Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
A50 angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it+_RVC [198] | 5.1 | 1.31 7 | 2.16 8 | 0.90 1 | 0.56 1 | 1.39 2 | 0.63 1 | 0.77 2 | 1.14 2 | 0.89 6 | 0.34 1 | 0.46 1 | 0.32 1 | 0.72 9 | 1.03 6 | 0.63 8 | 0.29 2 | 0.92 2 | 0.34 2 | 0.72 1 | 1.76 2 | 0.47 1 | 0.53 17 | 0.80 32 | 0.39 7 |
RAFT-it [194] | 8.7 | 1.38 11 | 2.49 22 | 1.05 2 | 0.63 5 | 1.58 7 | 0.70 6 | 0.80 4 | 1.24 3 | 0.88 2 | 0.37 2 | 0.48 2 | 0.33 2 | 0.81 20 | 1.23 29 | 0.66 12 | 0.34 3 | 1.14 3 | 0.40 3 | 0.77 2 | 2.01 5 | 0.58 4 | 0.54 18 | 0.76 25 | 0.49 16 |
MS_RAFT+_RVC [195] | 15.2 | 1.40 14 | 2.09 4 | 1.05 2 | 1.00 82 | 1.63 12 | 1.23 96 | 0.86 13 | 1.27 4 | 1.00 20 | 0.38 3 | 0.60 3 | 0.33 2 | 0.57 1 | 0.79 2 | 0.52 1 | 0.37 4 | 0.91 1 | 0.47 5 | 0.89 4 | 1.44 1 | 0.85 12 | 0.61 28 | 0.78 29 | 0.57 23 |
TC/T-Flow [77] | 19.1 | 1.17 1 | 2.19 9 | 1.07 4 | 0.63 5 | 2.28 50 | 0.68 5 | 0.81 6 | 1.52 18 | 0.91 9 | 0.42 5 | 1.13 21 | 0.37 5 | 0.71 7 | 1.17 23 | 0.61 6 | 0.44 6 | 2.23 24 | 0.52 7 | 1.21 10 | 1.83 3 | 2.10 103 | 0.63 38 | 0.94 49 | 0.67 45 |
ALD-Flow [66] | 19.7 | 1.35 8 | 2.24 10 | 1.41 15 | 0.64 7 | 1.62 11 | 0.76 9 | 0.81 6 | 1.45 11 | 0.97 15 | 0.48 10 | 1.00 13 | 0.44 12 | 0.67 5 | 1.13 15 | 0.61 6 | 0.45 8 | 2.21 22 | 0.57 9 | 1.46 31 | 2.22 9 | 2.09 102 | 0.62 33 | 0.95 51 | 0.68 54 |
ProFlow_ROB [142] | 19.8 | 1.39 12 | 2.72 36 | 1.37 13 | 0.61 4 | 1.95 26 | 0.66 4 | 0.85 11 | 1.92 47 | 0.88 2 | 0.39 4 | 0.84 6 | 0.35 4 | 0.81 20 | 1.39 49 | 0.63 8 | 0.44 6 | 2.39 33 | 0.55 8 | 1.10 8 | 2.68 56 | 1.24 37 | 0.55 20 | 0.89 41 | 0.53 19 |
ComponentFusion [94] | 20.3 | 1.24 2 | 2.24 10 | 1.15 6 | 0.66 9 | 1.61 10 | 0.79 11 | 0.78 3 | 1.37 6 | 0.88 2 | 0.43 7 | 1.27 39 | 0.37 5 | 0.77 13 | 1.18 24 | 0.64 10 | 0.64 31 | 3.07 65 | 0.71 23 | 1.66 50 | 2.85 72 | 0.98 20 | 0.55 20 | 0.78 29 | 0.56 21 |
NNF-Local [75] | 22.0 | 1.29 5 | 2.06 3 | 1.24 7 | 0.66 9 | 1.96 27 | 0.77 10 | 0.84 10 | 1.53 20 | 0.91 9 | 0.61 47 | 1.09 16 | 0.56 51 | 0.77 13 | 1.04 8 | 0.75 16 | 0.71 46 | 2.07 16 | 0.92 67 | 1.55 38 | 2.27 12 | 1.37 50 | 0.49 13 | 0.75 22 | 0.44 12 |
NN-field [71] | 22.2 | 1.36 10 | 2.10 5 | 1.32 9 | 0.74 15 | 2.17 44 | 0.86 19 | 0.85 11 | 1.48 14 | 0.93 11 | 0.50 13 | 1.10 17 | 0.43 10 | 0.76 12 | 1.03 6 | 0.71 13 | 0.71 46 | 1.57 7 | 0.79 37 | 1.93 76 | 2.58 44 | 1.79 80 | 0.49 13 | 0.74 16 | 0.37 6 |
OAR-Flow [123] | 24.0 | 1.44 16 | 2.90 43 | 1.55 21 | 0.68 11 | 1.87 21 | 0.80 12 | 0.88 14 | 1.98 51 | 1.04 27 | 0.45 9 | 0.93 10 | 0.42 9 | 0.71 7 | 1.25 32 | 0.59 5 | 0.37 4 | 2.14 20 | 0.46 4 | 1.14 9 | 1.87 4 | 1.49 66 | 0.66 52 | 0.95 51 | 0.77 77 |
RNLOD-Flow [119] | 26.8 | 1.28 4 | 2.10 5 | 1.36 12 | 0.69 12 | 2.01 31 | 0.75 8 | 0.80 4 | 1.38 7 | 0.93 11 | 0.52 19 | 0.92 9 | 0.47 21 | 0.74 10 | 1.09 13 | 0.73 14 | 0.65 33 | 2.10 18 | 0.76 31 | 2.13 100 | 3.27 101 | 2.37 122 | 0.56 22 | 0.74 16 | 0.54 20 |
nLayers [57] | 28.2 | 1.35 8 | 1.80 1 | 1.44 16 | 1.07 95 | 2.03 32 | 1.33 102 | 0.88 14 | 1.47 13 | 1.14 57 | 0.42 5 | 0.70 4 | 0.38 7 | 0.62 3 | 0.81 3 | 0.55 2 | 0.57 19 | 1.73 8 | 0.68 13 | 1.73 61 | 2.67 55 | 1.53 68 | 0.62 33 | 0.73 12 | 0.67 45 |
TC-Flow [46] | 28.6 | 1.44 16 | 2.66 34 | 1.55 21 | 0.56 1 | 1.52 4 | 0.65 3 | 0.81 6 | 1.53 20 | 0.89 6 | 0.54 22 | 0.85 7 | 0.51 38 | 0.79 15 | 1.31 41 | 0.76 18 | 0.63 27 | 2.77 47 | 0.76 31 | 1.32 14 | 2.34 17 | 1.83 84 | 0.68 57 | 1.09 71 | 0.82 87 |
WLIF-Flow [91] | 30.2 | 1.54 30 | 2.30 14 | 1.58 26 | 0.85 37 | 2.13 43 | 0.99 40 | 0.90 21 | 1.57 26 | 1.04 27 | 0.55 27 | 1.18 29 | 0.49 28 | 0.86 31 | 1.18 24 | 0.83 28 | 0.69 42 | 2.26 28 | 0.78 35 | 1.58 41 | 2.28 13 | 1.67 74 | 0.60 26 | 0.71 10 | 0.60 26 |
HAST [107] | 31.3 | 1.24 2 | 1.88 2 | 1.14 5 | 0.60 3 | 1.59 9 | 0.64 2 | 0.74 1 | 0.94 1 | 0.88 2 | 0.48 10 | 0.94 12 | 0.43 10 | 0.59 2 | 0.77 1 | 0.57 4 | 0.78 67 | 2.30 31 | 0.94 69 | 2.06 93 | 3.22 97 | 3.57 148 | 0.65 47 | 0.80 32 | 0.92 102 |
Layers++ [37] | 32.2 | 1.55 32 | 2.42 18 | 1.77 52 | 0.94 63 | 2.05 36 | 1.14 79 | 0.90 21 | 1.42 9 | 1.10 42 | 0.49 12 | 0.89 8 | 0.44 12 | 0.64 4 | 0.82 4 | 0.56 3 | 0.64 31 | 2.04 14 | 0.72 24 | 1.98 83 | 2.87 74 | 1.80 81 | 0.61 28 | 0.70 9 | 0.63 33 |
RAFT-TF_RVC [179] | 32.7 | 1.68 39 | 3.18 53 | 1.26 8 | 0.92 58 | 2.11 41 | 1.00 43 | 0.98 46 | 1.86 44 | 1.01 23 | 0.50 13 | 0.78 5 | 0.44 12 | 1.13 69 | 1.60 58 | 1.03 71 | 0.59 22 | 1.55 6 | 0.66 10 | 0.99 6 | 2.04 6 | 0.79 8 | 0.67 55 | 1.03 64 | 0.59 25 |
AGIF+OF [84] | 34.5 | 1.46 18 | 2.42 18 | 1.56 24 | 0.95 69 | 2.75 77 | 1.10 69 | 0.89 17 | 1.73 38 | 1.13 46 | 0.52 19 | 1.43 48 | 0.45 17 | 0.79 15 | 1.12 14 | 0.77 19 | 0.63 27 | 2.40 35 | 0.73 26 | 1.61 47 | 2.47 28 | 1.73 79 | 0.61 28 | 0.73 12 | 0.64 38 |
Classic+CPF [82] | 35.5 | 1.47 19 | 2.60 29 | 1.54 20 | 0.88 44 | 2.71 75 | 1.03 50 | 0.89 17 | 1.72 37 | 1.13 46 | 0.51 16 | 1.24 36 | 0.45 17 | 0.79 15 | 1.14 17 | 0.81 25 | 0.63 27 | 2.32 32 | 0.75 30 | 1.82 67 | 2.50 31 | 2.28 116 | 0.62 33 | 0.71 10 | 0.66 44 |
OFLAF [78] | 36.1 | 1.67 38 | 2.34 15 | 1.68 38 | 0.76 17 | 1.65 14 | 0.85 18 | 0.90 21 | 1.31 5 | 0.98 17 | 0.63 50 | 0.93 10 | 0.55 49 | 0.67 5 | 0.89 5 | 0.65 11 | 0.92 90 | 1.83 10 | 0.99 78 | 1.63 48 | 2.53 35 | 1.70 75 | 0.76 82 | 0.90 46 | 0.83 89 |
Sparse-NonSparse [56] | 36.3 | 1.48 20 | 2.64 32 | 1.62 32 | 0.84 35 | 2.37 56 | 1.03 50 | 0.91 25 | 1.79 41 | 1.11 44 | 0.51 16 | 1.20 32 | 0.45 17 | 0.84 27 | 1.29 36 | 0.85 29 | 0.63 27 | 2.55 40 | 0.74 27 | 1.81 66 | 2.29 14 | 2.12 106 | 0.63 38 | 0.74 16 | 0.67 45 |
PH-Flow [99] | 36.3 | 1.49 22 | 2.62 30 | 1.60 29 | 0.81 27 | 2.42 60 | 0.99 40 | 0.93 28 | 1.67 31 | 1.13 46 | 0.54 22 | 1.16 26 | 0.48 23 | 0.82 23 | 1.14 17 | 0.85 29 | 0.68 39 | 2.53 38 | 0.80 40 | 1.96 80 | 2.42 23 | 2.27 113 | 0.61 28 | 0.76 25 | 0.63 33 |
IROF++ [58] | 37.0 | 1.54 30 | 2.55 25 | 1.63 33 | 0.82 29 | 2.51 69 | 1.01 45 | 0.94 31 | 1.80 42 | 1.14 57 | 0.56 31 | 1.17 28 | 0.50 34 | 0.86 31 | 1.24 30 | 0.89 39 | 0.66 36 | 3.01 63 | 0.78 35 | 1.47 32 | 2.47 28 | 0.83 11 | 0.65 47 | 0.84 36 | 0.67 45 |
COFM [59] | 37.2 | 1.29 5 | 2.43 20 | 1.33 10 | 0.70 13 | 1.82 19 | 0.83 14 | 0.81 6 | 1.56 24 | 1.08 37 | 0.43 7 | 1.01 14 | 0.39 8 | 0.82 23 | 1.20 27 | 1.16 83 | 0.67 38 | 1.98 12 | 0.79 37 | 1.57 39 | 2.33 16 | 2.20 109 | 0.97 124 | 1.06 66 | 1.44 142 |
LME [70] | 37.3 | 1.74 43 | 2.59 28 | 1.51 17 | 0.77 20 | 1.49 3 | 0.87 23 | 0.95 35 | 1.49 16 | 1.04 27 | 0.70 59 | 1.47 52 | 0.64 66 | 0.99 51 | 1.32 42 | 0.96 56 | 0.66 36 | 2.39 33 | 0.76 31 | 1.67 53 | 2.50 31 | 1.36 47 | 0.66 52 | 0.89 41 | 0.63 33 |
MDP-Flow2 [68] | 37.4 | 1.91 63 | 2.84 41 | 1.84 58 | 0.75 16 | 1.58 7 | 0.84 16 | 0.95 35 | 1.39 8 | 0.96 14 | 0.70 59 | 1.06 15 | 0.64 66 | 0.96 45 | 1.22 28 | 0.90 43 | 0.76 61 | 2.07 16 | 0.81 44 | 1.58 41 | 2.70 58 | 1.20 35 | 0.68 57 | 0.89 41 | 0.62 30 |
CoT-AMFlow [174] | 37.5 | 1.88 58 | 2.92 46 | 1.86 63 | 0.77 20 | 1.63 12 | 0.88 25 | 0.95 35 | 1.45 11 | 0.98 17 | 0.69 57 | 1.13 21 | 0.63 63 | 0.93 41 | 1.18 24 | 0.93 48 | 0.71 46 | 2.21 22 | 0.79 37 | 1.67 53 | 2.50 31 | 1.36 47 | 0.67 55 | 0.89 41 | 0.61 27 |
Efficient-NL [60] | 38.5 | 1.39 12 | 2.12 7 | 1.38 14 | 0.84 35 | 2.75 77 | 0.96 35 | 0.90 21 | 1.53 20 | 1.08 37 | 0.51 16 | 1.12 20 | 0.44 12 | 0.80 18 | 1.16 21 | 0.75 16 | 0.82 71 | 2.43 37 | 0.84 51 | 1.95 78 | 2.53 35 | 2.04 98 | 0.72 70 | 0.91 47 | 0.77 77 |
JOF [136] | 39.7 | 1.43 15 | 2.25 12 | 1.51 17 | 0.90 53 | 2.49 67 | 1.12 73 | 0.89 17 | 1.48 14 | 1.15 64 | 0.50 13 | 1.16 26 | 0.44 12 | 0.75 11 | 1.05 10 | 0.77 19 | 0.72 49 | 2.42 36 | 0.87 58 | 2.07 95 | 3.15 90 | 2.88 138 | 0.60 26 | 0.68 8 | 0.62 30 |
LSM [39] | 42.0 | 1.50 25 | 2.56 26 | 1.64 35 | 0.86 38 | 2.42 60 | 1.07 61 | 0.93 28 | 1.68 33 | 1.13 46 | 0.55 27 | 1.15 23 | 0.49 28 | 0.85 29 | 1.24 30 | 0.89 39 | 0.70 43 | 2.55 40 | 0.81 44 | 2.08 96 | 2.46 25 | 2.31 119 | 0.63 38 | 0.75 22 | 0.68 54 |
FC-2Layers-FF [74] | 42.2 | 1.53 29 | 2.41 17 | 1.66 37 | 0.87 39 | 2.35 55 | 1.06 58 | 0.92 26 | 1.44 10 | 1.13 46 | 0.57 35 | 1.11 18 | 0.51 38 | 0.80 18 | 1.05 10 | 0.85 29 | 0.74 54 | 2.26 28 | 0.86 55 | 2.24 105 | 2.87 74 | 2.31 119 | 0.63 38 | 0.75 22 | 0.68 54 |
NNF-EAC [101] | 42.3 | 1.89 59 | 2.83 40 | 1.82 56 | 0.77 20 | 1.70 15 | 0.86 19 | 0.98 46 | 1.52 18 | 1.01 23 | 0.71 64 | 1.15 23 | 0.65 71 | 0.97 48 | 1.25 32 | 0.95 53 | 0.81 69 | 2.12 19 | 0.86 55 | 1.72 60 | 2.45 24 | 1.40 53 | 0.70 64 | 0.95 51 | 0.63 33 |
2DHMM-SAS [90] | 42.8 | 1.49 22 | 2.65 33 | 1.59 28 | 0.82 29 | 2.69 72 | 0.99 40 | 0.96 39 | 1.92 47 | 1.14 57 | 0.54 22 | 1.22 34 | 0.48 23 | 0.87 33 | 1.28 35 | 0.89 39 | 0.70 43 | 2.96 62 | 0.81 44 | 1.98 83 | 2.40 21 | 2.22 111 | 0.62 33 | 0.84 36 | 0.65 42 |
Ramp [62] | 43.0 | 1.49 22 | 2.69 35 | 1.61 30 | 0.87 39 | 2.37 56 | 1.08 63 | 0.94 31 | 1.70 36 | 1.14 57 | 0.57 35 | 1.18 29 | 0.50 34 | 0.87 33 | 1.29 36 | 0.90 43 | 0.72 49 | 2.66 42 | 0.84 51 | 1.95 78 | 2.21 8 | 2.27 113 | 0.63 38 | 0.80 32 | 0.65 42 |
UnDAF [187] | 43.2 | 1.90 61 | 3.00 49 | 1.85 60 | 0.76 17 | 1.81 17 | 0.86 19 | 0.96 39 | 1.51 17 | 0.97 15 | 0.69 57 | 1.26 37 | 0.63 63 | 1.01 53 | 1.37 46 | 0.90 43 | 0.75 58 | 2.95 59 | 0.80 40 | 1.68 55 | 2.46 25 | 1.35 45 | 0.70 64 | 1.10 72 | 0.61 27 |
FMOF [92] | 45.5 | 1.51 27 | 2.53 24 | 1.58 26 | 0.95 69 | 2.85 88 | 1.11 72 | 0.93 28 | 1.58 27 | 1.17 70 | 0.52 19 | 1.26 37 | 0.46 20 | 0.81 20 | 1.14 17 | 0.88 36 | 0.77 66 | 2.25 26 | 0.81 44 | 1.97 82 | 2.76 64 | 2.45 125 | 0.64 44 | 0.74 16 | 0.67 45 |
ProbFlowFields [126] | 45.5 | 1.71 41 | 4.58 87 | 1.78 54 | 0.82 29 | 2.05 36 | 0.98 38 | 0.96 39 | 2.07 56 | 1.13 46 | 0.54 22 | 1.52 54 | 0.48 23 | 0.90 37 | 1.37 46 | 0.88 36 | 0.55 18 | 2.25 26 | 0.67 11 | 1.47 32 | 2.78 67 | 1.43 61 | 0.76 82 | 1.08 67 | 0.81 85 |
FESL [72] | 46.6 | 1.52 28 | 2.27 13 | 1.77 52 | 0.94 63 | 2.76 79 | 1.08 63 | 0.92 26 | 1.59 28 | 1.13 46 | 0.61 47 | 1.30 42 | 0.56 51 | 0.84 27 | 1.16 21 | 0.90 43 | 0.75 58 | 2.14 20 | 0.96 74 | 2.05 91 | 3.16 92 | 2.08 99 | 0.57 23 | 0.64 6 | 0.61 27 |
Classic+NL [31] | 48.5 | 1.55 32 | 2.35 16 | 1.70 40 | 0.88 44 | 2.41 59 | 1.08 63 | 0.94 31 | 1.62 29 | 1.15 64 | 0.58 40 | 1.19 31 | 0.52 40 | 0.90 37 | 1.30 40 | 0.96 56 | 0.74 54 | 2.76 45 | 0.85 54 | 2.23 104 | 2.64 51 | 2.27 113 | 0.63 38 | 0.76 25 | 0.69 59 |
Adaptive [20] | 49.2 | 1.50 25 | 2.72 36 | 1.34 11 | 0.88 44 | 2.24 47 | 1.00 43 | 1.03 54 | 2.29 65 | 1.13 46 | 0.57 35 | 1.65 65 | 0.49 28 | 2.18 140 | 2.69 134 | 2.56 144 | 0.45 8 | 2.26 28 | 0.49 6 | 1.73 61 | 2.94 80 | 1.23 36 | 0.54 18 | 0.63 5 | 0.56 21 |
PMMST [112] | 49.5 | 2.17 87 | 3.12 50 | 2.08 82 | 0.88 44 | 2.04 35 | 1.02 48 | 1.03 54 | 1.74 39 | 1.09 41 | 0.84 90 | 1.11 18 | 0.78 91 | 0.92 39 | 1.14 17 | 0.85 29 | 0.76 61 | 2.03 13 | 0.80 40 | 1.60 45 | 2.54 38 | 1.29 40 | 0.73 74 | 0.94 49 | 0.70 63 |
SimpleFlow [49] | 49.9 | 1.56 34 | 2.63 31 | 1.74 51 | 0.94 63 | 2.69 72 | 1.18 92 | 0.98 46 | 1.96 49 | 1.20 78 | 0.56 31 | 1.23 35 | 0.50 34 | 0.92 39 | 1.36 45 | 1.02 68 | 0.85 76 | 2.74 44 | 0.89 60 | 1.85 70 | 2.38 19 | 1.71 77 | 0.62 33 | 0.73 12 | 0.64 38 |
TV-L1-MCT [64] | 50.3 | 1.48 20 | 2.45 21 | 1.52 19 | 1.00 82 | 2.95 96 | 1.16 86 | 0.94 31 | 1.67 31 | 1.18 75 | 0.56 31 | 1.28 40 | 0.49 28 | 0.96 45 | 1.37 46 | 1.11 76 | 0.74 54 | 2.87 55 | 0.90 64 | 1.60 45 | 2.62 50 | 1.05 26 | 0.71 66 | 0.85 38 | 0.80 82 |
S2D-Matching [83] | 50.4 | 1.57 35 | 2.52 23 | 1.71 41 | 0.88 44 | 2.34 54 | 1.08 63 | 0.96 39 | 1.75 40 | 1.13 46 | 0.58 40 | 1.15 23 | 0.52 40 | 0.89 36 | 1.27 34 | 0.92 47 | 0.76 61 | 2.90 56 | 0.89 60 | 2.35 119 | 2.71 60 | 2.53 130 | 0.64 44 | 0.74 16 | 0.69 59 |
AggregFlow [95] | 55.7 | 1.86 57 | 2.73 38 | 1.91 66 | 1.01 90 | 2.88 90 | 1.14 79 | 1.09 67 | 2.34 67 | 1.29 87 | 0.76 76 | 1.46 50 | 0.70 78 | 0.82 23 | 1.35 44 | 0.88 36 | 0.54 15 | 1.53 5 | 0.70 20 | 1.50 34 | 2.35 18 | 0.90 15 | 0.78 96 | 0.97 58 | 1.23 127 |
Classic++ [32] | 56.8 | 1.57 35 | 2.57 27 | 1.72 48 | 0.87 39 | 2.03 32 | 1.08 63 | 0.96 39 | 1.98 51 | 1.15 64 | 0.58 40 | 1.41 46 | 0.52 40 | 1.03 55 | 1.80 73 | 1.04 73 | 0.75 58 | 3.62 86 | 0.86 55 | 2.32 112 | 2.84 70 | 2.48 127 | 0.64 44 | 0.89 41 | 0.67 45 |
Occlusion-TV-L1 [63] | 57.0 | 1.82 54 | 3.15 51 | 1.64 35 | 0.91 55 | 2.12 42 | 1.04 53 | 1.13 77 | 2.49 69 | 1.19 77 | 0.70 59 | 1.75 68 | 0.62 57 | 1.28 87 | 1.97 92 | 1.44 102 | 0.61 26 | 2.77 47 | 0.83 50 | 1.59 43 | 2.65 52 | 1.05 26 | 0.65 47 | 1.00 61 | 0.64 38 |
IROF-TV [53] | 58.3 | 1.69 40 | 2.85 42 | 1.84 58 | 0.90 53 | 2.58 70 | 1.10 69 | 0.95 35 | 1.86 44 | 1.15 64 | 0.74 72 | 1.80 72 | 0.68 75 | 1.41 98 | 1.71 66 | 1.51 105 | 0.90 85 | 3.88 95 | 1.03 80 | 1.30 12 | 2.41 22 | 0.82 10 | 0.65 47 | 0.80 32 | 0.68 54 |
PMF [73] | 59.7 | 2.05 75 | 2.90 43 | 1.89 65 | 0.87 39 | 1.97 29 | 0.96 35 | 1.05 59 | 1.83 43 | 1.15 64 | 0.87 92 | 1.45 49 | 0.80 93 | 0.85 29 | 1.08 12 | 0.73 14 | 0.98 92 | 3.46 79 | 1.10 90 | 3.02 140 | 4.28 140 | 2.92 139 | 0.36 5 | 0.60 3 | 0.27 3 |
SVFilterOh [109] | 59.9 | 2.00 67 | 2.79 39 | 1.99 75 | 0.99 77 | 1.96 27 | 1.12 73 | 1.07 63 | 1.56 24 | 1.17 70 | 0.83 89 | 1.82 75 | 0.73 85 | 0.82 23 | 1.04 8 | 0.79 21 | 0.90 85 | 2.23 24 | 0.97 76 | 2.60 129 | 4.73 151 | 3.08 141 | 0.42 9 | 0.55 2 | 0.34 5 |
OFH [38] | 60.1 | 2.14 84 | 3.60 62 | 2.44 98 | 0.76 17 | 1.81 17 | 0.87 23 | 0.88 14 | 2.28 63 | 0.90 8 | 0.55 27 | 1.20 32 | 0.52 40 | 1.20 74 | 1.83 77 | 1.37 98 | 0.84 73 | 4.30 106 | 1.05 83 | 1.37 19 | 2.85 72 | 1.49 66 | 0.76 82 | 1.35 101 | 0.96 107 |
PRAFlow_RVC [177] | 60.3 | 2.37 101 | 3.96 73 | 1.94 70 | 1.25 105 | 2.74 76 | 1.41 105 | 1.27 104 | 2.50 70 | 1.41 104 | 0.68 54 | 1.38 45 | 0.59 53 | 1.28 87 | 1.74 70 | 1.12 77 | 0.76 61 | 1.94 11 | 0.90 64 | 1.07 7 | 2.59 46 | 0.48 2 | 0.59 25 | 0.79 31 | 0.39 7 |
DeepFlow2 [106] | 60.5 | 2.02 69 | 4.03 74 | 2.29 90 | 0.81 27 | 2.27 49 | 0.93 31 | 1.09 67 | 2.78 77 | 1.27 85 | 0.66 53 | 1.77 70 | 0.60 54 | 0.93 41 | 1.59 56 | 0.86 34 | 0.57 19 | 2.93 57 | 0.68 13 | 1.66 50 | 2.25 11 | 1.97 93 | 0.83 105 | 1.44 110 | 1.03 116 |
PBOFVI [189] | 60.9 | 2.33 97 | 3.53 59 | 2.37 94 | 0.94 63 | 2.09 38 | 1.04 53 | 0.98 46 | 1.62 29 | 1.00 20 | 0.76 76 | 1.60 62 | 0.64 66 | 0.96 45 | 1.42 50 | 0.79 21 | 0.84 73 | 2.85 54 | 1.03 80 | 1.85 70 | 2.70 58 | 2.54 131 | 0.69 61 | 0.92 48 | 0.73 68 |
MDP-Flow [26] | 61.0 | 1.90 61 | 3.71 67 | 1.94 70 | 0.92 58 | 1.90 23 | 1.15 81 | 1.01 51 | 2.00 55 | 1.14 57 | 0.70 59 | 1.76 69 | 0.64 66 | 1.06 59 | 1.59 56 | 0.96 56 | 0.68 39 | 3.58 85 | 0.84 51 | 1.68 55 | 3.01 81 | 1.19 34 | 0.75 77 | 1.33 99 | 0.68 54 |
BriefMatch [122] | 61.9 | 1.91 63 | 3.16 52 | 1.92 67 | 0.77 20 | 1.87 21 | 0.83 14 | 0.96 39 | 1.53 20 | 0.95 13 | 0.78 79 | 1.37 44 | 0.71 81 | 0.97 48 | 1.54 53 | 1.02 68 | 1.69 143 | 4.79 111 | 1.92 140 | 2.34 117 | 3.28 102 | 3.43 147 | 0.40 6 | 0.76 25 | 0.48 13 |
Correlation Flow [76] | 62.2 | 1.96 66 | 2.90 43 | 2.04 79 | 0.82 29 | 2.03 32 | 0.88 25 | 1.04 57 | 1.99 54 | 1.02 25 | 0.75 75 | 1.51 53 | 0.68 75 | 1.12 68 | 1.58 55 | 0.98 62 | 1.04 94 | 3.01 63 | 1.14 95 | 2.01 87 | 2.61 49 | 2.35 121 | 0.71 66 | 0.98 60 | 0.69 59 |
HCFN [157] | 62.4 | 1.72 42 | 3.37 56 | 1.57 25 | 0.65 8 | 1.56 6 | 0.74 7 | 0.89 17 | 1.68 33 | 0.87 1 | 0.68 54 | 1.29 41 | 0.64 66 | 0.98 50 | 1.45 51 | 1.01 64 | 0.85 76 | 3.49 80 | 1.04 82 | 3.36 151 | 4.60 148 | 3.69 149 | 0.78 96 | 1.28 90 | 0.94 105 |
S2F-IF [121] | 63.0 | 1.80 48 | 5.50 113 | 1.68 38 | 0.95 69 | 2.97 98 | 1.10 69 | 1.13 77 | 3.58 104 | 1.28 86 | 0.58 40 | 2.17 92 | 0.50 34 | 1.09 65 | 1.86 81 | 0.93 48 | 0.52 11 | 2.93 57 | 0.67 11 | 1.36 18 | 2.58 44 | 1.37 50 | 0.77 90 | 1.22 82 | 0.82 87 |
IIOF-NLDP [129] | 64.8 | 1.78 45 | 3.55 60 | 1.71 41 | 1.00 82 | 2.89 91 | 1.06 58 | 1.02 52 | 2.23 61 | 1.00 20 | 0.71 64 | 1.62 64 | 0.62 57 | 1.05 57 | 1.62 61 | 0.79 21 | 1.11 99 | 3.54 82 | 1.17 97 | 1.71 59 | 3.08 87 | 1.54 70 | 0.75 77 | 1.12 77 | 0.74 72 |
SegFlow [156] | 64.8 | 1.81 49 | 5.09 98 | 1.71 41 | 0.99 77 | 2.89 91 | 1.17 88 | 1.13 77 | 3.35 95 | 1.31 89 | 0.60 44 | 2.38 100 | 0.52 40 | 1.06 59 | 1.83 77 | 0.95 53 | 0.54 15 | 2.80 50 | 0.69 19 | 1.44 29 | 2.57 42 | 1.41 55 | 0.77 90 | 1.25 86 | 0.84 91 |
PGM-C [118] | 65.0 | 1.81 49 | 5.14 99 | 1.71 41 | 1.00 82 | 2.94 95 | 1.17 88 | 1.14 81 | 3.46 101 | 1.31 89 | 0.60 44 | 2.30 96 | 0.52 40 | 1.06 59 | 1.82 76 | 0.93 48 | 0.53 14 | 2.95 59 | 0.68 13 | 1.42 25 | 2.51 34 | 1.41 55 | 0.77 90 | 1.29 91 | 0.84 91 |
FlowFields+ [128] | 65.3 | 1.78 45 | 5.67 117 | 1.63 33 | 0.99 77 | 3.15 109 | 1.15 81 | 1.15 86 | 3.92 110 | 1.32 94 | 0.57 35 | 2.13 90 | 0.48 23 | 1.13 69 | 1.89 84 | 0.97 60 | 0.52 11 | 3.12 66 | 0.68 13 | 1.37 19 | 2.66 53 | 1.31 42 | 0.76 82 | 1.27 89 | 0.79 80 |
CPM-Flow [114] | 65.4 | 1.81 49 | 5.14 99 | 1.71 41 | 1.00 82 | 2.93 93 | 1.17 88 | 1.14 81 | 3.37 98 | 1.31 89 | 0.60 44 | 2.30 96 | 0.52 40 | 1.07 62 | 1.83 77 | 0.95 53 | 0.54 15 | 2.81 51 | 0.68 13 | 1.45 30 | 2.57 42 | 1.41 55 | 0.77 90 | 1.29 91 | 0.84 91 |
CVENG22+RIC [199] | 67.3 | 1.74 43 | 4.92 94 | 1.72 48 | 0.98 76 | 3.19 112 | 1.12 73 | 1.10 70 | 3.74 108 | 1.22 80 | 0.56 31 | 2.16 91 | 0.49 28 | 1.27 84 | 2.20 105 | 1.21 86 | 0.58 21 | 3.29 73 | 0.74 27 | 1.42 25 | 2.53 35 | 1.41 55 | 0.76 82 | 1.41 103 | 0.72 66 |
3DFlow [133] | 67.5 | 1.89 59 | 2.99 48 | 1.81 55 | 0.88 44 | 2.10 39 | 0.93 31 | 1.10 70 | 1.98 51 | 1.08 37 | 0.88 94 | 1.73 67 | 0.77 89 | 0.94 43 | 1.29 36 | 0.81 25 | 1.17 103 | 4.37 108 | 1.28 104 | 2.50 124 | 3.24 99 | 3.85 151 | 0.69 61 | 0.85 38 | 0.67 45 |
EpicFlow [100] | 68.2 | 1.81 49 | 5.16 102 | 1.71 41 | 1.00 82 | 2.98 101 | 1.17 88 | 1.14 81 | 3.63 106 | 1.31 89 | 0.61 47 | 2.31 98 | 0.52 40 | 1.07 62 | 1.86 81 | 0.97 60 | 0.59 22 | 2.95 59 | 0.70 20 | 1.42 25 | 2.60 47 | 1.41 55 | 0.78 96 | 1.31 96 | 0.84 91 |
TV-L1-improved [17] | 69.0 | 1.58 37 | 3.18 53 | 1.55 21 | 0.78 24 | 1.98 30 | 0.90 27 | 0.99 50 | 2.28 63 | 1.07 34 | 0.55 27 | 1.52 54 | 0.48 23 | 1.32 93 | 2.10 100 | 1.01 64 | 1.82 145 | 6.46 139 | 2.25 145 | 2.59 127 | 3.51 114 | 2.52 129 | 0.65 47 | 1.17 80 | 0.62 30 |
DMF_ROB [135] | 69.6 | 2.18 88 | 4.52 86 | 2.34 92 | 0.91 55 | 2.32 53 | 1.04 53 | 1.17 91 | 3.64 107 | 1.33 97 | 0.63 50 | 2.06 86 | 0.54 48 | 1.05 57 | 1.72 68 | 1.02 68 | 0.65 33 | 3.43 78 | 0.82 49 | 1.53 37 | 2.14 7 | 1.70 75 | 0.78 96 | 1.30 94 | 0.92 102 |
FlowFields [108] | 69.8 | 1.81 49 | 5.57 114 | 1.71 41 | 0.99 77 | 3.12 108 | 1.15 81 | 1.16 89 | 3.92 110 | 1.32 94 | 0.63 50 | 2.19 93 | 0.55 49 | 1.13 69 | 1.91 88 | 1.00 63 | 0.52 11 | 3.18 70 | 0.68 13 | 1.37 19 | 2.77 66 | 1.38 52 | 0.77 90 | 1.31 96 | 0.80 82 |
CostFilter [40] | 71.0 | 2.22 90 | 3.43 57 | 2.15 85 | 0.96 73 | 2.10 39 | 1.07 61 | 1.10 70 | 2.13 58 | 1.17 70 | 1.10 111 | 1.58 60 | 1.06 112 | 0.88 35 | 1.13 15 | 0.85 29 | 1.07 97 | 3.96 98 | 1.24 101 | 3.04 142 | 4.87 155 | 3.15 143 | 0.15 1 | 0.34 1 | 0.15 1 |
FF++_ROB [141] | 73.5 | 1.83 55 | 5.60 115 | 1.61 30 | 0.99 77 | 3.11 107 | 1.13 78 | 1.17 91 | 4.20 114 | 1.32 94 | 0.78 79 | 2.47 102 | 0.74 87 | 1.20 74 | 1.97 92 | 1.09 75 | 0.59 22 | 3.17 68 | 0.77 34 | 1.41 24 | 2.66 53 | 1.33 43 | 0.76 82 | 1.15 79 | 0.83 89 |
DeepFlow [85] | 74.2 | 2.36 99 | 4.50 85 | 3.07 121 | 0.88 44 | 2.30 51 | 1.01 45 | 1.15 86 | 3.29 93 | 1.38 103 | 0.82 87 | 1.80 72 | 0.77 89 | 0.95 44 | 1.66 62 | 0.87 35 | 0.59 22 | 3.80 89 | 0.70 20 | 1.59 43 | 2.31 15 | 2.02 97 | 0.94 122 | 1.68 127 | 1.28 129 |
Steered-L1 [116] | 76.8 | 2.04 72 | 3.66 64 | 2.29 90 | 0.71 14 | 1.31 1 | 0.81 13 | 0.97 45 | 1.89 46 | 0.99 19 | 0.72 69 | 1.42 47 | 0.66 74 | 1.26 81 | 1.81 74 | 1.39 100 | 1.02 93 | 4.27 105 | 0.96 74 | 3.23 146 | 3.77 122 | 5.23 158 | 0.87 111 | 1.40 102 | 1.13 123 |
Sparse Occlusion [54] | 76.9 | 2.04 72 | 3.32 55 | 1.92 67 | 1.08 97 | 2.38 58 | 1.27 99 | 1.11 75 | 2.16 59 | 1.18 75 | 0.74 72 | 1.56 59 | 0.65 71 | 1.21 76 | 1.76 71 | 0.81 25 | 0.91 87 | 2.84 53 | 0.98 77 | 3.84 155 | 4.85 154 | 2.41 123 | 0.71 66 | 1.08 67 | 0.63 33 |
TF+OM [98] | 77.5 | 2.02 69 | 2.92 46 | 1.85 60 | 0.93 62 | 1.53 5 | 1.15 81 | 1.05 59 | 1.69 35 | 1.37 102 | 1.12 112 | 1.35 43 | 1.15 116 | 1.07 62 | 1.45 51 | 1.52 106 | 1.06 95 | 2.82 52 | 1.22 98 | 2.45 120 | 3.60 118 | 2.19 108 | 0.74 76 | 1.25 86 | 0.87 98 |
RFlow [88] | 78.3 | 2.23 92 | 4.33 81 | 2.52 103 | 0.96 73 | 1.84 20 | 1.05 57 | 1.08 65 | 2.71 73 | 1.05 31 | 0.76 76 | 1.58 60 | 0.71 81 | 1.27 84 | 1.89 84 | 1.31 93 | 0.80 68 | 3.40 76 | 0.94 69 | 2.00 86 | 2.76 64 | 1.98 95 | 0.93 121 | 1.42 105 | 1.12 122 |
PWC-Net_RVC [143] | 78.5 | 2.46 104 | 5.31 108 | 2.02 76 | 1.25 105 | 2.97 98 | 1.38 103 | 1.32 108 | 3.37 98 | 1.35 100 | 0.74 72 | 1.52 54 | 0.65 71 | 1.42 101 | 2.13 103 | 1.15 82 | 0.82 71 | 3.87 93 | 0.95 71 | 0.97 5 | 2.47 28 | 0.78 7 | 0.75 77 | 1.10 72 | 0.76 76 |
CombBMOF [111] | 79.0 | 2.19 89 | 4.69 91 | 1.87 64 | 1.01 90 | 2.82 86 | 1.08 63 | 1.03 54 | 2.21 60 | 1.07 34 | 0.86 91 | 1.89 78 | 0.78 91 | 1.27 84 | 1.71 66 | 1.03 71 | 1.39 121 | 3.89 96 | 1.61 120 | 2.80 136 | 3.78 123 | 2.30 117 | 0.49 13 | 0.88 40 | 0.50 17 |
EPPM w/o HM [86] | 79.5 | 2.15 86 | 5.62 116 | 2.03 77 | 0.88 44 | 2.76 79 | 0.91 29 | 1.06 62 | 3.03 86 | 1.08 37 | 0.89 96 | 2.04 85 | 0.83 98 | 1.22 77 | 1.66 62 | 1.12 77 | 1.19 104 | 5.06 120 | 1.37 109 | 2.25 106 | 3.56 115 | 3.98 154 | 0.51 16 | 1.00 61 | 0.48 13 |
Second-order prior [8] | 79.7 | 1.95 65 | 4.68 90 | 2.03 77 | 0.79 25 | 2.65 71 | 0.84 16 | 1.10 70 | 3.80 109 | 1.14 57 | 0.54 22 | 1.52 54 | 0.47 21 | 1.42 101 | 2.45 124 | 0.94 51 | 0.88 81 | 6.63 141 | 0.89 60 | 2.87 138 | 3.46 111 | 2.67 136 | 0.77 90 | 1.60 121 | 0.80 82 |
WRT [146] | 79.9 | 2.01 68 | 3.55 60 | 1.85 60 | 1.33 109 | 3.37 114 | 1.46 107 | 1.36 110 | 2.97 82 | 1.35 100 | 0.82 87 | 2.09 88 | 0.70 78 | 1.00 52 | 1.32 42 | 0.80 24 | 1.30 114 | 4.09 104 | 1.26 103 | 1.90 75 | 3.16 92 | 2.08 99 | 0.69 61 | 0.95 51 | 0.64 38 |
VCN_RVC [178] | 81.2 | 2.79 113 | 6.64 123 | 2.45 99 | 1.22 104 | 3.15 109 | 1.32 101 | 1.29 106 | 3.49 102 | 1.12 45 | 0.72 69 | 2.80 111 | 0.61 56 | 1.35 95 | 1.95 90 | 1.13 79 | 0.86 79 | 3.55 83 | 0.95 71 | 1.34 17 | 3.13 89 | 0.81 9 | 0.68 57 | 1.22 82 | 0.69 59 |
MLDP_OF [87] | 81.6 | 2.44 103 | 5.18 103 | 2.59 105 | 0.95 69 | 2.46 64 | 1.04 53 | 1.15 86 | 2.81 78 | 1.13 46 | 0.78 79 | 1.60 62 | 0.71 81 | 1.22 77 | 1.68 65 | 1.16 83 | 1.06 95 | 3.17 68 | 1.28 104 | 2.45 120 | 3.17 95 | 3.24 145 | 0.68 57 | 0.97 58 | 0.70 63 |
LDOF [28] | 82.1 | 2.07 77 | 4.67 89 | 2.39 95 | 0.92 58 | 3.01 102 | 1.03 50 | 1.22 100 | 3.52 103 | 1.22 80 | 0.73 71 | 3.52 126 | 0.62 57 | 1.18 72 | 1.94 89 | 1.25 89 | 0.68 39 | 4.07 103 | 0.74 27 | 1.70 58 | 2.87 74 | 1.29 40 | 0.89 114 | 1.82 138 | 1.08 119 |
Rannacher [23] | 83.5 | 2.22 90 | 4.10 76 | 2.36 93 | 1.02 93 | 2.44 62 | 1.20 95 | 1.23 101 | 3.15 87 | 1.29 87 | 0.70 59 | 1.88 77 | 0.62 57 | 1.37 97 | 2.27 109 | 1.16 83 | 1.14 100 | 5.21 123 | 1.11 92 | 2.21 102 | 2.88 79 | 1.97 93 | 0.66 52 | 0.95 51 | 0.67 45 |
Aniso. Huber-L1 [22] | 83.9 | 1.79 47 | 3.70 66 | 1.82 56 | 1.37 111 | 3.01 102 | 1.79 115 | 1.19 96 | 3.00 84 | 1.68 111 | 0.79 84 | 2.49 103 | 0.70 78 | 1.26 81 | 1.96 91 | 0.96 56 | 0.81 69 | 3.19 71 | 0.95 71 | 2.54 125 | 3.34 103 | 1.99 96 | 0.71 66 | 1.03 64 | 0.73 68 |
F-TV-L1 [15] | 85.2 | 3.66 126 | 6.22 120 | 4.52 142 | 1.19 101 | 2.78 82 | 1.40 104 | 1.21 98 | 3.24 91 | 1.31 89 | 1.15 114 | 2.69 108 | 1.07 113 | 1.70 122 | 2.30 112 | 1.86 118 | 0.72 49 | 3.33 74 | 0.90 64 | 1.76 65 | 2.74 62 | 1.44 62 | 0.46 11 | 0.61 4 | 0.48 13 |
FlowNetS+ft+v [110] | 86.1 | 1.85 56 | 4.25 78 | 2.07 80 | 0.92 58 | 2.76 79 | 1.06 58 | 1.16 89 | 3.42 100 | 1.42 105 | 0.68 54 | 2.62 106 | 0.60 54 | 1.53 110 | 2.44 123 | 1.36 97 | 0.72 49 | 3.63 87 | 0.80 40 | 2.30 110 | 3.46 111 | 1.96 91 | 0.82 103 | 1.58 120 | 0.97 109 |
Complementary OF [21] | 86.8 | 2.60 112 | 5.23 105 | 2.96 117 | 0.83 33 | 1.75 16 | 0.93 31 | 1.12 76 | 2.23 61 | 1.20 78 | 1.05 105 | 1.52 54 | 1.02 111 | 1.24 79 | 1.79 72 | 1.56 108 | 1.21 105 | 4.83 112 | 1.25 102 | 1.73 61 | 2.60 47 | 1.87 87 | 1.07 137 | 1.69 129 | 1.55 144 |
ComplOF-FED-GPU [35] | 87.3 | 2.48 107 | 5.29 107 | 2.73 108 | 0.79 25 | 2.20 45 | 0.86 19 | 1.07 63 | 2.73 74 | 1.04 27 | 0.88 94 | 1.46 50 | 0.83 98 | 1.30 91 | 2.00 96 | 1.31 93 | 1.28 113 | 5.12 121 | 1.32 107 | 2.33 114 | 3.03 83 | 2.54 131 | 0.85 107 | 1.43 108 | 0.99 114 |
TCOF [69] | 88.0 | 2.27 94 | 4.40 84 | 2.56 104 | 1.07 95 | 2.95 96 | 1.19 93 | 1.24 102 | 3.15 87 | 1.50 107 | 1.30 118 | 1.99 82 | 1.40 123 | 1.49 109 | 2.38 116 | 1.06 74 | 0.70 43 | 2.06 15 | 0.89 60 | 2.63 130 | 3.64 120 | 1.25 38 | 0.76 82 | 1.30 94 | 0.67 45 |
TriangleFlow [30] | 89.0 | 2.07 77 | 3.84 69 | 2.12 83 | 0.94 63 | 2.79 83 | 0.98 38 | 1.10 70 | 2.81 78 | 1.06 33 | 0.57 35 | 1.81 74 | 0.49 28 | 1.81 127 | 2.82 137 | 1.91 121 | 1.43 124 | 4.91 115 | 1.66 122 | 2.08 96 | 3.66 121 | 1.93 89 | 0.84 106 | 1.62 122 | 1.15 124 |
Brox et al. [5] | 89.8 | 2.11 81 | 5.20 104 | 2.91 114 | 1.01 90 | 2.81 84 | 1.19 93 | 1.13 77 | 3.02 85 | 1.17 70 | 0.71 64 | 2.49 103 | 0.63 63 | 1.45 105 | 2.09 99 | 2.27 135 | 0.84 73 | 4.00 99 | 1.05 83 | 1.69 57 | 3.01 81 | 0.95 19 | 0.92 119 | 1.81 137 | 1.08 119 |
DF-Auto [113] | 90.1 | 2.06 76 | 4.06 75 | 1.72 48 | 1.83 121 | 4.07 122 | 2.46 124 | 1.43 113 | 4.16 113 | 2.15 123 | 1.06 106 | 2.83 112 | 0.97 107 | 1.18 72 | 1.81 74 | 1.42 101 | 0.51 10 | 1.82 9 | 0.72 24 | 2.21 102 | 3.87 125 | 1.02 23 | 0.98 126 | 1.82 138 | 1.05 118 |
GMFlow_RVC [196] | 90.3 | 4.59 141 | 6.01 118 | 4.26 135 | 1.73 118 | 2.81 84 | 2.00 116 | 1.56 117 | 2.84 80 | 1.60 110 | 1.06 106 | 1.72 66 | 0.92 103 | 1.46 106 | 1.90 86 | 1.34 96 | 1.23 109 | 3.14 67 | 1.23 99 | 2.27 107 | 4.34 142 | 1.11 30 | 0.42 9 | 0.73 12 | 0.40 11 |
HBM-GC [103] | 90.7 | 3.83 129 | 4.28 80 | 3.79 128 | 1.43 112 | 2.46 64 | 1.65 111 | 1.68 119 | 2.38 68 | 1.73 112 | 1.61 127 | 2.23 94 | 1.47 127 | 1.09 65 | 1.29 36 | 1.14 80 | 1.24 112 | 2.69 43 | 1.41 113 | 3.76 154 | 4.84 153 | 3.05 140 | 0.21 2 | 0.64 6 | 0.22 2 |
CNN-flow-warp+ref [115] | 90.8 | 2.10 80 | 5.00 95 | 2.49 102 | 1.21 103 | 2.97 98 | 1.59 108 | 1.29 106 | 4.29 115 | 1.77 114 | 0.78 79 | 3.05 119 | 0.68 75 | 1.35 95 | 2.01 97 | 1.81 114 | 0.73 53 | 4.03 100 | 0.87 58 | 1.42 25 | 2.54 38 | 1.06 28 | 0.89 114 | 1.70 130 | 1.32 133 |
LocallyOriented [52] | 91.4 | 2.04 72 | 3.52 58 | 1.97 73 | 1.12 98 | 3.79 121 | 1.25 97 | 1.21 98 | 3.59 105 | 1.33 97 | 0.87 92 | 1.77 70 | 0.82 95 | 1.47 107 | 2.21 106 | 1.45 104 | 0.88 81 | 2.76 45 | 1.06 85 | 2.03 90 | 3.17 95 | 1.96 91 | 0.81 102 | 1.47 113 | 0.88 99 |
MCPFlow_RVC [197] | 91.8 | 3.47 121 | 5.49 112 | 2.43 97 | 2.46 132 | 5.14 133 | 2.79 129 | 2.52 134 | 6.28 126 | 2.85 131 | 1.01 104 | 1.91 79 | 0.86 102 | 1.59 113 | 2.29 110 | 1.23 88 | 0.91 87 | 2.53 38 | 1.13 94 | 1.57 39 | 2.71 60 | 0.77 6 | 0.75 77 | 1.11 75 | 0.50 17 |
ACK-Prior [27] | 91.9 | 2.81 115 | 3.93 72 | 2.98 118 | 0.91 55 | 1.91 24 | 0.97 37 | 1.09 67 | 1.97 50 | 1.13 46 | 0.97 102 | 1.85 76 | 0.85 101 | 1.24 79 | 1.67 64 | 1.30 92 | 1.56 136 | 3.87 93 | 1.53 117 | 3.14 143 | 3.16 92 | 4.47 156 | 1.08 139 | 1.41 103 | 1.27 128 |
Bartels [41] | 92.2 | 2.42 102 | 3.60 62 | 3.08 122 | 1.15 100 | 1.94 25 | 1.41 105 | 1.17 91 | 2.07 56 | 1.34 99 | 1.33 122 | 1.96 81 | 1.33 122 | 1.28 87 | 1.87 83 | 1.81 114 | 1.22 108 | 3.82 91 | 1.86 138 | 2.65 132 | 3.84 124 | 3.33 146 | 0.57 23 | 0.96 56 | 0.57 23 |
CBF [12] | 93.8 | 2.11 81 | 4.34 83 | 2.45 99 | 1.74 119 | 2.70 74 | 2.64 126 | 1.08 65 | 2.57 72 | 1.25 84 | 0.71 64 | 2.03 84 | 0.62 57 | 1.44 103 | 2.08 98 | 1.22 87 | 0.89 83 | 3.26 72 | 1.09 88 | 3.31 148 | 3.98 131 | 2.65 135 | 0.82 103 | 1.31 96 | 0.88 99 |
Local-TV-L1 [65] | 94.2 | 2.87 116 | 5.15 101 | 3.73 127 | 1.72 117 | 3.02 104 | 2.23 122 | 1.52 115 | 4.41 117 | 1.84 116 | 1.19 115 | 2.74 109 | 1.20 119 | 1.01 53 | 1.60 58 | 1.01 64 | 0.65 33 | 3.50 81 | 0.81 44 | 1.52 36 | 2.38 19 | 1.80 81 | 1.00 131 | 1.90 142 | 1.43 141 |
SRR-TVOF-NL [89] | 94.5 | 2.36 99 | 4.25 78 | 2.14 84 | 0.96 73 | 2.84 87 | 1.02 48 | 1.14 81 | 3.33 94 | 1.24 82 | 0.71 64 | 2.28 95 | 0.62 57 | 1.41 98 | 1.90 86 | 1.27 90 | 0.89 83 | 3.55 83 | 1.02 79 | 3.32 149 | 4.34 142 | 2.47 126 | 1.10 142 | 1.46 111 | 1.36 136 |
DPOF [18] | 94.7 | 2.25 93 | 5.04 97 | 1.92 67 | 1.05 94 | 3.43 115 | 1.15 81 | 1.14 81 | 2.94 81 | 1.24 82 | 0.92 98 | 3.04 118 | 0.82 95 | 1.09 65 | 1.83 77 | 0.89 39 | 1.08 98 | 3.79 88 | 1.10 90 | 2.34 117 | 2.80 69 | 5.03 157 | 1.01 132 | 1.47 113 | 1.17 125 |
CRTflow [81] | 95.5 | 2.07 77 | 4.91 93 | 1.98 74 | 1.00 82 | 2.45 63 | 1.12 73 | 1.05 59 | 3.25 92 | 1.05 31 | 0.79 84 | 1.91 79 | 0.73 85 | 1.29 90 | 1.97 92 | 1.28 91 | 2.16 148 | 6.87 142 | 2.90 151 | 2.02 88 | 3.44 108 | 1.95 90 | 1.03 134 | 1.78 133 | 1.30 132 |
CLG-TV [48] | 95.8 | 2.12 83 | 3.91 71 | 2.20 86 | 1.56 115 | 2.93 93 | 2.16 118 | 1.36 110 | 3.36 96 | 1.84 116 | 1.09 109 | 3.37 124 | 0.98 109 | 1.44 103 | 2.22 107 | 1.37 98 | 0.85 76 | 4.38 109 | 1.12 93 | 2.30 110 | 3.06 86 | 1.54 70 | 0.72 70 | 1.11 75 | 0.74 72 |
Dynamic MRF [7] | 96.3 | 2.47 106 | 5.33 109 | 2.82 113 | 0.83 33 | 2.26 48 | 0.90 27 | 1.02 52 | 3.21 89 | 1.02 25 | 0.79 84 | 2.10 89 | 0.74 87 | 1.68 121 | 2.40 119 | 2.10 128 | 1.48 130 | 7.55 146 | 1.71 125 | 1.96 80 | 2.87 74 | 2.82 137 | 0.98 126 | 1.63 124 | 1.39 139 |
SIOF [67] | 96.7 | 2.51 109 | 3.80 68 | 2.39 95 | 1.00 82 | 2.31 52 | 1.12 73 | 1.41 112 | 2.99 83 | 1.58 109 | 1.34 123 | 2.32 99 | 1.41 124 | 1.48 108 | 2.11 101 | 1.59 109 | 1.14 100 | 3.81 90 | 1.37 109 | 1.94 77 | 2.69 57 | 1.35 45 | 1.15 145 | 1.48 115 | 1.36 136 |
NL-TV-NCC [25] | 99.4 | 2.32 96 | 3.85 70 | 2.27 87 | 1.13 99 | 3.05 106 | 1.16 86 | 1.18 95 | 2.31 66 | 1.17 70 | 0.93 99 | 2.02 83 | 0.80 93 | 1.54 111 | 2.41 120 | 1.01 64 | 1.44 126 | 4.66 110 | 1.52 116 | 2.32 112 | 4.08 137 | 2.30 117 | 0.90 117 | 1.43 108 | 0.85 97 |
ROF-ND [105] | 100.4 | 2.46 104 | 4.33 81 | 2.48 101 | 1.26 107 | 2.23 46 | 1.25 97 | 1.17 91 | 2.50 70 | 1.15 64 | 1.08 108 | 2.75 110 | 0.92 103 | 1.41 98 | 2.11 101 | 1.31 93 | 1.40 123 | 3.85 92 | 1.38 111 | 3.26 147 | 4.06 135 | 3.09 142 | 0.86 110 | 1.29 91 | 0.81 85 |
p-harmonic [29] | 102.2 | 2.52 110 | 7.07 125 | 2.78 111 | 1.19 101 | 2.87 89 | 1.29 100 | 1.46 114 | 4.64 119 | 1.46 106 | 0.91 97 | 3.66 128 | 0.82 95 | 1.66 118 | 2.25 108 | 1.82 116 | 0.86 79 | 5.52 127 | 1.14 95 | 2.29 108 | 3.36 104 | 1.80 81 | 0.75 77 | 1.14 78 | 0.73 68 |
TriFlow [93] | 103.3 | 2.34 98 | 4.21 77 | 2.07 80 | 1.34 110 | 2.46 64 | 1.75 114 | 1.26 103 | 2.75 75 | 1.74 113 | 1.31 120 | 2.46 101 | 1.22 120 | 1.30 91 | 1.72 68 | 1.88 120 | 0.95 91 | 2.79 49 | 1.08 87 | 4.93 160 | 4.06 135 | 16.4 162 | 0.89 114 | 1.49 116 | 0.98 111 |
Learning Flow [11] | 103.7 | 2.14 84 | 4.65 88 | 2.28 88 | 1.32 108 | 3.15 109 | 1.63 110 | 1.27 104 | 3.23 90 | 1.52 108 | 0.94 100 | 3.23 122 | 0.83 98 | 1.86 129 | 2.85 138 | 2.31 136 | 1.21 105 | 4.99 119 | 1.36 108 | 2.33 114 | 3.44 108 | 2.08 99 | 0.73 74 | 1.23 84 | 0.72 66 |
OFRF [132] | 104.1 | 2.52 110 | 3.69 65 | 2.76 110 | 1.81 120 | 3.70 117 | 2.22 120 | 1.52 115 | 3.36 96 | 1.85 119 | 1.32 121 | 2.08 87 | 1.30 121 | 1.03 55 | 1.57 54 | 0.94 51 | 1.16 102 | 3.41 77 | 1.23 99 | 2.18 101 | 3.15 90 | 2.64 134 | 1.17 146 | 1.79 134 | 2.42 154 |
Fusion [6] | 106.7 | 2.02 69 | 6.55 122 | 2.28 88 | 0.87 39 | 2.50 68 | 1.01 45 | 1.04 57 | 2.76 76 | 1.14 57 | 0.78 79 | 2.85 113 | 0.72 84 | 1.87 130 | 2.39 118 | 2.25 133 | 1.62 138 | 5.52 127 | 2.03 144 | 3.47 152 | 4.40 146 | 2.25 112 | 1.98 158 | 2.15 149 | 2.60 156 |
StereoFlow [44] | 108.2 | 11.7 163 | 23.3 163 | 12.9 161 | 10.4 162 | 17.4 163 | 9.59 158 | 10.3 163 | 21.5 163 | 5.63 153 | 14.7 163 | 21.8 160 | 12.3 160 | 2.66 150 | 3.01 143 | 2.67 145 | 0.23 1 | 1.30 4 | 0.31 1 | 0.88 3 | 2.22 9 | 0.54 3 | 0.72 70 | 0.96 56 | 0.79 80 |
Shiralkar [42] | 112.5 | 2.29 95 | 9.09 139 | 2.70 107 | 0.89 52 | 3.49 116 | 0.95 34 | 1.20 97 | 5.92 124 | 1.07 34 | 0.96 101 | 3.95 130 | 0.92 103 | 1.60 115 | 2.47 127 | 1.60 110 | 1.66 141 | 7.74 147 | 1.83 137 | 2.63 130 | 3.41 105 | 3.86 152 | 0.99 130 | 2.01 146 | 1.28 129 |
LiteFlowNet [138] | 112.7 | 3.32 120 | 10.1 144 | 2.75 109 | 1.57 116 | 4.21 125 | 1.68 113 | 1.77 120 | 6.05 125 | 1.77 114 | 1.09 109 | 2.53 105 | 0.97 107 | 1.92 131 | 2.62 132 | 1.87 119 | 1.23 109 | 5.40 124 | 1.38 111 | 2.05 91 | 3.95 127 | 1.03 25 | 0.88 113 | 1.42 105 | 0.98 111 |
SegOF [10] | 113.2 | 2.88 118 | 5.24 106 | 1.95 72 | 3.25 141 | 5.52 137 | 4.24 143 | 2.17 128 | 5.82 123 | 3.40 139 | 1.77 131 | 4.89 137 | 1.51 129 | 1.94 132 | 2.32 113 | 2.83 147 | 1.36 118 | 6.92 144 | 1.59 118 | 1.32 14 | 3.10 88 | 0.93 18 | 0.87 111 | 1.42 105 | 0.95 106 |
ContinualFlow_ROB [148] | 113.6 | 3.78 128 | 7.47 129 | 3.25 123 | 2.86 138 | 5.42 136 | 3.33 136 | 2.68 136 | 7.72 137 | 2.83 130 | 1.66 128 | 3.70 129 | 1.49 128 | 2.28 144 | 3.09 145 | 1.82 116 | 1.62 138 | 5.55 130 | 2.25 145 | 1.37 19 | 2.46 25 | 0.86 14 | 0.79 101 | 1.19 81 | 0.84 91 |
EAI-Flow [147] | 114.3 | 4.15 132 | 7.24 126 | 4.25 134 | 1.49 113 | 3.77 119 | 1.61 109 | 1.77 120 | 6.64 128 | 1.86 120 | 1.50 126 | 3.01 117 | 1.45 126 | 1.67 119 | 2.47 127 | 1.62 111 | 1.48 130 | 5.15 122 | 1.67 123 | 3.03 141 | 3.95 127 | 1.85 85 | 0.61 28 | 1.23 84 | 0.77 77 |
Filter Flow [19] | 115.5 | 3.22 119 | 5.46 111 | 2.91 114 | 1.91 124 | 4.47 128 | 2.45 123 | 1.99 124 | 5.00 120 | 2.64 128 | 2.64 146 | 7.42 146 | 2.52 142 | 2.02 134 | 2.47 127 | 2.90 148 | 1.54 133 | 5.42 125 | 1.80 134 | 4.36 158 | 5.78 160 | 2.11 104 | 0.31 4 | 0.74 16 | 0.32 4 |
BlockOverlap [61] | 115.5 | 4.29 135 | 5.43 110 | 4.08 132 | 2.37 130 | 3.20 113 | 3.03 133 | 2.32 131 | 4.36 116 | 2.64 128 | 2.44 142 | 2.87 114 | 2.58 143 | 1.34 94 | 1.60 58 | 2.16 130 | 1.68 142 | 3.89 96 | 1.75 129 | 4.00 156 | 4.80 152 | 4.06 155 | 0.30 3 | 1.02 63 | 0.73 68 |
StereoOF-V1MT [117] | 116.1 | 2.48 107 | 8.60 133 | 2.79 112 | 0.94 63 | 5.07 132 | 0.92 30 | 1.33 109 | 7.67 134 | 1.10 42 | 0.99 103 | 5.20 138 | 0.93 106 | 2.20 141 | 3.24 148 | 2.31 136 | 1.69 143 | 9.96 152 | 1.75 129 | 1.99 85 | 3.46 111 | 2.42 124 | 1.07 137 | 1.99 145 | 1.19 126 |
Modified CLG [34] | 116.9 | 3.61 125 | 7.80 131 | 3.85 129 | 2.69 135 | 4.23 126 | 3.87 141 | 2.73 138 | 9.13 139 | 3.49 140 | 2.34 140 | 5.73 142 | 2.33 140 | 1.57 112 | 2.45 124 | 2.02 125 | 0.74 54 | 5.44 126 | 0.93 68 | 1.64 49 | 2.84 70 | 1.12 31 | 1.08 139 | 2.09 148 | 1.33 134 |
Ad-TV-NDC [36] | 117.2 | 4.41 139 | 6.97 124 | 7.36 155 | 3.30 142 | 4.58 129 | 4.69 147 | 2.60 135 | 6.97 131 | 3.33 138 | 2.16 138 | 4.56 135 | 2.33 140 | 1.26 81 | 1.99 95 | 1.14 80 | 0.91 87 | 3.37 75 | 1.09 88 | 1.88 74 | 2.74 62 | 1.62 73 | 1.09 141 | 2.40 153 | 1.93 150 |
WOLF_ROB [144] | 118.7 | 2.87 116 | 9.52 140 | 2.94 116 | 1.55 114 | 5.38 135 | 1.65 111 | 1.81 122 | 7.70 135 | 2.01 122 | 1.14 113 | 3.63 127 | 1.11 115 | 1.77 126 | 2.41 120 | 2.05 126 | 1.47 128 | 6.05 133 | 1.49 115 | 1.84 69 | 3.04 84 | 1.47 64 | 1.05 136 | 1.88 141 | 1.42 140 |
CompactFlow_ROB [155] | 120.2 | 5.43 151 | 8.96 136 | 3.05 120 | 3.01 139 | 5.58 138 | 3.47 138 | 3.41 147 | 9.46 140 | 4.82 149 | 1.82 132 | 3.15 120 | 1.71 132 | 2.32 146 | 2.95 142 | 2.18 132 | 1.33 117 | 5.63 131 | 1.67 123 | 1.22 11 | 3.04 84 | 0.75 5 | 0.96 123 | 1.57 119 | 0.98 111 |
C-RAFT_RVC [181] | 121.2 | 4.71 144 | 7.73 130 | 4.27 136 | 2.84 137 | 6.42 143 | 3.15 135 | 3.06 142 | 7.27 132 | 3.54 142 | 1.26 117 | 2.96 116 | 1.08 114 | 2.24 143 | 3.04 144 | 2.08 127 | 1.48 130 | 4.35 107 | 1.86 138 | 2.29 108 | 3.45 110 | 1.41 55 | 0.85 107 | 1.26 88 | 0.70 63 |
IAOF2 [51] | 122.8 | 2.79 113 | 4.89 92 | 2.69 106 | 1.86 122 | 3.78 120 | 2.57 125 | 1.57 118 | 4.12 112 | 2.00 121 | 4.95 152 | 6.55 144 | 6.90 156 | 1.75 124 | 2.49 130 | 1.54 107 | 1.60 137 | 4.88 114 | 1.78 133 | 3.14 143 | 3.92 126 | 1.91 88 | 0.98 126 | 1.55 118 | 1.10 121 |
HBpMotionGpu [43] | 123.4 | 3.50 122 | 5.01 96 | 3.35 124 | 3.02 140 | 4.08 123 | 4.11 142 | 2.06 125 | 5.55 122 | 2.91 133 | 1.90 135 | 3.25 123 | 1.85 134 | 1.71 123 | 2.29 110 | 2.31 136 | 1.43 124 | 4.05 101 | 1.81 135 | 3.49 153 | 4.03 132 | 2.51 128 | 0.76 82 | 1.50 117 | 0.89 101 |
LSM_FLOW_RVC [182] | 123.5 | 5.26 150 | 14.0 152 | 4.98 145 | 2.55 134 | 5.91 142 | 2.82 131 | 2.96 141 | 13.4 150 | 2.30 124 | 1.35 124 | 5.60 141 | 1.15 116 | 2.21 142 | 2.89 139 | 2.16 130 | 1.47 128 | 6.91 143 | 1.82 136 | 1.50 34 | 3.41 105 | 1.14 32 | 0.85 107 | 1.67 126 | 0.84 91 |
TVL1_RVC [175] | 125.2 | 7.51 157 | 11.6 148 | 10.7 159 | 5.63 155 | 5.75 141 | 8.80 157 | 5.39 154 | 13.0 148 | 6.36 159 | 5.77 155 | 9.79 151 | 6.07 154 | 1.59 113 | 2.45 124 | 1.80 113 | 0.76 61 | 4.92 116 | 1.06 85 | 1.33 16 | 2.87 74 | 0.85 12 | 1.27 149 | 2.58 155 | 1.90 148 |
GroupFlow [9] | 125.8 | 4.01 131 | 8.96 136 | 5.33 146 | 4.08 149 | 10.0 154 | 5.03 148 | 2.71 137 | 11.2 145 | 3.56 143 | 1.47 125 | 4.31 132 | 1.41 124 | 2.46 147 | 3.47 151 | 1.68 112 | 2.65 155 | 8.76 149 | 3.71 155 | 1.30 12 | 2.56 41 | 0.92 17 | 1.03 134 | 1.90 142 | 1.34 135 |
AugFNG_ROB [139] | 126.7 | 4.38 138 | 8.87 135 | 3.01 119 | 3.68 146 | 6.60 144 | 5.14 149 | 3.12 144 | 9.70 141 | 3.70 145 | 1.70 129 | 3.41 125 | 1.65 131 | 2.48 148 | 3.21 147 | 2.31 136 | 1.39 121 | 6.16 135 | 1.76 131 | 1.86 72 | 3.58 116 | 0.99 22 | 0.98 126 | 1.63 124 | 1.03 116 |
LFNet_ROB [145] | 127.2 | 4.16 133 | 14.1 153 | 3.36 125 | 2.18 129 | 5.65 139 | 2.21 119 | 2.38 133 | 11.1 144 | 1.84 116 | 1.30 118 | 4.58 136 | 1.15 116 | 2.31 145 | 3.17 146 | 2.33 140 | 1.55 135 | 6.16 135 | 1.73 128 | 2.47 122 | 4.25 139 | 1.36 47 | 0.90 117 | 1.62 122 | 1.00 115 |
2D-CLG [1] | 127.4 | 4.35 137 | 11.2 146 | 3.92 130 | 4.00 148 | 5.65 139 | 6.06 153 | 4.79 153 | 14.1 152 | 5.16 151 | 6.50 157 | 14.0 156 | 6.55 155 | 1.76 125 | 2.41 120 | 2.94 149 | 1.21 105 | 6.32 138 | 1.62 121 | 1.40 23 | 2.55 40 | 0.90 15 | 1.27 149 | 2.20 150 | 1.69 146 |
IAOF [50] | 128.0 | 3.55 123 | 6.41 121 | 4.27 136 | 2.52 133 | 3.73 118 | 3.48 139 | 2.09 127 | 7.46 133 | 2.47 127 | 2.56 143 | 5.54 140 | 3.29 148 | 1.62 116 | 2.36 115 | 1.44 102 | 1.46 127 | 5.99 132 | 1.44 114 | 2.79 135 | 3.42 107 | 2.11 104 | 1.12 144 | 1.94 144 | 1.49 143 |
SPSA-learn [13] | 128.5 | 3.57 124 | 9.65 143 | 4.33 141 | 2.13 127 | 4.20 124 | 2.79 129 | 2.06 125 | 6.85 130 | 2.87 132 | 1.88 134 | 5.24 139 | 1.95 135 | 1.82 128 | 2.38 116 | 2.35 141 | 1.54 133 | 6.21 137 | 1.94 141 | 2.02 88 | 3.22 97 | 1.47 64 | 1.41 152 | 2.22 151 | 2.28 152 |
Black & Anandan [4] | 128.8 | 3.90 130 | 8.79 134 | 5.34 147 | 2.10 126 | 4.91 131 | 2.68 127 | 2.24 129 | 7.98 138 | 2.91 133 | 1.98 136 | 6.06 143 | 2.01 136 | 1.97 133 | 2.68 133 | 2.11 129 | 1.38 119 | 6.99 145 | 1.59 118 | 2.55 126 | 3.97 130 | 1.10 29 | 1.11 143 | 2.04 147 | 1.28 129 |
GraphCuts [14] | 129.7 | 3.73 127 | 6.14 119 | 4.13 133 | 1.95 125 | 5.36 134 | 2.22 120 | 1.84 123 | 5.39 121 | 3.06 135 | 1.23 116 | 4.38 133 | 0.99 110 | 1.67 119 | 2.32 113 | 1.95 122 | 2.18 149 | 4.06 102 | 1.96 142 | 3.32 149 | 4.15 138 | 3.73 150 | 1.67 155 | 1.68 127 | 2.14 151 |
Heeger++ [102] | 132.0 | 7.15 156 | 17.6 159 | 4.62 143 | 4.20 152 | 14.6 162 | 3.84 140 | 7.59 161 | 16.7 156 | 6.25 158 | 4.14 151 | 9.75 150 | 4.00 149 | 3.45 158 | 3.91 159 | 3.63 155 | 5.33 161 | 17.9 161 | 6.70 161 | 2.06 93 | 4.70 150 | 1.40 53 | 0.40 6 | 1.08 67 | 0.39 7 |
EPMNet [131] | 132.3 | 4.68 142 | 9.60 141 | 4.27 136 | 3.79 147 | 8.16 148 | 4.66 145 | 2.94 140 | 6.68 129 | 3.20 136 | 2.28 139 | 3.19 121 | 2.22 138 | 2.09 137 | 2.89 139 | 1.98 123 | 1.31 115 | 4.96 117 | 1.71 125 | 2.89 139 | 4.67 149 | 2.12 106 | 0.97 124 | 1.71 131 | 0.97 109 |
FlowNet2 [120] | 132.9 | 4.70 143 | 7.33 128 | 4.31 140 | 4.14 151 | 7.37 146 | 5.19 150 | 3.19 145 | 7.71 136 | 3.60 144 | 2.14 137 | 2.64 107 | 2.05 137 | 2.09 137 | 2.89 139 | 1.98 123 | 1.31 115 | 4.96 117 | 1.71 125 | 3.19 145 | 5.29 159 | 2.55 133 | 0.92 119 | 1.46 111 | 0.92 102 |
IRR-PWC_RVC [180] | 132.9 | 5.00 149 | 9.62 142 | 3.69 126 | 3.50 144 | 7.20 145 | 4.26 144 | 3.90 150 | 9.80 142 | 5.13 150 | 1.75 130 | 4.23 131 | 1.60 130 | 2.16 139 | 2.79 136 | 2.39 142 | 1.23 109 | 4.84 113 | 1.31 106 | 2.48 123 | 5.25 158 | 1.45 63 | 1.18 147 | 1.79 134 | 1.36 136 |
ResPWCR_ROB [140] | 134.0 | 4.78 146 | 11.2 146 | 4.28 139 | 1.90 123 | 4.24 127 | 2.10 117 | 2.37 132 | 6.53 127 | 2.41 126 | 1.87 133 | 4.55 134 | 1.72 133 | 2.03 135 | 2.54 131 | 2.44 143 | 2.07 147 | 6.58 140 | 2.28 147 | 2.77 134 | 4.37 144 | 1.72 78 | 1.22 148 | 1.84 140 | 1.60 145 |
2bit-BM-tele [96] | 134.9 | 5.50 152 | 7.24 126 | 7.00 153 | 2.15 128 | 3.03 105 | 2.69 128 | 2.27 130 | 4.45 118 | 2.35 125 | 2.63 145 | 2.90 115 | 2.77 146 | 1.63 117 | 2.17 104 | 2.25 133 | 2.29 151 | 5.52 127 | 2.82 149 | 4.33 157 | 5.11 157 | 5.62 159 | 1.01 132 | 1.79 134 | 1.72 147 |
FFV1MT [104] | 135.8 | 6.53 155 | 14.4 155 | 5.37 148 | 3.40 143 | 12.8 160 | 3.44 137 | 7.00 158 | 18.3 159 | 6.41 160 | 4.10 150 | 15.6 157 | 4.04 150 | 3.98 161 | 4.51 161 | 5.29 162 | 5.96 162 | 18.3 162 | 7.50 162 | 2.59 127 | 4.32 141 | 2.20 109 | 0.40 6 | 1.08 67 | 0.39 7 |
Nguyen [33] | 135.9 | 4.50 140 | 8.30 132 | 4.64 144 | 6.04 156 | 4.82 130 | 11.0 159 | 3.37 146 | 12.8 147 | 4.28 147 | 6.23 156 | 9.23 149 | 7.98 157 | 2.07 136 | 2.73 135 | 3.19 150 | 1.38 119 | 6.12 134 | 1.76 131 | 2.12 99 | 3.24 99 | 1.34 44 | 1.34 151 | 2.23 152 | 1.90 148 |
UnFlow [127] | 137.7 | 8.73 159 | 14.6 156 | 5.86 150 | 5.18 154 | 8.43 151 | 5.98 152 | 6.12 157 | 18.7 160 | 5.81 155 | 2.89 148 | 8.11 147 | 2.63 144 | 3.59 159 | 3.82 158 | 4.60 161 | 2.49 153 | 9.81 151 | 3.55 153 | 2.73 133 | 3.95 127 | 1.14 32 | 0.72 70 | 1.34 100 | 0.75 75 |
SILK [80] | 138.6 | 4.92 148 | 10.7 145 | 7.59 156 | 3.66 145 | 8.19 149 | 4.66 145 | 3.10 143 | 12.4 146 | 3.75 146 | 2.78 147 | 7.03 145 | 2.83 147 | 2.79 152 | 3.42 150 | 3.35 151 | 2.18 149 | 9.05 150 | 2.40 148 | 1.66 50 | 2.78 67 | 1.85 85 | 1.44 153 | 2.57 154 | 2.47 155 |
Horn & Schunck [3] | 140.9 | 4.32 136 | 13.5 151 | 5.90 151 | 2.42 131 | 7.53 147 | 2.88 132 | 2.91 139 | 13.4 150 | 3.32 137 | 2.58 144 | 9.94 152 | 2.71 145 | 2.62 149 | 3.37 149 | 2.79 146 | 1.64 140 | 10.2 154 | 1.98 143 | 2.82 137 | 4.37 144 | 1.28 39 | 1.68 156 | 3.07 157 | 2.30 153 |
Periodicity [79] | 141.6 | 4.83 147 | 9.05 138 | 3.96 131 | 2.71 136 | 9.89 152 | 3.14 134 | 6.02 156 | 13.1 149 | 6.02 157 | 2.38 141 | 8.20 148 | 2.32 139 | 5.70 162 | 9.33 163 | 4.34 160 | 4.45 159 | 24.5 163 | 4.11 157 | 1.87 73 | 4.04 134 | 1.02 23 | 1.75 157 | 4.56 162 | 2.87 158 |
Adaptive flow [45] | 145.5 | 9.90 161 | 13.2 149 | 12.5 160 | 6.60 158 | 8.42 150 | 8.27 156 | 4.70 152 | 14.5 154 | 5.85 156 | 5.26 154 | 12.1 154 | 5.52 153 | 3.21 157 | 3.56 155 | 3.59 153 | 4.42 158 | 11.0 155 | 4.71 158 | 9.00 162 | 7.86 162 | 15.7 161 | 0.46 11 | 1.74 132 | 0.74 72 |
SLK [47] | 146.9 | 4.20 134 | 17.7 160 | 6.35 152 | 7.25 159 | 11.8 158 | 11.0 159 | 4.27 151 | 18.2 158 | 5.29 152 | 10.8 160 | 13.4 155 | 16.5 163 | 3.11 155 | 3.74 156 | 4.22 159 | 2.43 152 | 11.4 158 | 3.32 152 | 1.83 68 | 3.60 118 | 1.53 68 | 2.53 160 | 3.59 159 | 4.73 160 |
TI-DOFE [24] | 147.3 | 8.79 160 | 16.1 157 | 13.8 162 | 8.00 160 | 10.2 155 | 11.4 161 | 7.45 159 | 19.0 161 | 7.28 161 | 9.61 159 | 16.2 158 | 11.2 159 | 2.78 151 | 3.54 154 | 3.59 153 | 1.94 146 | 10.1 153 | 2.84 150 | 2.10 98 | 3.58 116 | 0.98 20 | 2.55 161 | 3.92 161 | 4.92 161 |
H+S_RVC [176] | 149.5 | 5.90 153 | 21.0 162 | 5.37 148 | 6.42 157 | 13.1 161 | 8.12 154 | 8.27 162 | 19.2 162 | 5.66 154 | 12.9 161 | 22.8 162 | 14.1 162 | 3.14 156 | 3.48 152 | 3.99 157 | 4.11 157 | 14.7 160 | 5.98 160 | 1.75 64 | 4.03 132 | 1.58 72 | 2.96 162 | 3.09 158 | 3.44 159 |
HCIC-L [97] | 150.0 | 11.0 162 | 13.3 150 | 7.06 154 | 13.2 163 | 12.4 159 | 16.8 163 | 7.58 160 | 10.5 143 | 10.5 163 | 13.4 162 | 17.8 159 | 13.8 161 | 3.73 160 | 4.09 160 | 3.40 152 | 4.45 159 | 7.90 148 | 5.38 159 | 17.2 163 | 13.0 163 | 17.3 163 | 0.78 96 | 1.10 72 | 0.96 107 |
FOLKI [16] | 151.9 | 4.72 145 | 16.7 158 | 8.10 157 | 4.62 153 | 11.0 157 | 8.17 155 | 3.43 148 | 16.8 157 | 3.51 141 | 3.53 149 | 10.3 153 | 4.31 151 | 2.89 153 | 3.80 157 | 3.81 156 | 2.60 154 | 13.1 159 | 4.02 156 | 2.33 114 | 4.53 147 | 3.23 144 | 2.39 159 | 3.89 160 | 7.04 162 |
PGAM+LK [55] | 155.2 | 6.47 154 | 18.3 161 | 8.42 158 | 4.08 149 | 10.7 156 | 5.38 151 | 3.66 149 | 14.4 153 | 4.35 148 | 5.05 153 | 29.1 163 | 5.23 152 | 2.92 154 | 3.48 152 | 3.99 157 | 3.48 156 | 11.1 157 | 3.57 154 | 5.90 161 | 5.96 161 | 5.68 160 | 1.57 154 | 2.70 156 | 2.60 156 |
Pyramid LK [2] | 159.4 | 8.02 158 | 14.1 153 | 14.8 163 | 8.54 161 | 9.96 153 | 16.3 162 | 5.59 155 | 14.6 155 | 8.07 162 | 7.36 158 | 22.2 161 | 9.72 158 | 5.85 163 | 7.94 162 | 7.95 163 | 7.37 163 | 11.0 155 | 8.48 163 | 4.42 159 | 4.94 156 | 3.92 153 | 5.06 163 | 8.31 163 | 17.6 163 |
AdaConv-v1 [124] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
SepConv-v1 [125] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
SuperSlomo [130] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
CtxSyn [134] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
CyclicGen [149] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
TOF-M [150] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
MPRN [151] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
DAIN [152] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
FRUCnet [153] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
OFRI [154] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
FGME [158] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
MS-PFT [159] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
MEMC-Net+ [160] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
ADC [161] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
DSepConv [162] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
MAF-net [163] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
STAR-Net [164] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
AdaCoF [165] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
TC-GAN [166] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
FeFlow [167] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
DAI [168] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
SoftSplat [169] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
STSR [170] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
BMBC [171] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
GDCN [172] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
EDSC [173] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
MV_VFI [183] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
DistillNet [184] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
SepConv++ [185] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
EAFI [186] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
FLAVR [188] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
SoftsplatAug [190] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
ProBoost-Net [191] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
IDIAL [192] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
IFRNet [193] | 164.4 | 40.6 164 | 40.4 164 | 41.9 164 | 76.0 164 | 77.9 164 | 75.2 164 | 71.5 164 | 69.6 164 | 73.8 164 | 60.3 164 | 73.5 165 | 60.3 164 | 80.9 165 | 81.7 165 | 81.8 165 | 78.7 165 | 70.9 165 | 77.5 165 | 58.2 165 | 47.8 165 | 72.2 165 | 82.4 164 | 83.1 164 | 82.9 164 |
AVG_FLOW_ROB [137] | 184.4 | 55.1 199 | 47.4 199 | 42.0 199 | 99.9 199 | 95.6 199 | 99.9 199 | 81.2 199 | 80.1 199 | 80.8 199 | 64.8 199 | 67.4 164 | 66.6 199 | 62.8 164 | 67.7 164 | 76.4 164 | 65.5 164 | 49.3 164 | 61.5 164 | 32.1 164 | 29.6 164 | 31.0 164 | 83.5 199 | 99.9 199 | 87.8 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |