 | 0.67 19 | 19.8 81 | 46.6 89 | 22.9 79 |
Complementary OF [21] | 63.5 | 2.69 65 | 15.0 72 | 1.33 56 | 4.19 13 | 26.9 20 | 1.70 7 | 7.15 55 | 24.4 60 | 3.09 34 | 3.86 66 | 26.1 66 | 1.41 58 | 33.2 92 | 44.6 83 | 29.7 108 | 13.3 61 | 40.7 105 | 7.00 44 | 0.74 38 | 0.03 5 | 7.12 77 | 23.9 106 | 53.1 114 | 33.9 120 |
CostFilter [40] | 64.1 | 2.65 62 | 14.9 70 | 1.01 30 | 5.51 28 | 31.6 45 | 2.23 21 | 7.39 57 | 24.1 59 | 3.06 33 | 3.82 64 | 26.1 66 | 1.08 41 | 25.4 37 | 38.9 49 | 10.2 11 | 15.1 102 | 42.7 112 | 8.52 81 | 8.99 141 | 10.3 160 | 29.5 141 | 14.4 45 | 37.2 54 | 16.1 29 |
ACK-Prior [27] | 64.3 | 2.16 34 | 12.4 44 | 0.64 8 | 4.26 15 | 25.9 19 | 1.33 1 | 5.91 23 | 20.4 32 | 1.67 16 | 2.39 21 | 20.4 34 | 0.33 8 | 30.0 70 | 41.1 62 | 24.4 80 | 19.2 133 | 40.3 102 | 12.2 119 | 14.4 156 | 6.30 148 | 40.9 156 | 21.0 88 | 43.6 74 | 27.5 101 |
MDP-Flow [26] | 64.9 | 2.33 49 | 13.4 54 | 1.20 46 | 5.61 32 | 26.9 20 | 4.88 56 | 6.76 43 | 22.6 54 | 5.72 75 | 4.13 72 | 29.5 86 | 1.92 78 | 28.7 61 | 40.8 58 | 23.2 76 | 12.8 56 | 36.7 73 | 8.04 68 | 2.54 72 | 2.96 115 | 4.43 57 | 19.4 80 | 44.6 80 | 26.0 96 |
PWC-Net_RVC [143] | 65.9 | 4.13 107 | 21.0 108 | 2.11 102 | 8.97 85 | 40.1 94 | 6.18 82 | 10.7 84 | 31.8 87 | 8.37 88 | 2.38 20 | 17.1 20 | 0.67 16 | 34.8 106 | 50.7 117 | 21.3 66 | 11.8 44 | 39.2 93 | 6.97 42 | 0.15 14 | 1.43 57 | 0.07 10 | 14.9 53 | 38.2 60 | 15.9 27 |
2DHMM-SAS [90] | 66.0 | 2.28 46 | 12.3 43 | 1.46 74 | 8.45 78 | 38.1 82 | 6.02 76 | 8.34 66 | 24.4 60 | 5.21 71 | 3.73 60 | 23.4 54 | 1.62 68 | 25.5 40 | 36.6 35 | 18.8 52 | 14.5 92 | 33.4 52 | 8.46 79 | 5.07 115 | 2.05 93 | 15.3 124 | 13.3 32 | 32.9 39 | 18.5 53 |
SimpleFlow [49] | 66.8 | 2.39 50 | 12.6 48 | 1.60 88 | 9.03 86 | 38.3 83 | 7.38 95 | 8.52 68 | 25.7 65 | 5.41 72 | 4.36 79 | 25.5 65 | 2.48 87 | 26.8 48 | 38.0 46 | 21.6 67 | 14.0 81 | 29.7 33 | 7.65 59 | 2.77 79 | 1.97 88 | 6.48 73 | 14.3 43 | 32.8 38 | 19.7 61 |
VCN_RVC [178] | 67.4 | 3.61 99 | 19.9 102 | 1.82 97 | 9.33 89 | 40.0 92 | 6.89 87 | 9.86 78 | 31.1 82 | 6.93 81 | 4.43 82 | 30.6 91 | 1.52 63 | 32.3 87 | 48.1 102 | 18.0 48 | 10.5 32 | 38.7 87 | 5.51 17 | 0.02 4 | 0.10 20 | 0.05 8 | 16.2 60 | 44.5 79 | 16.4 31 |
Steered-L1 [116] | 67.5 | 1.78 10 | 10.2 13 | 0.92 22 | 2.76 1 | 19.0 2 | 1.44 3 | 5.78 21 | 19.7 28 | 2.10 23 | 3.99 70 | 27.5 75 | 1.53 66 | 31.3 78 | 43.3 71 | 27.6 97 | 14.6 95 | 39.2 93 | 9.88 99 | 14.6 157 | 5.70 144 | 47.1 157 | 22.4 95 | 48.1 93 | 29.3 107 |
AggregFlow [95] | 70.0 | 3.49 91 | 17.6 90 | 1.74 90 | 10.4 106 | 42.0 103 | 6.99 90 | 11.4 91 | 30.6 81 | 9.73 98 | 3.75 63 | 21.1 38 | 1.52 63 | 28.9 64 | 41.8 66 | 18.2 49 | 7.46 9 | 22.8 8 | 4.30 8 | 1.95 63 | 2.54 107 | 4.24 54 | 20.5 83 | 42.7 71 | 25.8 94 |
TF+OM [98] | 70.6 | 2.89 73 | 14.7 68 | 1.35 58 | 5.44 27 | 27.6 22 | 3.94 42 | 10.2 80 | 26.3 66 | 12.8 110 | 3.61 54 | 24.6 63 | 1.28 51 | 29.8 69 | 40.5 57 | 25.7 86 | 12.7 55 | 34.9 58 | 6.11 22 | 5.62 121 | 4.89 138 | 14.0 113 | 21.5 90 | 46.5 88 | 23.8 84 |
EPPM w/o HM [86] | 72.4 | 3.53 93 | 16.6 83 | 1.44 70 | 5.80 36 | 35.3 62 | 2.22 20 | 8.01 63 | 26.3 66 | 2.45 29 | 4.38 80 | 28.0 77 | 1.77 76 | 27.0 50 | 40.0 55 | 13.0 15 | 18.6 126 | 44.4 122 | 10.8 109 | 10.5 146 | 2.30 102 | 37.7 154 | 13.6 37 | 35.6 48 | 13.9 19 |
Adaptive [20] | 72.8 | 2.49 56 | 13.2 53 | 1.13 41 | 7.17 53 | 34.5 57 | 4.97 57 | 10.2 80 | 28.7 78 | 4.34 55 | 4.31 78 | 28.2 78 | 1.66 71 | 34.5 100 | 48.1 102 | 28.2 99 | 14.3 89 | 36.1 67 | 8.24 71 | 4.04 99 | 4.49 133 | 7.32 79 | 14.7 50 | 34.7 45 | 18.9 56 |
MCPFlow_RVC [197] | 73.1 | 4.64 111 | 20.6 107 | 2.44 121 | 21.0 125 | 53.4 132 | 18.5 123 | 20.6 123 | 42.9 124 | 29.3 127 | 1.72 11 | 14.3 12 | 0.83 26 | 38.3 121 | 55.8 132 | 23.1 74 | 8.67 17 | 26.2 18 | 4.71 11 | 0.15 14 | 1.48 59 | 0.12 13 | 17.1 66 | 43.7 76 | 11.1 11 |
DeepFlow2 [106] | 73.1 | 3.18 80 | 16.9 85 | 1.48 76 | 6.68 48 | 33.7 53 | 4.15 47 | 10.7 84 | 31.1 82 | 7.69 84 | 5.96 104 | 31.1 96 | 3.33 102 | 28.5 59 | 41.3 63 | 19.1 54 | 9.45 25 | 34.7 57 | 6.60 28 | 1.60 55 | 1.66 73 | 10.4 97 | 23.5 101 | 47.9 92 | 30.2 110 |
CombBMOF [111] | 74.3 | 2.67 63 | 14.4 65 | 1.05 35 | 7.17 53 | 33.9 54 | 4.00 43 | 6.89 48 | 21.4 43 | 4.18 51 | 5.20 94 | 28.8 81 | 3.04 99 | 28.2 54 | 41.7 65 | 18.5 50 | 21.8 139 | 39.5 95 | 20.1 143 | 4.02 98 | 4.61 134 | 6.08 70 | 17.1 66 | 37.5 55 | 24.5 86 |
ComplOF-FED-GPU [35] | 76.2 | 2.87 72 | 15.6 77 | 1.35 58 | 6.14 41 | 33.6 52 | 3.15 32 | 8.26 65 | 27.4 71 | 3.30 38 | 4.29 75 | 28.2 78 | 1.71 73 | 33.1 91 | 47.9 101 | 24.1 79 | 14.7 99 | 45.7 125 | 9.19 89 | 3.33 89 | 1.48 59 | 15.0 119 | 18.8 77 | 48.4 96 | 22.0 73 |
TCOF [69] | 77.5 | 3.05 77 | 15.4 76 | 1.75 91 | 8.12 74 | 38.6 85 | 5.20 60 | 13.8 105 | 34.5 99 | 13.2 112 | 8.75 129 | 29.0 83 | 8.90 134 | 33.8 96 | 47.3 98 | 23.1 74 | 9.33 23 | 25.9 17 | 6.64 30 | 2.59 73 | 1.95 86 | 6.38 72 | 15.3 55 | 39.1 61 | 18.4 51 |
ROF-ND [105] | 78.4 | 3.29 83 | 14.7 68 | 1.29 52 | 7.42 60 | 31.8 46 | 2.42 25 | 7.10 53 | 22.1 48 | 2.13 24 | 3.68 59 | 23.2 51 | 2.87 96 | 31.1 77 | 43.7 74 | 23.6 78 | 19.3 136 | 38.5 85 | 10.7 108 | 8.90 139 | 2.99 116 | 24.8 137 | 21.9 92 | 48.6 97 | 22.7 78 |
Classic++ [32] | 78.5 | 2.59 60 | 13.9 61 | 1.51 80 | 6.79 50 | 32.3 50 | 5.37 63 | 9.15 73 | 27.8 74 | 5.54 73 | 4.29 75 | 29.0 83 | 1.77 76 | 30.2 72 | 43.9 75 | 22.8 72 | 14.8 101 | 40.0 97 | 8.36 76 | 6.82 131 | 4.17 128 | 16.5 128 | 16.5 61 | 39.5 64 | 19.8 62 |
BriefMatch [122] | 79.0 | 2.27 45 | 12.5 46 | 1.23 50 | 6.23 42 | 32.1 48 | 3.54 39 | 6.68 38 | 22.3 50 | 3.16 37 | 3.32 45 | 23.9 59 | 1.23 48 | 30.8 75 | 43.3 71 | 26.8 91 | 23.9 142 | 43.6 116 | 21.0 145 | 11.0 150 | 4.44 132 | 33.1 149 | 21.5 90 | 44.8 81 | 29.2 106 |
DeepFlow [85] | 79.2 | 3.36 87 | 17.3 87 | 1.54 83 | 7.91 68 | 35.2 60 | 5.35 62 | 12.1 96 | 33.0 92 | 10.5 105 | 6.24 106 | 32.1 99 | 3.55 105 | 28.8 62 | 42.3 67 | 18.8 52 | 9.77 28 | 37.4 78 | 6.90 39 | 1.30 49 | 0.37 28 | 9.70 93 | 27.4 122 | 52.7 110 | 35.8 123 |
TV-L1-improved [17] | 80.2 | 2.56 59 | 13.6 58 | 1.20 46 | 5.80 36 | 30.0 36 | 4.04 44 | 9.84 77 | 28.4 77 | 4.60 65 | 4.16 73 | 27.0 72 | 1.66 71 | 31.5 79 | 45.4 89 | 23.0 73 | 17.5 119 | 45.5 124 | 13.7 129 | 7.01 133 | 4.32 131 | 20.5 134 | 17.1 66 | 42.5 70 | 20.4 65 |
S2F-IF [121] | 81.2 | 4.50 110 | 23.8 116 | 2.14 106 | 8.86 81 | 42.8 108 | 6.52 84 | 11.0 86 | 34.0 98 | 9.17 91 | 4.86 85 | 29.2 85 | 2.39 85 | 35.6 108 | 51.0 119 | 26.9 92 | 8.49 14 | 36.6 72 | 6.30 23 | 0.60 36 | 0.03 5 | 2.49 39 | 23.6 102 | 52.7 110 | 25.9 95 |
Bartels [41] | 81.6 | 3.26 82 | 16.7 84 | 1.37 61 | 5.33 25 | 29.8 33 | 3.18 33 | 8.40 67 | 26.9 69 | 4.45 61 | 4.40 81 | 26.9 71 | 2.16 81 | 32.7 88 | 45.4 89 | 28.4 103 | 14.3 89 | 38.1 83 | 12.9 123 | 8.20 137 | 3.82 124 | 31.3 143 | 18.4 74 | 43.7 76 | 23.3 81 |
SIOF [67] | 82.8 | 2.67 63 | 13.6 58 | 1.23 50 | 7.65 65 | 37.9 79 | 4.78 55 | 14.2 108 | 32.9 91 | 15.4 114 | 6.36 107 | 34.7 106 | 3.84 108 | 34.0 97 | 45.8 92 | 33.2 115 | 13.5 68 | 35.7 65 | 10.5 107 | 1.99 64 | 0.99 44 | 4.21 53 | 20.5 83 | 45.6 83 | 30.7 113 |
DMF_ROB [135] | 84.2 | 3.59 98 | 19.4 100 | 1.80 95 | 8.09 73 | 35.4 63 | 5.96 73 | 11.6 92 | 33.7 95 | 7.90 86 | 5.84 102 | 32.4 100 | 3.42 104 | 33.7 94 | 47.0 96 | 28.7 105 | 12.6 51 | 37.5 80 | 8.25 73 | 0.50 34 | 0.35 27 | 2.46 38 | 26.5 115 | 52.6 109 | 32.2 117 |
F-TV-L1 [15] | 84.3 | 3.34 85 | 17.3 87 | 1.80 95 | 9.99 101 | 38.6 85 | 7.03 91 | 13.2 103 | 32.6 90 | 7.82 85 | 5.85 103 | 32.9 101 | 2.91 98 | 31.5 79 | 45.0 86 | 25.2 83 | 15.1 102 | 38.7 87 | 8.99 87 | 2.19 67 | 3.29 119 | 3.03 44 | 15.1 54 | 38.0 58 | 16.6 33 |
SegFlow [156] | 84.6 | 4.79 116 | 24.9 123 | 2.32 115 | 9.79 92 | 42.1 104 | 7.91 101 | 11.2 88 | 33.9 96 | 9.54 95 | 5.29 98 | 34.7 106 | 2.51 90 | 34.6 102 | 49.1 109 | 27.2 95 | 9.75 27 | 36.4 70 | 6.96 41 | 0.43 32 | 0.07 10 | 1.82 29 | 23.1 99 | 51.5 104 | 24.9 89 |
PGM-C [118] | 84.9 | 4.80 118 | 24.9 123 | 2.34 118 | 9.79 92 | 42.4 105 | 7.86 99 | 11.3 90 | 34.5 99 | 9.49 93 | 5.28 97 | 34.6 105 | 2.54 91 | 34.5 100 | 49.1 109 | 26.5 89 | 9.26 22 | 37.2 75 | 6.72 32 | 0.42 30 | 0.07 10 | 1.85 31 | 23.7 103 | 53.0 113 | 25.6 93 |
CRTflow [81] | 85.2 | 3.53 93 | 18.6 94 | 1.79 93 | 6.54 46 | 34.0 56 | 4.08 45 | 10.5 82 | 31.6 86 | 5.02 69 | 4.95 89 | 30.6 91 | 2.31 82 | 30.1 71 | 44.2 78 | 19.1 54 | 24.2 143 | 50.1 136 | 26.0 149 | 1.80 60 | 0.92 42 | 6.63 74 | 22.7 97 | 52.1 106 | 30.0 109 |
FlowFields+ [128] | 86.1 | 4.68 113 | 24.5 119 | 2.22 109 | 9.86 98 | 44.7 115 | 7.63 96 | 12.1 96 | 37.3 109 | 10.3 104 | 4.92 88 | 30.3 89 | 2.61 92 | 36.3 109 | 51.6 123 | 28.3 102 | 8.62 16 | 38.7 87 | 6.57 27 | 0.41 26 | 0.02 1 | 1.92 34 | 23.7 103 | 53.6 118 | 25.5 92 |
FlowFields [108] | 86.1 | 4.67 112 | 24.4 118 | 2.22 109 | 9.80 94 | 44.3 112 | 7.67 97 | 11.8 94 | 36.4 106 | 10.1 102 | 4.90 87 | 30.5 90 | 2.63 93 | 36.4 111 | 51.6 123 | 28.9 106 | 8.76 18 | 38.7 87 | 6.48 26 | 0.85 41 | 0.03 5 | 2.71 42 | 23.3 100 | 53.7 119 | 22.3 75 |
CPM-Flow [114] | 87.1 | 4.79 116 | 24.9 123 | 2.32 115 | 9.83 95 | 42.4 105 | 7.89 100 | 11.2 88 | 33.9 96 | 9.50 94 | 5.25 95 | 34.3 103 | 2.50 89 | 34.7 104 | 49.3 113 | 26.7 90 | 10.3 31 | 37.5 80 | 7.62 57 | 0.42 30 | 0.07 10 | 1.82 29 | 24.5 109 | 54.2 120 | 26.8 99 |
Rannacher [23] | 87.5 | 3.03 76 | 16.1 81 | 1.59 87 | 8.35 76 | 36.9 75 | 6.87 86 | 11.1 87 | 31.8 87 | 6.71 79 | 4.88 86 | 29.7 87 | 2.34 83 | 31.7 84 | 45.9 93 | 23.3 77 | 16.8 115 | 44.0 118 | 10.3 105 | 4.89 111 | 2.57 109 | 12.1 105 | 16.7 63 | 41.9 66 | 19.9 64 |
TriangleFlow [30] | 87.5 | 2.81 68 | 14.9 70 | 1.22 49 | 7.27 56 | 37.1 76 | 3.76 40 | 9.83 76 | 30.2 80 | 3.34 39 | 3.84 65 | 27.1 74 | 1.72 74 | 39.4 126 | 53.7 128 | 34.8 121 | 21.8 139 | 43.5 114 | 16.0 134 | 4.72 109 | 7.40 151 | 8.30 86 | 18.5 76 | 44.3 78 | 21.5 71 |
SRR-TVOF-NL [89] | 87.5 | 3.16 79 | 16.2 82 | 1.49 77 | 8.87 82 | 38.5 84 | 5.57 66 | 12.3 98 | 33.4 93 | 8.53 89 | 3.96 69 | 26.6 68 | 1.34 54 | 32.8 89 | 44.6 83 | 27.2 95 | 13.8 78 | 39.0 91 | 8.34 75 | 5.55 120 | 5.38 142 | 17.8 131 | 22.0 93 | 43.3 73 | 25.2 90 |
EpicFlow [100] | 87.8 | 4.80 118 | 24.9 123 | 2.33 117 | 9.90 99 | 42.9 109 | 7.95 103 | 11.8 94 | 35.7 104 | 9.56 96 | 5.26 96 | 34.4 104 | 2.49 88 | 34.6 102 | 49.2 112 | 27.0 93 | 10.8 36 | 37.5 80 | 7.33 49 | 0.41 26 | 0.07 10 | 1.80 27 | 24.1 107 | 53.5 116 | 26.4 97 |
CVENG22+RIC [199] | 88.0 | 4.77 115 | 24.6 120 | 2.27 111 | 10.7 109 | 44.9 116 | 8.19 106 | 12.8 100 | 37.8 114 | 9.25 92 | 5.46 100 | 35.2 109 | 2.68 94 | 37.4 116 | 51.4 122 | 32.7 112 | 11.1 38 | 38.5 85 | 7.92 65 | 0.41 26 | 0.07 10 | 1.80 27 | 18.2 73 | 48.1 93 | 19.4 60 |
LocallyOriented [52] | 88.2 | 4.06 103 | 20.2 104 | 1.87 98 | 12.1 111 | 47.6 119 | 8.49 108 | 15.9 113 | 39.1 117 | 11.1 107 | 5.10 92 | 28.6 80 | 2.84 95 | 34.0 97 | 47.4 99 | 25.7 86 | 11.8 44 | 32.6 47 | 7.84 63 | 1.10 44 | 1.51 62 | 6.95 75 | 20.3 82 | 46.8 91 | 23.1 80 |
Aniso. Huber-L1 [22] | 89.1 | 2.84 71 | 14.5 66 | 1.46 74 | 14.0 114 | 42.6 107 | 12.9 113 | 13.4 104 | 31.3 84 | 13.0 111 | 6.50 108 | 35.2 109 | 4.19 111 | 29.7 68 | 42.4 68 | 21.8 69 | 14.5 92 | 35.0 59 | 8.43 78 | 5.54 119 | 3.18 118 | 12.8 108 | 16.6 62 | 37.7 56 | 20.9 69 |
Dynamic MRF [7] | 90.7 | 3.39 88 | 18.9 97 | 1.30 53 | 5.60 31 | 33.5 51 | 2.81 29 | 9.67 75 | 31.3 84 | 3.54 42 | 4.64 84 | 33.7 102 | 2.39 85 | 38.0 118 | 51.2 120 | 34.9 122 | 19.2 133 | 51.8 140 | 15.2 132 | 3.41 93 | 0.37 28 | 20.9 135 | 25.1 112 | 52.2 107 | 31.7 115 |
FF++_ROB [141] | 91.9 | 4.95 121 | 25.8 130 | 2.27 111 | 10.3 105 | 44.5 113 | 7.95 103 | 13.1 102 | 37.6 113 | 12.4 109 | 5.12 93 | 31.4 97 | 2.87 96 | 36.3 109 | 52.0 127 | 28.2 99 | 10.9 37 | 36.9 74 | 7.65 59 | 1.46 51 | 0.96 43 | 4.19 52 | 20.8 87 | 49.0 98 | 22.6 76 |
DPOF [18] | 92.5 | 4.03 101 | 21.8 110 | 2.11 102 | 9.50 90 | 40.4 96 | 5.97 75 | 8.88 69 | 27.5 72 | 6.05 77 | 4.29 75 | 30.8 93 | 2.08 80 | 31.5 79 | 45.1 87 | 21.6 67 | 15.9 110 | 37.3 77 | 9.53 96 | 15.3 158 | 1.61 66 | 47.3 158 | 22.1 94 | 46.3 86 | 28.5 103 |
CBF [12] | 95.7 | 2.82 69 | 15.0 72 | 1.32 55 | 18.0 120 | 40.4 96 | 21.6 126 | 10.6 83 | 29.2 79 | 9.72 97 | 6.57 109 | 34.8 108 | 4.55 114 | 31.5 79 | 44.0 77 | 24.5 81 | 14.5 92 | 35.0 59 | 8.92 86 | 10.9 149 | 6.02 146 | 26.2 140 | 20.7 86 | 43.6 74 | 27.2 100 |
Brox et al. [5] | 96.0 | 3.55 96 | 18.8 96 | 1.64 89 | 10.1 104 | 39.6 91 | 8.97 110 | 11.7 93 | 33.4 93 | 8.96 90 | 6.57 109 | 36.4 112 | 3.41 103 | 38.2 120 | 47.6 100 | 45.3 146 | 13.5 68 | 42.4 111 | 9.63 97 | 0.27 24 | 0.99 44 | 0.47 18 | 31.0 129 | 56.4 125 | 43.3 136 |
Fusion [6] | 96.2 | 3.40 89 | 19.1 98 | 2.16 108 | 5.57 30 | 31.1 42 | 4.53 52 | 7.70 60 | 25.2 64 | 7.53 83 | 5.78 101 | 35.6 111 | 4.10 110 | 36.6 112 | 47.1 97 | 38.8 132 | 14.2 85 | 41.9 109 | 13.2 124 | 6.84 132 | 5.31 140 | 11.7 103 | 24.8 110 | 51.1 103 | 31.6 114 |
Local-TV-L1 [65] | 98.8 | 4.05 102 | 19.4 100 | 2.51 123 | 17.1 119 | 43.6 111 | 15.9 120 | 19.8 121 | 37.3 109 | 23.3 122 | 9.20 132 | 43.3 126 | 6.89 131 | 28.6 60 | 41.3 63 | 20.2 65 | 14.1 82 | 35.1 62 | 8.67 82 | 1.24 46 | 0.62 37 | 3.94 50 | 33.5 138 | 57.2 127 | 49.6 143 |
CLG-TV [48] | 98.9 | 2.80 67 | 14.6 67 | 1.41 66 | 14.0 114 | 40.7 99 | 14.1 117 | 12.7 99 | 32.0 89 | 11.0 106 | 8.13 122 | 47.7 135 | 5.99 127 | 32.0 86 | 45.2 88 | 25.2 83 | 14.1 82 | 40.1 101 | 10.9 110 | 6.45 129 | 5.82 145 | 10.4 97 | 19.0 78 | 42.4 68 | 26.6 98 |
LiteFlowNet [138] | 99.2 | 6.03 131 | 30.6 134 | 2.46 122 | 12.8 112 | 48.7 120 | 9.20 111 | 14.4 109 | 42.4 122 | 9.92 101 | 5.00 90 | 30.8 93 | 2.05 79 | 43.8 134 | 61.4 138 | 32.8 113 | 16.3 113 | 47.6 131 | 8.24 71 | 0.10 10 | 0.87 41 | 0.32 17 | 22.5 96 | 52.4 108 | 24.5 86 |
p-harmonic [29] | 101.0 | 3.47 90 | 19.1 98 | 2.29 113 | 8.40 77 | 35.9 70 | 6.80 85 | 12.8 100 | 34.6 101 | 9.84 100 | 9.04 130 | 47.6 134 | 6.72 129 | 37.1 114 | 48.7 107 | 39.6 133 | 13.1 60 | 44.0 118 | 11.2 112 | 3.43 94 | 2.50 106 | 6.33 71 | 21.2 89 | 45.2 82 | 30.5 111 |
LDOF [28] | 101.4 | 4.09 105 | 20.0 103 | 2.31 114 | 9.96 100 | 41.8 101 | 7.06 92 | 14.1 106 | 37.0 107 | 10.1 102 | 8.41 124 | 43.3 126 | 4.97 117 | 34.4 99 | 46.2 94 | 32.5 111 | 12.2 47 | 41.0 106 | 8.88 85 | 1.63 57 | 2.00 90 | 5.79 69 | 29.9 124 | 56.0 123 | 38.8 132 |
DF-Auto [113] | 101.6 | 4.71 114 | 22.2 111 | 2.11 102 | 21.1 126 | 49.4 122 | 21.6 126 | 20.3 122 | 39.8 119 | 31.0 129 | 7.62 118 | 37.5 114 | 5.08 120 | 33.6 93 | 43.9 75 | 33.3 116 | 8.36 13 | 29.8 34 | 7.48 54 | 2.60 74 | 5.21 139 | 2.22 35 | 32.4 133 | 53.1 114 | 43.2 135 |
TriFlow [93] | 102.2 | 3.53 93 | 17.9 91 | 1.77 92 | 11.0 110 | 37.3 77 | 10.6 112 | 16.7 116 | 35.8 105 | 25.3 124 | 4.44 83 | 30.9 95 | 2.34 83 | 35.0 107 | 44.3 79 | 35.7 123 | 10.7 35 | 30.4 37 | 6.68 31 | 33.4 161 | 9.63 159 | 90.0 163 | 30.3 127 | 55.2 122 | 36.8 127 |
FlowNetS+ft+v [110] | 105.3 | 3.75 100 | 18.5 93 | 2.13 105 | 10.0 102 | 38.8 88 | 8.25 107 | 16.3 114 | 37.5 112 | 20.0 115 | 7.89 120 | 37.0 113 | 5.17 121 | 36.9 113 | 48.2 104 | 35.7 123 | 11.6 42 | 40.0 97 | 9.13 88 | 4.56 104 | 4.02 127 | 14.6 117 | 23.8 105 | 51.0 101 | 31.9 116 |
Second-order prior [8] | 106.3 | 3.49 91 | 18.6 94 | 1.79 93 | 9.83 95 | 40.6 98 | 7.83 98 | 14.1 106 | 39.0 116 | 9.82 99 | 6.20 105 | 31.4 97 | 3.83 107 | 34.7 104 | 49.4 114 | 27.6 97 | 18.7 128 | 52.1 141 | 11.4 114 | 9.18 142 | 3.60 121 | 20.1 133 | 19.1 79 | 48.2 95 | 24.4 85 |
Learning Flow [11] | 107.4 | 3.56 97 | 18.2 92 | 1.56 85 | 8.71 80 | 41.5 100 | 6.17 80 | 14.5 110 | 37.8 114 | 11.8 108 | 7.92 121 | 41.1 122 | 5.02 118 | 40.9 130 | 51.7 125 | 42.4 137 | 15.4 105 | 47.2 130 | 11.4 114 | 2.73 78 | 6.19 147 | 7.64 83 | 23.0 98 | 49.9 99 | 28.9 105 |
OFRF [132] | 107.6 | 3.10 78 | 15.9 79 | 1.40 65 | 21.2 127 | 45.4 117 | 20.7 125 | 18.7 119 | 34.6 101 | 22.6 121 | 7.09 111 | 30.2 88 | 5.59 124 | 30.2 72 | 44.8 85 | 16.7 38 | 18.6 126 | 43.5 114 | 10.2 102 | 6.14 127 | 3.78 122 | 25.5 139 | 34.2 139 | 53.5 116 | 54.4 148 |
C-RAFT_RVC [181] | 107.8 | 8.00 137 | 31.4 136 | 3.20 131 | 28.1 135 | 62.8 143 | 25.4 132 | 26.2 133 | 48.7 135 | 35.6 134 | 5.09 91 | 24.9 64 | 3.25 101 | 48.3 144 | 65.4 148 | 39.7 134 | 12.6 51 | 35.3 63 | 10.2 102 | 0.88 42 | 2.59 111 | 2.64 41 | 24.1 107 | 51.9 105 | 20.7 68 |
CNN-flow-warp+ref [115] | 111.2 | 4.85 120 | 24.6 120 | 2.62 125 | 13.2 113 | 41.8 101 | 12.9 113 | 17.7 118 | 39.6 118 | 25.0 123 | 8.67 128 | 44.8 129 | 5.78 126 | 38.1 119 | 48.2 104 | 43.5 141 | 13.7 75 | 40.4 103 | 9.32 91 | 1.80 60 | 1.29 55 | 9.16 90 | 33.2 135 | 57.7 129 | 42.9 134 |
ContinualFlow_ROB [148] | 112.0 | 8.33 139 | 33.5 140 | 3.16 130 | 25.9 134 | 54.7 133 | 25.7 134 | 24.1 129 | 50.5 138 | 32.1 130 | 7.50 117 | 42.2 124 | 4.65 115 | 48.0 143 | 67.8 152 | 28.9 106 | 21.7 138 | 56.2 146 | 19.3 142 | 0.08 8 | 0.79 40 | 0.10 11 | 20.6 85 | 46.6 89 | 20.4 65 |
Ad-TV-NDC [36] | 112.3 | 10.3 145 | 20.2 104 | 18.1 157 | 38.1 144 | 53.0 130 | 43.3 148 | 28.0 138 | 45.6 127 | 35.7 135 | 20.6 142 | 48.9 138 | 23.8 143 | 29.1 66 | 42.5 69 | 19.1 54 | 13.7 75 | 36.1 67 | 9.46 94 | 2.03 65 | 1.43 57 | 4.38 56 | 41.4 148 | 65.3 144 | 57.0 150 |
WOLF_ROB [144] | 114.1 | 5.72 129 | 29.1 131 | 2.14 106 | 18.8 122 | 56.5 137 | 14.1 117 | 22.4 127 | 48.9 136 | 20.6 117 | 8.21 123 | 40.5 120 | 5.30 122 | 41.7 132 | 56.1 134 | 40.9 135 | 17.2 117 | 46.4 127 | 10.1 101 | 0.70 37 | 0.40 33 | 2.78 43 | 29.8 123 | 62.4 139 | 38.0 131 |
StereoOF-V1MT [117] | 114.3 | 4.08 104 | 23.0 112 | 1.49 77 | 10.4 106 | 53.3 131 | 4.35 48 | 16.3 114 | 49.5 137 | 5.71 74 | 7.37 115 | 48.5 136 | 4.03 109 | 46.7 139 | 62.9 142 | 42.9 140 | 21.9 141 | 64.7 152 | 17.0 135 | 1.58 54 | 1.87 80 | 9.43 92 | 33.2 135 | 66.2 145 | 36.5 125 |
CompactFlow_ROB [155] | 115.2 | 9.03 143 | 36.7 146 | 4.21 138 | 22.9 128 | 58.1 138 | 21.8 128 | 30.0 143 | 56.5 142 | 47.0 150 | 7.34 114 | 41.4 123 | 4.65 115 | 49.0 145 | 67.4 150 | 37.1 128 | 15.7 108 | 55.6 144 | 11.5 116 | 0.03 5 | 0.34 26 | 0.02 5 | 26.3 114 | 59.9 133 | 23.5 83 |
BlockOverlap [61] | 116.0 | 4.14 109 | 17.3 87 | 3.50 132 | 23.3 129 | 43.1 110 | 25.5 133 | 21.0 124 | 37.2 108 | 27.8 125 | 13.1 135 | 39.0 117 | 13.7 138 | 28.8 62 | 38.6 48 | 28.2 99 | 18.7 128 | 37.2 75 | 13.3 125 | 12.6 154 | 6.40 150 | 40.8 155 | 26.8 120 | 45.8 84 | 43.3 136 |
Shiralkar [42] | 116.6 | 4.11 106 | 23.3 113 | 1.52 81 | 8.88 83 | 44.5 113 | 5.07 58 | 14.5 110 | 41.9 121 | 6.96 82 | 7.32 113 | 44.7 128 | 4.37 112 | 38.8 125 | 55.2 131 | 33.1 114 | 26.7 148 | 60.7 147 | 18.5 140 | 10.4 145 | 3.38 120 | 32.9 148 | 26.7 118 | 61.6 135 | 29.5 108 |
EAI-Flow [147] | 117.0 | 6.63 133 | 29.9 133 | 2.74 127 | 16.6 118 | 49.7 124 | 13.0 115 | 19.1 120 | 46.0 129 | 20.3 116 | 7.88 119 | 42.2 124 | 5.06 119 | 43.3 133 | 60.6 136 | 34.1 118 | 15.3 104 | 46.8 128 | 10.9 110 | 5.09 116 | 0.08 17 | 13.8 112 | 26.7 118 | 57.1 126 | 30.6 112 |
LSM_FLOW_RVC [182] | 117.7 | 11.1 148 | 43.5 155 | 7.09 146 | 25.8 133 | 64.4 146 | 23.1 130 | 29.0 140 | 64.1 153 | 28.6 126 | 11.0 134 | 49.8 140 | 8.84 133 | 46.9 140 | 65.1 147 | 37.1 128 | 14.6 95 | 55.6 144 | 12.8 122 | 0.10 10 | 0.02 1 | 0.96 24 | 25.0 111 | 59.9 133 | 24.5 86 |
LFNet_ROB [145] | 118.0 | 8.75 141 | 41.6 153 | 3.69 136 | 18.9 123 | 59.4 139 | 15.2 119 | 24.3 130 | 60.8 151 | 21.2 118 | 8.64 127 | 49.0 139 | 5.67 125 | 50.3 148 | 66.9 149 | 46.2 147 | 17.8 120 | 52.5 142 | 12.5 120 | 0.17 16 | 0.05 9 | 1.03 26 | 26.6 116 | 61.9 137 | 27.8 102 |
SegOF [10] | 119.7 | 6.07 132 | 25.2 127 | 3.62 134 | 36.7 142 | 55.3 134 | 41.7 145 | 26.1 132 | 43.8 125 | 39.2 139 | 15.2 138 | 45.4 130 | 12.3 136 | 46.5 138 | 56.0 133 | 57.5 151 | 18.2 125 | 49.9 135 | 14.9 131 | 0.19 18 | 0.71 39 | 0.86 22 | 31.1 130 | 52.9 112 | 35.9 124 |
HBpMotionGpu [43] | 120.0 | 5.00 122 | 21.6 109 | 2.81 128 | 31.1 138 | 49.5 123 | 35.0 138 | 26.3 135 | 45.3 126 | 37.1 137 | 9.18 131 | 39.3 118 | 7.65 132 | 33.7 94 | 45.6 91 | 32.2 110 | 15.7 108 | 37.4 78 | 9.89 100 | 5.71 123 | 4.19 130 | 12.5 107 | 33.4 137 | 56.3 124 | 47.8 141 |
ResPWCR_ROB [140] | 120.3 | 5.84 130 | 29.6 132 | 2.83 129 | 15.8 116 | 51.1 126 | 13.4 116 | 21.2 125 | 48.5 134 | 21.2 118 | 8.43 125 | 47.3 133 | 5.39 123 | 41.2 131 | 57.0 135 | 37.4 130 | 19.2 133 | 53.0 143 | 15.6 133 | 1.16 45 | 1.66 73 | 5.49 66 | 31.6 131 | 62.2 138 | 34.6 122 |
2bit-BM-tele [96] | 120.9 | 5.17 124 | 23.4 114 | 3.54 133 | 16.3 117 | 40.3 95 | 16.7 121 | 15.2 112 | 34.6 101 | 14.2 113 | 8.49 126 | 37.6 115 | 6.75 130 | 32.8 89 | 44.5 81 | 28.6 104 | 24.3 144 | 43.9 117 | 22.5 147 | 15.6 159 | 8.72 157 | 50.0 160 | 26.2 113 | 50.8 100 | 37.5 129 |
StereoFlow [44] | 121.5 | 28.4 162 | 55.1 163 | 37.7 162 | 81.1 163 | 92.6 163 | 77.8 162 | 65.0 161 | 82.9 163 | 51.1 157 | 69.6 162 | 90.7 163 | 65.5 159 | 52.7 153 | 67.5 151 | 44.9 145 | 8.13 10 | 33.5 54 | 6.60 28 | 0.05 7 | 0.37 28 | 0.17 14 | 32.2 132 | 54.8 121 | 40.4 133 |
SPSA-learn [13] | 122.1 | 5.52 126 | 25.3 129 | 4.12 137 | 25.2 132 | 50.0 125 | 26.8 135 | 25.1 131 | 45.7 128 | 36.7 136 | 19.0 139 | 54.2 142 | 20.8 140 | 38.6 122 | 48.4 106 | 44.4 143 | 17.9 123 | 45.3 123 | 17.6 137 | 1.60 55 | 0.54 35 | 5.27 65 | 39.6 145 | 57.9 130 | 53.3 146 |
IRR-PWC_RVC [180] | 122.3 | 11.3 149 | 39.2 150 | 4.42 141 | 34.4 140 | 61.6 142 | 36.8 140 | 33.5 147 | 56.7 143 | 45.7 148 | 13.9 137 | 40.6 121 | 12.0 135 | 44.7 135 | 62.7 141 | 30.0 109 | 14.6 95 | 49.8 134 | 11.2 112 | 0.41 26 | 1.93 84 | 0.71 21 | 30.0 125 | 63.0 141 | 33.1 119 |
IAOF2 [51] | 122.7 | 4.13 107 | 20.4 106 | 2.02 101 | 18.0 120 | 45.9 118 | 18.0 122 | 17.1 117 | 37.3 109 | 21.4 120 | 46.4 153 | 57.8 144 | 56.1 156 | 37.4 116 | 48.8 108 | 35.9 125 | 25.5 145 | 42.7 112 | 20.4 144 | 6.62 130 | 3.04 117 | 15.3 124 | 26.8 120 | 51.0 101 | 37.9 130 |
FlowNet2 [120] | 123.7 | 7.84 136 | 30.7 135 | 2.58 124 | 41.4 148 | 65.2 148 | 44.4 149 | 29.6 142 | 48.0 132 | 46.8 149 | 5.31 99 | 24.0 61 | 3.06 100 | 47.8 141 | 64.8 145 | 36.3 126 | 17.8 120 | 44.3 120 | 13.4 126 | 2.93 83 | 8.71 156 | 5.22 63 | 30.2 126 | 61.7 136 | 28.8 104 |
Filter Flow [19] | 124.1 | 5.13 123 | 23.5 115 | 2.40 120 | 20.5 124 | 51.3 127 | 19.6 124 | 23.3 128 | 42.6 123 | 35.3 133 | 27.2 145 | 48.8 137 | 28.3 145 | 39.4 126 | 49.1 109 | 44.6 144 | 17.9 123 | 40.5 104 | 11.8 118 | 7.39 134 | 7.67 154 | 11.5 102 | 26.6 116 | 46.0 85 | 33.9 120 |
EPMNet [131] | 125.1 | 7.68 135 | 33.7 141 | 2.38 119 | 39.6 146 | 72.0 157 | 40.0 144 | 27.9 137 | 46.4 130 | 44.6 146 | 7.12 112 | 38.7 116 | 3.78 106 | 47.8 141 | 64.8 145 | 36.3 126 | 17.8 120 | 44.3 120 | 13.4 126 | 1.56 53 | 5.60 143 | 2.27 36 | 33.0 134 | 70.0 151 | 32.3 118 |
AugFNG_ROB [139] | 125.2 | 9.81 144 | 36.9 148 | 4.29 139 | 38.3 145 | 64.3 145 | 42.6 147 | 29.2 141 | 57.1 144 | 38.5 138 | 7.41 116 | 39.4 119 | 4.51 113 | 50.9 149 | 70.1 155 | 37.7 131 | 17.0 116 | 50.1 136 | 13.6 128 | 0.23 21 | 2.25 100 | 0.17 14 | 36.5 142 | 68.9 150 | 36.5 125 |
Black & Anandan [4] | 125.6 | 5.52 126 | 25.2 127 | 4.71 142 | 24.4 131 | 52.8 128 | 24.4 131 | 26.8 136 | 48.3 133 | 34.4 132 | 20.9 143 | 60.4 145 | 22.4 142 | 38.7 124 | 49.7 115 | 42.8 139 | 18.9 130 | 49.4 132 | 17.1 136 | 1.78 59 | 2.57 109 | 3.30 45 | 36.0 140 | 57.3 128 | 49.5 142 |
Modified CLG [34] | 128.1 | 7.42 134 | 31.9 138 | 5.50 143 | 31.7 139 | 52.9 129 | 37.6 142 | 28.4 139 | 50.8 139 | 40.4 141 | 20.3 141 | 60.5 146 | 21.3 141 | 39.5 128 | 51.2 120 | 42.2 136 | 14.2 85 | 45.8 126 | 11.5 116 | 3.24 87 | 1.70 76 | 9.31 91 | 40.3 146 | 65.1 143 | 54.7 149 |
IAOF [50] | 128.6 | 5.70 128 | 24.0 117 | 3.65 135 | 30.0 137 | 48.7 120 | 33.9 137 | 26.2 133 | 47.8 131 | 29.5 128 | 28.0 146 | 51.3 141 | 32.9 146 | 37.3 115 | 50.2 116 | 34.4 120 | 26.2 146 | 50.9 139 | 18.0 139 | 5.85 125 | 1.63 68 | 11.7 103 | 36.3 141 | 59.4 132 | 51.9 144 |
TVL1_RVC [175] | 129.8 | 16.9 153 | 35.6 143 | 25.3 159 | 53.6 155 | 60.6 141 | 64.0 156 | 36.2 149 | 58.6 145 | 48.0 153 | 44.5 152 | 72.3 152 | 52.0 153 | 39.5 128 | 50.7 117 | 42.5 138 | 15.5 106 | 47.1 129 | 14.1 130 | 0.39 25 | 0.66 38 | 1.87 32 | 47.3 153 | 70.9 153 | 59.9 154 |
GraphCuts [14] | 130.3 | 5.45 125 | 24.7 122 | 2.64 126 | 24.3 130 | 55.8 136 | 21.9 129 | 21.4 126 | 40.8 120 | 32.4 131 | 9.25 133 | 46.4 131 | 6.31 128 | 38.6 122 | 51.7 125 | 33.8 117 | 28.8 151 | 39.7 96 | 18.7 141 | 12.1 153 | 2.87 114 | 35.1 151 | 38.5 143 | 58.4 131 | 53.9 147 |
2D-CLG [1] | 133.7 | 14.0 151 | 40.7 151 | 8.09 149 | 45.8 150 | 59.5 140 | 54.5 153 | 36.8 151 | 60.4 150 | 47.3 151 | 48.9 155 | 75.1 156 | 54.2 155 | 44.9 136 | 54.8 129 | 52.5 148 | 19.0 131 | 50.3 138 | 17.8 138 | 1.26 47 | 0.07 10 | 4.43 57 | 47.4 154 | 71.2 154 | 59.9 154 |
GroupFlow [9] | 135.1 | 8.95 142 | 33.2 139 | 7.07 145 | 43.6 149 | 70.7 153 | 45.5 150 | 32.7 145 | 59.8 149 | 42.4 144 | 13.2 136 | 46.6 132 | 12.4 137 | 51.1 150 | 70.0 154 | 34.2 119 | 30.8 153 | 62.8 149 | 33.8 154 | 1.54 52 | 2.56 108 | 4.14 51 | 39.0 144 | 67.0 147 | 47.4 140 |
Nguyen [33] | 136.1 | 8.19 138 | 31.4 136 | 4.40 140 | 54.9 156 | 55.7 135 | 70.2 158 | 33.6 148 | 54.6 140 | 43.3 145 | 43.5 151 | 60.9 147 | 50.5 152 | 45.1 137 | 54.9 130 | 54.2 149 | 21.1 137 | 49.4 132 | 21.0 145 | 2.92 82 | 1.87 80 | 7.39 81 | 44.7 151 | 66.2 145 | 58.5 152 |
UnFlow [127] | 136.2 | 22.1 160 | 43.6 156 | 7.44 148 | 52.6 154 | 73.8 158 | 54.3 152 | 47.7 157 | 74.9 160 | 47.5 152 | 26.4 144 | 68.7 150 | 24.7 144 | 64.5 158 | 75.5 160 | 65.6 158 | 28.5 150 | 67.0 156 | 27.1 151 | 0.19 18 | 1.87 80 | 0.05 8 | 30.4 128 | 62.4 139 | 36.8 127 |
Horn & Schunck [3] | 138.7 | 8.56 140 | 35.5 142 | 7.11 147 | 29.4 136 | 65.4 149 | 28.1 136 | 33.4 146 | 64.4 154 | 41.2 143 | 30.6 147 | 67.2 149 | 33.6 147 | 49.1 147 | 61.3 137 | 55.5 150 | 26.4 147 | 64.7 152 | 26.1 150 | 3.02 84 | 3.95 125 | 2.44 37 | 48.8 155 | 75.0 156 | 58.8 153 |
SILK [80] | 141.1 | 10.7 146 | 35.7 144 | 14.6 154 | 37.7 143 | 64.2 144 | 42.5 146 | 32.3 144 | 59.3 147 | 40.6 142 | 19.9 140 | 56.8 143 | 20.4 139 | 51.6 152 | 62.6 140 | 59.6 154 | 27.2 149 | 63.0 150 | 23.2 148 | 4.92 113 | 1.68 75 | 13.1 109 | 46.9 152 | 71.6 155 | 61.7 157 |
TI-DOFE [24] | 145.5 | 21.2 158 | 43.7 157 | 34.5 161 | 64.6 161 | 71.9 156 | 76.5 161 | 47.1 156 | 75.6 161 | 53.7 158 | 57.3 157 | 76.4 157 | 65.6 160 | 51.5 151 | 63.9 143 | 60.0 155 | 30.4 152 | 65.8 155 | 33.2 152 | 2.24 68 | 1.65 71 | 5.22 63 | 59.1 159 | 82.1 161 | 71.2 160 |
Periodicity [79] | 145.6 | 11.0 147 | 41.5 152 | 5.85 144 | 35.3 141 | 64.5 147 | 36.8 140 | 51.0 158 | 55.5 141 | 61.7 160 | 49.6 156 | 81.4 159 | 48.4 151 | 66.0 160 | 83.6 163 | 59.0 152 | 46.1 158 | 76.4 160 | 43.0 158 | 1.67 58 | 5.33 141 | 8.13 85 | 48.8 155 | 78.9 158 | 57.5 151 |
Heeger++ [102] | 146.8 | 24.4 161 | 45.8 158 | 9.72 151 | 47.8 152 | 85.9 162 | 37.8 143 | 66.2 162 | 69.8 157 | 75.2 161 | 59.7 159 | 88.6 162 | 56.9 157 | 66.6 161 | 80.3 162 | 62.4 157 | 65.6 163 | 87.3 163 | 67.1 163 | 4.14 100 | 1.26 53 | 7.39 81 | 41.9 149 | 68.8 148 | 43.4 138 |
SLK [47] | 149.8 | 17.8 155 | 50.1 161 | 21.7 158 | 62.2 160 | 77.8 160 | 74.7 160 | 40.4 154 | 72.7 159 | 48.1 154 | 66.2 160 | 73.9 154 | 76.1 162 | 60.9 156 | 71.2 156 | 72.9 162 | 33.1 154 | 68.3 158 | 35.4 156 | 5.99 126 | 1.09 47 | 11.4 101 | 60.5 161 | 81.9 160 | 75.0 161 |
H+S_RVC [176] | 150.1 | 19.7 156 | 52.3 162 | 11.9 153 | 58.6 158 | 81.6 161 | 62.5 155 | 52.6 159 | 80.3 162 | 49.7 156 | 73.2 163 | 84.5 160 | 79.6 163 | 67.5 162 | 71.8 157 | 92.4 163 | 48.7 159 | 77.5 161 | 53.6 161 | 3.15 86 | 1.51 62 | 10.3 95 | 74.3 163 | 85.2 163 | 76.6 162 |
FFV1MT [104] | 150.6 | 22.0 159 | 42.2 154 | 9.20 150 | 41.0 147 | 76.9 159 | 36.1 139 | 66.5 163 | 71.9 158 | 79.2 162 | 58.5 158 | 87.7 161 | 57.1 158 | 64.8 159 | 76.5 161 | 70.3 161 | 64.8 162 | 85.8 162 | 65.3 162 | 4.70 108 | 4.86 136 | 11.3 100 | 41.9 149 | 68.8 148 | 43.4 138 |
Adaptive flow [45] | 151.0 | 16.0 152 | 36.3 145 | 17.5 156 | 57.9 157 | 67.3 150 | 64.2 157 | 38.7 153 | 59.2 146 | 48.8 155 | 39.9 149 | 69.2 151 | 44.2 150 | 49.0 145 | 62.0 139 | 43.6 142 | 39.1 157 | 62.2 148 | 34.3 155 | 34.2 162 | 23.4 162 | 82.8 161 | 40.6 147 | 64.9 142 | 51.9 144 |
FOLKI [16] | 152.6 | 13.4 150 | 45.9 159 | 16.0 155 | 48.5 153 | 67.4 151 | 57.8 154 | 36.6 150 | 66.2 155 | 40.3 140 | 32.2 148 | 66.9 148 | 37.2 148 | 52.9 154 | 64.2 144 | 60.1 156 | 34.7 155 | 65.7 154 | 40.2 157 | 12.9 155 | 7.56 153 | 33.8 150 | 55.3 158 | 78.0 157 | 70.7 159 |
PGAM+LK [55] | 155.0 | 17.6 154 | 48.4 160 | 26.7 160 | 45.8 150 | 71.8 155 | 49.9 151 | 38.3 152 | 67.6 156 | 44.6 146 | 42.8 150 | 79.5 158 | 42.6 149 | 56.5 155 | 69.9 153 | 59.0 152 | 37.8 156 | 70.5 159 | 33.6 153 | 23.5 160 | 15.0 161 | 48.8 159 | 54.6 157 | 80.9 159 | 61.1 156 |
Pyramid LK [2] | 155.8 | 19.8 157 | 36.7 146 | 40.3 163 | 61.8 159 | 68.8 152 | 74.6 159 | 43.5 155 | 63.7 152 | 58.2 159 | 46.9 154 | 72.7 153 | 54.1 154 | 61.5 157 | 74.5 159 | 65.8 159 | 51.3 160 | 64.1 151 | 50.1 159 | 10.8 148 | 6.30 148 | 31.9 147 | 68.2 162 | 84.9 162 | 84.8 163 |
HCIC-L [97] | 158.6 | 29.6 163 | 37.7 149 | 11.4 152 | 77.3 162 | 71.7 154 | 90.9 163 | 63.0 160 | 59.4 148 | 83.6 163 | 66.9 161 | 74.8 155 | 69.8 161 | 68.1 163 | 74.1 158 | 66.1 160 | 54.4 161 | 67.4 157 | 52.5 160 | 58.9 163 | 43.5 163 | 89.4 162 | 59.4 160 | 70.0 151 | 67.4 158 |
AdaConv-v1 [124] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SepConv-v1 [125] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SuperSlomo [130] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
CtxSyn [134] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
CyclicGen [149] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
TOF-M [150] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MPRN [151] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
DAIN [152] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
FRUCnet [153] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
OFRI [154] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
FGME [158] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MS-PFT [159] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MEMC-Net+ [160] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
ADC [161] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
DSepConv [162] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MAF-net [163] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
STAR-Net [164] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
AdaCoF [165] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
TC-GAN [166] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
FeFlow [167] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
DAI [168] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SoftSplat [169] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
STSR [170] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
BMBC [171] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
GDCN [172] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
EDSC [173] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MV_VFI [183] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
DistillNet [184] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SepConv++ [185] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
EAFI [186] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
FLAVR [188] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SoftsplatAug [190] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
ProBoost-Net [191] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
IDIAL [192] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
IFRNet [193] | 164.5 | 82.5 164 | 78.4 164 | 94.0 165 | 98.6 164 | 99.3 164 | 97.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 97.4 165 | 96.9 165 | 99.7 165 | 100.0 165 | 99.9 165 | 99.8 165 | 93.4 164 | 95.5 165 | 93.4 164 | 86.5 165 | 85.7 165 | 99.4 165 | 99.9 164 | 99.9 164 | 99.9 164 |
AVG_FLOW_ROB [137] | 177.1 | 93.7 199 | 89.5 199 | 90.8 164 | 99.0 199 | 99.4 199 | 98.5 199 | 99.9 164 | 99.9 164 | 99.9 164 | 95.9 164 | 91.8 164 | 95.9 164 | 99.8 164 | 99.7 164 | 99.7 164 | 96.8 199 | 95.1 164 | 94.6 199 | 85.8 164 | 76.3 164 | 97.8 164 | 100.0 199 | 100.0 199 | 99.9 164 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |