Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
R2.5 angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it+_RVC [198] | 3.0 | 22.6 9 | 45.3 8 | 9.61 1 | 12.3 3 | 34.7 1 | 12.7 4 | 9.31 2 | 25.5 2 | 9.19 4 | 1.86 1 | 13.1 1 | 0.86 1 | 21.9 3 | 28.9 4 | 12.9 2 | 9.02 1 | 23.8 1 | 8.47 1 | 9.00 2 | 34.2 2 | 3.03 4 | 3.35 4 | 10.4 8 | 0.43 2 |
RAFT-it [194] | 5.9 | 25.3 14 | 49.8 22 | 15.4 9 | 13.6 5 | 37.1 4 | 13.6 5 | 9.70 3 | 27.5 4 | 8.99 3 | 2.35 2 | 15.3 2 | 1.46 3 | 25.0 9 | 33.2 15 | 13.6 3 | 12.0 4 | 27.3 3 | 11.5 2 | 11.5 4 | 43.8 8 | 3.87 7 | 2.67 3 | 8.82 3 | 0.90 5 |
MS_RAFT+_RVC [195] | 11.5 | 26.6 19 | 44.3 6 | 11.4 3 | 24.5 77 | 39.1 7 | 28.5 97 | 11.6 4 | 27.6 5 | 15.5 25 | 2.64 3 | 18.5 3 | 1.20 2 | 21.7 2 | 27.7 1 | 12.2 1 | 11.8 3 | 25.6 2 | 12.0 4 | 7.63 1 | 32.0 1 | 1.03 1 | 2.16 1 | 6.82 1 | 0.94 6 |
NNF-Local [75] | 19.0 | 20.0 3 | 43.3 3 | 13.0 5 | 15.9 16 | 45.3 31 | 16.1 19 | 12.5 7 | 34.1 13 | 12.8 14 | 9.68 24 | 32.0 15 | 7.01 29 | 23.3 6 | 30.0 6 | 16.2 7 | 22.0 42 | 45.4 14 | 23.8 72 | 25.8 34 | 44.8 11 | 17.6 32 | 4.37 15 | 14.4 35 | 0.48 3 |
NN-field [71] | 20.3 | 22.1 7 | 44.0 5 | 14.6 7 | 18.4 29 | 47.3 46 | 19.2 35 | 12.5 7 | 32.9 9 | 14.0 21 | 6.57 5 | 28.2 8 | 3.57 5 | 23.4 7 | 30.1 7 | 15.9 6 | 17.9 21 | 36.8 4 | 15.8 7 | 35.9 74 | 51.5 42 | 27.4 74 | 4.58 18 | 15.3 39 | 0.55 4 |
RAFT-TF_RVC [179] | 23.6 | 32.9 42 | 58.3 50 | 13.9 6 | 20.0 37 | 45.7 35 | 20.0 38 | 16.9 43 | 40.4 44 | 18.0 38 | 5.16 4 | 21.6 4 | 2.93 4 | 29.0 38 | 37.8 43 | 18.4 10 | 17.3 12 | 39.8 7 | 17.8 13 | 11.8 5 | 42.8 7 | 3.13 5 | 5.30 29 | 16.4 44 | 3.35 9 |
TC/T-Flow [77] | 25.9 | 19.9 2 | 46.9 13 | 10.2 2 | 16.0 17 | 47.8 48 | 13.9 8 | 13.0 11 | 36.6 27 | 11.1 7 | 8.90 17 | 35.0 43 | 6.10 17 | 27.2 21 | 35.7 27 | 21.0 19 | 15.7 7 | 47.2 23 | 15.8 7 | 21.0 17 | 39.2 4 | 42.1 105 | 7.86 53 | 19.5 56 | 10.9 70 |
ComponentFusion [94] | 26.5 | 20.0 3 | 46.3 10 | 14.8 8 | 16.6 20 | 40.3 10 | 18.5 31 | 11.7 6 | 33.6 11 | 10.9 6 | 7.09 9 | 35.2 45 | 4.45 9 | 27.6 24 | 36.0 30 | 21.4 22 | 21.5 36 | 54.1 62 | 20.2 36 | 31.8 63 | 56.8 74 | 16.2 24 | 5.46 30 | 12.8 27 | 7.47 39 |
ALD-Flow [66] | 26.8 | 21.6 6 | 46.0 9 | 15.9 11 | 15.5 12 | 41.3 14 | 15.6 15 | 13.1 13 | 35.2 18 | 12.2 9 | 8.17 14 | 33.4 27 | 5.35 13 | 28.1 28 | 37.3 41 | 20.3 15 | 16.4 10 | 47.4 25 | 16.0 9 | 26.5 37 | 45.4 13 | 41.8 103 | 8.39 58 | 22.3 68 | 11.3 74 |
ProFlow_ROB [142] | 27.0 | 24.2 12 | 53.3 38 | 15.8 10 | 15.6 13 | 44.5 26 | 14.8 11 | 15.5 25 | 43.0 51 | 11.8 8 | 6.94 7 | 33.1 24 | 3.97 7 | 30.0 45 | 39.9 54 | 19.6 12 | 16.2 9 | 49.1 34 | 16.1 10 | 14.9 8 | 54.0 59 | 13.9 22 | 7.47 48 | 21.2 63 | 8.63 52 |
nLayers [57] | 27.8 | 22.7 10 | 40.3 2 | 18.4 14 | 27.2 102 | 45.9 36 | 30.4 104 | 15.7 31 | 35.4 21 | 21.4 70 | 8.12 13 | 26.6 6 | 6.21 18 | 22.5 4 | 29.0 5 | 15.5 5 | 19.9 27 | 40.8 8 | 17.8 13 | 31.3 58 | 52.6 53 | 16.9 29 | 4.26 12 | 11.2 13 | 5.84 13 |
OFLAF [78] | 28.5 | 29.6 38 | 47.4 15 | 24.8 25 | 17.8 25 | 40.9 12 | 18.3 29 | 11.6 4 | 26.9 3 | 13.2 16 | 11.5 45 | 29.3 12 | 8.97 71 | 23.7 8 | 30.9 8 | 16.5 8 | 22.2 46 | 41.5 9 | 19.3 26 | 30.2 53 | 50.6 37 | 32.9 82 | 5.94 35 | 13.8 29 | 8.44 49 |
HAST [107] | 28.8 | 19.5 1 | 40.1 1 | 11.6 4 | 16.1 18 | 39.7 8 | 14.8 11 | 8.49 1 | 21.2 1 | 7.09 1 | 6.79 6 | 29.0 11 | 3.66 6 | 21.6 1 | 28.3 3 | 13.8 4 | 24.3 68 | 48.5 31 | 24.3 75 | 41.7 96 | 59.8 86 | 63.0 148 | 6.05 37 | 11.5 19 | 8.72 53 |
RNLOD-Flow [119] | 28.9 | 20.7 5 | 43.8 4 | 19.4 15 | 18.1 26 | 45.9 36 | 17.0 25 | 12.7 9 | 34.1 13 | 12.3 10 | 7.38 10 | 28.7 10 | 4.87 10 | 26.5 17 | 34.9 22 | 20.9 17 | 20.3 28 | 46.2 17 | 20.2 36 | 43.1 100 | 60.3 88 | 47.5 122 | 4.98 26 | 12.7 26 | 6.55 22 |
WLIF-Flow [91] | 29.5 | 27.0 24 | 47.0 14 | 23.1 22 | 21.7 51 | 46.6 43 | 23.3 51 | 14.8 19 | 36.2 23 | 16.3 32 | 9.33 21 | 32.2 19 | 6.64 23 | 27.7 25 | 35.1 24 | 23.4 41 | 21.6 37 | 47.7 27 | 19.2 23 | 28.7 47 | 45.3 12 | 32.0 81 | 4.50 17 | 11.2 13 | 6.43 18 |
MDP-Flow2 [68] | 30.9 | 35.3 56 | 55.4 45 | 30.2 56 | 14.2 6 | 39.7 8 | 14.2 10 | 13.6 14 | 31.4 6 | 12.9 15 | 12.2 50 | 34.1 35 | 8.19 54 | 27.7 25 | 35.0 23 | 22.1 25 | 22.4 50 | 45.4 14 | 21.5 52 | 27.1 38 | 54.1 60 | 16.5 25 | 5.87 34 | 14.0 31 | 4.25 10 |
OAR-Flow [123] | 32.2 | 25.6 16 | 54.9 42 | 22.4 19 | 18.7 30 | 44.8 28 | 19.1 32 | 17.2 45 | 43.7 54 | 18.0 38 | 8.53 16 | 31.6 14 | 5.65 14 | 29.7 43 | 39.3 48 | 20.9 17 | 14.5 5 | 47.3 24 | 13.4 5 | 14.1 7 | 38.0 3 | 20.7 46 | 9.84 74 | 21.1 62 | 16.1 91 |
Layers++ [37] | 32.8 | 28.0 36 | 48.8 18 | 30.9 59 | 23.3 67 | 45.6 34 | 25.5 75 | 13.7 15 | 31.4 6 | 18.1 40 | 8.08 12 | 24.9 5 | 5.87 15 | 22.9 5 | 28.1 2 | 19.6 12 | 22.2 46 | 46.3 19 | 20.7 40 | 39.6 90 | 55.9 69 | 35.0 84 | 4.16 8 | 9.78 5 | 6.81 24 |
TC-Flow [46] | 33.0 | 24.4 13 | 52.2 34 | 22.6 20 | 11.8 2 | 38.8 6 | 11.2 1 | 12.7 9 | 35.7 22 | 9.84 5 | 9.88 26 | 34.9 41 | 7.49 38 | 28.9 36 | 38.6 47 | 21.2 21 | 20.6 30 | 52.1 45 | 21.6 54 | 22.6 29 | 47.1 17 | 36.3 87 | 9.05 65 | 21.5 65 | 12.4 79 |
LME [70] | 35.1 | 31.5 40 | 51.4 29 | 21.0 18 | 14.7 8 | 36.9 3 | 15.7 16 | 16.0 36 | 35.2 18 | 19.8 60 | 11.8 47 | 36.6 49 | 8.08 48 | 28.6 33 | 36.0 30 | 25.5 55 | 21.1 34 | 49.0 33 | 19.8 33 | 29.8 50 | 50.0 32 | 21.5 50 | 6.61 40 | 15.1 36 | 7.95 45 |
AGIF+OF [84] | 35.5 | 26.3 17 | 48.8 18 | 24.1 23 | 24.9 79 | 52.0 78 | 26.2 77 | 16.0 36 | 39.4 38 | 19.7 57 | 8.96 18 | 32.0 15 | 6.64 23 | 26.7 19 | 33.7 16 | 21.5 24 | 21.4 35 | 49.4 35 | 18.5 18 | 28.2 44 | 49.6 29 | 30.5 79 | 4.63 21 | 11.3 18 | 7.30 35 |
CoT-AMFlow [174] | 35.8 | 34.5 49 | 56.8 47 | 30.1 54 | 15.6 13 | 40.5 11 | 16.6 23 | 13.9 16 | 33.0 10 | 13.9 19 | 12.5 61 | 34.7 40 | 8.83 68 | 28.1 28 | 35.2 26 | 25.1 52 | 21.9 41 | 47.1 22 | 21.1 45 | 29.8 50 | 50.0 32 | 21.5 50 | 6.22 38 | 14.1 32 | 7.10 32 |
PH-Flow [99] | 36.9 | 26.7 20 | 51.6 30 | 25.6 33 | 21.7 51 | 49.4 59 | 23.8 56 | 15.5 25 | 37.6 31 | 19.5 53 | 10.2 32 | 33.8 31 | 7.44 37 | 26.4 15 | 33.7 16 | 21.0 19 | 22.0 42 | 50.3 38 | 20.4 38 | 38.8 84 | 48.4 22 | 45.4 112 | 4.26 12 | 11.2 13 | 6.38 17 |
FC-2Layers-FF [74] | 37.1 | 26.9 23 | 48.6 17 | 28.3 47 | 22.1 55 | 48.8 54 | 23.8 56 | 14.1 17 | 32.4 8 | 19.6 55 | 9.10 19 | 28.3 9 | 6.47 21 | 25.5 10 | 31.7 9 | 23.0 35 | 23.3 58 | 47.7 27 | 21.8 55 | 44.1 104 | 56.3 73 | 46.0 117 | 3.54 5 | 9.08 4 | 5.44 12 |
NNF-EAC [101] | 38.2 | 34.9 50 | 54.8 40 | 29.9 53 | 15.6 13 | 41.7 16 | 15.9 17 | 15.1 23 | 34.8 16 | 15.7 26 | 12.4 55 | 35.1 44 | 8.33 58 | 28.1 28 | 35.7 27 | 22.9 32 | 24.5 71 | 46.2 17 | 22.7 65 | 31.6 61 | 49.1 25 | 20.1 44 | 7.54 50 | 17.1 48 | 7.44 38 |
Classic+CPF [82] | 38.2 | 27.1 28 | 51.2 28 | 25.5 32 | 23.9 71 | 51.4 74 | 25.1 71 | 15.9 33 | 39.3 37 | 19.4 51 | 9.17 20 | 32.8 22 | 6.69 25 | 27.3 22 | 34.5 20 | 23.9 42 | 21.0 33 | 48.7 32 | 18.0 16 | 35.6 73 | 49.9 31 | 45.7 114 | 4.25 11 | 10.7 9 | 6.61 23 |
IROF++ [58] | 38.5 | 27.4 30 | 50.7 25 | 26.7 40 | 22.1 55 | 50.1 69 | 24.1 61 | 16.3 39 | 40.0 42 | 19.6 55 | 10.6 39 | 34.3 36 | 7.72 43 | 27.9 27 | 35.7 27 | 22.5 27 | 22.3 48 | 54.1 62 | 19.9 34 | 25.5 33 | 49.6 29 | 11.5 18 | 5.49 31 | 14.1 32 | 6.54 21 |
Sparse-NonSparse [56] | 39.3 | 26.8 22 | 51.9 33 | 26.8 41 | 22.2 60 | 49.0 57 | 24.6 67 | 15.6 28 | 39.4 38 | 19.0 46 | 9.46 23 | 33.6 29 | 7.07 31 | 29.0 38 | 37.2 40 | 24.3 47 | 21.7 39 | 50.4 39 | 19.5 31 | 34.0 65 | 45.8 14 | 41.6 101 | 4.44 16 | 10.9 10 | 6.96 29 |
COFM [59] | 39.5 | 22.1 7 | 49.1 20 | 16.6 12 | 18.2 27 | 43.5 21 | 19.2 35 | 15.9 33 | 38.3 34 | 21.5 71 | 7.02 8 | 32.6 20 | 4.40 8 | 31.4 55 | 37.9 44 | 35.0 99 | 22.1 44 | 46.4 20 | 18.3 17 | 28.7 47 | 45.9 15 | 45.5 113 | 9.25 67 | 15.5 41 | 15.7 90 |
FESL [72] | 40.5 | 27.0 24 | 46.3 10 | 31.2 61 | 26.0 93 | 51.8 77 | 26.9 83 | 15.8 32 | 37.0 28 | 19.5 53 | 7.89 11 | 30.7 13 | 5.17 12 | 26.6 18 | 33.8 18 | 22.6 28 | 20.3 28 | 45.8 16 | 19.3 26 | 39.9 91 | 61.2 93 | 35.6 85 | 5.04 27 | 12.5 24 | 6.48 20 |
Efficient-NL [60] | 41.0 | 23.3 11 | 44.7 7 | 17.6 13 | 24.6 78 | 51.6 76 | 25.4 74 | 15.0 22 | 36.2 23 | 17.5 36 | 9.92 27 | 33.1 24 | 6.94 27 | 26.4 15 | 34.0 19 | 20.3 15 | 27.2 84 | 49.4 35 | 22.6 61 | 37.6 79 | 50.5 35 | 37.1 88 | 6.98 45 | 16.2 43 | 8.16 46 |
JOF [136] | 41.0 | 25.3 14 | 46.6 12 | 23.0 21 | 24.1 73 | 49.9 67 | 26.7 80 | 14.8 19 | 34.3 15 | 21.0 69 | 8.34 15 | 32.1 18 | 5.95 16 | 26.1 14 | 32.9 14 | 22.8 31 | 22.8 52 | 49.4 35 | 22.2 57 | 41.8 97 | 60.0 87 | 56.2 139 | 4.17 9 | 10.9 10 | 6.44 19 |
LSM [39] | 42.5 | 26.5 18 | 50.8 26 | 27.0 43 | 22.1 55 | 49.4 59 | 24.4 65 | 15.6 28 | 38.2 33 | 19.4 51 | 10.1 28 | 33.0 23 | 7.43 36 | 28.6 33 | 36.3 32 | 24.7 48 | 22.8 52 | 50.5 41 | 20.9 44 | 40.3 93 | 49.3 26 | 45.8 116 | 4.76 23 | 12.0 21 | 6.93 27 |
UnDAF [187] | 42.6 | 35.1 51 | 57.4 48 | 30.1 54 | 15.2 10 | 43.0 19 | 15.3 14 | 14.6 18 | 35.1 17 | 13.3 17 | 12.6 63 | 37.7 51 | 8.47 63 | 28.9 36 | 36.9 38 | 23.3 37 | 23.2 55 | 53.6 61 | 21.3 49 | 30.1 52 | 49.4 28 | 21.2 48 | 9.95 76 | 27.3 91 | 6.93 27 |
PMMST [112] | 43.0 | 42.4 83 | 58.9 53 | 40.2 81 | 22.1 55 | 45.3 31 | 24.7 70 | 17.9 50 | 38.4 35 | 18.8 43 | 12.2 50 | 28.1 7 | 8.26 56 | 25.7 11 | 32.7 12 | 18.5 11 | 22.3 48 | 45.3 13 | 20.8 42 | 28.5 46 | 50.7 38 | 18.3 35 | 8.51 62 | 16.8 45 | 8.73 54 |
Ramp [62] | 44.3 | 27.0 24 | 52.3 35 | 26.1 37 | 22.3 62 | 49.1 58 | 24.6 67 | 15.6 28 | 37.8 32 | 19.8 60 | 10.5 38 | 33.6 29 | 7.61 40 | 28.6 33 | 36.6 34 | 24.0 43 | 23.6 61 | 51.2 42 | 21.8 55 | 38.2 80 | 44.5 9 | 46.1 118 | 4.86 24 | 12.1 22 | 7.13 33 |
Classic+NL [31] | 44.6 | 27.2 29 | 47.8 16 | 28.4 49 | 22.0 54 | 49.4 59 | 24.1 61 | 15.5 25 | 37.4 30 | 19.8 60 | 10.4 36 | 33.8 31 | 7.40 35 | 28.5 31 | 36.4 33 | 24.2 46 | 23.3 58 | 52.2 47 | 21.1 45 | 43.9 102 | 52.5 50 | 44.6 109 | 4.60 20 | 11.2 13 | 7.04 31 |
2DHMM-SAS [90] | 47.1 | 26.7 20 | 51.8 32 | 25.6 33 | 22.2 60 | 51.3 72 | 23.8 56 | 17.8 48 | 42.3 48 | 20.0 65 | 10.4 36 | 34.6 38 | 7.52 39 | 28.5 31 | 36.6 34 | 24.0 43 | 22.7 51 | 54.5 65 | 20.6 39 | 39.0 86 | 47.8 20 | 45.1 110 | 5.51 32 | 13.9 30 | 7.73 43 |
FMOF [92] | 47.8 | 27.8 35 | 50.4 24 | 27.1 45 | 26.2 95 | 52.5 83 | 27.4 86 | 15.9 33 | 36.4 26 | 21.7 72 | 9.71 25 | 32.7 21 | 6.98 28 | 27.3 22 | 34.6 21 | 24.1 45 | 23.7 62 | 47.6 26 | 19.7 32 | 38.4 81 | 55.4 66 | 48.9 125 | 5.80 33 | 14.1 32 | 7.00 30 |
SVFilterOh [109] | 49.4 | 39.6 73 | 54.6 39 | 39.8 80 | 23.8 70 | 44.7 27 | 24.0 59 | 17.3 46 | 33.8 12 | 18.8 43 | 10.2 32 | 36.4 48 | 4.93 11 | 25.9 13 | 32.1 10 | 19.6 12 | 24.7 72 | 46.7 21 | 22.9 68 | 52.0 130 | 76.3 146 | 59.2 142 | 4.23 10 | 10.9 10 | 5.01 11 |
PRAFlow_RVC [177] | 49.8 | 47.3 99 | 65.0 65 | 33.2 69 | 30.3 108 | 52.1 80 | 31.6 106 | 24.2 81 | 50.0 70 | 26.7 90 | 10.1 28 | 32.0 15 | 6.60 22 | 31.3 54 | 39.8 52 | 22.9 32 | 21.7 39 | 43.1 11 | 22.3 59 | 15.9 9 | 51.9 46 | 1.85 3 | 4.96 25 | 12.5 24 | 3.07 8 |
S2D-Matching [83] | 50.5 | 27.7 32 | 50.2 23 | 28.4 49 | 22.1 55 | 48.8 54 | 24.3 63 | 16.5 41 | 40.0 42 | 19.3 49 | 10.6 39 | 33.8 31 | 7.78 44 | 29.1 41 | 36.7 37 | 25.0 50 | 24.4 70 | 53.0 58 | 22.6 61 | 47.0 116 | 53.6 56 | 50.8 130 | 4.58 18 | 11.2 13 | 7.54 40 |
SimpleFlow [49] | 51.2 | 28.6 37 | 51.6 30 | 29.5 52 | 25.0 80 | 51.3 72 | 28.2 92 | 18.6 55 | 43.0 51 | 23.3 78 | 10.1 28 | 33.5 28 | 7.04 30 | 29.9 44 | 37.9 44 | 26.2 58 | 27.8 89 | 52.2 47 | 24.0 73 | 35.1 71 | 47.9 21 | 29.7 78 | 4.66 22 | 12.4 23 | 6.92 26 |
ProbFlowFields [126] | 51.5 | 33.9 45 | 68.5 82 | 30.9 59 | 20.3 42 | 45.3 31 | 22.1 46 | 19.2 59 | 44.8 57 | 22.9 77 | 11.7 46 | 39.3 60 | 8.91 70 | 31.0 52 | 40.1 55 | 23.3 37 | 16.8 11 | 47.8 29 | 19.2 23 | 23.7 32 | 55.9 69 | 23.9 62 | 8.39 58 | 22.4 69 | 9.82 65 |
PMF [73] | 53.2 | 37.7 66 | 58.3 50 | 27.3 46 | 19.4 33 | 45.0 30 | 18.3 29 | 16.2 38 | 39.9 41 | 14.0 21 | 13.6 74 | 35.7 46 | 8.03 47 | 25.8 12 | 32.5 11 | 17.1 9 | 30.2 97 | 57.0 79 | 31.6 100 | 58.9 141 | 74.7 139 | 55.9 138 | 3.95 7 | 10.3 6 | 6.15 16 |
Adaptive [20] | 54.0 | 27.0 24 | 52.6 36 | 19.8 16 | 21.9 53 | 47.8 48 | 22.6 48 | 20.5 64 | 47.8 66 | 19.7 57 | 10.3 34 | 39.9 64 | 6.31 20 | 45.6 138 | 52.6 135 | 51.3 144 | 17.4 13 | 48.2 30 | 13.9 6 | 34.8 70 | 56.9 76 | 19.8 42 | 6.04 36 | 15.2 37 | 7.54 40 |
TV-L1-MCT [64] | 54.1 | 27.5 31 | 49.4 21 | 27.0 43 | 26.5 96 | 52.8 88 | 27.8 91 | 16.8 42 | 39.1 36 | 21.8 74 | 10.6 39 | 33.8 31 | 7.82 46 | 30.3 47 | 38.1 46 | 28.7 76 | 24.7 72 | 53.4 60 | 23.4 70 | 27.4 39 | 52.5 50 | 19.4 39 | 7.28 47 | 15.3 39 | 11.4 76 |
Correlation Flow [76] | 54.8 | 36.6 63 | 55.3 44 | 34.4 70 | 16.6 20 | 44.4 25 | 14.8 11 | 18.3 54 | 42.9 50 | 12.7 13 | 12.4 55 | 39.7 62 | 8.46 62 | 32.2 59 | 40.6 59 | 25.2 53 | 29.0 92 | 54.2 64 | 29.7 96 | 39.1 87 | 52.1 48 | 47.4 121 | 6.53 39 | 16.1 42 | 6.88 25 |
IROF-TV [53] | 54.9 | 30.9 39 | 54.8 40 | 31.6 63 | 22.8 66 | 50.5 70 | 25.1 71 | 16.9 43 | 40.8 45 | 20.8 67 | 14.0 77 | 43.7 81 | 10.1 79 | 31.2 53 | 39.5 49 | 28.6 74 | 26.8 83 | 58.7 89 | 25.6 79 | 18.8 12 | 48.4 22 | 8.08 16 | 5.28 28 | 13.6 28 | 7.77 44 |
AggregFlow [95] | 55.0 | 36.3 62 | 52.7 37 | 35.7 71 | 26.6 97 | 52.6 86 | 26.7 80 | 23.3 77 | 48.2 68 | 28.9 100 | 12.1 48 | 34.9 41 | 8.63 65 | 30.2 46 | 40.3 58 | 21.4 22 | 15.9 8 | 38.3 5 | 16.8 11 | 26.1 36 | 47.3 18 | 16.8 27 | 12.6 93 | 20.3 58 | 20.0 107 |
Occlusion-TV-L1 [63] | 56.3 | 34.3 48 | 58.5 52 | 25.1 27 | 20.0 37 | 46.5 42 | 20.8 42 | 22.3 74 | 49.9 69 | 20.6 66 | 12.6 63 | 41.7 71 | 8.41 61 | 35.2 82 | 44.9 90 | 32.3 89 | 17.7 17 | 52.6 52 | 21.1 45 | 28.2 44 | 52.5 50 | 13.0 19 | 9.66 70 | 23.7 74 | 10.6 68 |
PBOFVI [189] | 57.2 | 46.5 97 | 65.0 65 | 46.2 94 | 19.9 36 | 46.6 43 | 19.1 32 | 15.4 24 | 35.3 20 | 12.4 11 | 12.7 66 | 34.6 38 | 7.16 33 | 32.1 58 | 39.8 52 | 25.7 56 | 25.6 77 | 52.9 57 | 28.5 91 | 34.2 66 | 55.9 69 | 50.9 132 | 6.75 42 | 17.7 51 | 9.48 63 |
3DFlow [133] | 58.4 | 35.7 58 | 56.6 46 | 28.3 47 | 19.1 32 | 46.2 40 | 17.4 27 | 18.8 56 | 41.7 47 | 14.5 23 | 13.9 75 | 33.3 26 | 9.85 77 | 29.0 38 | 36.6 34 | 23.0 35 | 32.9 103 | 65.1 114 | 34.7 114 | 49.9 124 | 65.5 108 | 77.7 159 | 3.87 6 | 10.3 6 | 3.02 7 |
Classic++ [32] | 60.2 | 27.7 32 | 51.0 27 | 28.7 51 | 21.5 50 | 45.9 36 | 24.3 63 | 18.1 53 | 44.3 55 | 19.9 63 | 10.3 34 | 37.7 51 | 7.14 32 | 33.4 63 | 44.1 79 | 27.9 68 | 24.0 66 | 57.9 84 | 21.4 51 | 46.3 111 | 55.6 67 | 49.7 127 | 8.45 60 | 20.7 59 | 9.69 64 |
HCFN [157] | 61.2 | 31.7 41 | 61.4 57 | 26.1 37 | 12.6 4 | 37.8 5 | 12.6 3 | 13.0 11 | 37.3 29 | 8.55 2 | 12.6 63 | 38.8 59 | 9.77 76 | 29.3 42 | 37.6 42 | 23.3 37 | 26.0 79 | 59.1 91 | 26.4 83 | 60.4 145 | 73.6 133 | 63.0 148 | 12.5 92 | 26.5 83 | 19.6 106 |
IIOF-NLDP [129] | 61.8 | 33.3 44 | 59.3 54 | 24.9 26 | 24.4 76 | 53.8 96 | 22.9 50 | 18.8 56 | 46.2 61 | 15.0 24 | 13.5 71 | 39.7 62 | 9.86 78 | 32.3 60 | 41.2 63 | 23.3 37 | 29.9 96 | 60.2 99 | 29.6 95 | 28.1 43 | 60.8 90 | 27.0 71 | 7.51 49 | 17.2 49 | 7.29 34 |
MDP-Flow [26] | 62.2 | 35.5 57 | 65.0 65 | 32.4 64 | 20.6 44 | 43.8 23 | 24.4 65 | 18.0 52 | 43.4 53 | 19.9 63 | 14.9 86 | 41.8 73 | 11.5 88 | 30.8 51 | 39.6 50 | 25.3 54 | 23.8 63 | 57.4 82 | 22.2 57 | 31.0 56 | 59.3 84 | 16.8 27 | 10.8 84 | 26.5 83 | 10.9 70 |
DeepFlow2 [106] | 62.8 | 39.1 71 | 66.4 72 | 44.4 89 | 20.1 40 | 47.9 50 | 20.9 43 | 23.8 80 | 52.8 76 | 26.3 88 | 12.2 50 | 43.2 80 | 7.64 41 | 31.4 55 | 41.7 67 | 22.9 32 | 18.2 23 | 52.4 49 | 17.9 15 | 29.6 49 | 44.7 10 | 39.0 93 | 16.2 111 | 31.2 108 | 22.7 115 |
OFH [38] | 63.1 | 41.9 82 | 61.6 58 | 48.5 97 | 14.7 8 | 42.7 18 | 14.1 9 | 17.4 47 | 47.6 64 | 12.6 12 | 10.6 39 | 38.5 55 | 8.39 60 | 34.8 78 | 43.7 77 | 34.5 97 | 27.2 84 | 61.9 105 | 29.5 94 | 21.3 21 | 57.6 78 | 21.4 49 | 12.2 91 | 29.8 100 | 16.2 92 |
SegFlow [156] | 64.7 | 35.2 52 | 67.0 74 | 25.4 30 | 25.7 88 | 53.3 92 | 28.2 92 | 25.4 85 | 58.1 95 | 27.5 92 | 12.5 61 | 48.9 100 | 8.15 52 | 34.1 72 | 44.4 85 | 27.8 67 | 17.6 14 | 52.1 45 | 19.0 19 | 21.1 19 | 51.8 45 | 22.5 55 | 9.21 66 | 25.0 79 | 11.1 73 |
CPM-Flow [114] | 64.8 | 35.2 52 | 67.0 74 | 25.3 28 | 25.8 89 | 53.6 93 | 28.2 92 | 25.5 86 | 58.5 99 | 27.5 92 | 12.4 55 | 48.0 96 | 8.11 51 | 33.9 68 | 44.2 80 | 27.1 61 | 17.6 14 | 51.8 43 | 19.1 21 | 21.3 21 | 51.7 43 | 22.6 58 | 9.92 75 | 27.2 89 | 11.3 74 |
S2F-IF [121] | 65.2 | 35.7 58 | 69.0 85 | 26.6 39 | 24.1 73 | 54.0 101 | 26.0 76 | 25.6 88 | 60.9 108 | 25.9 84 | 12.4 55 | 46.6 92 | 8.38 59 | 34.3 74 | 44.2 80 | 27.7 66 | 18.0 22 | 53.2 59 | 19.2 23 | 21.2 20 | 51.7 43 | 22.9 59 | 8.97 64 | 24.9 78 | 9.11 59 |
PGM-C [118] | 65.5 | 35.2 52 | 67.1 77 | 25.4 30 | 25.8 89 | 53.6 93 | 28.2 92 | 25.8 89 | 59.3 104 | 27.5 92 | 12.4 55 | 48.1 97 | 8.16 53 | 33.9 68 | 44.3 83 | 27.1 61 | 17.7 17 | 52.8 56 | 19.1 21 | 20.8 14 | 50.3 34 | 22.4 54 | 9.82 73 | 27.2 89 | 11.5 78 |
BriefMatch [122] | 66.2 | 34.1 47 | 59.4 55 | 30.2 56 | 17.1 22 | 43.6 22 | 16.1 19 | 14.8 19 | 36.3 25 | 13.4 18 | 9.41 22 | 34.3 36 | 6.26 19 | 33.4 63 | 41.2 63 | 31.8 88 | 40.3 138 | 63.5 108 | 42.7 141 | 47.2 117 | 61.1 91 | 59.1 141 | 12.7 95 | 23.4 71 | 21.6 113 |
EpicFlow [100] | 67.8 | 35.2 52 | 67.2 78 | 25.3 28 | 25.8 89 | 53.8 96 | 28.2 92 | 26.1 91 | 60.1 105 | 27.5 92 | 12.4 55 | 48.1 97 | 8.10 50 | 34.2 73 | 44.5 86 | 28.0 70 | 17.8 19 | 52.7 54 | 19.4 28 | 21.0 17 | 52.1 48 | 22.5 55 | 10.4 80 | 27.3 91 | 12.7 81 |
CostFilter [40] | 67.9 | 43.6 90 | 65.7 69 | 40.8 82 | 20.8 45 | 45.9 36 | 21.0 44 | 18.8 56 | 44.9 58 | 18.3 42 | 17.3 98 | 39.5 61 | 13.9 100 | 26.7 19 | 32.8 13 | 22.7 30 | 30.9 100 | 60.0 97 | 31.6 100 | 59.7 142 | 81.5 157 | 59.3 143 | 4.31 14 | 11.9 20 | 5.93 14 |
FlowFields+ [128] | 68.3 | 35.8 61 | 69.2 87 | 26.0 36 | 25.6 86 | 55.3 110 | 27.7 89 | 26.7 92 | 62.9 113 | 27.7 97 | 12.7 66 | 45.9 90 | 8.84 69 | 34.0 71 | 44.2 80 | 26.6 59 | 17.6 14 | 54.9 69 | 19.0 19 | 20.6 13 | 53.9 58 | 22.3 53 | 9.31 69 | 26.5 83 | 8.79 56 |
RFlow [88] | 69.1 | 44.4 92 | 75.2 109 | 50.5 103 | 16.5 19 | 42.1 17 | 17.2 26 | 21.4 68 | 52.2 73 | 16.0 27 | 11.3 44 | 36.2 47 | 7.25 34 | 35.2 82 | 44.3 83 | 32.3 89 | 24.3 68 | 55.6 73 | 22.6 61 | 38.6 82 | 55.3 64 | 41.6 101 | 13.4 98 | 29.9 101 | 16.9 98 |
FlowFields [108] | 70.8 | 35.7 58 | 68.7 83 | 25.8 35 | 25.6 86 | 55.1 109 | 27.7 89 | 26.8 95 | 62.8 112 | 27.6 96 | 13.0 69 | 46.8 94 | 9.13 73 | 34.6 77 | 44.9 90 | 28.1 71 | 17.8 19 | 54.9 69 | 19.4 28 | 21.3 21 | 54.8 62 | 24.2 64 | 9.25 67 | 26.4 82 | 8.47 50 |
CVENG22+RIC [199] | 70.8 | 33.1 43 | 66.3 71 | 24.4 24 | 25.1 81 | 55.0 108 | 26.2 77 | 25.1 84 | 60.2 106 | 26.3 88 | 12.2 50 | 46.7 93 | 8.20 55 | 37.5 100 | 47.7 109 | 34.4 96 | 19.3 25 | 54.8 67 | 21.5 52 | 20.8 14 | 50.5 35 | 22.5 55 | 11.0 85 | 31.4 111 | 10.9 70 |
TV-L1-improved [17] | 71.5 | 27.7 32 | 57.9 49 | 20.5 17 | 18.2 27 | 44.9 29 | 19.1 32 | 19.4 60 | 47.7 65 | 17.0 35 | 10.1 28 | 38.5 55 | 6.75 26 | 35.9 90 | 46.0 98 | 27.3 63 | 43.7 145 | 70.2 137 | 47.5 146 | 51.4 127 | 60.5 89 | 50.3 129 | 10.3 79 | 26.8 88 | 10.8 69 |
DMF_ROB [135] | 71.9 | 43.0 87 | 71.7 97 | 45.5 92 | 22.4 63 | 48.3 52 | 24.0 59 | 28.0 103 | 62.4 111 | 26.9 91 | 12.8 68 | 45.8 89 | 7.80 45 | 33.9 68 | 43.1 71 | 30.0 84 | 20.9 31 | 56.4 76 | 21.2 48 | 22.3 27 | 42.0 5 | 27.0 71 | 12.7 95 | 27.6 93 | 17.1 99 |
Steered-L1 [116] | 73.8 | 38.7 70 | 67.9 79 | 43.1 87 | 11.6 1 | 34.7 1 | 12.3 2 | 16.3 39 | 41.3 46 | 13.9 19 | 12.1 48 | 38.6 57 | 8.30 57 | 34.5 76 | 43.4 74 | 32.5 91 | 29.4 94 | 61.1 104 | 25.9 80 | 60.6 146 | 67.0 115 | 70.1 155 | 15.9 108 | 30.6 104 | 24.0 117 |
Sparse Occlusion [54] | 74.2 | 38.6 69 | 61.8 60 | 32.5 66 | 26.0 93 | 48.8 54 | 29.5 102 | 20.0 62 | 45.2 59 | 19.2 48 | 14.3 81 | 38.4 53 | 9.67 75 | 34.4 75 | 42.6 70 | 26.7 60 | 25.4 76 | 52.4 49 | 22.4 60 | 67.3 153 | 75.9 145 | 48.3 123 | 8.07 55 | 19.9 57 | 7.36 36 |
MLDP_OF [87] | 75.5 | 48.8 103 | 77.3 112 | 52.2 105 | 20.1 40 | 49.6 64 | 19.3 37 | 23.5 79 | 54.6 81 | 18.9 45 | 12.3 54 | 38.6 57 | 7.65 42 | 33.5 66 | 40.9 60 | 29.1 82 | 28.4 90 | 55.9 74 | 31.6 100 | 49.1 121 | 62.2 98 | 60.5 145 | 7.91 54 | 16.8 45 | 8.95 57 |
PWC-Net_RVC [143] | 75.8 | 49.3 105 | 75.1 108 | 39.6 79 | 28.7 104 | 54.0 101 | 29.4 101 | 27.2 96 | 58.7 100 | 31.5 105 | 15.6 89 | 38.4 53 | 8.76 67 | 36.5 95 | 45.6 97 | 28.3 72 | 26.2 81 | 60.3 100 | 26.4 83 | 13.0 6 | 49.3 26 | 4.98 10 | 7.79 51 | 19.4 55 | 7.36 36 |
DeepFlow [85] | 76.2 | 47.3 99 | 71.9 98 | 64.0 123 | 21.4 48 | 48.2 51 | 22.7 49 | 27.9 100 | 58.2 96 | 31.6 106 | 15.1 87 | 42.7 76 | 10.6 84 | 31.5 57 | 42.1 68 | 22.6 28 | 19.6 26 | 56.7 78 | 19.4 28 | 27.6 41 | 46.2 16 | 39.7 95 | 20.6 122 | 35.3 127 | 28.0 126 |
WRT [146] | 76.6 | 38.4 68 | 61.6 58 | 26.8 41 | 31.9 111 | 58.0 119 | 32.7 107 | 28.0 103 | 56.1 86 | 21.7 72 | 14.6 83 | 41.9 74 | 9.03 72 | 30.7 49 | 37.0 39 | 24.9 49 | 35.7 117 | 62.5 106 | 31.8 104 | 34.3 67 | 63.2 101 | 37.1 88 | 7.23 46 | 15.2 37 | 7.62 42 |
TF+OM [98] | 78.0 | 39.8 74 | 55.2 43 | 30.4 58 | 20.4 43 | 41.0 13 | 23.5 53 | 19.5 61 | 39.4 38 | 28.0 98 | 18.4 101 | 37.0 50 | 18.0 108 | 35.0 79 | 41.1 61 | 39.6 112 | 29.6 95 | 52.6 52 | 29.1 93 | 49.0 120 | 66.8 114 | 43.6 108 | 14.4 100 | 29.3 97 | 18.0 101 |
CombBMOF [111] | 79.6 | 42.4 83 | 71.5 95 | 31.3 62 | 25.2 82 | 52.9 89 | 25.1 71 | 17.9 50 | 45.8 60 | 16.1 28 | 14.2 79 | 41.7 71 | 11.4 87 | 33.5 66 | 40.2 56 | 29.6 83 | 34.5 111 | 59.9 96 | 37.3 120 | 55.2 137 | 69.9 126 | 46.5 120 | 6.78 43 | 16.8 45 | 8.62 51 |
EPPM w/o HM [86] | 80.1 | 43.1 88 | 72.4 100 | 38.1 77 | 18.7 30 | 52.5 83 | 16.9 24 | 21.3 67 | 56.2 87 | 17.5 36 | 16.2 93 | 45.3 87 | 12.7 96 | 33.4 63 | 39.6 50 | 30.0 84 | 33.5 105 | 65.4 116 | 33.8 109 | 45.5 107 | 66.1 112 | 65.5 152 | 6.88 44 | 18.1 52 | 9.16 61 |
FF++_ROB [141] | 80.8 | 38.0 67 | 69.4 88 | 32.4 64 | 25.8 89 | 54.8 107 | 27.6 87 | 28.3 108 | 63.7 114 | 30.3 101 | 15.7 90 | 49.6 102 | 12.9 97 | 35.0 79 | 44.9 90 | 28.9 79 | 23.0 54 | 55.4 72 | 23.0 69 | 22.1 26 | 53.1 54 | 24.0 63 | 10.1 77 | 25.5 80 | 12.8 83 |
Complementary OF [21] | 82.7 | 51.9 112 | 74.9 107 | 59.3 115 | 14.2 6 | 41.6 15 | 13.7 6 | 20.4 63 | 46.6 62 | 19.7 57 | 22.2 109 | 40.8 66 | 21.0 113 | 36.0 92 | 43.4 74 | 38.5 110 | 33.9 109 | 63.8 109 | 31.6 100 | 31.1 57 | 51.9 46 | 36.2 86 | 18.9 119 | 34.4 124 | 29.4 128 |
Aniso. Huber-L1 [22] | 82.8 | 33.9 45 | 65.1 68 | 32.8 67 | 34.0 112 | 54.0 101 | 40.0 115 | 27.9 100 | 55.0 83 | 38.4 113 | 15.2 88 | 49.9 103 | 12.0 91 | 35.3 84 | 44.6 87 | 28.5 73 | 23.9 64 | 55.9 74 | 20.7 40 | 50.6 125 | 62.1 97 | 39.7 95 | 8.15 56 | 20.7 59 | 8.39 48 |
VCN_RVC [178] | 84.4 | 55.6 114 | 78.9 115 | 49.0 100 | 29.1 105 | 56.1 113 | 30.0 103 | 27.5 98 | 60.4 107 | 24.8 82 | 16.3 95 | 52.8 109 | 11.6 89 | 35.0 79 | 43.2 73 | 27.9 68 | 25.3 75 | 59.4 93 | 24.6 76 | 22.3 27 | 61.9 95 | 7.73 14 | 8.49 61 | 22.2 67 | 10.5 67 |
Rannacher [23] | 84.8 | 43.1 88 | 71.0 93 | 45.2 91 | 24.1 73 | 49.4 59 | 26.4 79 | 26.0 90 | 56.9 91 | 26.0 86 | 14.2 79 | 42.7 76 | 10.5 83 | 37.1 99 | 47.9 111 | 30.7 87 | 32.3 102 | 65.2 115 | 27.0 86 | 44.0 103 | 56.0 72 | 39.7 95 | 7.83 52 | 21.2 63 | 9.19 62 |
TCOF [69] | 84.9 | 45.0 93 | 70.0 89 | 51.5 104 | 25.5 85 | 53.7 95 | 26.7 80 | 26.7 92 | 56.2 87 | 32.0 107 | 21.9 108 | 43.1 79 | 22.2 115 | 37.8 103 | 48.9 116 | 25.7 56 | 18.8 24 | 44.7 12 | 20.0 35 | 52.1 131 | 67.5 117 | 25.8 66 | 10.7 82 | 26.7 86 | 11.4 76 |
ComplOF-FED-GPU [35] | 86.0 | 49.5 106 | 75.7 111 | 55.3 108 | 15.3 11 | 47.0 45 | 13.8 7 | 21.1 66 | 52.7 75 | 16.1 28 | 17.1 97 | 40.6 65 | 14.2 101 | 35.7 89 | 45.1 94 | 32.5 91 | 35.3 114 | 67.5 127 | 34.4 112 | 46.5 113 | 59.0 83 | 50.8 130 | 12.8 97 | 29.6 98 | 16.6 96 |
ACK-Prior [27] | 86.9 | 55.9 115 | 72.7 102 | 59.3 115 | 17.5 24 | 43.3 20 | 16.0 18 | 17.8 48 | 42.3 48 | 16.3 32 | 17.6 99 | 41.3 68 | 12.0 91 | 35.3 84 | 41.1 61 | 35.9 100 | 37.4 130 | 59.6 94 | 34.3 111 | 59.8 144 | 61.1 91 | 74.7 156 | 17.7 117 | 29.2 96 | 27.4 121 |
F-TV-L1 [15] | 87.3 | 66.8 126 | 84.2 126 | 77.3 137 | 27.1 100 | 52.0 78 | 29.1 100 | 27.2 96 | 57.3 93 | 24.2 81 | 24.1 114 | 52.0 108 | 19.5 111 | 39.3 111 | 47.7 109 | 39.3 111 | 24.2 67 | 56.5 77 | 24.9 77 | 33.2 64 | 53.7 57 | 20.1 44 | 6.69 41 | 18.6 53 | 5.94 15 |
ROF-ND [105] | 88.3 | 49.2 104 | 71.5 95 | 49.4 101 | 22.5 65 | 46.2 40 | 20.6 40 | 21.4 68 | 50.0 70 | 18.1 40 | 23.1 111 | 53.7 113 | 16.0 103 | 35.9 90 | 46.1 100 | 28.6 74 | 33.5 105 | 58.5 87 | 30.3 97 | 60.7 147 | 70.5 127 | 60.4 144 | 9.67 71 | 20.9 61 | 10.2 66 |
LDOF [28] | 88.5 | 41.7 81 | 70.7 90 | 47.2 96 | 24.0 72 | 53.9 100 | 24.6 67 | 26.7 92 | 58.4 98 | 25.5 83 | 15.8 91 | 57.4 123 | 10.2 81 | 36.0 92 | 45.3 95 | 34.8 98 | 22.1 44 | 58.1 86 | 21.3 49 | 30.6 54 | 56.8 74 | 23.4 60 | 22.5 131 | 38.6 137 | 30.2 129 |
MCPFlow_RVC [197] | 88.9 | 63.2 121 | 77.9 113 | 48.7 99 | 49.5 132 | 66.5 136 | 53.4 129 | 50.3 134 | 76.4 130 | 53.4 132 | 20.7 105 | 42.4 75 | 16.5 105 | 38.0 106 | 47.4 107 | 25.0 50 | 23.2 55 | 50.4 39 | 24.2 74 | 27.5 40 | 58.3 81 | 4.48 9 | 8.18 57 | 17.4 50 | 8.78 55 |
GMFlow_RVC [196] | 89.9 | 76.9 143 | 79.3 117 | 73.3 129 | 35.5 113 | 53.2 91 | 40.5 116 | 33.2 115 | 54.3 79 | 34.0 110 | 27.7 119 | 41.5 70 | 23.4 119 | 35.6 88 | 42.3 69 | 28.8 77 | 33.5 105 | 54.7 66 | 32.0 105 | 46.5 113 | 76.4 147 | 23.5 61 | 2.66 2 | 8.79 2 | 0.35 1 |
SIOF [67] | 90.1 | 50.3 109 | 66.0 70 | 47.1 95 | 19.8 35 | 48.4 53 | 20.7 41 | 29.8 110 | 55.1 84 | 32.6 109 | 25.9 117 | 48.3 99 | 25.0 120 | 37.7 101 | 46.4 102 | 36.8 103 | 32.9 103 | 58.6 88 | 35.6 117 | 37.2 78 | 53.1 54 | 18.6 36 | 16.8 113 | 33.0 114 | 21.3 112 |
LocallyOriented [52] | 90.2 | 39.4 72 | 60.5 56 | 35.7 71 | 27.9 103 | 57.8 118 | 28.5 97 | 28.1 105 | 58.3 97 | 30.6 104 | 13.9 75 | 41.3 68 | 10.1 79 | 37.8 103 | 47.3 106 | 33.0 95 | 24.8 74 | 52.5 51 | 28.1 89 | 39.4 89 | 62.4 99 | 37.5 90 | 15.7 106 | 33.0 114 | 18.2 104 |
Second-order prior [8] | 90.4 | 37.6 65 | 70.9 92 | 37.2 75 | 22.4 63 | 51.2 71 | 23.7 55 | 24.5 83 | 59.1 103 | 22.6 75 | 11.2 43 | 41.2 67 | 8.48 64 | 37.9 105 | 49.6 124 | 28.8 77 | 29.0 92 | 68.8 131 | 26.0 81 | 55.5 138 | 64.7 106 | 52.7 135 | 14.7 103 | 34.1 122 | 17.3 100 |
Brox et al. [5] | 90.8 | 43.7 91 | 74.4 105 | 56.4 112 | 27.0 99 | 52.5 83 | 30.5 105 | 23.4 78 | 54.5 80 | 23.3 78 | 13.4 70 | 50.0 104 | 8.66 66 | 39.8 114 | 46.5 103 | 47.6 136 | 21.6 37 | 59.8 95 | 22.8 67 | 30.9 55 | 59.3 84 | 7.61 12 | 23.1 135 | 37.0 133 | 33.4 137 |
FlowNetS+ft+v [110] | 91.3 | 36.8 64 | 67.0 74 | 39.4 78 | 25.3 84 | 52.1 80 | 27.6 87 | 27.8 99 | 57.2 92 | 35.5 111 | 13.5 71 | 50.9 106 | 9.44 74 | 40.1 115 | 49.5 123 | 36.8 103 | 20.9 31 | 57.0 79 | 20.8 42 | 46.3 111 | 66.3 113 | 41.0 99 | 17.4 115 | 34.3 123 | 24.1 118 |
NL-TV-NCC [25] | 91.9 | 46.1 95 | 68.3 81 | 43.4 88 | 25.2 82 | 55.3 110 | 23.5 53 | 21.8 73 | 47.2 63 | 16.9 34 | 16.9 96 | 44.1 82 | 11.9 90 | 38.5 108 | 49.1 120 | 27.3 63 | 36.5 123 | 65.7 118 | 34.9 115 | 46.2 109 | 75.7 144 | 45.7 114 | 12.6 93 | 28.8 94 | 9.10 58 |
SRR-TVOF-NL [89] | 92.3 | 47.6 101 | 69.1 86 | 41.9 85 | 23.3 67 | 52.7 87 | 23.3 51 | 25.5 86 | 56.8 90 | 25.9 84 | 13.5 71 | 47.9 95 | 8.09 49 | 36.9 98 | 43.8 78 | 32.9 94 | 25.8 78 | 57.7 83 | 22.6 61 | 62.8 150 | 75.2 141 | 49.1 126 | 21.0 124 | 29.7 99 | 31.6 132 |
DF-Auto [113] | 92.4 | 41.6 80 | 64.2 63 | 32.8 67 | 42.0 122 | 58.8 122 | 49.6 124 | 34.8 118 | 62.2 110 | 47.2 123 | 20.7 105 | 53.4 112 | 14.5 102 | 36.2 94 | 44.7 88 | 37.2 107 | 15.1 6 | 42.9 10 | 17.4 12 | 45.3 105 | 69.0 122 | 13.0 19 | 24.2 139 | 37.7 134 | 31.9 133 |
DPOF [18] | 93.0 | 45.3 94 | 68.9 84 | 37.6 76 | 26.7 98 | 56.9 114 | 26.9 83 | 24.3 82 | 54.6 81 | 26.2 87 | 18.6 102 | 54.6 116 | 13.6 99 | 33.3 62 | 43.1 71 | 28.9 79 | 27.6 88 | 60.8 101 | 26.3 82 | 47.2 117 | 55.3 64 | 76.0 158 | 14.3 99 | 31.0 107 | 15.3 89 |
CRTflow [81] | 93.1 | 40.9 76 | 72.5 101 | 36.2 73 | 21.3 47 | 49.4 59 | 21.8 45 | 22.9 75 | 57.5 94 | 19.0 46 | 14.0 77 | 44.7 84 | 10.3 82 | 35.4 87 | 45.0 93 | 30.4 86 | 46.6 150 | 73.4 144 | 53.8 151 | 38.8 84 | 65.5 108 | 38.2 91 | 19.5 121 | 38.5 136 | 27.6 124 |
TriangleFlow [30] | 93.4 | 41.5 79 | 63.2 61 | 42.6 86 | 21.4 48 | 52.4 82 | 20.2 39 | 21.7 72 | 53.6 78 | 16.2 30 | 14.8 84 | 44.4 83 | 10.9 85 | 43.2 129 | 52.9 137 | 43.4 122 | 36.8 127 | 65.9 120 | 38.8 124 | 42.2 98 | 65.4 107 | 41.8 103 | 15.8 107 | 35.2 126 | 22.5 114 |
Bartels [41] | 94.8 | 48.6 102 | 63.2 61 | 61.4 121 | 23.4 69 | 44.0 24 | 27.1 85 | 21.4 68 | 44.6 56 | 23.8 80 | 26.2 118 | 43.0 78 | 25.4 121 | 36.8 96 | 44.7 88 | 41.7 119 | 33.7 108 | 60.0 97 | 41.7 138 | 52.6 132 | 67.2 116 | 61.1 146 | 11.2 87 | 23.4 71 | 16.3 93 |
Dynamic MRF [7] | 96.0 | 49.5 106 | 78.0 114 | 55.8 111 | 17.2 23 | 47.4 47 | 16.5 22 | 21.6 71 | 56.3 89 | 16.2 30 | 14.8 84 | 46.4 91 | 12.5 94 | 41.2 121 | 49.0 118 | 45.1 128 | 35.3 114 | 70.7 138 | 38.5 123 | 37.1 77 | 57.7 79 | 55.1 136 | 21.3 126 | 36.7 132 | 31.2 131 |
CBF [12] | 96.1 | 41.4 77 | 74.0 104 | 48.5 97 | 40.2 119 | 51.5 75 | 51.7 126 | 22.9 75 | 50.8 72 | 28.5 99 | 14.3 81 | 44.7 84 | 11.2 86 | 38.3 107 | 46.1 100 | 36.1 101 | 26.3 82 | 55.1 71 | 24.9 77 | 61.5 148 | 71.0 128 | 52.0 134 | 11.6 90 | 26.7 86 | 14.8 88 |
CLG-TV [48] | 96.5 | 41.4 77 | 68.0 80 | 40.8 82 | 37.0 117 | 53.1 90 | 45.3 118 | 30.9 111 | 58.7 100 | 40.2 115 | 22.8 110 | 62.0 130 | 19.3 110 | 39.0 110 | 47.6 108 | 38.2 109 | 27.2 84 | 61.0 103 | 27.1 87 | 46.2 109 | 57.8 80 | 29.3 77 | 9.74 72 | 24.6 77 | 9.11 59 |
CNN-flow-warp+ref [115] | 97.0 | 42.6 85 | 71.2 94 | 49.8 102 | 31.6 110 | 53.8 96 | 37.3 112 | 32.7 113 | 63.8 115 | 42.7 119 | 16.0 92 | 55.1 117 | 12.1 93 | 38.6 109 | 46.0 98 | 43.8 126 | 23.3 58 | 59.1 91 | 23.6 71 | 23.5 31 | 50.9 40 | 21.9 52 | 24.2 139 | 36.2 129 | 32.9 135 |
Local-TV-L1 [65] | 97.2 | 56.8 117 | 79.1 116 | 74.5 130 | 39.5 118 | 53.8 96 | 46.1 120 | 38.1 119 | 66.2 117 | 43.1 120 | 23.9 113 | 52.9 111 | 21.1 114 | 32.3 60 | 41.4 66 | 27.5 65 | 23.2 55 | 54.8 67 | 22.7 65 | 25.8 34 | 47.5 19 | 33.4 83 | 26.9 142 | 40.5 141 | 40.5 146 |
HBM-GC [103] | 99.8 | 73.5 138 | 79.7 118 | 79.4 141 | 30.0 106 | 49.7 66 | 33.6 108 | 29.3 109 | 47.8 66 | 30.4 102 | 35.4 130 | 45.2 86 | 33.3 130 | 30.5 48 | 35.1 24 | 32.6 93 | 34.6 112 | 52.0 44 | 35.4 116 | 70.9 156 | 80.1 152 | 62.6 147 | 8.83 63 | 19.1 54 | 13.0 85 |
TriFlow [93] | 103.0 | 47.1 98 | 66.5 73 | 41.1 84 | 31.2 109 | 49.6 64 | 37.3 112 | 27.9 100 | 52.3 74 | 39.4 114 | 24.7 115 | 49.3 101 | 22.3 116 | 37.7 101 | 43.5 76 | 43.1 121 | 28.4 90 | 52.7 54 | 29.0 92 | 76.7 160 | 73.7 134 | 99.5 163 | 16.2 111 | 30.5 103 | 20.1 108 |
OFRF [132] | 104.2 | 50.4 110 | 64.5 64 | 55.4 110 | 41.2 121 | 57.5 116 | 46.2 122 | 34.5 117 | 58.9 102 | 40.6 116 | 29.6 122 | 45.6 88 | 28.8 125 | 30.7 49 | 40.2 56 | 22.3 26 | 31.1 101 | 57.9 84 | 30.4 99 | 43.5 101 | 62.5 100 | 51.9 133 | 29.8 146 | 39.3 138 | 49.1 154 |
p-harmonic [29] | 105.4 | 50.4 110 | 86.6 137 | 56.5 114 | 27.1 100 | 54.5 104 | 28.9 99 | 32.9 114 | 69.3 123 | 30.4 102 | 19.8 103 | 65.1 133 | 16.2 104 | 39.6 113 | 47.2 105 | 40.3 114 | 30.4 98 | 66.5 122 | 32.2 107 | 45.6 108 | 64.4 104 | 28.9 76 | 10.2 78 | 24.1 76 | 13.2 86 |
Learning Flow [11] | 106.1 | 42.9 86 | 70.7 90 | 44.8 90 | 30.2 107 | 54.7 105 | 34.7 109 | 28.2 106 | 55.9 85 | 32.3 108 | 17.6 99 | 57.1 122 | 12.6 95 | 44.0 132 | 52.6 135 | 47.8 139 | 30.5 99 | 64.6 111 | 30.3 97 | 46.9 115 | 63.3 102 | 42.8 107 | 14.7 103 | 31.6 112 | 16.3 93 |
Fusion [6] | 108.4 | 40.5 75 | 75.6 110 | 45.9 93 | 20.0 37 | 50.0 68 | 22.5 47 | 20.8 65 | 52.8 76 | 22.8 76 | 16.2 93 | 52.8 109 | 13.5 98 | 43.1 127 | 49.0 118 | 47.5 133 | 39.6 137 | 67.8 129 | 43.8 143 | 63.9 151 | 75.0 140 | 46.3 119 | 35.5 152 | 42.6 147 | 53.3 158 |
Shiralkar [42] | 111.2 | 46.1 95 | 85.6 132 | 54.3 107 | 19.7 34 | 57.7 117 | 18.2 28 | 28.2 106 | 70.8 124 | 19.3 49 | 20.5 104 | 59.0 125 | 18.4 109 | 39.5 112 | 49.7 126 | 36.3 102 | 40.4 139 | 76.1 146 | 41.2 136 | 51.9 129 | 65.8 110 | 64.2 150 | 21.0 124 | 42.4 146 | 25.3 119 |
StereoFlow [44] | 111.4 | 95.9 163 | 96.0 162 | 97.4 163 | 88.3 163 | 96.2 163 | 86.2 159 | 82.6 160 | 94.8 161 | 73.7 157 | 91.4 162 | 96.3 162 | 90.3 161 | 53.0 152 | 61.6 157 | 52.8 145 | 11.2 2 | 39.3 6 | 11.7 3 | 10.5 3 | 42.5 6 | 1.70 2 | 11.5 88 | 23.6 73 | 18.0 101 |
LiteFlowNet [138] | 112.9 | 62.6 119 | 88.2 144 | 55.3 108 | 35.7 114 | 65.1 133 | 36.9 111 | 39.6 120 | 74.5 127 | 38.1 112 | 23.4 112 | 50.3 105 | 17.4 106 | 43.1 127 | 51.4 132 | 42.2 120 | 35.7 117 | 69.3 133 | 33.9 110 | 41.2 94 | 75.2 141 | 17.8 33 | 14.4 100 | 28.9 95 | 16.7 97 |
ContinualFlow_ROB [148] | 113.1 | 67.9 129 | 87.6 141 | 62.0 122 | 54.1 138 | 68.0 138 | 60.3 137 | 52.2 138 | 80.5 137 | 54.5 135 | 32.5 125 | 61.0 129 | 26.1 124 | 47.3 144 | 57.0 144 | 40.4 115 | 43.1 144 | 69.7 135 | 48.7 147 | 18.7 11 | 49.0 24 | 6.92 11 | 11.5 88 | 23.8 75 | 12.8 83 |
SegOF [10] | 115.8 | 56.3 116 | 71.9 98 | 37.1 74 | 57.3 142 | 62.9 130 | 68.3 145 | 46.0 128 | 69.0 122 | 57.2 140 | 41.0 134 | 59.5 127 | 37.2 133 | 43.5 130 | 48.3 114 | 56.4 149 | 38.2 135 | 69.6 134 | 39.1 125 | 17.9 10 | 64.5 105 | 3.40 6 | 22.7 134 | 33.0 114 | 32.0 134 |
StereoOF-V1MT [117] | 116.8 | 49.7 108 | 86.0 134 | 56.4 112 | 21.2 46 | 68.8 140 | 16.3 21 | 32.2 112 | 80.7 138 | 20.8 67 | 21.3 107 | 66.1 136 | 17.4 106 | 47.0 143 | 57.0 144 | 47.5 133 | 41.7 142 | 81.2 151 | 40.9 133 | 38.6 82 | 68.1 119 | 48.6 124 | 23.2 136 | 42.2 145 | 27.7 125 |
Ad-TV-NDC [36] | 117.8 | 73.7 139 | 85.4 130 | 89.5 157 | 56.9 140 | 60.4 126 | 67.5 143 | 51.0 135 | 75.9 129 | 57.6 142 | 45.7 137 | 65.7 134 | 47.9 141 | 35.3 84 | 45.3 95 | 28.9 79 | 27.3 87 | 57.2 81 | 28.2 90 | 34.6 69 | 55.0 63 | 27.3 73 | 34.0 149 | 48.7 153 | 47.5 151 |
EAI-Flow [147] | 118.4 | 71.2 133 | 88.2 144 | 74.6 131 | 35.9 115 | 59.6 124 | 38.0 114 | 40.3 121 | 74.4 126 | 44.4 121 | 33.3 126 | 55.4 119 | 31.8 128 | 40.7 120 | 49.7 126 | 36.9 105 | 37.2 129 | 65.8 119 | 39.3 128 | 57.5 140 | 72.5 131 | 39.3 94 | 11.1 86 | 25.5 80 | 12.7 81 |
C-RAFT_RVC [181] | 119.2 | 78.8 148 | 92.1 151 | 75.6 134 | 53.7 137 | 68.4 139 | 58.1 135 | 57.1 145 | 82.6 141 | 61.7 149 | 28.9 121 | 55.3 118 | 22.6 117 | 46.9 142 | 55.9 143 | 43.4 122 | 35.5 116 | 65.0 113 | 40.4 131 | 45.3 105 | 69.8 125 | 17.5 31 | 10.7 82 | 22.9 70 | 8.35 47 |
WOLF_ROB [144] | 119.6 | 56.9 118 | 87.9 142 | 59.5 117 | 35.9 115 | 66.0 135 | 35.7 110 | 42.5 123 | 78.3 132 | 44.7 122 | 24.7 115 | 59.5 127 | 22.9 118 | 41.2 121 | 49.1 120 | 43.4 122 | 37.7 132 | 72.0 142 | 35.9 118 | 34.3 67 | 61.3 94 | 27.4 74 | 22.5 131 | 40.1 140 | 33.0 136 |
Modified CLG [34] | 119.9 | 68.7 130 | 80.5 121 | 76.1 135 | 52.0 135 | 61.0 127 | 63.6 139 | 51.9 136 | 79.4 133 | 55.6 137 | 47.4 140 | 72.1 144 | 46.7 139 | 41.2 121 | 49.7 126 | 46.0 130 | 26.0 79 | 64.7 112 | 26.7 85 | 31.4 60 | 55.6 67 | 19.9 43 | 29.0 145 | 43.8 149 | 39.9 145 |
CompactFlow_ROB [155] | 120.1 | 75.4 141 | 80.3 120 | 60.2 119 | 56.9 140 | 71.3 145 | 64.0 140 | 59.4 149 | 86.4 147 | 66.2 153 | 34.8 129 | 57.0 121 | 30.4 127 | 47.8 145 | 55.5 142 | 46.3 131 | 37.0 128 | 71.2 139 | 39.2 126 | 20.9 16 | 58.5 82 | 3.99 8 | 17.4 115 | 34.7 125 | 16.5 95 |
IAOF2 [51] | 121.1 | 54.9 113 | 73.7 103 | 53.9 106 | 42.6 123 | 58.3 120 | 50.7 125 | 33.9 116 | 61.9 109 | 42.1 118 | 64.4 150 | 75.7 147 | 74.3 152 | 41.5 124 | 49.9 130 | 37.1 106 | 36.4 122 | 64.0 110 | 34.4 112 | 59.7 142 | 69.6 124 | 41.3 100 | 19.4 120 | 33.4 119 | 23.0 116 |
Filter Flow [19] | 124.2 | 62.9 120 | 74.4 105 | 60.8 120 | 42.8 124 | 60.1 125 | 49.4 123 | 42.5 123 | 66.0 116 | 51.2 128 | 52.1 146 | 69.5 141 | 50.2 142 | 44.8 135 | 49.7 126 | 54.4 147 | 41.9 143 | 66.7 123 | 43.6 142 | 74.3 159 | 88.9 161 | 42.6 106 | 10.6 81 | 21.6 66 | 12.6 80 |
AugFNG_ROB [139] | 124.8 | 72.6 137 | 79.9 119 | 59.6 118 | 59.5 143 | 72.0 147 | 68.5 146 | 55.6 143 | 83.3 142 | 56.1 138 | 34.1 128 | 59.3 126 | 30.3 126 | 49.8 148 | 58.3 148 | 47.4 132 | 37.9 134 | 71.3 140 | 39.6 129 | 35.5 72 | 73.9 135 | 8.00 15 | 15.9 108 | 33.2 117 | 18.4 105 |
LSM_FLOW_RVC [182] | 125.6 | 80.5 153 | 95.3 160 | 79.1 140 | 50.6 134 | 71.0 144 | 54.5 132 | 53.9 140 | 89.5 153 | 47.9 125 | 31.9 124 | 66.2 137 | 25.4 121 | 46.8 141 | 54.4 141 | 45.7 129 | 37.7 132 | 72.5 143 | 41.2 136 | 27.8 42 | 68.3 121 | 13.4 21 | 16.8 113 | 36.2 129 | 18.1 103 |
SPSA-learn [13] | 126.5 | 65.1 122 | 87.4 140 | 72.7 128 | 45.7 129 | 59.3 123 | 53.4 129 | 45.2 127 | 74.7 128 | 52.2 130 | 41.6 135 | 69.9 143 | 42.5 135 | 42.7 126 | 48.9 116 | 48.7 141 | 38.8 136 | 69.0 132 | 42.5 140 | 39.1 87 | 61.9 95 | 19.3 38 | 36.0 153 | 45.6 150 | 48.3 152 |
GroupFlow [9] | 127.0 | 66.4 124 | 85.2 129 | 80.8 144 | 61.6 147 | 75.4 151 | 69.0 147 | 51.9 136 | 83.6 143 | 57.0 139 | 33.5 127 | 63.9 131 | 32.5 129 | 49.6 147 | 61.0 152 | 39.9 113 | 51.3 155 | 81.7 152 | 59.4 155 | 22.8 30 | 51.1 41 | 16.5 25 | 28.0 144 | 41.9 144 | 37.9 143 |
IAOF [50] | 127.1 | 66.3 123 | 81.3 123 | 77.8 138 | 50.1 133 | 58.4 121 | 59.7 136 | 45.0 126 | 74.1 125 | 49.6 127 | 50.8 143 | 68.2 138 | 58.0 148 | 40.2 116 | 48.7 115 | 37.8 108 | 36.7 124 | 66.9 124 | 33.5 108 | 54.9 135 | 63.5 103 | 40.8 98 | 30.1 148 | 41.3 143 | 43.5 147 |
2D-CLG [1] | 127.1 | 77.2 144 | 82.3 124 | 75.4 133 | 61.5 146 | 65.9 134 | 73.7 151 | 63.2 151 | 89.6 154 | 60.8 147 | 82.8 159 | 88.3 156 | 86.8 159 | 43.5 130 | 49.3 122 | 54.8 148 | 35.1 113 | 67.5 127 | 36.1 119 | 21.3 21 | 50.8 39 | 15.5 23 | 34.4 151 | 46.3 152 | 46.0 148 |
TVL1_RVC [175] | 127.3 | 88.5 158 | 92.7 152 | 96.4 161 | 69.8 155 | 66.8 137 | 83.8 157 | 67.8 153 | 90.2 156 | 70.7 155 | 77.3 155 | 89.0 158 | 80.7 155 | 40.2 116 | 49.6 124 | 40.8 116 | 23.9 64 | 65.6 117 | 27.6 88 | 21.6 25 | 57.0 77 | 10.3 17 | 36.2 154 | 51.0 155 | 47.2 150 |
BlockOverlap [61] | 127.3 | 77.2 144 | 86.0 134 | 82.8 147 | 48.2 130 | 55.8 112 | 57.6 134 | 46.9 130 | 66.9 118 | 51.9 129 | 49.1 142 | 54.1 114 | 51.2 143 | 36.8 96 | 41.3 65 | 47.5 133 | 40.5 140 | 59.0 90 | 39.6 129 | 68.9 155 | 80.2 153 | 65.1 151 | 20.8 123 | 30.8 105 | 34.9 139 |
HBpMotionGpu [43] | 127.6 | 67.0 127 | 80.7 122 | 72.3 127 | 55.3 139 | 57.3 115 | 66.7 142 | 44.7 125 | 67.2 120 | 54.1 134 | 39.5 133 | 57.8 124 | 38.4 134 | 42.0 125 | 48.2 113 | 48.3 140 | 35.9 119 | 60.9 102 | 39.2 126 | 65.1 152 | 72.0 130 | 50.1 128 | 22.6 133 | 32.5 113 | 36.9 140 |
LFNet_ROB [145] | 128.6 | 72.3 134 | 93.8 156 | 65.3 124 | 45.6 128 | 78.1 156 | 45.9 119 | 48.8 133 | 87.7 150 | 41.8 117 | 31.5 123 | 66.0 135 | 25.6 123 | 47.8 145 | 57.1 146 | 47.6 136 | 37.6 131 | 71.5 141 | 38.0 121 | 49.3 122 | 74.5 138 | 26.4 70 | 15.9 108 | 33.5 120 | 20.9 110 |
GraphCuts [14] | 129.4 | 66.6 125 | 87.0 138 | 80.0 143 | 43.1 125 | 63.0 131 | 46.1 120 | 41.8 122 | 67.0 119 | 53.4 132 | 28.5 120 | 64.0 132 | 20.8 112 | 40.2 116 | 48.1 112 | 43.5 125 | 46.5 148 | 63.4 107 | 40.5 132 | 62.7 149 | 75.4 143 | 69.5 154 | 23.8 138 | 33.3 118 | 38.5 144 |
Black & Anandan [4] | 130.0 | 70.3 132 | 88.0 143 | 84.1 148 | 45.5 127 | 61.4 128 | 52.0 127 | 47.4 131 | 77.3 131 | 52.9 131 | 42.3 136 | 77.5 148 | 42.8 136 | 44.0 132 | 51.8 133 | 45.0 127 | 35.9 119 | 75.9 145 | 38.3 122 | 50.8 126 | 71.3 129 | 17.8 33 | 29.8 146 | 42.7 148 | 37.6 142 |
IRR-PWC_RVC [180] | 131.8 | 78.7 147 | 85.7 133 | 72.0 126 | 59.5 143 | 68.9 141 | 67.8 144 | 64.7 152 | 85.8 146 | 65.7 152 | 38.6 131 | 69.2 139 | 34.2 131 | 46.6 140 | 52.9 137 | 49.0 142 | 33.9 109 | 69.8 136 | 32.1 106 | 49.7 123 | 81.6 158 | 21.1 47 | 21.9 129 | 36.6 131 | 26.0 120 |
EPMNet [131] | 133.0 | 78.2 146 | 91.5 149 | 78.0 139 | 61.6 147 | 75.7 152 | 69.6 148 | 55.3 142 | 79.5 134 | 57.3 141 | 48.1 141 | 56.6 120 | 47.7 140 | 45.3 136 | 54.0 139 | 41.1 117 | 36.7 124 | 67.3 125 | 41.0 134 | 56.4 139 | 81.4 156 | 26.3 68 | 18.6 118 | 36.0 128 | 20.7 109 |
FlowNet2 [120] | 133.1 | 78.8 148 | 86.2 136 | 79.4 141 | 63.5 152 | 70.2 143 | 72.8 150 | 57.2 147 | 82.0 139 | 59.7 146 | 46.2 138 | 51.4 107 | 45.6 138 | 45.3 136 | 54.0 139 | 41.1 117 | 36.7 124 | 67.3 125 | 41.0 134 | 67.6 154 | 80.8 154 | 55.1 136 | 14.5 102 | 30.0 102 | 13.9 87 |
ResPWCR_ROB [140] | 133.8 | 78.9 150 | 92.8 154 | 75.1 132 | 40.4 120 | 63.5 132 | 43.5 117 | 48.1 132 | 80.2 135 | 48.8 126 | 39.2 132 | 69.2 139 | 35.6 132 | 44.0 132 | 50.5 131 | 49.2 143 | 44.6 147 | 76.7 147 | 47.0 145 | 54.6 134 | 78.7 149 | 31.4 80 | 23.4 137 | 38.0 135 | 30.8 130 |
2bit-BM-tele [96] | 134.9 | 82.4 154 | 87.2 139 | 91.8 158 | 44.4 126 | 54.7 105 | 52.9 128 | 46.0 128 | 68.3 121 | 47.4 124 | 51.5 145 | 54.4 115 | 53.4 146 | 40.5 119 | 47.1 104 | 47.7 138 | 47.9 151 | 66.4 121 | 53.1 149 | 71.7 157 | 83.6 159 | 75.1 157 | 21.9 129 | 39.3 138 | 29.2 127 |
Nguyen [33] | 135.6 | 75.6 142 | 85.4 130 | 85.8 150 | 67.0 153 | 61.6 129 | 83.0 156 | 57.1 145 | 80.2 135 | 64.1 151 | 70.8 151 | 80.2 150 | 77.4 154 | 45.9 139 | 52.2 134 | 56.4 149 | 36.3 121 | 68.1 130 | 42.0 139 | 41.4 95 | 66.0 111 | 19.7 41 | 34.1 150 | 45.6 150 | 46.1 149 |
SILK [80] | 137.4 | 72.5 135 | 85.1 128 | 88.3 154 | 61.9 149 | 71.8 146 | 73.7 151 | 54.9 141 | 85.3 144 | 58.0 144 | 53.6 147 | 69.8 142 | 54.6 147 | 52.8 150 | 57.9 147 | 61.8 153 | 46.5 148 | 77.6 148 | 48.9 148 | 31.3 58 | 54.3 61 | 38.9 92 | 37.8 155 | 50.6 154 | 49.7 155 |
UnFlow [127] | 140.1 | 89.6 160 | 94.1 157 | 86.4 151 | 72.2 156 | 83.9 159 | 77.9 154 | 71.4 157 | 93.2 158 | 69.8 154 | 54.8 148 | 74.4 145 | 51.4 144 | 62.0 158 | 66.9 159 | 69.1 160 | 50.0 153 | 80.9 149 | 57.1 152 | 53.2 133 | 69.0 122 | 7.68 13 | 15.6 105 | 30.8 105 | 21.0 111 |
Periodicity [79] | 140.4 | 68.9 131 | 83.5 125 | 65.5 125 | 52.2 136 | 69.8 142 | 57.0 133 | 78.4 159 | 82.5 140 | 87.2 161 | 47.2 139 | 74.7 146 | 45.5 137 | 69.7 163 | 81.9 163 | 65.6 157 | 59.5 158 | 84.9 159 | 60.7 156 | 36.3 76 | 79.8 151 | 19.2 37 | 40.7 157 | 66.5 162 | 53.1 157 |
Horn & Schunck [3] | 141.1 | 74.1 140 | 93.2 155 | 86.9 152 | 49.1 131 | 73.8 148 | 53.9 131 | 53.1 139 | 89.0 152 | 54.6 136 | 50.9 144 | 81.4 151 | 52.4 145 | 51.3 149 | 58.8 149 | 54.3 146 | 41.2 141 | 82.3 153 | 44.6 144 | 55.0 136 | 74.3 137 | 19.6 40 | 40.7 157 | 56.8 157 | 48.8 153 |
Heeger++ [102] | 144.5 | 86.1 156 | 91.0 148 | 77.1 136 | 67.6 154 | 91.6 162 | 65.1 141 | 85.6 162 | 94.6 160 | 83.6 160 | 71.0 152 | 88.2 155 | 68.8 150 | 62.9 159 | 69.8 161 | 67.3 158 | 69.4 162 | 91.0 162 | 70.8 160 | 40.2 92 | 80.9 155 | 26.3 68 | 21.7 127 | 31.2 108 | 27.4 121 |
SLK [47] | 145.2 | 67.5 128 | 90.3 146 | 82.1 145 | 72.2 156 | 84.7 160 | 84.8 158 | 58.4 148 | 94.0 159 | 58.1 145 | 78.1 156 | 82.5 152 | 84.6 158 | 55.4 155 | 61.5 155 | 68.1 159 | 49.4 152 | 83.7 157 | 57.7 153 | 36.2 75 | 68.1 119 | 26.2 67 | 50.3 160 | 60.0 159 | 65.2 162 |
FFV1MT [104] | 147.4 | 85.0 155 | 92.0 150 | 84.4 149 | 60.6 145 | 83.8 158 | 60.8 138 | 85.4 161 | 92.2 157 | 88.2 162 | 71.2 153 | 89.9 159 | 69.1 151 | 64.0 161 | 69.3 160 | 78.0 162 | 69.2 161 | 91.5 163 | 73.2 162 | 51.7 128 | 73.9 135 | 45.3 111 | 21.7 127 | 31.2 108 | 27.4 121 |
FOLKI [16] | 147.6 | 72.5 135 | 84.5 127 | 87.5 153 | 62.3 150 | 74.9 150 | 74.0 153 | 56.9 144 | 87.2 148 | 57.7 143 | 59.8 149 | 78.1 149 | 65.4 149 | 53.3 153 | 61.2 154 | 62.7 154 | 50.9 154 | 81.0 150 | 62.7 157 | 47.3 119 | 73.3 132 | 56.8 140 | 49.0 159 | 62.9 160 | 64.3 161 |
TI-DOFE [24] | 148.2 | 90.7 161 | 94.6 159 | 97.1 162 | 76.9 161 | 79.5 157 | 89.4 162 | 73.1 158 | 96.1 162 | 74.4 158 | 84.6 160 | 93.6 161 | 88.3 160 | 52.9 151 | 59.9 150 | 63.9 155 | 44.5 146 | 83.6 156 | 53.5 150 | 42.9 99 | 68.0 118 | 17.0 30 | 50.5 161 | 65.5 161 | 62.4 160 |
H+S_RVC [176] | 148.3 | 79.6 152 | 90.3 146 | 82.3 146 | 75.7 159 | 90.8 161 | 80.5 155 | 71.1 156 | 96.2 163 | 61.0 148 | 89.4 161 | 88.1 154 | 91.6 162 | 56.7 156 | 60.0 151 | 70.2 161 | 57.2 156 | 86.6 161 | 64.3 158 | 31.7 62 | 78.0 148 | 25.0 65 | 55.9 162 | 57.2 158 | 62.3 159 |
PGAM+LK [55] | 154.5 | 79.4 151 | 92.7 152 | 88.7 155 | 62.9 151 | 76.8 155 | 71.9 149 | 59.9 150 | 88.3 151 | 62.8 150 | 74.9 154 | 90.6 160 | 75.6 153 | 54.4 154 | 61.0 152 | 64.6 156 | 58.1 157 | 82.7 154 | 58.6 154 | 77.6 161 | 85.6 160 | 78.1 160 | 38.8 156 | 52.7 156 | 50.7 156 |
Adaptive flow [45] | 155.3 | 91.3 162 | 95.7 161 | 96.2 159 | 75.8 160 | 75.9 153 | 86.2 159 | 68.9 154 | 85.6 145 | 72.4 156 | 80.6 158 | 85.2 153 | 83.9 157 | 57.3 157 | 61.5 155 | 60.2 152 | 66.7 159 | 84.1 158 | 70.4 159 | 90.2 162 | 92.7 162 | 95.0 161 | 27.7 143 | 40.5 141 | 37.0 141 |
HCIC-L [97] | 156.1 | 88.6 159 | 96.7 163 | 89.3 156 | 80.8 162 | 74.4 149 | 93.1 163 | 86.6 163 | 87.2 148 | 95.2 163 | 95.8 163 | 97.4 163 | 96.9 163 | 63.4 160 | 66.7 158 | 57.8 151 | 68.9 160 | 82.7 154 | 73.1 161 | 96.0 163 | 95.9 163 | 98.6 162 | 25.3 141 | 33.9 121 | 34.7 138 |
Pyramid LK [2] | 158.6 | 86.7 157 | 94.5 158 | 96.2 159 | 73.1 158 | 76.5 154 | 86.4 161 | 70.8 155 | 89.6 154 | 78.5 159 | 78.1 156 | 88.6 157 | 82.7 156 | 68.8 162 | 76.4 162 | 80.4 163 | 75.7 163 | 85.1 160 | 78.1 163 | 73.1 158 | 79.6 150 | 69.3 153 | 60.8 163 | 74.5 163 | 79.9 163 |
AdaConv-v1 [124] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SepConv-v1 [125] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SuperSlomo [130] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
CtxSyn [134] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
CyclicGen [149] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
TOF-M [150] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MPRN [151] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
DAIN [152] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
FRUCnet [153] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
OFRI [154] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
FGME [158] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MS-PFT [159] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MEMC-Net+ [160] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
ADC [161] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
DSepConv [162] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MAF-net [163] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
STAR-Net [164] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
AdaCoF [165] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
TC-GAN [166] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
FeFlow [167] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
DAI [168] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SoftSplat [169] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
STSR [170] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
BMBC [171] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
GDCN [172] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
EDSC [173] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MV_VFI [183] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
DistillNet [184] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SepConv++ [185] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
EAFI [186] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
FLAVR [188] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SoftsplatAug [190] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
ProBoost-Net [191] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
IDIAL [192] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
IFRNet [193] | 164.3 | 100.0 164 | 100.0 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 100.0 165 | 99.7 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
AVG_FLOW_ROB [137] | 168.4 | 100.0 164 | 99.9 164 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 199 | 99.9 164 | 100.0 199 | 99.9 164 | 100.0 199 | 99.8 164 | 99.2 164 | 99.5 164 | 98.3 164 | 99.6 164 | 97.0 164 | 99.7 164 | 99.9 164 | 99.9 164 | 99.9 164 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |