Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
R10.0 angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it [194] | 4.2 | 3.53 3 | 15.5 4 | 1.05 2 | 2.34 7 | 12.3 2 | 1.50 14 | 2.56 3 | 9.15 3 | 0.54 3 | 0.49 2 | 5.44 2 | 0.00 1 | 4.90 4 | 7.33 4 | 1.58 3 | 0.96 2 | 5.98 2 | 0.63 3 | 0.26 1 | 2.59 6 | 0.05 16 | 0.47 7 | 1.72 7 | 0.00 1 |
RAFT-it+_RVC [198] | 4.8 | 3.28 2 | 14.9 3 | 1.01 1 | 2.31 6 | 11.5 1 | 1.75 22 | 2.49 2 | 8.90 2 | 0.20 1 | 0.71 4 | 7.49 4 | 0.00 1 | 4.33 1 | 6.51 1 | 1.26 1 | 1.04 3 | 7.65 3 | 0.04 1 | 0.31 9 | 3.06 18 | 0.02 3 | 0.57 11 | 2.08 14 | 0.01 2 |
NNF-Local [75] | 14.2 | 3.83 7 | 16.9 12 | 1.87 11 | 2.64 11 | 16.1 17 | 1.33 11 | 3.02 5 | 10.7 5 | 1.33 22 | 2.79 26 | 18.9 33 | 1.11 27 | 4.82 3 | 6.85 3 | 1.73 5 | 4.13 9 | 14.6 8 | 2.27 7 | 0.52 35 | 5.08 70 | 0.00 1 | 0.28 3 | 1.04 3 | 0.04 6 |
OFLAF [78] | 14.5 | 3.84 8 | 17.2 14 | 1.99 17 | 2.48 8 | 14.1 9 | 1.41 12 | 2.96 4 | 10.1 4 | 1.17 16 | 2.36 17 | 14.7 17 | 0.82 17 | 5.15 6 | 7.90 10 | 2.15 7 | 6.43 46 | 18.2 20 | 4.98 25 | 0.27 3 | 2.42 4 | 0.07 21 | 0.79 16 | 1.88 11 | 1.81 35 |
MS_RAFT+_RVC [195] | 14.7 | 3.64 5 | 14.7 2 | 1.07 3 | 4.39 50 | 13.7 7 | 4.81 100 | 3.05 6 | 10.8 6 | 0.81 9 | 0.66 3 | 7.11 3 | 0.03 4 | 4.43 2 | 6.57 2 | 1.41 2 | 0.78 1 | 5.06 1 | 0.49 2 | 0.47 29 | 4.27 47 | 0.22 43 | 0.39 6 | 1.12 4 | 0.39 15 |
MDP-Flow2 [68] | 16.2 | 3.86 9 | 17.2 14 | 1.90 13 | 2.06 1 | 12.6 3 | 1.04 2 | 3.22 8 | 11.0 7 | 1.16 14 | 3.27 38 | 21.7 45 | 1.19 32 | 6.35 22 | 8.86 18 | 3.12 17 | 5.40 22 | 15.7 10 | 5.11 28 | 0.38 18 | 3.75 33 | 0.02 3 | 0.49 9 | 1.80 10 | 0.13 12 |
NN-field [71] | 18.7 | 4.31 21 | 18.6 26 | 2.22 27 | 3.13 21 | 18.3 32 | 1.79 25 | 3.16 7 | 11.1 8 | 1.40 23 | 2.08 14 | 16.7 20 | 0.78 15 | 5.28 7 | 7.44 6 | 2.25 8 | 2.53 6 | 8.92 5 | 0.92 4 | 0.89 63 | 6.39 97 | 0.02 3 | 0.27 2 | 0.98 2 | 0.04 6 |
PMMST [112] | 19.9 | 4.02 12 | 16.5 10 | 1.46 4 | 3.86 39 | 16.9 23 | 3.33 55 | 3.91 14 | 12.6 13 | 2.82 48 | 2.18 16 | 9.47 8 | 1.30 39 | 5.68 12 | 7.88 9 | 2.78 13 | 5.25 20 | 13.7 7 | 4.29 15 | 0.53 38 | 5.11 71 | 0.02 3 | 0.26 1 | 0.94 1 | 0.04 6 |
RAFT-TF_RVC [179] | 19.9 | 5.96 64 | 22.7 60 | 2.14 24 | 2.86 16 | 14.7 10 | 1.95 29 | 4.38 21 | 14.7 21 | 3.62 64 | 0.46 1 | 5.16 1 | 0.00 1 | 5.99 17 | 8.91 19 | 2.28 9 | 2.04 5 | 9.20 6 | 1.67 5 | 0.44 24 | 3.97 38 | 0.05 16 | 0.55 10 | 2.01 12 | 0.02 4 |
CoT-AMFlow [174] | 25.5 | 4.12 16 | 18.0 20 | 2.78 45 | 2.19 5 | 13.2 6 | 1.28 7 | 3.44 12 | 11.9 12 | 1.47 24 | 3.42 43 | 22.5 52 | 1.30 39 | 6.47 26 | 8.96 20 | 4.11 46 | 5.11 18 | 17.0 15 | 4.89 24 | 0.52 35 | 4.96 66 | 0.07 21 | 0.80 17 | 2.26 18 | 1.39 24 |
nLayers [57] | 31.8 | 4.08 15 | 16.2 8 | 2.80 48 | 4.71 65 | 19.3 40 | 3.82 85 | 4.64 28 | 15.2 27 | 3.96 71 | 1.99 12 | 13.2 12 | 0.80 16 | 5.34 9 | 7.57 8 | 3.22 19 | 5.85 35 | 16.8 14 | 4.64 19 | 0.87 61 | 3.68 31 | 0.96 77 | 0.84 18 | 2.94 26 | 0.75 18 |
ComponentFusion [94] | 33.0 | 4.03 13 | 17.7 17 | 2.19 26 | 2.17 4 | 13.1 5 | 1.26 6 | 3.86 13 | 13.2 15 | 1.58 26 | 2.85 30 | 18.0 25 | 1.03 24 | 6.68 32 | 9.59 31 | 4.14 47 | 8.35 89 | 27.3 87 | 8.34 104 | 0.60 43 | 4.03 41 | 0.52 63 | 0.76 15 | 2.22 17 | 1.09 20 |
LME [70] | 33.2 | 3.70 6 | 16.1 7 | 1.69 5 | 2.13 2 | 13.0 4 | 1.19 4 | 5.91 56 | 15.4 29 | 7.43 104 | 3.23 34 | 22.4 50 | 1.19 32 | 6.60 31 | 9.12 24 | 4.39 57 | 6.11 38 | 20.8 29 | 6.60 66 | 0.52 35 | 4.96 66 | 0.07 21 | 1.09 23 | 3.28 34 | 1.86 39 |
SVFilterOh [109] | 34.2 | 4.36 23 | 15.9 6 | 2.01 20 | 3.04 19 | 16.3 19 | 1.78 24 | 3.31 9 | 11.3 9 | 1.20 17 | 2.02 13 | 13.6 14 | 0.57 10 | 5.94 16 | 8.69 16 | 2.12 6 | 6.61 49 | 19.3 22 | 6.32 61 | 5.10 130 | 12.9 144 | 10.0 141 | 0.75 14 | 2.20 16 | 1.32 22 |
UnDAF [187] | 34.2 | 4.48 28 | 20.3 34 | 2.27 30 | 2.54 9 | 16.0 15 | 1.20 5 | 4.39 22 | 15.2 27 | 1.30 20 | 3.50 47 | 23.8 70 | 1.24 34 | 6.52 29 | 9.01 22 | 3.87 40 | 6.33 42 | 24.7 67 | 5.08 27 | 0.53 38 | 5.06 69 | 0.02 3 | 1.64 53 | 5.40 67 | 1.33 23 |
FC-2Layers-FF [74] | 34.7 | 4.03 13 | 16.3 9 | 2.39 36 | 4.23 48 | 20.9 52 | 3.21 51 | 3.40 11 | 11.4 10 | 2.64 41 | 2.74 23 | 17.1 22 | 1.03 24 | 5.73 13 | 8.29 13 | 3.31 21 | 7.49 64 | 20.5 28 | 6.66 71 | 1.30 82 | 6.84 103 | 0.34 56 | 0.64 12 | 1.78 9 | 1.20 21 |
NNF-EAC [101] | 35.4 | 4.32 22 | 18.6 26 | 2.18 25 | 2.69 13 | 15.1 12 | 1.64 18 | 3.93 15 | 13.1 14 | 1.27 19 | 4.17 74 | 23.0 60 | 1.95 70 | 7.09 46 | 9.97 39 | 3.89 41 | 6.33 42 | 17.4 17 | 5.53 31 | 0.55 40 | 5.18 72 | 0.02 3 | 1.60 51 | 4.32 55 | 1.93 44 |
HAST [107] | 36.2 | 2.98 1 | 12.9 1 | 1.71 6 | 3.63 35 | 15.0 11 | 2.78 43 | 2.46 1 | 8.38 1 | 0.25 2 | 2.84 29 | 18.0 25 | 0.67 11 | 5.02 5 | 7.35 5 | 1.66 4 | 8.83 100 | 22.4 45 | 8.37 105 | 6.13 136 | 12.0 139 | 18.0 150 | 0.31 4 | 1.13 5 | 0.03 5 |
PRAFlow_RVC [177] | 37.5 | 7.13 81 | 23.4 62 | 3.06 54 | 4.78 68 | 19.8 43 | 4.04 88 | 6.49 62 | 20.6 63 | 4.99 77 | 1.08 5 | 8.77 7 | 0.14 5 | 6.26 20 | 8.82 17 | 3.07 16 | 1.85 4 | 8.89 4 | 2.04 6 | 0.48 31 | 4.59 52 | 0.17 37 | 1.46 41 | 2.87 23 | 1.81 35 |
WLIF-Flow [91] | 38.2 | 3.97 11 | 17.0 13 | 2.12 22 | 3.53 29 | 18.5 34 | 2.37 36 | 4.60 27 | 15.1 25 | 2.34 37 | 3.40 41 | 20.3 40 | 1.50 45 | 7.69 71 | 11.4 82 | 4.79 72 | 6.67 50 | 17.8 19 | 5.53 31 | 0.40 21 | 3.68 31 | 0.07 21 | 1.59 50 | 3.82 45 | 2.63 64 |
3DFlow [133] | 39.9 | 4.65 32 | 19.4 30 | 1.86 10 | 3.01 18 | 18.5 34 | 1.32 10 | 4.17 16 | 14.5 18 | 0.62 4 | 1.38 7 | 7.93 6 | 0.72 13 | 6.90 36 | 10.3 54 | 3.76 36 | 11.3 122 | 30.0 103 | 10.5 125 | 1.63 95 | 4.03 41 | 5.22 126 | 0.35 5 | 1.27 6 | 0.06 10 |
FESL [72] | 40.6 | 3.91 10 | 16.6 11 | 2.13 23 | 5.68 95 | 23.5 72 | 4.23 94 | 5.17 39 | 16.8 36 | 2.99 51 | 2.41 19 | 15.8 19 | 0.89 21 | 5.76 14 | 8.62 15 | 4.05 44 | 5.81 31 | 17.6 18 | 5.32 30 | 1.09 73 | 5.68 87 | 1.21 84 | 1.35 32 | 2.89 25 | 1.72 31 |
Layers++ [37] | 40.6 | 4.39 25 | 17.8 18 | 3.14 57 | 3.70 36 | 18.0 29 | 2.84 44 | 3.37 10 | 11.5 11 | 2.65 42 | 2.38 18 | 14.1 16 | 0.82 17 | 5.33 8 | 7.52 7 | 3.78 38 | 7.58 67 | 22.0 40 | 6.13 53 | 1.81 100 | 7.08 108 | 0.54 64 | 1.45 40 | 2.46 20 | 4.56 107 |
RNLOD-Flow [119] | 41.0 | 3.58 4 | 15.7 5 | 1.83 9 | 3.60 33 | 19.9 45 | 2.06 30 | 5.53 50 | 18.1 52 | 2.42 39 | 2.75 24 | 17.7 23 | 1.01 23 | 6.01 18 | 9.09 23 | 3.98 43 | 7.21 56 | 20.0 24 | 6.87 80 | 2.59 106 | 9.67 122 | 1.95 96 | 1.06 22 | 2.66 22 | 1.79 34 |
ALD-Flow [66] | 42.8 | 4.22 17 | 18.2 22 | 1.93 15 | 3.20 25 | 16.8 22 | 1.59 17 | 5.21 40 | 17.4 43 | 1.13 13 | 3.70 53 | 22.9 58 | 1.26 35 | 6.54 30 | 9.31 27 | 3.14 18 | 5.25 20 | 21.5 35 | 4.98 25 | 0.88 62 | 4.67 57 | 4.48 122 | 2.69 82 | 6.66 79 | 4.79 109 |
TC/T-Flow [77] | 43.0 | 4.57 30 | 20.6 36 | 2.00 18 | 3.45 28 | 18.7 36 | 1.52 15 | 4.30 19 | 14.3 17 | 0.67 6 | 3.97 69 | 23.1 61 | 1.80 61 | 6.35 22 | 9.50 30 | 3.36 24 | 4.48 11 | 15.7 10 | 4.78 21 | 1.30 82 | 6.94 105 | 5.07 125 | 2.08 69 | 5.10 66 | 2.83 70 |
PMF [73] | 43.1 | 4.65 32 | 18.3 25 | 2.34 31 | 3.37 26 | 18.2 31 | 1.92 27 | 4.20 17 | 14.6 20 | 1.01 10 | 3.24 36 | 18.6 29 | 1.11 27 | 5.50 10 | 8.09 11 | 2.43 10 | 6.99 53 | 24.8 69 | 6.27 58 | 6.87 139 | 17.3 154 | 8.77 140 | 0.91 19 | 2.06 13 | 2.06 47 |
AGIF+OF [84] | 44.8 | 4.39 25 | 18.0 20 | 2.80 48 | 5.10 79 | 23.7 76 | 3.70 79 | 5.06 35 | 16.8 36 | 3.11 52 | 3.29 39 | 20.1 38 | 1.45 44 | 6.45 25 | 9.31 27 | 4.62 63 | 6.77 52 | 19.7 23 | 5.86 41 | 0.37 17 | 3.60 27 | 0.25 48 | 1.79 60 | 3.68 41 | 3.12 79 |
Correlation Flow [76] | 44.9 | 4.57 30 | 20.5 35 | 1.87 11 | 2.71 14 | 16.2 18 | 1.16 3 | 5.74 54 | 17.9 50 | 0.66 5 | 1.91 10 | 13.5 13 | 0.85 20 | 8.00 82 | 12.0 94 | 4.57 61 | 8.69 95 | 23.8 57 | 8.93 111 | 0.84 58 | 4.74 58 | 0.96 77 | 1.38 35 | 3.81 44 | 1.91 42 |
Efficient-NL [60] | 45.1 | 4.24 18 | 17.4 16 | 2.24 28 | 4.30 49 | 21.8 55 | 2.75 41 | 5.26 43 | 16.9 38 | 2.67 43 | 3.43 44 | 21.0 42 | 1.74 56 | 6.02 19 | 9.16 25 | 3.31 21 | 7.84 77 | 21.7 37 | 6.26 56 | 1.36 85 | 6.79 102 | 1.03 80 | 1.48 45 | 3.08 29 | 1.77 33 |
TC-Flow [46] | 47.0 | 4.27 19 | 19.0 29 | 1.91 14 | 2.85 15 | 16.6 21 | 1.45 13 | 5.05 34 | 16.9 38 | 0.80 8 | 4.05 70 | 23.9 71 | 1.74 56 | 6.73 33 | 9.68 33 | 2.93 15 | 5.83 32 | 22.9 51 | 5.68 38 | 1.39 87 | 4.87 63 | 7.32 136 | 2.46 76 | 6.13 74 | 4.49 103 |
OAR-Flow [123] | 47.1 | 5.41 53 | 21.6 49 | 2.61 41 | 4.96 75 | 22.3 58 | 2.88 45 | 7.90 75 | 23.8 73 | 4.19 75 | 4.45 82 | 22.7 57 | 1.90 65 | 7.03 43 | 10.1 44 | 3.39 25 | 5.10 17 | 22.3 43 | 4.56 18 | 0.29 5 | 2.64 9 | 0.17 37 | 1.58 49 | 4.89 63 | 1.68 29 |
ProFlow_ROB [142] | 47.4 | 5.24 50 | 22.0 52 | 2.36 34 | 3.71 38 | 20.5 49 | 2.17 33 | 6.59 64 | 21.5 67 | 2.88 50 | 3.48 45 | 22.0 47 | 1.14 31 | 6.88 35 | 9.84 36 | 3.61 28 | 5.84 33 | 23.0 52 | 6.06 48 | 0.50 34 | 4.91 64 | 0.15 35 | 2.29 72 | 6.62 78 | 2.50 62 |
GMFlow_RVC [196] | 47.8 | 20.9 140 | 31.5 97 | 12.4 134 | 4.94 73 | 17.6 25 | 5.15 104 | 4.52 26 | 14.7 21 | 2.67 43 | 1.49 8 | 11.8 10 | 0.48 8 | 7.73 72 | 11.2 77 | 4.24 52 | 5.08 16 | 16.2 12 | 3.53 12 | 1.13 75 | 6.89 104 | 0.07 21 | 0.47 7 | 1.74 8 | 0.01 2 |
Classic+CPF [82] | 49.5 | 4.77 37 | 19.7 32 | 2.99 51 | 4.59 56 | 23.3 70 | 3.08 49 | 5.24 41 | 17.2 41 | 2.81 47 | 3.32 40 | 21.3 43 | 1.57 50 | 6.51 28 | 9.49 29 | 4.24 52 | 7.39 61 | 21.5 35 | 6.27 58 | 1.02 68 | 5.33 77 | 1.40 88 | 1.47 44 | 3.19 32 | 2.47 60 |
IROF++ [58] | 51.4 | 4.68 34 | 19.4 30 | 2.70 44 | 4.66 60 | 23.1 65 | 3.42 65 | 5.25 42 | 17.2 41 | 3.79 67 | 3.95 67 | 23.2 63 | 2.05 76 | 6.97 39 | 9.84 36 | 4.64 64 | 7.99 81 | 24.6 64 | 7.05 84 | 0.44 24 | 4.30 50 | 0.00 1 | 1.37 34 | 3.26 33 | 2.83 70 |
ProbFlowFields [126] | 51.6 | 8.29 95 | 31.1 93 | 5.73 114 | 3.54 30 | 18.0 29 | 2.75 41 | 6.07 59 | 18.9 57 | 5.22 79 | 3.54 49 | 17.7 23 | 1.91 66 | 7.66 70 | 10.8 66 | 4.59 62 | 5.06 15 | 20.0 24 | 5.58 35 | 0.38 18 | 3.08 19 | 0.07 21 | 1.70 56 | 4.56 59 | 2.41 59 |
PH-Flow [99] | 52.1 | 5.11 44 | 21.0 40 | 3.62 71 | 4.59 56 | 22.4 59 | 3.37 59 | 4.37 20 | 14.5 18 | 3.45 58 | 3.93 66 | 22.5 52 | 2.07 79 | 6.34 21 | 9.00 21 | 3.74 34 | 7.28 59 | 21.7 37 | 6.39 63 | 1.61 94 | 5.58 85 | 1.58 90 | 1.15 25 | 2.12 15 | 3.39 85 |
COFM [59] | 52.5 | 4.75 36 | 20.2 33 | 2.63 43 | 3.40 27 | 18.3 32 | 2.14 31 | 6.19 60 | 19.3 58 | 4.00 72 | 3.04 32 | 18.8 30 | 1.11 27 | 7.45 59 | 10.1 44 | 7.01 112 | 8.80 99 | 20.9 30 | 6.68 72 | 1.41 88 | 3.66 30 | 2.76 108 | 1.22 26 | 2.28 19 | 3.72 91 |
HCFN [157] | 52.7 | 4.29 20 | 20.6 36 | 1.71 6 | 2.64 11 | 15.1 12 | 1.69 19 | 4.21 18 | 14.8 23 | 1.26 18 | 2.81 28 | 19.5 35 | 0.84 19 | 5.93 15 | 8.53 14 | 2.64 11 | 7.75 73 | 26.3 81 | 7.82 97 | 12.7 158 | 17.7 155 | 17.4 149 | 2.56 78 | 6.04 73 | 5.29 115 |
HBM-GC [103] | 53.1 | 5.82 61 | 18.2 22 | 2.00 18 | 4.47 54 | 18.7 36 | 3.80 84 | 4.39 22 | 15.1 25 | 1.73 30 | 2.42 20 | 13.8 15 | 0.72 13 | 6.77 34 | 9.60 32 | 4.08 45 | 7.61 69 | 19.0 21 | 5.76 39 | 4.61 126 | 12.6 141 | 2.83 110 | 2.39 75 | 5.72 69 | 5.01 113 |
PWC-Net_RVC [143] | 53.4 | 9.12 104 | 32.2 100 | 4.81 99 | 4.68 62 | 22.6 60 | 3.66 76 | 7.60 72 | 25.0 83 | 5.34 80 | 2.47 21 | 15.4 18 | 0.97 22 | 7.07 44 | 9.98 40 | 3.95 42 | 6.32 41 | 25.4 75 | 6.26 56 | 0.47 29 | 4.66 55 | 0.17 37 | 0.98 20 | 3.17 31 | 0.31 14 |
WRT [146] | 54.2 | 5.66 60 | 21.6 49 | 1.98 16 | 5.17 84 | 23.5 72 | 3.40 62 | 7.54 71 | 21.3 66 | 1.16 14 | 1.32 6 | 7.54 5 | 0.47 7 | 6.97 39 | 10.2 48 | 4.90 78 | 11.5 124 | 27.6 89 | 8.28 103 | 0.45 28 | 3.92 37 | 0.22 43 | 2.30 73 | 4.18 52 | 2.94 75 |
Sparse-NonSparse [56] | 54.6 | 4.98 40 | 20.8 39 | 4.09 80 | 4.63 59 | 22.9 61 | 3.41 64 | 5.02 33 | 16.7 35 | 3.47 61 | 3.89 62 | 22.6 56 | 1.91 66 | 7.17 49 | 10.2 48 | 4.30 55 | 7.66 71 | 22.3 43 | 6.80 76 | 0.69 50 | 3.53 26 | 0.89 74 | 1.52 47 | 3.56 40 | 2.97 76 |
CostFilter [40] | 54.7 | 5.29 51 | 22.0 52 | 2.85 50 | 3.54 30 | 17.7 27 | 2.16 32 | 4.64 28 | 16.0 30 | 1.75 31 | 3.68 52 | 22.5 52 | 1.27 37 | 5.67 11 | 8.14 12 | 2.85 14 | 7.76 74 | 25.9 77 | 6.80 76 | 6.98 142 | 24.2 160 | 12.9 144 | 1.43 37 | 4.11 48 | 2.02 46 |
MLDP_OF [87] | 56.2 | 6.35 71 | 26.0 73 | 3.41 62 | 2.97 17 | 16.4 20 | 1.76 23 | 5.47 48 | 17.8 48 | 1.30 20 | 2.79 26 | 19.7 36 | 1.12 30 | 7.13 48 | 10.0 41 | 3.75 35 | 7.49 64 | 21.4 34 | 9.75 119 | 5.04 128 | 6.22 94 | 17.0 148 | 1.79 60 | 4.28 53 | 2.14 50 |
LSM [39] | 56.6 | 5.00 42 | 21.2 46 | 3.93 77 | 4.62 58 | 22.9 61 | 3.37 59 | 5.13 37 | 17.1 40 | 3.26 55 | 3.80 57 | 22.9 58 | 1.87 63 | 6.92 37 | 9.78 34 | 4.41 59 | 7.71 72 | 22.4 45 | 6.74 75 | 1.00 67 | 4.76 60 | 1.16 82 | 1.68 55 | 3.94 46 | 2.90 73 |
Classic+NL [31] | 56.8 | 5.07 43 | 21.0 40 | 4.22 84 | 4.70 64 | 23.4 71 | 3.27 53 | 4.98 32 | 16.5 33 | 3.48 62 | 3.75 56 | 22.5 52 | 1.68 53 | 7.21 52 | 10.2 48 | 4.32 56 | 7.82 75 | 22.4 45 | 6.71 74 | 1.47 89 | 6.39 97 | 1.18 83 | 1.12 24 | 2.87 23 | 2.27 54 |
FMOF [92] | 57.0 | 4.42 27 | 17.8 18 | 3.06 54 | 5.03 76 | 23.1 65 | 3.63 73 | 4.45 25 | 14.8 23 | 2.80 46 | 2.94 31 | 18.8 30 | 1.26 35 | 7.00 42 | 10.2 48 | 4.71 67 | 8.92 101 | 20.9 30 | 7.13 86 | 1.06 71 | 6.34 96 | 1.85 95 | 2.58 80 | 5.80 71 | 3.06 77 |
JOF [136] | 57.0 | 4.36 23 | 18.2 22 | 2.55 39 | 5.21 87 | 23.2 67 | 4.14 91 | 4.40 24 | 14.2 16 | 3.37 57 | 3.66 51 | 21.4 44 | 1.95 70 | 6.49 27 | 9.25 26 | 3.76 36 | 7.05 55 | 21.0 32 | 5.58 35 | 4.19 123 | 8.20 114 | 6.97 134 | 1.84 64 | 4.37 56 | 2.92 74 |
Ramp [62] | 57.2 | 5.12 45 | 21.1 44 | 3.82 76 | 4.68 62 | 23.2 67 | 3.47 68 | 4.89 31 | 16.3 31 | 3.46 59 | 3.83 59 | 22.3 49 | 1.93 69 | 7.23 53 | 10.2 48 | 4.80 73 | 7.61 69 | 22.1 41 | 6.80 76 | 1.20 78 | 5.04 68 | 1.43 89 | 1.36 33 | 2.98 27 | 2.31 58 |
PBOFVI [189] | 57.7 | 5.88 63 | 20.7 38 | 3.60 69 | 3.16 22 | 19.6 41 | 1.31 8 | 5.28 45 | 16.3 31 | 1.11 12 | 1.69 9 | 12.0 11 | 0.46 6 | 8.70 99 | 12.3 102 | 6.18 103 | 8.56 92 | 22.1 41 | 9.08 113 | 0.91 64 | 7.30 110 | 1.23 85 | 2.03 67 | 5.09 65 | 3.49 89 |
IIOF-NLDP [129] | 58.2 | 6.16 67 | 25.7 71 | 2.54 38 | 4.55 55 | 23.7 76 | 2.40 37 | 5.35 47 | 17.6 46 | 1.06 11 | 2.78 25 | 17.0 21 | 1.54 46 | 8.90 105 | 13.4 128 | 4.73 68 | 8.04 82 | 22.8 49 | 7.69 96 | 0.64 48 | 4.61 53 | 0.25 48 | 1.81 63 | 4.16 51 | 2.72 66 |
S2D-Matching [83] | 59.6 | 4.97 39 | 21.3 48 | 3.55 67 | 4.74 66 | 23.6 74 | 3.35 57 | 6.50 63 | 20.9 64 | 3.46 59 | 3.49 46 | 20.4 41 | 1.60 51 | 7.07 44 | 10.0 41 | 4.22 50 | 7.82 75 | 23.1 53 | 6.87 80 | 1.78 99 | 5.90 90 | 2.12 98 | 1.30 29 | 3.14 30 | 2.74 67 |
NL-TV-NCC [25] | 59.9 | 5.44 54 | 21.7 51 | 2.24 28 | 4.00 43 | 21.9 56 | 1.69 19 | 5.27 44 | 17.8 48 | 0.67 6 | 2.52 22 | 19.1 34 | 0.67 11 | 8.37 93 | 12.5 105 | 5.12 87 | 11.5 124 | 32.0 116 | 9.19 115 | 0.86 59 | 4.93 65 | 1.35 87 | 2.16 70 | 6.46 75 | 1.63 26 |
IROF-TV [53] | 60.9 | 5.22 48 | 22.6 58 | 3.59 68 | 4.80 69 | 24.2 82 | 3.73 83 | 5.71 53 | 18.4 55 | 3.64 65 | 4.19 75 | 25.7 90 | 1.92 68 | 7.63 69 | 10.7 63 | 5.26 88 | 9.22 107 | 30.2 104 | 6.60 66 | 0.30 8 | 2.86 12 | 0.02 3 | 1.32 31 | 3.76 43 | 2.27 54 |
TV-L1-MCT [64] | 60.9 | 4.69 35 | 18.9 28 | 3.60 69 | 5.64 94 | 25.6 90 | 4.21 92 | 5.53 50 | 18.1 52 | 3.23 53 | 3.04 32 | 19.9 37 | 1.35 41 | 7.49 60 | 10.6 59 | 4.91 80 | 8.34 87 | 22.8 49 | 7.50 95 | 0.79 57 | 2.61 7 | 3.57 116 | 1.73 58 | 3.45 38 | 3.26 83 |
MDP-Flow [26] | 61.0 | 5.65 58 | 24.7 68 | 4.93 101 | 3.70 36 | 17.6 25 | 3.40 62 | 5.47 48 | 18.7 56 | 4.66 76 | 3.87 60 | 24.3 74 | 1.88 64 | 7.12 47 | 9.89 38 | 5.00 84 | 6.17 40 | 25.9 77 | 4.66 20 | 0.61 44 | 5.65 86 | 0.05 16 | 3.28 98 | 8.39 98 | 3.45 88 |
AggregFlow [95] | 62.0 | 6.17 68 | 23.3 61 | 2.58 40 | 7.01 106 | 28.0 109 | 5.29 107 | 8.46 80 | 24.2 75 | 7.66 107 | 3.73 54 | 20.2 39 | 1.73 55 | 7.25 54 | 10.6 59 | 3.52 26 | 4.43 10 | 16.4 13 | 4.80 23 | 0.75 54 | 5.43 81 | 0.25 48 | 1.92 65 | 4.46 58 | 4.12 96 |
VCN_RVC [178] | 63.6 | 10.2 118 | 37.7 121 | 5.05 105 | 5.20 85 | 22.9 61 | 4.53 99 | 7.40 70 | 23.4 72 | 5.74 85 | 4.38 80 | 24.8 77 | 2.02 75 | 6.98 41 | 10.0 41 | 3.68 30 | 6.06 37 | 24.4 62 | 6.29 60 | 0.33 14 | 2.99 15 | 0.22 43 | 1.41 36 | 4.15 50 | 2.10 49 |
CombBMOF [111] | 64.9 | 6.51 73 | 28.6 82 | 2.61 41 | 3.98 42 | 18.7 36 | 2.29 35 | 5.29 46 | 17.4 43 | 2.33 36 | 5.12 92 | 26.1 97 | 3.28 99 | 6.35 22 | 9.81 35 | 3.34 23 | 12.0 129 | 28.4 94 | 15.1 142 | 3.73 118 | 12.8 143 | 0.76 71 | 0.98 20 | 3.00 28 | 0.09 11 |
OFH [38] | 65.7 | 6.38 72 | 25.7 71 | 4.69 94 | 3.90 40 | 20.6 50 | 2.24 34 | 7.85 74 | 24.2 75 | 2.27 33 | 4.11 73 | 25.1 81 | 1.72 54 | 7.44 58 | 10.4 55 | 4.69 65 | 8.13 83 | 28.9 96 | 8.44 108 | 0.44 24 | 4.25 46 | 0.12 32 | 2.80 84 | 8.82 108 | 2.74 67 |
Adaptive [20] | 66.1 | 5.12 45 | 22.0 52 | 2.34 31 | 4.82 71 | 23.2 67 | 3.50 69 | 8.67 86 | 24.5 80 | 3.56 63 | 4.19 75 | 25.3 87 | 1.83 62 | 7.40 57 | 10.6 59 | 3.63 29 | 5.84 33 | 23.2 55 | 3.75 13 | 3.25 114 | 8.86 117 | 0.89 74 | 2.87 87 | 6.69 80 | 3.14 81 |
Sparse Occlusion [54] | 66.2 | 4.99 41 | 21.1 44 | 2.79 47 | 4.13 46 | 20.1 48 | 3.00 48 | 5.94 58 | 19.4 59 | 2.15 32 | 3.41 42 | 21.8 46 | 1.35 41 | 8.17 88 | 12.1 97 | 4.74 69 | 7.87 79 | 25.6 76 | 6.34 62 | 11.4 153 | 17.7 155 | 2.71 107 | 1.64 53 | 4.70 62 | 1.81 35 |
Occlusion-TV-L1 [63] | 66.5 | 5.23 49 | 22.2 55 | 2.36 34 | 4.40 52 | 21.2 53 | 3.39 61 | 8.46 80 | 24.8 81 | 3.83 69 | 3.92 64 | 24.8 77 | 1.74 56 | 9.11 108 | 13.1 122 | 5.75 96 | 4.65 12 | 23.9 58 | 3.52 11 | 1.27 81 | 3.13 20 | 0.44 58 | 3.56 107 | 8.92 109 | 3.28 84 |
MCPFlow_RVC [197] | 67.5 | 15.6 128 | 35.7 109 | 8.09 124 | 10.6 119 | 30.0 118 | 10.2 121 | 14.0 117 | 32.8 116 | 18.1 123 | 1.97 11 | 10.4 9 | 1.08 26 | 7.61 68 | 11.5 85 | 2.70 12 | 4.90 13 | 15.5 9 | 4.48 17 | 0.62 46 | 5.26 74 | 0.25 48 | 1.61 52 | 3.43 35 | 1.90 41 |
RFlow [88] | 68.2 | 5.85 62 | 24.8 70 | 4.44 90 | 3.18 23 | 17.9 28 | 1.88 26 | 7.81 73 | 24.4 79 | 2.32 35 | 3.25 37 | 23.4 66 | 1.55 47 | 7.94 76 | 11.6 87 | 4.86 75 | 8.23 84 | 28.0 93 | 6.64 70 | 1.16 77 | 2.13 2 | 1.13 81 | 4.10 117 | 9.22 116 | 6.81 123 |
2DHMM-SAS [90] | 68.5 | 5.14 47 | 21.0 40 | 3.79 75 | 5.26 88 | 25.2 87 | 3.45 66 | 6.97 69 | 20.2 60 | 4.18 74 | 4.06 71 | 23.3 65 | 2.10 80 | 7.18 50 | 10.2 48 | 4.92 81 | 8.29 85 | 23.7 56 | 7.16 87 | 1.26 79 | 5.41 80 | 1.63 91 | 1.71 57 | 3.75 42 | 2.74 67 |
SimpleFlow [49] | 69.1 | 5.65 58 | 22.4 57 | 4.93 101 | 5.47 93 | 24.5 85 | 4.28 95 | 6.88 68 | 21.0 65 | 3.95 70 | 4.74 85 | 25.2 83 | 3.02 92 | 7.19 51 | 10.1 44 | 4.70 66 | 8.34 87 | 23.1 53 | 7.16 87 | 1.02 68 | 4.61 53 | 0.89 74 | 1.29 28 | 3.44 36 | 2.47 60 |
ACK-Prior [27] | 70.2 | 5.49 56 | 24.0 65 | 1.81 8 | 2.55 10 | 15.7 14 | 0.83 1 | 5.07 36 | 17.7 47 | 1.52 25 | 2.14 15 | 18.1 27 | 0.50 9 | 8.64 96 | 11.6 87 | 7.10 115 | 14.6 142 | 30.7 107 | 11.7 130 | 8.46 148 | 11.5 135 | 19.5 152 | 3.68 110 | 7.25 84 | 2.64 65 |
S2F-IF [121] | 71.1 | 9.49 110 | 37.6 118 | 4.93 101 | 4.81 70 | 25.6 90 | 3.34 56 | 8.25 78 | 26.1 85 | 6.40 90 | 4.99 89 | 25.6 89 | 2.93 90 | 7.80 73 | 11.0 71 | 4.90 78 | 5.61 25 | 24.9 72 | 5.83 40 | 0.62 46 | 5.35 79 | 0.22 43 | 1.43 37 | 4.11 48 | 1.67 28 |
Complementary OF [21] | 72.8 | 7.27 82 | 30.0 87 | 4.31 85 | 3.18 23 | 18.9 39 | 1.52 15 | 5.91 56 | 20.2 60 | 2.31 34 | 4.22 78 | 24.8 77 | 2.05 76 | 7.50 63 | 10.4 55 | 4.99 83 | 12.3 133 | 31.7 115 | 8.87 110 | 0.61 44 | 2.69 10 | 1.72 93 | 3.33 100 | 9.22 116 | 4.88 112 |
PGM-C [118] | 73.7 | 9.47 108 | 37.1 114 | 4.81 99 | 5.08 77 | 26.1 97 | 3.63 73 | 8.75 88 | 27.6 92 | 7.02 96 | 5.65 105 | 28.1 117 | 3.63 110 | 7.99 79 | 11.3 79 | 4.88 76 | 5.71 28 | 24.5 63 | 5.97 44 | 0.31 9 | 3.01 16 | 0.02 3 | 2.07 68 | 6.50 77 | 2.14 50 |
ROF-ND [105] | 73.8 | 6.70 74 | 27.6 78 | 3.53 65 | 3.08 20 | 16.0 15 | 1.73 21 | 5.81 55 | 18.3 54 | 1.58 26 | 3.81 58 | 18.4 28 | 2.20 81 | 9.45 115 | 14.0 139 | 6.31 104 | 11.3 122 | 29.6 101 | 7.27 91 | 9.92 151 | 10.8 127 | 7.29 135 | 1.53 48 | 3.44 36 | 1.64 27 |
SegFlow [156] | 74.5 | 9.46 107 | 37.1 114 | 4.79 96 | 5.13 80 | 26.3 100 | 3.65 75 | 8.62 85 | 27.1 89 | 7.00 94 | 5.59 101 | 28.1 117 | 3.52 106 | 8.07 85 | 11.4 82 | 5.09 86 | 5.72 29 | 24.6 64 | 6.10 51 | 0.35 16 | 3.43 24 | 0.02 3 | 1.76 59 | 5.06 64 | 2.50 62 |
TCOF [69] | 74.6 | 7.04 80 | 26.9 76 | 3.54 66 | 4.93 72 | 23.7 76 | 3.45 66 | 9.94 101 | 27.8 94 | 7.40 103 | 3.74 55 | 23.7 69 | 1.55 47 | 10.0 131 | 14.3 141 | 4.40 58 | 4.91 14 | 17.0 15 | 5.53 31 | 5.08 129 | 9.68 123 | 4.19 120 | 1.43 37 | 4.44 57 | 1.69 30 |
FlowFields [108] | 76.1 | 9.65 112 | 37.6 118 | 5.13 107 | 5.09 78 | 25.9 94 | 3.72 81 | 8.92 90 | 28.3 98 | 7.07 98 | 5.45 97 | 26.0 95 | 3.82 111 | 7.95 77 | 11.2 77 | 5.01 85 | 5.75 30 | 26.1 80 | 6.01 45 | 0.40 21 | 3.29 23 | 0.12 32 | 1.92 65 | 5.99 72 | 1.89 40 |
TF+OM [98] | 77.0 | 6.03 66 | 23.7 64 | 2.78 45 | 4.39 50 | 19.9 45 | 3.57 70 | 8.73 87 | 23.0 71 | 11.2 113 | 3.57 50 | 23.2 63 | 1.36 43 | 7.98 78 | 11.1 75 | 5.89 98 | 8.95 102 | 25.3 74 | 7.06 85 | 1.68 97 | 11.2 131 | 0.20 40 | 3.56 107 | 8.35 97 | 4.18 97 |
DMF_ROB [135] | 77.2 | 8.16 93 | 33.3 103 | 4.93 101 | 4.95 74 | 23.7 76 | 3.23 52 | 9.38 94 | 28.5 100 | 5.85 89 | 5.64 104 | 27.3 106 | 3.41 104 | 7.49 60 | 10.6 59 | 4.44 60 | 6.49 47 | 25.9 77 | 6.07 49 | 0.40 21 | 3.65 28 | 0.07 21 | 3.81 113 | 9.06 113 | 4.63 108 |
Steered-L1 [116] | 77.6 | 4.54 29 | 21.2 46 | 2.09 21 | 2.13 2 | 13.9 8 | 1.31 8 | 4.80 30 | 16.5 33 | 1.64 28 | 3.87 60 | 25.1 81 | 1.60 51 | 8.62 95 | 11.5 85 | 7.01 112 | 11.1 119 | 28.7 95 | 10.4 124 | 12.0 157 | 12.3 140 | 34.9 160 | 5.90 129 | 9.03 112 | 11.6 137 |
CPM-Flow [114] | 78.2 | 9.47 108 | 37.1 114 | 4.79 96 | 5.15 82 | 26.3 100 | 3.67 77 | 8.59 84 | 27.1 89 | 7.00 94 | 5.59 101 | 27.8 113 | 3.57 108 | 7.99 79 | 11.3 79 | 4.74 69 | 5.70 27 | 24.1 60 | 6.05 47 | 0.48 31 | 4.29 49 | 0.02 3 | 2.76 83 | 7.63 89 | 4.11 95 |
FlowFields+ [128] | 78.2 | 9.76 114 | 38.1 123 | 5.31 110 | 5.14 81 | 26.2 99 | 3.72 81 | 8.99 91 | 28.6 101 | 7.15 101 | 5.09 91 | 25.9 94 | 3.29 100 | 7.82 74 | 11.0 71 | 4.94 82 | 5.22 19 | 24.7 67 | 5.18 29 | 0.70 52 | 5.85 89 | 0.30 54 | 1.79 60 | 5.77 70 | 1.45 25 |
DeepFlow2 [106] | 78.5 | 6.80 76 | 28.5 81 | 2.99 51 | 5.20 85 | 22.9 61 | 3.60 72 | 8.88 89 | 26.2 86 | 5.75 86 | 5.76 107 | 26.8 104 | 3.41 104 | 7.34 56 | 10.7 63 | 3.58 27 | 5.86 36 | 24.8 69 | 6.22 55 | 1.02 68 | 3.78 35 | 3.08 114 | 4.35 120 | 9.84 121 | 5.80 118 |
EPPM w/o HM [86] | 78.8 | 8.62 99 | 33.5 104 | 3.62 71 | 3.58 32 | 19.7 42 | 1.93 28 | 6.19 60 | 20.5 62 | 1.64 28 | 4.64 84 | 25.2 83 | 2.54 84 | 7.60 67 | 10.4 55 | 5.81 97 | 11.2 120 | 31.6 113 | 9.82 120 | 6.91 141 | 8.93 118 | 15.9 147 | 1.48 45 | 4.06 47 | 2.01 45 |
EpicFlow [100] | 78.9 | 9.44 106 | 37.1 114 | 4.80 98 | 5.15 82 | 26.4 102 | 3.70 79 | 9.58 96 | 30.0 104 | 7.07 98 | 5.38 96 | 27.8 113 | 3.29 100 | 8.01 83 | 11.3 79 | 4.88 76 | 5.67 26 | 24.6 64 | 6.12 52 | 0.32 12 | 3.13 20 | 0.02 3 | 3.10 95 | 7.52 87 | 4.79 109 |
ComplOF-FED-GPU [35] | 82.1 | 6.96 78 | 30.7 90 | 3.33 60 | 4.74 66 | 24.9 86 | 2.66 39 | 6.71 66 | 22.4 68 | 2.45 40 | 4.44 81 | 26.2 98 | 2.05 76 | 7.50 63 | 10.7 63 | 4.20 49 | 9.78 109 | 34.0 125 | 9.47 117 | 2.42 105 | 4.74 58 | 6.63 132 | 3.09 93 | 9.17 114 | 3.91 94 |
SRR-TVOF-NL [89] | 82.5 | 7.45 86 | 28.6 82 | 3.09 56 | 6.20 99 | 26.1 97 | 3.90 86 | 9.82 99 | 28.4 99 | 5.78 87 | 3.96 68 | 23.5 67 | 1.55 47 | 7.55 65 | 10.8 66 | 5.27 89 | 9.21 105 | 26.7 85 | 7.25 90 | 5.74 133 | 11.5 135 | 4.01 118 | 1.30 29 | 3.49 39 | 2.19 53 |
F-TV-L1 [15] | 83.7 | 8.70 100 | 31.4 95 | 8.47 125 | 7.61 110 | 27.3 107 | 5.86 108 | 11.0 105 | 28.0 95 | 5.73 84 | 5.75 106 | 28.7 122 | 3.32 103 | 7.28 55 | 10.8 66 | 3.72 31 | 6.59 48 | 26.4 82 | 4.38 16 | 1.26 79 | 5.30 76 | 0.44 58 | 3.04 91 | 7.76 90 | 2.29 57 |
SIOF [67] | 83.9 | 5.37 52 | 22.6 58 | 2.34 31 | 6.11 97 | 28.4 111 | 4.30 96 | 12.6 112 | 29.2 103 | 14.4 118 | 5.52 100 | 27.4 109 | 3.00 91 | 8.96 106 | 12.6 107 | 6.02 99 | 8.72 96 | 27.9 91 | 7.93 99 | 0.38 18 | 3.48 25 | 0.02 3 | 3.09 93 | 7.58 88 | 4.85 111 |
DPOF [18] | 84.5 | 9.01 103 | 34.7 106 | 3.68 74 | 6.16 98 | 25.4 89 | 4.32 97 | 5.55 52 | 17.9 50 | 3.36 56 | 3.92 64 | 25.3 87 | 2.00 73 | 8.14 87 | 11.0 71 | 6.05 100 | 10.5 114 | 27.9 91 | 8.16 101 | 9.33 149 | 6.19 93 | 21.0 154 | 1.46 41 | 4.57 60 | 0.80 19 |
TV-L1-improved [17] | 84.8 | 5.52 57 | 23.4 62 | 3.42 63 | 4.13 46 | 20.8 51 | 2.96 46 | 8.29 79 | 24.2 75 | 3.64 65 | 4.06 71 | 24.4 75 | 1.77 59 | 8.34 92 | 12.1 97 | 4.15 48 | 13.7 137 | 38.4 138 | 14.9 139 | 4.40 125 | 10.1 125 | 2.14 99 | 3.33 100 | 8.42 99 | 3.40 86 |
Aniso. Huber-L1 [22] | 85.5 | 5.98 65 | 24.2 66 | 3.23 59 | 8.53 114 | 27.3 107 | 7.91 113 | 9.64 97 | 25.6 84 | 5.52 82 | 5.00 90 | 25.7 90 | 2.75 87 | 8.66 98 | 12.8 113 | 4.74 69 | 7.60 68 | 24.8 69 | 3.51 10 | 3.65 117 | 7.24 109 | 3.00 113 | 2.57 79 | 6.69 80 | 2.86 72 |
CVENG22+RIC [199] | 86.6 | 8.94 102 | 35.0 108 | 4.44 90 | 5.79 96 | 28.2 110 | 4.12 90 | 10.1 103 | 31.2 108 | 7.17 102 | 5.15 94 | 27.8 113 | 2.85 88 | 9.35 114 | 12.8 113 | 6.35 105 | 6.37 44 | 27.3 87 | 6.60 66 | 0.32 12 | 3.03 17 | 0.02 3 | 3.32 99 | 9.17 114 | 4.37 101 |
Classic++ [32] | 87.5 | 5.46 55 | 22.2 55 | 4.35 87 | 4.66 60 | 22.1 57 | 3.57 70 | 8.00 76 | 24.3 78 | 5.06 78 | 4.21 77 | 25.2 83 | 2.01 74 | 8.77 102 | 12.7 111 | 5.47 90 | 9.03 104 | 30.2 104 | 7.29 92 | 2.92 112 | 7.73 112 | 3.10 115 | 3.83 114 | 8.53 100 | 3.87 93 |
LocallyOriented [52] | 87.8 | 8.05 92 | 30.6 89 | 3.63 73 | 8.09 112 | 30.8 120 | 6.17 110 | 12.3 111 | 32.3 111 | 7.04 97 | 4.88 88 | 25.2 83 | 2.88 89 | 8.80 103 | 12.7 111 | 4.27 54 | 5.41 23 | 20.4 26 | 6.07 49 | 1.35 84 | 6.03 91 | 0.99 79 | 3.73 112 | 8.62 103 | 4.18 97 |
BriefMatch [122] | 88.2 | 4.78 38 | 21.0 40 | 2.40 37 | 4.00 43 | 19.8 43 | 2.68 40 | 5.13 37 | 17.5 45 | 2.41 38 | 3.23 34 | 22.1 48 | 1.28 38 | 9.81 125 | 12.0 94 | 13.1 149 | 17.2 144 | 33.8 121 | 17.8 146 | 7.84 144 | 12.7 142 | 22.3 155 | 8.01 141 | 10.5 127 | 16.1 148 |
DeepFlow [85] | 90.0 | 7.55 87 | 29.3 85 | 4.67 93 | 6.29 101 | 23.7 76 | 4.86 101 | 10.0 102 | 28.0 95 | 8.76 112 | 6.15 114 | 27.3 106 | 3.83 112 | 7.49 60 | 10.8 66 | 3.72 31 | 6.40 45 | 26.8 86 | 6.85 79 | 1.12 74 | 2.92 14 | 3.94 117 | 7.07 134 | 11.2 132 | 12.7 139 |
FF++_ROB [141] | 90.3 | 9.90 117 | 38.2 124 | 5.12 106 | 5.32 91 | 26.0 95 | 4.01 87 | 9.76 98 | 30.0 104 | 7.58 105 | 5.48 98 | 26.2 98 | 3.88 114 | 7.83 75 | 11.0 71 | 5.63 93 | 7.26 57 | 24.3 61 | 7.33 93 | 0.78 56 | 3.65 28 | 2.88 111 | 2.92 90 | 6.46 75 | 6.17 121 |
C-RAFT_RVC [181] | 90.3 | 17.2 132 | 40.2 127 | 7.62 121 | 16.2 133 | 39.0 141 | 16.0 132 | 16.0 125 | 39.3 128 | 19.2 125 | 5.95 111 | 18.8 30 | 3.23 96 | 9.48 117 | 13.2 123 | 7.53 120 | 6.16 39 | 22.6 48 | 6.57 65 | 0.96 65 | 6.07 92 | 0.44 58 | 0.70 13 | 2.54 21 | 0.04 6 |
CRTflow [81] | 90.8 | 7.63 89 | 31.8 99 | 3.42 63 | 4.40 52 | 21.2 53 | 2.97 47 | 8.99 91 | 26.6 87 | 4.11 73 | 4.86 87 | 26.5 101 | 2.57 85 | 7.99 79 | 11.7 89 | 3.26 20 | 18.0 148 | 40.2 142 | 22.2 151 | 1.47 89 | 4.45 51 | 2.51 105 | 4.73 122 | 11.4 133 | 7.30 124 |
TriFlow [93] | 91.1 | 7.87 91 | 30.1 88 | 3.19 58 | 7.12 107 | 24.4 84 | 7.15 112 | 13.9 116 | 31.4 109 | 20.0 126 | 3.50 47 | 22.4 50 | 1.77 59 | 8.70 99 | 11.7 89 | 7.03 114 | 7.51 66 | 21.9 39 | 6.63 69 | 28.6 161 | 14.7 151 | 78.3 163 | 2.16 70 | 5.57 68 | 2.14 50 |
Local-TV-L1 [65] | 92.9 | 9.60 111 | 30.8 91 | 7.89 123 | 12.7 124 | 30.2 119 | 13.3 124 | 15.9 124 | 32.3 111 | 17.3 121 | 6.19 115 | 28.0 116 | 3.84 113 | 7.55 65 | 10.9 70 | 4.22 50 | 7.48 63 | 26.4 82 | 6.02 46 | 0.28 4 | 1.87 1 | 0.15 35 | 9.10 143 | 10.8 129 | 20.5 149 |
Brox et al. [5] | 93.6 | 8.32 96 | 32.6 101 | 6.95 117 | 6.23 100 | 26.9 106 | 5.23 105 | 9.13 93 | 27.6 92 | 6.55 92 | 5.85 109 | 28.2 119 | 3.26 97 | 10.2 133 | 12.9 118 | 11.0 144 | 5.43 24 | 29.3 100 | 4.79 22 | 0.86 59 | 4.00 39 | 0.12 32 | 4.32 118 | 10.2 124 | 4.54 106 |
Rannacher [23] | 93.6 | 6.99 79 | 27.1 77 | 5.36 112 | 5.27 89 | 24.3 83 | 4.22 93 | 9.51 95 | 27.1 89 | 5.54 83 | 4.76 86 | 25.7 90 | 2.58 86 | 8.80 103 | 12.9 118 | 4.82 74 | 11.0 117 | 35.7 130 | 9.36 116 | 2.33 104 | 4.76 60 | 2.39 104 | 2.82 86 | 8.01 93 | 3.13 80 |
Dynamic MRF [7] | 94.2 | 7.74 90 | 31.6 98 | 4.44 90 | 4.12 45 | 23.6 74 | 2.47 38 | 8.49 82 | 28.0 95 | 2.83 49 | 4.25 79 | 27.4 109 | 2.41 82 | 8.61 94 | 12.0 94 | 6.08 101 | 14.5 141 | 43.2 146 | 14.9 139 | 0.64 48 | 2.35 3 | 4.51 123 | 9.85 146 | 15.6 149 | 15.3 146 |
Bartels [41] | 94.8 | 6.83 77 | 26.2 74 | 5.19 109 | 3.93 41 | 17.4 24 | 3.30 54 | 6.63 65 | 22.6 69 | 3.25 54 | 4.45 82 | 23.9 71 | 2.48 83 | 9.12 109 | 12.1 97 | 8.25 128 | 10.6 115 | 31.1 109 | 12.3 133 | 5.74 133 | 10.4 126 | 18.9 151 | 5.34 124 | 9.52 118 | 8.47 130 |
LiteFlowNet [138] | 97.4 | 15.0 126 | 50.3 144 | 7.15 118 | 6.37 102 | 25.8 93 | 4.98 102 | 11.5 108 | 36.2 123 | 6.96 93 | 5.48 98 | 23.1 61 | 3.06 95 | 9.02 107 | 12.3 102 | 7.10 115 | 11.7 128 | 33.8 121 | 9.65 118 | 0.44 24 | 4.00 39 | 0.20 40 | 3.07 92 | 6.97 83 | 4.52 105 |
OFRF [132] | 100.7 | 7.28 83 | 24.5 67 | 4.75 95 | 14.7 130 | 29.6 116 | 15.2 128 | 14.3 119 | 29.0 102 | 15.9 120 | 6.64 118 | 25.7 90 | 5.02 123 | 6.95 38 | 10.1 44 | 3.72 31 | 8.44 91 | 23.9 58 | 7.17 89 | 3.30 115 | 6.51 99 | 10.8 142 | 9.99 147 | 9.82 120 | 24.2 152 |
CBF [12] | 100.9 | 6.32 69 | 26.2 74 | 3.35 61 | 11.1 121 | 25.6 90 | 13.7 125 | 8.51 83 | 24.1 74 | 7.12 100 | 5.12 92 | 26.0 95 | 3.04 94 | 10.3 134 | 13.6 133 | 9.59 140 | 7.85 78 | 26.4 82 | 4.25 14 | 11.8 154 | 13.8 146 | 14.2 146 | 3.54 106 | 8.06 94 | 5.32 116 |
CLG-TV [48] | 102.2 | 6.33 70 | 24.7 68 | 4.13 81 | 9.08 117 | 26.6 103 | 9.31 119 | 9.85 100 | 26.8 88 | 5.82 88 | 5.30 95 | 26.5 101 | 3.03 93 | 10.4 136 | 14.6 145 | 7.57 121 | 7.95 80 | 31.1 109 | 6.51 64 | 5.92 135 | 11.4 132 | 4.36 121 | 3.41 103 | 8.81 107 | 3.06 77 |
TriangleFlow [30] | 102.7 | 7.35 84 | 28.2 80 | 4.31 85 | 5.35 92 | 25.2 87 | 3.36 58 | 8.00 76 | 24.8 81 | 2.70 45 | 3.90 63 | 24.1 73 | 1.97 72 | 12.9 150 | 17.8 157 | 10.7 142 | 13.1 135 | 32.3 118 | 13.9 137 | 4.71 127 | 16.1 153 | 4.04 119 | 3.65 109 | 8.73 105 | 5.69 117 |
DF-Auto [113] | 104.1 | 9.74 113 | 34.1 105 | 4.36 88 | 14.1 129 | 31.9 125 | 15.4 130 | 15.6 123 | 33.1 118 | 23.6 130 | 5.94 110 | 27.3 106 | 3.59 109 | 10.4 136 | 14.8 148 | 6.97 111 | 3.80 8 | 21.1 33 | 2.46 8 | 5.25 132 | 11.4 132 | 0.49 61 | 4.33 119 | 10.4 125 | 4.33 99 |
CNN-flow-warp+ref [115] | 104.6 | 9.81 116 | 35.7 109 | 7.67 122 | 8.14 113 | 26.0 95 | 8.55 115 | 14.3 119 | 35.8 121 | 15.7 119 | 6.69 119 | 30.3 125 | 4.31 118 | 9.17 111 | 12.2 100 | 8.71 134 | 7.03 54 | 29.6 101 | 5.55 34 | 0.69 50 | 3.77 34 | 2.00 97 | 7.79 139 | 12.1 137 | 8.13 129 |
p-harmonic [29] | 105.0 | 8.47 97 | 36.3 112 | 7.17 119 | 5.27 89 | 24.1 81 | 4.39 98 | 11.2 107 | 31.4 109 | 8.13 111 | 7.18 123 | 32.4 130 | 5.24 125 | 8.04 84 | 11.1 75 | 6.89 109 | 9.82 110 | 36.4 133 | 10.6 126 | 2.61 107 | 5.51 83 | 0.54 64 | 4.07 116 | 9.01 111 | 4.34 100 |
ContinualFlow_ROB [148] | 106.1 | 15.9 131 | 42.0 128 | 9.15 128 | 15.5 132 | 32.1 126 | 16.9 133 | 19.1 130 | 43.0 135 | 24.3 131 | 6.50 117 | 26.2 98 | 3.53 107 | 9.84 127 | 13.0 120 | 6.92 110 | 13.8 138 | 33.9 124 | 17.4 145 | 0.57 42 | 5.33 77 | 0.32 55 | 1.46 41 | 4.29 54 | 0.68 17 |
FlowNet2 [120] | 108.7 | 21.7 143 | 43.8 131 | 13.5 136 | 24.6 147 | 42.3 145 | 27.3 147 | 19.8 131 | 40.5 129 | 29.9 139 | 8.21 130 | 23.6 68 | 5.39 127 | 9.85 128 | 12.6 107 | 8.54 130 | 8.76 97 | 28.9 96 | 5.89 42 | 2.77 109 | 15.5 152 | 0.81 73 | 1.28 27 | 4.68 61 | 0.26 13 |
CompactFlow_ROB [155] | 108.7 | 23.6 146 | 47.8 138 | 9.55 129 | 13.6 125 | 31.6 123 | 14.9 127 | 22.7 137 | 48.3 140 | 36.1 150 | 8.92 132 | 28.6 120 | 5.54 128 | 9.61 119 | 13.2 123 | 6.45 106 | 8.97 103 | 34.7 127 | 8.76 109 | 0.29 5 | 2.81 11 | 0.10 30 | 3.17 97 | 7.86 91 | 3.76 92 |
FlowNetS+ft+v [110] | 109.2 | 7.57 88 | 29.4 86 | 3.96 78 | 7.50 109 | 26.6 103 | 6.48 111 | 14.3 119 | 32.7 115 | 17.5 122 | 7.55 124 | 31.3 127 | 5.28 126 | 10.5 138 | 14.7 146 | 7.49 119 | 6.75 51 | 27.8 90 | 6.97 83 | 4.01 122 | 8.84 116 | 6.77 133 | 3.52 105 | 9.71 119 | 3.61 90 |
EAI-Flow [147] | 110.2 | 18.4 134 | 42.5 129 | 11.6 132 | 10.8 120 | 32.2 127 | 9.62 120 | 14.3 119 | 38.9 127 | 14.0 116 | 7.07 122 | 28.6 120 | 5.13 124 | 8.20 89 | 11.9 92 | 5.47 90 | 9.21 105 | 30.7 107 | 9.05 112 | 9.33 149 | 6.96 106 | 0.49 61 | 2.48 77 | 7.31 85 | 3.20 82 |
SegOF [10] | 110.2 | 12.6 122 | 34.9 107 | 7.20 120 | 21.3 141 | 36.9 135 | 25.3 145 | 21.6 135 | 40.5 129 | 31.8 143 | 14.1 143 | 37.7 140 | 10.8 138 | 10.3 134 | 12.5 105 | 12.6 148 | 10.2 112 | 40.2 142 | 11.2 128 | 0.29 5 | 2.91 13 | 0.07 21 | 2.90 88 | 8.68 104 | 2.07 48 |
LDOF [28] | 110.3 | 8.22 94 | 31.4 95 | 4.08 79 | 7.64 111 | 29.4 113 | 5.87 109 | 10.7 104 | 30.3 106 | 7.99 110 | 7.80 127 | 36.8 138 | 4.86 122 | 9.14 110 | 12.4 104 | 8.24 127 | 8.58 93 | 32.0 116 | 8.38 106 | 1.75 98 | 5.26 74 | 5.02 124 | 5.52 126 | 12.9 141 | 6.04 120 |
LSM_FLOW_RVC [182] | 110.8 | 23.2 145 | 60.7 152 | 17.3 142 | 14.0 128 | 37.5 136 | 13.9 126 | 24.5 143 | 59.3 152 | 22.3 128 | 9.50 136 | 35.6 137 | 7.85 135 | 9.18 112 | 12.8 113 | 6.70 107 | 12.0 129 | 38.7 139 | 12.9 135 | 0.33 14 | 3.26 22 | 0.07 21 | 2.62 81 | 8.17 95 | 1.74 32 |
Fusion [6] | 110.9 | 8.51 98 | 37.6 118 | 6.69 116 | 3.62 34 | 20.0 47 | 3.08 49 | 6.82 67 | 22.6 69 | 6.47 91 | 5.78 108 | 31.3 127 | 4.29 117 | 11.2 146 | 14.7 146 | 10.6 141 | 14.0 139 | 35.2 128 | 15.0 141 | 7.88 145 | 14.3 149 | 2.22 100 | 5.35 125 | 11.0 130 | 8.56 131 |
IRR-PWC_RVC [180] | 111.5 | 25.6 148 | 49.2 143 | 10.6 130 | 21.0 140 | 42.3 145 | 23.2 141 | 24.1 142 | 49.4 142 | 34.4 146 | 13.3 139 | 24.5 76 | 10.7 137 | 8.64 96 | 11.8 91 | 5.63 93 | 8.35 89 | 30.2 104 | 6.70 73 | 1.49 91 | 9.40 121 | 0.57 66 | 2.91 89 | 7.90 92 | 1.91 42 |
AugFNG_ROB [139] | 111.9 | 18.1 133 | 47.6 137 | 10.8 131 | 23.9 145 | 39.8 143 | 28.6 148 | 22.8 139 | 49.1 141 | 29.3 137 | 7.57 125 | 25.0 80 | 4.54 121 | 9.90 130 | 12.8 113 | 8.92 135 | 8.31 86 | 33.8 121 | 8.19 102 | 0.76 55 | 7.01 107 | 0.25 48 | 2.80 84 | 7.45 86 | 1.85 38 |
EPMNet [131] | 113.0 | 21.3 142 | 48.9 142 | 14.5 138 | 23.2 144 | 44.2 148 | 25.1 144 | 18.8 129 | 37.9 125 | 28.4 135 | 8.92 132 | 27.5 112 | 5.90 130 | 9.85 128 | 12.6 107 | 8.54 130 | 8.76 97 | 28.9 96 | 5.89 42 | 1.98 101 | 11.4 132 | 0.59 67 | 2.36 74 | 8.59 102 | 0.63 16 |
WOLF_ROB [144] | 113.9 | 11.7 119 | 48.4 139 | 5.18 108 | 12.5 123 | 38.6 139 | 8.94 116 | 18.0 128 | 43.3 136 | 13.5 115 | 7.96 128 | 30.5 126 | 5.97 132 | 8.25 90 | 11.4 82 | 6.75 108 | 10.9 116 | 36.1 132 | 10.2 121 | 0.72 53 | 4.15 44 | 1.28 86 | 5.67 127 | 11.0 130 | 10.2 135 |
Learning Flow [11] | 114.1 | 6.74 75 | 28.1 79 | 3.03 53 | 6.37 102 | 28.7 112 | 5.02 103 | 11.8 109 | 32.6 114 | 7.93 109 | 6.87 121 | 33.2 134 | 4.32 119 | 12.5 149 | 17.4 155 | 7.78 122 | 9.98 111 | 35.2 128 | 8.41 107 | 2.66 108 | 10.9 129 | 2.24 101 | 6.76 133 | 13.7 143 | 6.41 122 |
ResPWCR_ROB [140] | 114.4 | 18.8 135 | 53.9 147 | 13.5 136 | 8.80 115 | 29.4 113 | 8.15 114 | 12.6 112 | 36.0 122 | 12.1 114 | 7.61 126 | 32.2 129 | 5.71 129 | 8.07 85 | 10.4 55 | 8.08 124 | 9.68 108 | 34.5 126 | 10.3 122 | 3.74 120 | 9.01 119 | 1.82 94 | 3.35 102 | 8.20 96 | 4.45 102 |
StereoFlow [44] | 115.6 | 58.0 163 | 76.4 163 | 63.7 160 | 51.8 162 | 66.9 163 | 48.3 158 | 51.0 163 | 73.0 162 | 41.6 155 | 63.5 163 | 83.4 163 | 56.7 160 | 13.3 152 | 13.7 134 | 19.1 155 | 3.63 7 | 20.4 26 | 2.73 9 | 0.26 1 | 2.49 5 | 0.05 16 | 4.06 115 | 8.57 101 | 5.81 119 |
Second-order prior [8] | 116.4 | 7.35 84 | 31.2 94 | 4.16 82 | 6.80 105 | 29.5 115 | 5.27 106 | 11.8 109 | 33.3 119 | 7.78 108 | 6.05 112 | 27.2 105 | 3.90 115 | 9.67 122 | 13.8 137 | 5.74 95 | 14.0 139 | 41.8 145 | 11.7 130 | 6.86 138 | 9.72 124 | 7.61 138 | 4.72 121 | 10.1 123 | 7.78 127 |
Ad-TV-NDC [36] | 117.6 | 21.2 141 | 36.8 113 | 34.1 154 | 25.9 149 | 38.5 138 | 29.9 149 | 23.5 141 | 41.0 131 | 27.1 132 | 13.3 139 | 32.4 130 | 13.3 143 | 8.75 101 | 13.2 123 | 3.82 39 | 7.43 62 | 25.1 73 | 6.92 82 | 1.50 92 | 4.84 62 | 0.34 56 | 17.1 157 | 15.9 154 | 37.2 161 |
HBpMotionGpu [43] | 118.1 | 11.7 119 | 32.8 102 | 6.34 115 | 18.9 137 | 35.4 133 | 22.0 140 | 22.3 136 | 42.7 134 | 31.1 142 | 5.62 103 | 26.7 103 | 3.31 102 | 9.47 116 | 13.0 120 | 8.55 132 | 8.68 94 | 31.2 111 | 5.58 35 | 6.88 140 | 11.9 137 | 0.64 68 | 7.67 138 | 11.4 133 | 15.2 144 |
Shiralkar [42] | 119.4 | 9.76 114 | 46.6 135 | 4.40 89 | 6.53 104 | 31.3 122 | 4.04 88 | 12.7 114 | 37.5 124 | 5.34 80 | 6.47 116 | 32.9 133 | 4.34 120 | 8.33 91 | 11.9 92 | 5.58 92 | 17.4 147 | 43.3 148 | 15.5 143 | 6.82 137 | 8.77 115 | 14.0 145 | 7.36 136 | 15.7 153 | 7.83 128 |
StereoOF-V1MT [117] | 120.0 | 9.29 105 | 44.8 133 | 4.17 83 | 7.22 108 | 34.5 130 | 3.68 78 | 13.7 115 | 42.6 133 | 3.80 68 | 6.06 113 | 38.5 142 | 3.27 98 | 11.0 143 | 15.1 150 | 9.55 139 | 15.1 143 | 49.9 152 | 14.0 138 | 1.08 72 | 5.51 83 | 5.44 127 | 9.33 145 | 15.5 148 | 9.73 134 |
LFNet_ROB [145] | 121.3 | 20.5 139 | 60.8 153 | 12.8 135 | 10.1 118 | 31.7 124 | 9.00 117 | 20.6 133 | 53.4 145 | 14.0 116 | 9.26 134 | 32.6 132 | 7.53 133 | 9.83 126 | 13.2 123 | 8.22 126 | 11.5 124 | 37.7 135 | 11.3 129 | 1.13 75 | 6.72 100 | 0.74 70 | 3.50 104 | 8.77 106 | 5.19 114 |
SPSA-learn [13] | 121.9 | 15.7 129 | 48.8 140 | 16.5 140 | 16.6 134 | 35.0 132 | 17.5 135 | 21.4 134 | 42.3 132 | 29.7 138 | 12.6 137 | 37.4 139 | 12.3 141 | 9.64 120 | 12.8 113 | 9.16 136 | 11.0 117 | 37.9 137 | 12.2 132 | 0.98 66 | 3.88 36 | 0.05 16 | 8.38 142 | 11.6 135 | 15.2 144 |
Filter Flow [19] | 124.0 | 14.6 124 | 38.2 124 | 8.96 127 | 12.4 122 | 34.6 131 | 11.3 122 | 20.2 132 | 38.3 126 | 30.1 140 | 19.2 145 | 43.4 146 | 18.6 146 | 10.0 131 | 13.4 128 | 9.43 138 | 10.3 113 | 31.4 112 | 9.08 113 | 8.21 147 | 19.6 157 | 0.79 72 | 3.72 111 | 6.85 82 | 3.41 87 |
IAOF2 [51] | 124.9 | 8.72 101 | 30.9 92 | 5.32 111 | 13.9 127 | 31.1 121 | 15.4 130 | 14.1 118 | 33.0 117 | 18.2 124 | 30.8 154 | 42.2 145 | 36.4 156 | 9.74 124 | 13.8 137 | 6.09 102 | 12.0 129 | 33.4 119 | 7.96 100 | 7.92 146 | 13.9 147 | 7.49 137 | 5.69 128 | 10.6 128 | 4.51 104 |
GraphCuts [14] | 125.2 | 12.6 122 | 36.1 111 | 5.46 113 | 14.7 130 | 39.4 142 | 12.5 123 | 17.8 127 | 35.6 120 | 29.1 136 | 6.86 120 | 33.7 135 | 4.15 116 | 9.33 113 | 12.6 107 | 8.69 133 | 23.0 153 | 31.6 113 | 15.5 143 | 3.52 116 | 7.38 111 | 11.7 143 | 5.33 123 | 9.87 122 | 8.75 132 |
Modified CLG [34] | 125.3 | 15.7 129 | 43.7 130 | 12.2 133 | 19.1 138 | 33.3 129 | 23.7 142 | 25.1 144 | 47.4 139 | 35.6 149 | 13.2 138 | 35.5 136 | 11.1 139 | 10.7 140 | 14.4 143 | 9.36 137 | 7.26 57 | 35.8 131 | 6.19 54 | 1.66 96 | 5.21 73 | 6.43 130 | 5.94 130 | 13.8 145 | 7.73 126 |
2D-CLG [1] | 126.2 | 24.4 147 | 51.8 146 | 19.4 145 | 27.4 150 | 38.7 140 | 33.8 152 | 34.6 151 | 57.7 149 | 42.2 157 | 33.4 156 | 57.1 157 | 32.9 155 | 9.64 120 | 12.2 100 | 11.0 144 | 11.2 120 | 40.2 142 | 12.8 134 | 0.31 9 | 2.62 8 | 0.25 48 | 6.33 131 | 13.7 143 | 7.33 125 |
TVL1_RVC [175] | 127.7 | 36.8 155 | 55.3 148 | 54.0 159 | 36.6 154 | 40.3 144 | 46.0 156 | 36.5 153 | 59.3 152 | 43.5 160 | 29.9 153 | 49.4 151 | 31.7 153 | 9.71 123 | 13.7 134 | 7.21 118 | 7.34 60 | 33.6 120 | 7.88 98 | 0.55 40 | 4.03 41 | 0.10 30 | 15.1 154 | 15.6 149 | 33.3 159 |
BlockOverlap [61] | 128.5 | 12.3 121 | 29.2 84 | 8.49 126 | 13.7 126 | 29.6 116 | 15.3 129 | 16.2 126 | 32.5 113 | 20.0 126 | 8.87 131 | 27.4 109 | 7.62 134 | 10.9 142 | 13.4 128 | 12.5 147 | 13.3 136 | 29.1 99 | 10.3 122 | 11.8 154 | 14.4 150 | 23.8 156 | 10.6 148 | 8.92 109 | 24.8 153 |
IAOF [50] | 132.0 | 14.7 125 | 37.8 122 | 14.8 139 | 17.3 136 | 33.2 128 | 18.7 136 | 22.7 137 | 44.3 137 | 23.3 129 | 20.9 147 | 38.7 143 | 24.5 150 | 9.60 118 | 13.3 127 | 8.28 129 | 13.0 134 | 38.8 140 | 7.37 94 | 4.20 124 | 7.90 113 | 2.59 106 | 14.5 153 | 13.4 142 | 32.0 158 |
2bit-BM-tele [96] | 133.1 | 20.3 138 | 39.1 126 | 26.1 150 | 8.84 116 | 26.8 105 | 9.29 118 | 11.1 106 | 30.7 107 | 7.60 106 | 8.06 129 | 29.9 124 | 5.91 131 | 11.0 143 | 13.7 134 | 11.8 146 | 18.0 148 | 37.1 134 | 19.8 150 | 17.1 159 | 20.4 159 | 30.8 159 | 6.54 132 | 11.7 136 | 11.8 138 |
Black & Anandan [4] | 134.0 | 15.1 127 | 45.4 134 | 18.1 144 | 16.6 134 | 36.3 134 | 16.9 133 | 23.3 140 | 44.9 138 | 27.8 133 | 13.5 141 | 38.1 141 | 13.1 142 | 11.1 145 | 15.7 151 | 7.97 123 | 11.6 127 | 39.6 141 | 11.0 127 | 5.17 131 | 9.06 120 | 2.27 102 | 7.28 135 | 12.3 138 | 10.2 135 |
UnFlow [127] | 135.6 | 45.7 160 | 58.8 149 | 25.7 148 | 28.2 151 | 44.0 147 | 31.2 151 | 38.6 158 | 68.3 160 | 37.0 152 | 19.4 146 | 46.0 147 | 16.6 145 | 13.8 154 | 14.9 149 | 18.2 154 | 20.9 151 | 49.2 151 | 23.5 152 | 2.86 110 | 6.76 101 | 0.22 43 | 3.12 96 | 10.4 125 | 2.27 54 |
GroupFlow [9] | 136.2 | 22.9 144 | 47.1 136 | 26.7 152 | 28.4 152 | 50.0 154 | 30.8 150 | 25.4 145 | 52.4 144 | 30.6 141 | 9.32 135 | 29.6 123 | 8.14 136 | 10.7 140 | 13.4 128 | 7.16 117 | 23.0 153 | 46.3 149 | 27.8 156 | 1.56 93 | 5.72 88 | 2.76 108 | 8.00 140 | 12.5 139 | 15.3 146 |
Nguyen [33] | 136.2 | 20.0 137 | 44.7 132 | 17.4 143 | 39.5 158 | 37.5 136 | 52.5 159 | 34.0 150 | 56.0 148 | 38.8 153 | 35.6 157 | 47.9 149 | 41.1 157 | 12.1 147 | 14.3 141 | 16.5 152 | 12.0 129 | 37.8 136 | 13.8 136 | 1.37 86 | 4.27 47 | 0.71 69 | 11.6 151 | 14.5 147 | 20.8 150 |
SILK [80] | 142.0 | 26.9 149 | 51.7 145 | 36.6 156 | 22.3 143 | 45.5 150 | 24.5 143 | 28.8 146 | 54.7 147 | 34.2 144 | 18.4 144 | 41.6 144 | 15.8 144 | 13.1 151 | 16.5 152 | 16.1 151 | 19.1 150 | 47.8 150 | 19.3 149 | 2.87 111 | 4.22 45 | 6.53 131 | 15.9 155 | 19.1 155 | 25.8 154 |
H+S_RVC [176] | 143.0 | 34.7 153 | 64.9 159 | 25.7 148 | 38.1 157 | 57.7 161 | 43.6 155 | 45.9 162 | 73.7 163 | 43.0 159 | 60.1 161 | 66.0 160 | 64.3 162 | 14.4 156 | 14.2 140 | 26.2 160 | 31.3 159 | 60.7 160 | 34.7 159 | 0.49 33 | 4.66 55 | 0.20 40 | 22.2 161 | 23.3 158 | 21.4 151 |
Heeger++ [102] | 143.9 | 42.8 158 | 66.4 162 | 26.2 151 | 25.0 148 | 60.7 162 | 19.8 139 | 38.4 157 | 66.9 157 | 28.0 134 | 23.5 149 | 49.3 150 | 19.7 147 | 10.6 139 | 13.4 128 | 8.12 125 | 40.8 161 | 67.2 163 | 45.1 161 | 2.04 103 | 10.9 129 | 1.70 92 | 11.2 149 | 15.6 149 | 12.8 140 |
Horn & Schunck [3] | 145.0 | 19.9 136 | 61.0 155 | 23.3 146 | 19.4 139 | 44.3 149 | 19.1 137 | 29.5 147 | 58.8 151 | 34.9 147 | 21.0 148 | 49.9 152 | 21.2 148 | 12.3 148 | 16.5 152 | 10.8 143 | 17.3 146 | 50.6 154 | 18.0 147 | 7.23 143 | 11.9 137 | 2.34 103 | 13.4 152 | 22.2 157 | 14.9 143 |
Periodicity [79] | 149.2 | 30.6 152 | 48.8 140 | 16.7 141 | 24.1 146 | 49.8 152 | 26.2 146 | 39.1 159 | 54.5 146 | 39.5 154 | 13.6 142 | 47.1 148 | 12.0 140 | 37.5 163 | 48.2 163 | 33.6 162 | 38.5 160 | 66.9 162 | 36.0 160 | 2.02 102 | 10.8 127 | 8.18 139 | 20.8 158 | 35.9 162 | 30.1 156 |
FFV1MT [104] | 150.0 | 39.5 156 | 59.3 150 | 25.4 147 | 21.8 142 | 56.3 160 | 19.1 137 | 38.0 156 | 67.0 158 | 34.9 147 | 24.3 150 | 55.7 156 | 22.2 149 | 17.7 159 | 18.9 159 | 25.5 159 | 41.8 162 | 66.3 161 | 45.5 162 | 3.73 118 | 12.9 144 | 6.35 129 | 11.2 149 | 15.6 149 | 12.8 140 |
TI-DOFE [24] | 150.3 | 44.7 159 | 66.3 161 | 66.5 162 | 44.2 160 | 50.5 155 | 54.8 161 | 43.5 161 | 72.0 161 | 44.7 161 | 48.6 159 | 63.3 158 | 54.0 159 | 13.6 153 | 17.7 156 | 15.1 150 | 17.2 144 | 50.3 153 | 19.0 148 | 3.07 113 | 5.50 82 | 2.93 112 | 21.5 159 | 24.7 160 | 33.9 160 |
SLK [47] | 151.7 | 28.9 151 | 63.3 158 | 36.4 155 | 42.3 159 | 54.0 159 | 52.8 160 | 36.6 154 | 67.7 159 | 42.5 158 | 51.4 160 | 54.3 155 | 60.0 161 | 14.5 157 | 16.7 154 | 20.8 157 | 21.5 152 | 53.4 158 | 24.1 153 | 3.92 121 | 6.27 95 | 5.91 128 | 21.7 160 | 23.7 159 | 31.5 157 |
Adaptive flow [45] | 154.5 | 49.6 161 | 62.1 156 | 66.8 163 | 37.4 155 | 46.5 151 | 43.1 154 | 34.9 152 | 58.6 150 | 41.7 156 | 27.3 152 | 53.5 154 | 28.7 151 | 16.1 158 | 18.2 158 | 17.6 153 | 25.3 157 | 52.9 156 | 25.1 155 | 45.4 162 | 38.1 162 | 74.4 161 | 9.25 144 | 14.4 146 | 13.9 142 |
PGAM+LK [55] | 155.2 | 35.2 154 | 65.7 160 | 44.1 158 | 31.5 153 | 51.1 156 | 36.1 153 | 30.9 148 | 60.0 155 | 36.8 151 | 33.0 155 | 72.3 162 | 32.7 154 | 13.8 154 | 14.4 143 | 22.6 158 | 24.6 155 | 53.2 157 | 24.6 154 | 27.1 160 | 32.6 161 | 26.2 157 | 17.0 156 | 20.4 156 | 28.4 155 |
FOLKI [16] | 155.3 | 27.4 150 | 59.9 151 | 40.6 157 | 37.4 155 | 51.5 157 | 46.6 157 | 32.4 149 | 61.6 156 | 34.2 144 | 26.3 151 | 50.6 153 | 30.2 152 | 18.2 161 | 19.7 160 | 26.3 161 | 24.6 155 | 56.6 159 | 28.8 157 | 10.3 152 | 13.9 147 | 26.7 158 | 27.1 162 | 26.9 161 | 45.3 162 |
HCIC-L [97] | 155.9 | 51.6 162 | 60.9 154 | 30.9 153 | 58.4 163 | 53.4 158 | 73.0 163 | 39.8 160 | 50.8 143 | 52.8 163 | 63.4 162 | 71.0 161 | 69.9 163 | 18.1 160 | 20.6 161 | 20.5 156 | 29.9 158 | 43.2 146 | 34.1 158 | 73.0 163 | 62.0 163 | 76.4 162 | 7.45 137 | 12.5 139 | 8.87 133 |
Pyramid LK [2] | 159.1 | 41.0 157 | 62.5 157 | 66.4 161 | 47.2 161 | 49.9 153 | 59.7 162 | 37.5 155 | 59.5 154 | 45.5 162 | 43.8 158 | 65.1 159 | 49.5 158 | 36.5 162 | 43.8 162 | 42.6 163 | 43.3 163 | 52.8 155 | 45.9 163 | 11.8 154 | 20.2 158 | 20.7 153 | 40.0 163 | 46.5 163 | 59.5 163 |
AdaConv-v1 [124] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
SepConv-v1 [125] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
SuperSlomo [130] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
CtxSyn [134] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
CyclicGen [149] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
TOF-M [150] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
MPRN [151] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
DAIN [152] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
FRUCnet [153] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
OFRI [154] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
FGME [158] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
MS-PFT [159] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
MEMC-Net+ [160] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
ADC [161] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
DSepConv [162] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
MAF-net [163] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
STAR-Net [164] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
AdaCoF [165] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
TC-GAN [166] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
FeFlow [167] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
DAI [168] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
SoftSplat [169] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
STSR [170] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
BMBC [171] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
GDCN [172] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
EDSC [173] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
MV_VFI [183] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
DistillNet [184] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
SepConv++ [185] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
EAFI [186] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
FLAVR [188] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
SoftsplatAug [190] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
ProBoost-Net [191] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
IDIAL [192] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
IFRNet [193] | 164.8 | 99.3 164 | 97.8 164 | 99.8 165 | 99.9 165 | 100.0 164 | 99.8 165 | 99.9 164 | 99.9 164 | 99.9 164 | 99.5 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.1 165 | 98.9 165 | 99.7 165 | 98.5 165 | 93.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 |
AVG_FLOW_ROB [137] | 165.5 | 99.3 164 | 98.3 199 | 99.2 164 | 99.8 164 | 100.0 164 | 99.7 164 | 99.9 164 | 99.9 164 | 99.9 164 | 98.3 164 | 96.8 164 | 98.0 164 | 96.2 164 | 96.6 164 | 93.9 164 | 87.7 164 | 86.6 164 | 88.2 164 | 96.9 164 | 84.2 164 | 98.7 164 | 93.0 164 | 98.4 164 | 95.3 164 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |