Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
SD angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it+_RVC [198] | 14.9 | 7.07 25 | 15.8 45 | 3.85 3 | 5.66 3 | 14.3 38 | 2.52 1 | 6.62 1 | 12.1 36 | 2.00 2 | 8.50 13 | 26.8 55 | 0.84 4 | 4.25 1 | 5.11 2 | 2.91 3 | 5.15 4 | 13.5 7 | 1.70 1 | 1.32 2 | 2.86 20 | 0.75 2 | 6.39 43 | 12.1 43 | 1.53 4 |
RAFT-it [194] | 18.2 | 7.37 46 | 16.2 64 | 4.05 7 | 6.39 10 | 16.4 48 | 2.68 2 | 7.32 5 | 13.3 41 | 2.92 9 | 5.13 5 | 16.7 5 | 0.60 1 | 4.40 4 | 5.28 3 | 3.01 5 | 4.44 2 | 11.3 2 | 1.97 4 | 1.66 23 | 3.07 37 | 0.96 8 | 6.88 50 | 13.1 54 | 0.79 1 |
PMMST [112] | 19.6 | 6.46 4 | 14.1 4 | 3.23 1 | 5.42 1 | 12.7 36 | 3.51 19 | 8.20 12 | 14.7 47 | 3.66 16 | 7.46 6 | 17.8 6 | 4.34 10 | 4.79 19 | 5.67 14 | 3.91 29 | 6.77 10 | 15.2 11 | 3.61 7 | 1.74 32 | 3.36 72 | 1.34 23 | 5.95 42 | 11.3 42 | 2.25 7 |
NNF-Local [75] | 20.8 | 6.84 16 | 15.1 25 | 4.48 14 | 6.28 8 | 15.5 43 | 3.00 7 | 7.42 6 | 13.5 42 | 2.39 4 | 7.71 10 | 22.7 45 | 2.48 8 | 4.26 2 | 5.09 1 | 2.83 2 | 6.52 9 | 14.9 9 | 4.55 11 | 1.74 32 | 3.32 69 | 1.23 18 | 5.63 37 | 10.7 37 | 2.48 43 |
NN-field [71] | 25.0 | 7.29 37 | 16.0 54 | 4.74 29 | 6.15 4 | 15.2 42 | 3.02 10 | 7.77 10 | 14.1 46 | 2.71 7 | 7.56 7 | 22.8 46 | 1.96 7 | 4.49 6 | 5.36 6 | 3.09 6 | 5.72 7 | 14.1 8 | 1.96 3 | 1.96 54 | 3.34 70 | 1.32 21 | 5.70 38 | 10.8 38 | 2.49 44 |
MS_RAFT+_RVC [195] | 26.5 | 7.34 44 | 16.2 64 | 4.48 14 | 6.79 14 | 15.1 41 | 4.91 47 | 9.79 25 | 17.8 62 | 3.94 24 | 7.61 9 | 24.6 50 | 0.66 2 | 4.37 3 | 5.30 4 | 2.81 1 | 4.37 1 | 11.2 1 | 1.85 2 | 1.26 1 | 2.93 27 | 0.76 3 | 7.98 63 | 12.5 46 | 9.73 87 |
OFLAF [78] | 29.1 | 6.75 12 | 14.9 18 | 4.44 12 | 7.07 19 | 17.5 59 | 3.10 11 | 8.45 14 | 15.5 52 | 2.50 6 | 13.0 56 | 35.0 131 | 6.38 27 | 4.57 7 | 5.57 11 | 3.12 7 | 7.63 15 | 15.9 14 | 5.90 23 | 1.68 25 | 2.86 20 | 1.43 34 | 5.83 41 | 11.0 40 | 2.79 45 |
RAFT-TF_RVC [179] | 30.5 | 9.23 107 | 19.6 164 | 5.17 49 | 6.20 6 | 15.5 43 | 3.18 12 | 8.42 13 | 14.9 48 | 5.99 64 | 3.94 1 | 12.7 3 | 0.70 3 | 4.47 5 | 5.32 5 | 3.17 9 | 5.11 3 | 12.5 4 | 2.67 5 | 1.63 15 | 3.15 52 | 0.83 4 | 7.27 57 | 13.8 58 | 1.43 3 |
GMFlow_RVC [196] | 34.3 | 8.18 84 | 15.3 32 | 6.14 88 | 5.61 2 | 12.7 36 | 4.03 29 | 7.25 4 | 12.6 39 | 4.09 27 | 9.25 14 | 24.0 48 | 5.01 14 | 4.98 42 | 5.87 39 | 4.21 56 | 5.30 5 | 11.7 3 | 3.42 6 | 2.36 84 | 3.30 67 | 1.40 30 | 5.55 36 | 10.5 36 | 1.24 2 |
MDP-Flow2 [68] | 37.5 | 6.66 7 | 14.7 14 | 4.53 17 | 6.79 14 | 17.0 53 | 3.23 13 | 8.68 15 | 15.8 53 | 2.90 8 | 13.4 67 | 33.7 116 | 6.89 54 | 4.95 37 | 5.84 34 | 4.15 52 | 8.49 27 | 18.7 39 | 7.72 56 | 1.64 19 | 3.08 38 | 1.27 20 | 6.77 47 | 12.8 50 | 3.33 51 |
nLayers [57] | 41.2 | 7.20 32 | 16.0 54 | 4.66 26 | 6.25 7 | 14.7 39 | 3.70 24 | 7.72 9 | 13.7 44 | 4.81 40 | 13.1 60 | 34.8 129 | 6.69 39 | 4.76 16 | 5.75 22 | 4.12 49 | 7.19 12 | 14.9 9 | 4.40 10 | 1.99 56 | 3.10 43 | 1.80 61 | 8.22 66 | 15.6 68 | 6.10 73 |
FC-2Layers-FF [74] | 41.6 | 7.07 25 | 15.5 37 | 4.91 36 | 8.30 43 | 19.7 80 | 4.30 31 | 7.61 8 | 13.6 43 | 4.29 30 | 11.8 28 | 30.2 74 | 6.20 25 | 4.60 8 | 5.54 8 | 3.52 12 | 9.20 44 | 18.3 33 | 6.27 33 | 2.20 75 | 3.42 83 | 1.85 62 | 7.54 58 | 14.3 61 | 4.12 61 |
VCN_RVC [178] | 45.5 | 7.92 66 | 15.5 37 | 6.25 91 | 8.26 40 | 20.0 89 | 4.69 41 | 8.79 17 | 15.0 49 | 5.78 61 | 12.1 32 | 27.2 59 | 7.16 67 | 4.89 29 | 5.78 27 | 4.19 55 | 8.39 26 | 19.7 83 | 5.93 25 | 1.58 10 | 2.74 7 | 1.19 14 | 7.05 54 | 13.2 55 | 3.74 59 |
3DFlow [133] | 46.4 | 6.97 19 | 15.1 25 | 3.90 4 | 8.12 35 | 19.7 80 | 3.79 26 | 13.6 99 | 24.2 109 | 3.63 14 | 4.18 2 | 12.4 1 | 1.73 6 | 4.97 39 | 5.98 60 | 3.83 26 | 10.5 68 | 18.9 77 | 8.87 77 | 2.38 85 | 3.11 45 | 2.45 89 | 5.82 40 | 11.1 41 | 3.00 47 |
CoT-AMFlow [174] | 46.6 | 6.75 12 | 14.8 16 | 4.81 31 | 6.34 9 | 15.8 45 | 3.00 7 | 9.74 23 | 17.7 60 | 4.29 30 | 13.5 73 | 34.1 122 | 6.99 59 | 5.00 46 | 5.91 44 | 4.50 71 | 8.63 29 | 19.2 80 | 7.92 61 | 1.76 35 | 3.38 75 | 1.43 34 | 6.72 46 | 12.7 49 | 4.19 62 |
UnDAF [187] | 48.6 | 7.32 41 | 16.0 54 | 4.65 25 | 6.75 13 | 16.9 51 | 2.97 6 | 9.89 27 | 17.9 63 | 3.80 19 | 13.6 75 | 33.8 118 | 6.95 56 | 4.99 45 | 5.86 36 | 4.41 66 | 8.74 30 | 19.1 79 | 7.86 60 | 1.77 37 | 3.38 75 | 1.42 32 | 6.89 51 | 12.9 52 | 3.66 56 |
PRAFlow_RVC [177] | 48.8 | 7.95 72 | 16.9 120 | 5.13 47 | 6.83 16 | 16.2 47 | 3.98 28 | 11.0 71 | 19.3 72 | 5.54 59 | 11.3 24 | 29.8 69 | 4.91 13 | 4.82 20 | 5.73 19 | 3.69 19 | 5.59 6 | 13.4 6 | 3.70 8 | 1.50 6 | 3.02 31 | 0.83 4 | 17.8 133 | 22.5 112 | 21.6 170 |
ComponentFusion [94] | 49.0 | 7.22 33 | 15.9 50 | 4.61 21 | 7.60 25 | 19.2 74 | 3.30 14 | 9.70 22 | 17.6 58 | 3.77 18 | 11.1 22 | 31.0 83 | 4.45 11 | 4.96 38 | 5.88 41 | 4.25 58 | 10.9 74 | 23.7 110 | 9.40 86 | 1.90 51 | 3.08 38 | 1.69 55 | 8.00 64 | 15.1 65 | 4.57 65 |
FESL [72] | 51.7 | 6.97 19 | 15.3 32 | 4.47 13 | 9.74 72 | 21.4 103 | 5.49 66 | 11.4 73 | 20.2 75 | 4.25 29 | 12.5 39 | 31.5 90 | 6.81 44 | 4.72 12 | 5.71 17 | 3.72 22 | 7.03 11 | 16.0 15 | 4.81 12 | 2.21 78 | 3.49 90 | 1.94 67 | 11.1 90 | 17.6 82 | 10.1 90 |
NNF-EAC [101] | 52.5 | 6.83 15 | 14.9 18 | 4.80 30 | 7.59 24 | 18.0 61 | 4.31 32 | 9.03 18 | 16.1 54 | 3.09 11 | 13.2 63 | 32.2 100 | 7.10 63 | 5.06 59 | 5.96 51 | 4.02 39 | 8.19 22 | 17.1 19 | 6.04 29 | 1.79 40 | 3.30 67 | 1.38 29 | 17.0 130 | 27.6 136 | 18.0 150 |
AGIF+OF [84] | 52.9 | 7.17 30 | 15.6 40 | 4.93 37 | 10.2 83 | 22.1 112 | 5.16 53 | 12.5 87 | 21.2 88 | 4.88 42 | 12.5 39 | 31.7 95 | 6.76 41 | 4.78 18 | 5.73 19 | 3.91 29 | 7.85 18 | 16.3 17 | 5.20 14 | 1.83 44 | 3.10 43 | 1.71 57 | 10.8 87 | 17.6 82 | 11.0 94 |
Layers++ [37] | 53.3 | 7.19 31 | 15.7 42 | 5.08 43 | 6.15 4 | 14.8 40 | 3.42 17 | 7.83 11 | 14.0 45 | 4.84 41 | 10.9 19 | 26.9 57 | 6.19 24 | 4.83 24 | 5.84 34 | 4.36 63 | 12.4 95 | 25.2 123 | 10.5 100 | 2.43 87 | 3.56 95 | 1.92 65 | 8.66 69 | 16.1 70 | 7.77 80 |
PWC-Net_RVC [143] | 53.5 | 8.30 89 | 16.2 64 | 6.58 100 | 8.56 48 | 20.6 90 | 4.38 33 | 12.3 84 | 21.4 90 | 6.00 65 | 10.8 17 | 27.0 58 | 6.88 53 | 4.94 35 | 5.79 29 | 3.98 35 | 8.37 25 | 19.3 81 | 5.42 18 | 1.65 22 | 3.29 66 | 1.02 9 | 7.86 62 | 14.2 60 | 3.37 52 |
Correlation Flow [76] | 54.8 | 6.66 7 | 14.5 9 | 3.81 2 | 7.78 30 | 17.5 59 | 2.85 4 | 18.0 136 | 29.0 146 | 4.31 33 | 9.28 15 | 22.1 44 | 5.57 17 | 5.12 63 | 6.13 85 | 3.98 35 | 11.0 77 | 23.3 105 | 10.5 100 | 2.07 65 | 3.08 38 | 2.32 84 | 6.79 48 | 12.5 46 | 4.83 66 |
Efficient-NL [60] | 54.9 | 7.43 54 | 16.2 64 | 4.85 32 | 7.73 28 | 18.1 62 | 4.58 36 | 14.0 105 | 23.6 105 | 4.47 35 | 13.1 60 | 32.9 109 | 7.50 78 | 4.77 17 | 5.77 26 | 3.65 17 | 8.08 20 | 16.1 16 | 5.25 15 | 2.48 91 | 3.37 74 | 3.12 107 | 6.91 52 | 12.1 43 | 5.78 71 |
PH-Flow [99] | 55.6 | 7.38 48 | 15.9 50 | 5.22 52 | 9.30 62 | 19.5 76 | 5.71 69 | 9.62 20 | 17.2 56 | 5.09 43 | 13.4 67 | 34.5 124 | 7.10 63 | 4.82 20 | 5.73 19 | 3.82 25 | 8.36 24 | 17.1 19 | 5.35 17 | 2.66 97 | 3.43 85 | 3.42 116 | 7.13 56 | 13.3 57 | 5.33 70 |
MCPFlow_RVC [197] | 57.9 | 9.33 109 | 17.5 134 | 6.85 103 | 8.26 40 | 16.8 50 | 6.09 76 | 9.63 21 | 15.3 50 | 7.65 95 | 8.49 12 | 23.9 47 | 5.92 20 | 4.61 9 | 5.41 7 | 3.21 11 | 5.79 8 | 12.8 5 | 3.84 9 | 1.85 45 | 3.94 112 | 1.33 22 | 17.3 131 | 21.5 103 | 21.6 170 |
IROF++ [58] | 58.0 | 7.44 55 | 16.1 60 | 5.11 45 | 8.61 50 | 19.4 75 | 5.12 51 | 12.3 84 | 21.0 86 | 5.12 44 | 12.8 50 | 32.1 97 | 7.13 65 | 4.88 27 | 5.76 24 | 3.89 28 | 9.01 34 | 18.9 77 | 6.76 41 | 1.78 39 | 3.22 60 | 1.23 18 | 10.4 84 | 18.5 89 | 13.3 110 |
HAST [107] | 58.2 | 7.11 28 | 16.0 54 | 4.27 8 | 8.90 54 | 17.4 58 | 7.54 101 | 6.79 2 | 12.4 37 | 1.56 1 | 14.8 92 | 37.2 154 | 6.63 32 | 4.68 11 | 5.70 16 | 2.91 3 | 10.5 68 | 20.7 86 | 11.1 109 | 3.74 132 | 4.39 127 | 5.40 141 | 5.74 39 | 10.9 39 | 2.09 5 |
LME [70] | 58.5 | 7.04 23 | 15.6 40 | 4.53 17 | 6.68 11 | 16.9 51 | 2.85 4 | 13.6 99 | 22.6 97 | 12.0 156 | 11.5 26 | 27.8 60 | 6.39 28 | 5.03 52 | 5.93 48 | 4.52 73 | 12.4 95 | 27.0 136 | 10.9 108 | 1.76 35 | 3.38 75 | 1.43 34 | 6.62 45 | 12.5 46 | 2.86 46 |
CombBMOF [111] | 58.6 | 7.30 38 | 15.1 25 | 4.61 21 | 8.08 34 | 18.2 64 | 3.69 23 | 10.2 29 | 18.1 64 | 2.47 5 | 11.2 23 | 28.1 61 | 6.67 36 | 4.82 20 | 5.76 24 | 4.13 50 | 13.3 108 | 22.1 95 | 14.1 135 | 2.90 108 | 4.33 124 | 2.14 74 | 11.8 96 | 21.0 100 | 3.23 50 |
Classic+CPF [82] | 59.0 | 7.31 39 | 15.8 45 | 5.09 44 | 9.93 78 | 22.1 112 | 5.05 49 | 13.3 96 | 22.4 96 | 4.64 38 | 12.5 39 | 32.0 96 | 6.79 43 | 4.87 26 | 5.83 33 | 3.99 37 | 7.43 13 | 15.6 13 | 5.32 16 | 2.26 80 | 3.21 58 | 2.78 99 | 9.89 80 | 16.5 72 | 13.8 113 |
MLDP_OF [87] | 59.0 | 7.02 21 | 14.5 9 | 4.89 35 | 7.00 18 | 17.0 53 | 3.34 15 | 14.3 107 | 24.0 106 | 3.73 17 | 12.9 53 | 34.8 129 | 5.88 19 | 4.89 29 | 5.69 15 | 3.92 32 | 8.18 21 | 17.4 23 | 7.22 53 | 3.64 128 | 3.68 100 | 5.99 143 | 13.2 106 | 20.5 98 | 9.16 86 |
NL-TV-NCC [25] | 59.3 | 6.92 18 | 14.6 13 | 3.96 6 | 8.32 44 | 19.8 84 | 2.84 3 | 15.4 116 | 26.0 121 | 3.92 22 | 10.8 17 | 26.6 53 | 5.58 18 | 5.09 60 | 6.00 64 | 4.07 42 | 11.1 80 | 23.5 106 | 10.5 100 | 2.09 66 | 3.06 35 | 2.27 82 | 11.6 93 | 20.4 96 | 9.14 85 |
LSM [39] | 59.4 | 7.06 24 | 15.2 30 | 5.21 51 | 9.65 70 | 21.2 102 | 5.48 65 | 11.9 79 | 20.2 75 | 5.33 49 | 12.0 29 | 30.0 72 | 6.84 48 | 5.14 69 | 6.13 85 | 4.62 79 | 9.12 40 | 18.1 29 | 6.53 37 | 2.13 71 | 3.11 45 | 2.11 73 | 8.09 65 | 14.3 61 | 6.76 77 |
TC/T-Flow [77] | 59.8 | 6.31 2 | 13.3 2 | 4.85 32 | 11.5 137 | 23.6 126 | 6.67 88 | 13.4 98 | 23.2 103 | 3.00 10 | 14.2 86 | 36.9 153 | 6.33 26 | 4.72 12 | 5.64 12 | 3.64 15 | 7.70 16 | 17.1 19 | 5.61 22 | 2.00 57 | 3.45 88 | 2.86 101 | 10.9 89 | 18.2 87 | 3.59 55 |
WLIF-Flow [91] | 60.0 | 6.80 14 | 14.9 18 | 4.60 20 | 6.93 17 | 16.7 49 | 4.11 30 | 10.3 30 | 18.2 65 | 4.11 28 | 12.7 48 | 30.9 81 | 6.67 36 | 6.60 148 | 7.87 152 | 5.60 122 | 8.54 28 | 17.4 23 | 6.03 28 | 1.85 45 | 3.18 55 | 1.67 53 | 14.4 112 | 23.2 115 | 15.3 122 |
HCFN [157] | 60.0 | 6.51 5 | 14.1 4 | 4.64 23 | 8.25 38 | 20.6 90 | 4.51 34 | 10.1 28 | 18.2 65 | 4.68 39 | 13.4 67 | 35.1 133 | 6.09 22 | 4.73 15 | 5.55 9 | 3.64 15 | 8.77 32 | 18.6 37 | 7.20 51 | 4.73 148 | 5.10 143 | 5.62 142 | 11.6 93 | 19.6 92 | 14.0 115 |
Sparse-NonSparse [56] | 60.2 | 7.26 36 | 15.7 42 | 5.22 52 | 9.83 75 | 21.6 106 | 5.45 64 | 12.2 81 | 20.8 82 | 5.35 52 | 12.1 32 | 30.0 72 | 6.86 50 | 5.14 69 | 6.13 85 | 4.58 76 | 9.16 42 | 18.5 36 | 6.58 38 | 2.05 63 | 3.03 32 | 2.06 72 | 7.62 59 | 13.8 58 | 5.98 72 |
Ramp [62] | 61.9 | 7.32 41 | 15.8 45 | 5.20 50 | 8.74 51 | 19.8 84 | 5.27 59 | 11.4 73 | 19.7 74 | 5.40 55 | 12.5 39 | 31.6 93 | 6.86 50 | 4.97 39 | 5.88 41 | 4.08 44 | 9.04 35 | 18.3 33 | 7.00 48 | 2.65 96 | 3.36 72 | 4.00 130 | 8.65 68 | 15.3 67 | 11.7 99 |
PMF [73] | 62.6 | 7.59 61 | 16.5 110 | 4.94 38 | 7.64 26 | 18.3 67 | 3.66 21 | 7.48 7 | 13.2 40 | 2.31 3 | 14.7 91 | 36.3 148 | 6.84 48 | 4.66 10 | 5.64 12 | 3.18 10 | 9.85 50 | 21.3 89 | 9.22 81 | 3.62 127 | 5.25 149 | 3.70 126 | 7.12 55 | 13.2 55 | 6.82 78 |
Classic+NL [31] | 64.0 | 7.40 51 | 16.1 60 | 5.36 62 | 9.49 69 | 20.9 96 | 5.44 63 | 12.3 84 | 20.8 82 | 5.20 47 | 12.5 39 | 31.3 89 | 6.82 45 | 5.03 52 | 5.98 60 | 4.18 54 | 8.94 33 | 17.5 25 | 5.91 24 | 2.29 82 | 3.44 87 | 2.17 75 | 9.88 79 | 17.0 78 | 11.9 101 |
CostFilter [40] | 64.0 | 7.36 45 | 15.7 42 | 4.96 40 | 7.76 29 | 18.1 62 | 3.83 27 | 7.07 3 | 12.4 37 | 3.12 12 | 14.6 90 | 36.3 148 | 6.57 31 | 4.82 20 | 5.81 31 | 3.54 13 | 12.4 95 | 20.5 85 | 10.3 98 | 3.86 137 | 5.96 153 | 4.36 133 | 8.86 73 | 16.7 75 | 3.72 58 |
FlowFields+ [128] | 65.9 | 8.95 102 | 17.2 129 | 7.26 112 | 7.52 23 | 17.3 56 | 5.15 52 | 10.4 31 | 17.6 58 | 6.16 66 | 10.1 16 | 24.5 49 | 6.49 30 | 5.11 62 | 6.00 64 | 4.57 75 | 9.28 45 | 22.2 96 | 6.70 40 | 1.77 37 | 3.20 56 | 1.51 47 | 13.1 105 | 21.8 105 | 15.6 125 |
FMOF [92] | 67.5 | 7.14 29 | 15.5 37 | 5.28 56 | 10.4 122 | 22.7 118 | 5.42 60 | 10.8 67 | 19.0 71 | 3.90 21 | 12.2 35 | 31.0 83 | 6.63 32 | 4.98 42 | 5.97 54 | 4.10 45 | 10.0 59 | 17.2 22 | 6.98 46 | 2.46 89 | 3.40 80 | 4.60 134 | 14.7 114 | 23.2 115 | 10.1 90 |
WRT [146] | 67.7 | 7.40 51 | 15.9 50 | 3.93 5 | 9.33 63 | 21.1 100 | 3.42 17 | 21.1 161 | 31.0 167 | 6.88 78 | 4.33 3 | 13.0 4 | 1.43 5 | 4.84 25 | 5.80 30 | 4.44 69 | 13.6 112 | 21.4 91 | 10.8 106 | 1.71 30 | 2.85 17 | 1.65 52 | 16.7 127 | 20.4 96 | 20.8 166 |
RNLOD-Flow [119] | 68.4 | 6.72 10 | 14.9 18 | 4.39 10 | 9.09 57 | 21.0 98 | 5.06 50 | 15.2 114 | 25.8 117 | 5.42 56 | 12.6 46 | 32.2 100 | 6.64 34 | 5.46 108 | 6.48 120 | 4.34 62 | 8.35 23 | 17.8 27 | 6.16 31 | 2.82 103 | 3.90 111 | 3.36 114 | 9.02 74 | 16.1 70 | 9.83 88 |
TV-L1-MCT [64] | 69.0 | 7.42 53 | 16.1 60 | 5.22 52 | 9.84 76 | 21.6 106 | 5.20 55 | 14.3 107 | 24.7 112 | 5.27 48 | 12.5 39 | 31.2 88 | 7.21 69 | 5.01 48 | 5.90 43 | 4.41 66 | 9.10 38 | 18.8 76 | 7.14 50 | 2.17 74 | 2.78 9 | 4.69 135 | 9.81 78 | 16.8 77 | 11.5 96 |
IIOF-NLDP [129] | 69.1 | 7.31 39 | 15.4 34 | 4.42 11 | 8.37 45 | 19.9 87 | 3.01 9 | 15.4 116 | 25.9 119 | 4.00 25 | 7.56 7 | 18.6 42 | 4.73 12 | 6.04 133 | 7.28 146 | 5.15 109 | 10.1 60 | 21.3 89 | 9.54 88 | 1.74 32 | 2.90 24 | 1.50 44 | 15.8 119 | 21.6 104 | 20.5 164 |
SVFilterOh [109] | 69.1 | 7.94 69 | 17.5 134 | 4.94 38 | 8.27 42 | 19.8 84 | 3.66 21 | 9.83 26 | 17.7 60 | 4.59 36 | 13.4 67 | 34.5 124 | 6.82 45 | 4.89 29 | 5.93 48 | 3.15 8 | 10.4 66 | 22.7 98 | 9.35 85 | 3.51 124 | 4.72 136 | 4.17 131 | 7.68 60 | 14.3 61 | 4.90 67 |
ProbFlowFields [126] | 70.1 | 8.84 100 | 17.9 141 | 6.90 105 | 7.20 21 | 17.3 56 | 4.75 44 | 11.6 76 | 20.5 79 | 6.31 70 | 8.48 11 | 22.0 43 | 5.26 16 | 5.25 90 | 6.24 104 | 4.67 89 | 9.96 57 | 23.9 114 | 6.99 47 | 1.64 19 | 2.80 11 | 1.41 31 | 14.7 114 | 25.5 126 | 14.7 118 |
Complementary OF [21] | 70.8 | 7.37 46 | 15.1 25 | 5.30 59 | 9.46 65 | 22.5 116 | 4.63 37 | 13.0 91 | 22.8 99 | 4.04 26 | 14.8 92 | 37.9 162 | 6.87 52 | 4.97 39 | 5.86 36 | 4.39 65 | 11.0 77 | 24.4 118 | 8.06 65 | 1.79 40 | 2.79 10 | 2.22 78 | 12.2 97 | 22.0 108 | 11.2 95 |
EPPM w/o HM [86] | 71.8 | 7.33 43 | 14.5 9 | 5.00 42 | 7.20 21 | 17.2 55 | 3.41 16 | 11.8 77 | 20.8 82 | 3.20 13 | 12.6 46 | 31.1 87 | 7.00 60 | 5.14 69 | 6.08 78 | 4.67 89 | 12.0 89 | 22.7 98 | 9.97 94 | 4.48 147 | 3.69 102 | 6.02 144 | 10.4 84 | 17.6 82 | 11.5 96 |
MDP-Flow [26] | 72.5 | 6.73 11 | 14.1 4 | 5.59 71 | 6.70 12 | 16.0 46 | 4.65 39 | 9.78 24 | 17.2 56 | 6.61 75 | 13.0 56 | 34.7 128 | 6.48 29 | 5.54 112 | 6.17 94 | 5.84 125 | 10.5 68 | 23.6 108 | 7.81 59 | 1.89 49 | 3.42 83 | 1.37 26 | 20.0 152 | 32.5 156 | 19.1 156 |
ALD-Flow [66] | 72.8 | 6.69 9 | 14.4 8 | 4.54 19 | 12.5 147 | 25.7 142 | 6.93 93 | 14.3 107 | 24.9 113 | 4.29 30 | 14.8 92 | 35.3 138 | 7.04 61 | 4.98 42 | 5.92 46 | 3.66 18 | 10.1 60 | 23.6 108 | 6.92 44 | 2.02 59 | 3.23 61 | 2.86 101 | 10.2 83 | 18.9 91 | 6.45 76 |
TC-Flow [46] | 73.8 | 6.56 6 | 14.1 4 | 4.48 14 | 9.25 61 | 21.4 103 | 5.03 48 | 14.9 112 | 25.8 117 | 3.93 23 | 14.5 89 | 35.9 142 | 6.97 58 | 5.01 48 | 5.97 54 | 3.63 14 | 9.98 58 | 22.8 101 | 6.83 43 | 2.11 68 | 3.25 62 | 3.61 124 | 16.7 127 | 26.8 133 | 20.0 162 |
FlowFields [108] | 73.9 | 9.03 105 | 17.5 134 | 7.31 113 | 8.02 33 | 18.6 70 | 5.24 58 | 11.1 72 | 18.9 69 | 6.32 71 | 11.6 27 | 28.7 64 | 7.40 76 | 5.14 69 | 6.03 72 | 4.64 84 | 10.1 60 | 23.8 113 | 7.62 55 | 1.69 26 | 2.86 20 | 1.51 47 | 12.9 101 | 22.8 113 | 14.9 121 |
JOF [136] | 73.9 | 7.77 64 | 16.9 120 | 5.33 60 | 10.6 124 | 20.8 95 | 7.75 104 | 10.9 69 | 18.9 69 | 5.34 50 | 12.7 48 | 32.6 103 | 6.67 36 | 4.91 33 | 5.86 36 | 3.97 34 | 9.05 36 | 17.9 28 | 5.47 19 | 3.04 114 | 3.66 99 | 3.43 117 | 13.3 108 | 21.4 102 | 12.2 105 |
C-RAFT_RVC [181] | 74.9 | 11.3 133 | 20.0 172 | 8.25 134 | 9.80 74 | 19.5 76 | 7.34 98 | 12.5 87 | 20.6 80 | 7.33 90 | 12.3 37 | 29.3 68 | 8.16 89 | 5.16 75 | 5.96 51 | 4.63 81 | 7.59 14 | 17.0 18 | 5.94 26 | 2.40 86 | 4.74 137 | 1.93 66 | 6.80 49 | 12.8 50 | 2.13 6 |
ProFlow_ROB [142] | 75.2 | 7.98 75 | 17.0 122 | 5.55 70 | 9.17 59 | 21.5 105 | 5.69 68 | 13.9 103 | 24.5 111 | 5.39 54 | 13.9 80 | 32.3 102 | 7.54 79 | 5.19 84 | 6.19 97 | 4.26 59 | 9.15 41 | 21.8 93 | 5.47 19 | 1.57 9 | 2.92 25 | 1.15 13 | 13.9 111 | 23.8 119 | 12.3 106 |
S2F-IF [121] | 75.4 | 8.86 101 | 17.2 129 | 7.05 109 | 7.84 32 | 18.3 67 | 5.20 55 | 10.8 67 | 18.5 68 | 6.21 67 | 13.0 56 | 30.7 79 | 8.15 88 | 5.09 60 | 5.98 60 | 4.58 76 | 9.62 48 | 22.7 98 | 7.20 51 | 1.92 52 | 3.77 107 | 1.73 58 | 10.7 86 | 18.4 88 | 12.8 108 |
SimpleFlow [49] | 75.5 | 7.56 60 | 16.2 64 | 5.59 71 | 9.48 66 | 21.0 98 | 5.68 67 | 17.1 129 | 27.0 133 | 6.29 69 | 13.0 56 | 32.8 107 | 7.09 62 | 5.18 81 | 6.16 90 | 4.62 79 | 8.75 31 | 17.6 26 | 6.81 42 | 2.13 71 | 3.50 91 | 2.30 83 | 9.78 77 | 17.4 80 | 7.10 79 |
IROF-TV [53] | 76.5 | 7.55 59 | 16.1 60 | 5.46 67 | 9.23 60 | 21.8 108 | 5.88 72 | 13.3 96 | 22.2 95 | 5.50 58 | 12.8 50 | 31.6 93 | 7.28 71 | 5.12 63 | 6.09 79 | 4.67 89 | 13.3 108 | 29.6 156 | 9.97 94 | 1.60 11 | 3.12 49 | 1.06 10 | 11.5 92 | 21.3 101 | 11.5 96 |
PBOFVI [189] | 76.9 | 7.44 55 | 16.0 54 | 4.64 23 | 10.3 121 | 23.8 129 | 3.70 24 | 18.5 140 | 29.7 153 | 5.88 63 | 11.0 20 | 28.2 62 | 5.96 21 | 5.91 126 | 7.08 142 | 4.88 100 | 9.88 53 | 18.2 30 | 7.43 54 | 2.20 75 | 4.04 114 | 2.26 80 | 8.84 71 | 15.2 66 | 5.15 69 |
SRR-TVOF-NL [89] | 77.4 | 7.83 65 | 15.4 34 | 5.99 84 | 13.2 154 | 26.1 147 | 8.61 110 | 13.2 94 | 22.0 94 | 6.78 76 | 13.6 75 | 30.3 75 | 7.34 75 | 4.72 12 | 5.56 10 | 4.04 41 | 9.87 52 | 19.8 84 | 8.30 69 | 3.25 119 | 3.73 105 | 3.18 110 | 6.93 53 | 12.9 52 | 4.92 68 |
ACK-Prior [27] | 78.2 | 6.39 3 | 13.4 3 | 4.38 9 | 8.58 49 | 19.7 80 | 3.63 20 | 11.4 73 | 20.3 77 | 3.82 20 | 12.5 39 | 33.7 116 | 5.09 15 | 5.53 110 | 6.42 116 | 4.76 95 | 15.0 126 | 28.4 144 | 11.4 111 | 3.54 125 | 4.36 126 | 4.84 137 | 13.2 106 | 20.2 95 | 8.94 83 |
HBM-GC [103] | 78.7 | 8.35 93 | 18.4 146 | 4.98 41 | 7.66 27 | 18.2 64 | 5.20 55 | 13.8 102 | 24.2 109 | 5.34 50 | 12.0 29 | 30.5 77 | 6.83 47 | 5.04 55 | 6.02 70 | 4.43 68 | 9.34 46 | 15.5 12 | 7.92 61 | 3.03 113 | 4.57 132 | 2.51 93 | 16.1 122 | 26.0 128 | 17.9 148 |
LiteFlowNet [138] | 79.1 | 9.19 106 | 16.6 111 | 7.02 108 | 8.23 37 | 18.9 73 | 4.53 35 | 12.9 89 | 21.5 91 | 6.23 68 | 12.0 29 | 26.7 54 | 7.32 74 | 5.39 105 | 6.23 101 | 5.47 118 | 9.09 37 | 18.7 39 | 6.31 34 | 2.02 59 | 3.14 51 | 1.47 37 | 19.2 145 | 24.7 122 | 21.9 175 |
Sparse Occlusion [54] | 80.8 | 7.38 48 | 15.8 45 | 5.28 56 | 8.25 38 | 19.9 87 | 4.71 42 | 15.5 119 | 26.3 127 | 4.63 37 | 13.5 73 | 33.3 115 | 6.92 55 | 5.25 90 | 6.26 106 | 4.11 47 | 9.70 49 | 21.1 88 | 5.94 26 | 4.85 149 | 5.95 152 | 3.71 127 | 10.8 87 | 20.0 94 | 8.01 82 |
2DHMM-SAS [90] | 81.2 | 7.39 50 | 15.9 50 | 5.25 55 | 10.7 127 | 23.4 123 | 5.43 61 | 18.0 136 | 27.0 133 | 7.95 135 | 13.1 60 | 32.7 105 | 7.28 71 | 4.89 29 | 5.78 27 | 4.01 38 | 9.88 53 | 18.2 30 | 6.37 35 | 2.50 94 | 3.39 78 | 3.37 115 | 13.8 110 | 22.4 111 | 15.5 124 |
ROF-ND [105] | 81.5 | 7.02 21 | 14.7 14 | 4.66 26 | 8.18 36 | 19.5 76 | 4.66 40 | 15.5 119 | 25.9 119 | 5.47 57 | 4.68 4 | 12.6 2 | 2.76 9 | 5.93 127 | 7.12 143 | 5.27 111 | 12.2 91 | 25.4 126 | 9.09 80 | 4.23 144 | 4.20 119 | 3.32 113 | 14.7 114 | 22.1 110 | 18.8 154 |
DPOF [18] | 83.2 | 8.43 95 | 16.8 115 | 6.36 95 | 10.7 127 | 20.7 93 | 9.52 119 | 8.72 16 | 15.4 51 | 3.63 14 | 11.3 24 | 29.1 66 | 6.09 22 | 5.34 98 | 6.18 95 | 5.38 116 | 12.2 91 | 22.4 97 | 8.06 65 | 5.27 150 | 3.55 92 | 6.79 149 | 8.85 72 | 16.5 72 | 4.24 63 |
COFM [59] | 83.9 | 8.49 97 | 18.5 149 | 5.95 80 | 8.44 46 | 18.7 71 | 4.71 42 | 13.0 91 | 22.9 100 | 5.84 62 | 13.8 78 | 35.2 136 | 6.78 42 | 5.63 118 | 6.58 123 | 5.94 126 | 11.7 86 | 23.5 106 | 9.80 90 | 2.29 82 | 3.20 56 | 2.72 96 | 6.42 44 | 12.1 43 | 3.07 49 |
OFH [38] | 84.1 | 7.25 35 | 15.0 24 | 5.29 58 | 11.1 131 | 25.0 138 | 7.19 97 | 18.6 142 | 29.1 148 | 5.56 60 | 16.0 108 | 40.8 180 | 7.44 77 | 5.05 56 | 5.92 46 | 4.28 60 | 11.4 82 | 26.0 130 | 8.73 73 | 1.64 19 | 3.04 33 | 1.36 25 | 12.5 99 | 23.3 117 | 7.79 81 |
TCOF [69] | 84.8 | 7.46 57 | 15.1 25 | 5.70 74 | 9.13 58 | 21.1 100 | 5.43 61 | 19.6 148 | 29.8 154 | 8.31 139 | 12.9 53 | 31.0 83 | 7.17 68 | 6.02 132 | 7.00 137 | 4.59 78 | 7.92 19 | 18.4 35 | 6.11 30 | 3.78 134 | 4.09 116 | 5.18 139 | 8.51 67 | 15.9 69 | 3.80 60 |
ResPWCR_ROB [140] | 84.8 | 8.30 89 | 14.5 9 | 7.12 110 | 8.82 52 | 19.6 79 | 5.91 73 | 11.8 77 | 19.3 72 | 7.90 134 | 12.4 38 | 28.5 63 | 7.89 85 | 5.18 81 | 5.97 54 | 5.36 114 | 10.9 74 | 23.9 114 | 8.84 76 | 2.85 105 | 3.65 98 | 2.34 85 | 14.7 114 | 21.8 105 | 16.2 135 |
PGM-C [118] | 85.2 | 9.43 111 | 18.5 149 | 7.51 119 | 9.84 76 | 23.4 123 | 6.05 75 | 12.0 80 | 20.6 80 | 7.17 83 | 15.8 104 | 35.3 138 | 9.67 107 | 5.20 86 | 6.11 81 | 4.66 86 | 9.86 51 | 23.7 110 | 7.06 49 | 1.63 15 | 2.84 16 | 1.49 43 | 11.1 90 | 20.8 99 | 6.23 75 |
ComplOF-FED-GPU [35] | 87.2 | 7.49 58 | 15.4 34 | 5.37 64 | 12.1 143 | 26.5 154 | 7.51 100 | 13.1 93 | 22.7 98 | 4.33 34 | 15.6 101 | 37.7 161 | 7.55 81 | 4.94 35 | 5.82 32 | 4.13 50 | 12.3 93 | 27.7 140 | 8.48 71 | 2.49 93 | 3.04 33 | 3.56 121 | 12.9 101 | 23.9 120 | 9.01 84 |
S2D-Matching [83] | 87.5 | 8.25 86 | 18.0 143 | 5.76 77 | 10.9 129 | 22.8 119 | 5.71 69 | 17.3 130 | 28.5 139 | 6.38 73 | 12.1 32 | 30.3 75 | 6.65 35 | 5.15 74 | 6.13 85 | 4.63 81 | 9.18 43 | 19.5 82 | 6.69 39 | 2.66 97 | 3.35 71 | 3.50 118 | 11.6 93 | 19.9 93 | 14.7 118 |
SegFlow [156] | 87.9 | 9.47 115 | 18.6 152 | 7.51 119 | 10.2 83 | 24.1 133 | 6.22 79 | 12.2 81 | 21.0 86 | 7.22 84 | 16.1 109 | 36.3 148 | 9.76 110 | 5.21 89 | 6.12 83 | 4.69 92 | 10.1 60 | 24.2 117 | 7.76 58 | 1.66 23 | 2.89 23 | 1.50 44 | 9.31 76 | 17.5 81 | 4.27 64 |
OAR-Flow [123] | 88.5 | 8.08 79 | 16.8 115 | 6.19 90 | 17.4 169 | 28.9 166 | 12.3 166 | 16.3 125 | 26.7 132 | 7.01 80 | 15.1 97 | 35.2 136 | 7.31 73 | 5.17 78 | 6.16 90 | 4.24 57 | 9.51 47 | 22.9 103 | 5.52 21 | 1.54 8 | 2.98 29 | 1.59 51 | 9.10 75 | 17.1 79 | 3.69 57 |
AggregFlow [95] | 92.3 | 10.3 126 | 21.3 184 | 6.91 106 | 15.1 162 | 27.6 161 | 10.7 124 | 14.0 105 | 24.0 106 | 8.70 141 | 14.1 83 | 35.0 131 | 7.15 66 | 5.05 56 | 6.03 72 | 4.02 39 | 7.73 17 | 18.2 30 | 5.09 13 | 2.13 71 | 4.40 128 | 1.67 53 | 9.91 81 | 18.1 86 | 6.13 74 |
CPM-Flow [114] | 94.5 | 9.46 113 | 18.6 152 | 7.51 119 | 10.0 80 | 23.7 127 | 6.20 78 | 12.2 81 | 20.9 85 | 7.13 81 | 15.8 104 | 35.6 141 | 9.71 109 | 5.20 86 | 6.12 83 | 4.65 85 | 10.9 74 | 23.7 110 | 8.90 78 | 1.73 31 | 3.15 52 | 1.51 47 | 14.5 113 | 26.0 128 | 13.6 112 |
AdaConv-v1 [124] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
SepConv-v1 [125] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
SuperSlomo [130] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
CtxSyn [134] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
CyclicGen [149] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
TOF-M [150] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
MPRN [151] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
DAIN [152] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
FRUCnet [153] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
OFRI [154] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
FGME [158] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
MS-PFT [159] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
MEMC-Net+ [160] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
ADC [161] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
DSepConv [162] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
MAF-net [163] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
STAR-Net [164] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
AdaCoF [165] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
TC-GAN [166] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
FeFlow [167] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
DAI [168] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
SoftSplat [169] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
STSR [170] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
BMBC [171] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
GDCN [172] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
EDSC [173] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
MV_VFI [183] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
DistillNet [184] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
SepConv++ [185] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
EAFI [186] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
FLAVR [188] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
SoftsplatAug [190] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
ProBoost-Net [191] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
IDIAL [192] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
IFRNet [193] | 95.1 | 13.0 149 | 16.4 74 | 8.62 140 | 10.2 83 | 9.17 1 | 11.5 129 | 10.7 32 | 11.1 1 | 7.66 96 | 16.3 114 | 17.8 6 | 14.4 140 | 10.8 161 | 8.97 158 | 16.5 161 | 19.7 151 | 18.7 39 | 19.4 153 | 19.7 165 | 17.1 165 | 8.18 154 | 3.51 1 | 4.92 1 | 2.42 8 |
CompactFlow_ROB [155] | 95.3 | 11.5 137 | 20.6 178 | 8.79 176 | 8.99 56 | 18.8 72 | 6.75 90 | 14.8 110 | 21.3 89 | 14.7 164 | 14.0 81 | 32.1 97 | 9.13 97 | 5.17 78 | 6.02 70 | 4.82 99 | 10.4 66 | 22.8 101 | 7.73 57 | 1.63 15 | 2.68 5 | 0.88 7 | 19.0 142 | 24.6 121 | 24.3 180 |
EpicFlow [100] | 95.5 | 9.39 110 | 18.4 146 | 7.50 118 | 10.0 80 | 23.8 129 | 6.29 81 | 15.8 122 | 26.6 130 | 7.35 92 | 15.5 99 | 34.4 123 | 9.65 105 | 5.20 86 | 6.11 81 | 4.66 86 | 10.2 64 | 24.5 119 | 8.18 68 | 1.63 15 | 2.81 13 | 1.48 38 | 15.8 119 | 24.8 123 | 17.1 144 |
Occlusion-TV-L1 [63] | 97.0 | 7.73 63 | 16.4 74 | 5.36 62 | 9.48 66 | 22.4 115 | 6.18 77 | 19.2 145 | 30.0 157 | 7.14 82 | 14.4 88 | 33.8 118 | 7.91 86 | 5.31 97 | 6.27 108 | 4.47 70 | 11.9 88 | 27.9 141 | 8.04 63 | 2.09 66 | 3.08 38 | 1.50 44 | 21.9 162 | 35.3 172 | 17.5 145 |
RFlow [88] | 98.1 | 7.10 27 | 14.9 18 | 5.40 65 | 8.98 55 | 21.9 110 | 5.19 54 | 18.5 140 | 29.3 150 | 5.35 52 | 18.1 162 | 44.9 198 | 9.86 113 | 5.12 63 | 6.01 67 | 4.38 64 | 13.0 105 | 29.3 153 | 9.93 93 | 2.28 81 | 2.85 17 | 3.52 119 | 20.3 153 | 33.3 162 | 16.1 133 |
ContinualFlow_ROB [148] | 99.2 | 11.4 135 | 20.8 179 | 8.47 138 | 9.76 73 | 18.5 69 | 7.94 107 | 16.5 126 | 26.6 130 | 11.7 154 | 15.7 102 | 37.2 154 | 8.85 96 | 5.25 90 | 5.97 54 | 5.27 111 | 11.8 87 | 24.9 121 | 11.4 111 | 1.53 7 | 3.06 35 | 1.10 11 | 12.4 98 | 17.7 85 | 13.1 109 |
FF++_ROB [141] | 100.2 | 9.92 121 | 19.4 161 | 7.55 123 | 8.87 53 | 20.9 96 | 5.83 71 | 15.3 115 | 25.3 115 | 7.95 135 | 11.0 20 | 25.4 51 | 7.23 70 | 5.19 84 | 6.10 80 | 4.80 97 | 17.1 135 | 25.3 125 | 13.2 127 | 1.88 47 | 2.96 28 | 2.77 97 | 18.7 139 | 27.2 134 | 25.3 182 |
Adaptive [20] | 101.2 | 7.94 69 | 17.0 122 | 5.33 60 | 10.2 83 | 23.9 131 | 6.28 80 | 21.2 162 | 31.7 176 | 7.69 131 | 13.6 75 | 29.8 69 | 7.87 84 | 4.88 27 | 5.75 22 | 3.71 21 | 13.2 106 | 28.9 150 | 9.72 89 | 3.21 118 | 4.71 135 | 2.91 103 | 19.3 147 | 30.5 145 | 15.6 125 |
DMF_ROB [135] | 101.5 | 8.27 87 | 16.7 113 | 6.36 95 | 11.7 140 | 26.4 152 | 7.10 96 | 17.8 135 | 28.6 141 | 7.33 90 | 15.9 107 | 35.9 142 | 9.46 101 | 5.05 56 | 5.97 54 | 4.51 72 | 12.8 103 | 27.4 137 | 9.90 92 | 1.60 11 | 2.99 30 | 1.48 38 | 19.8 151 | 32.0 152 | 16.8 140 |
Steered-L1 [116] | 102.0 | 5.97 1 | 12.7 1 | 4.67 28 | 7.14 20 | 18.2 64 | 4.63 37 | 13.2 94 | 23.3 104 | 5.12 44 | 15.2 98 | 38.1 164 | 7.54 79 | 5.85 125 | 6.73 127 | 6.98 146 | 13.7 114 | 26.5 132 | 11.7 117 | 6.39 155 | 4.25 121 | 13.3 192 | 22.3 165 | 32.7 158 | 20.3 163 |
DeepFlow2 [106] | 102.1 | 8.14 81 | 16.6 111 | 5.96 82 | 14.1 156 | 26.5 154 | 10.2 120 | 15.8 122 | 26.2 125 | 6.46 74 | 16.5 151 | 37.4 158 | 9.54 103 | 5.01 48 | 5.94 50 | 3.72 22 | 10.7 71 | 25.1 122 | 8.08 67 | 1.92 52 | 3.12 49 | 2.45 89 | 20.3 153 | 32.1 154 | 16.3 136 |
TF+OM [98] | 103.5 | 7.97 74 | 16.8 115 | 5.98 83 | 9.40 64 | 20.7 93 | 6.33 82 | 15.4 116 | 22.9 100 | 17.5 170 | 13.4 67 | 31.5 90 | 8.10 87 | 5.13 67 | 6.06 77 | 4.66 86 | 13.9 115 | 29.3 153 | 14.0 133 | 2.47 90 | 4.09 116 | 2.00 68 | 18.3 137 | 29.4 142 | 19.3 158 |
Aniso. Huber-L1 [22] | 103.6 | 7.96 73 | 16.3 72 | 6.10 87 | 11.4 134 | 24.7 136 | 6.77 91 | 20.6 155 | 29.6 152 | 7.26 86 | 13.2 63 | 29.2 67 | 7.77 83 | 5.52 109 | 6.58 123 | 4.29 61 | 12.4 95 | 26.7 134 | 8.83 75 | 2.93 110 | 3.68 100 | 3.10 106 | 16.5 126 | 27.4 135 | 13.9 114 |
LSM_FLOW_RVC [182] | 105.7 | 11.6 139 | 19.9 169 | 9.11 179 | 14.3 158 | 29.2 169 | 9.06 114 | 18.9 144 | 28.8 145 | 12.4 158 | 18.3 165 | 39.8 172 | 11.9 132 | 5.14 69 | 5.98 60 | 4.73 93 | 10.7 71 | 21.8 93 | 9.34 84 | 1.70 29 | 2.66 4 | 1.19 14 | 7.77 61 | 14.3 61 | 3.43 53 |
OFRF [132] | 106.6 | 9.69 117 | 19.6 164 | 6.25 91 | 22.2 188 | 29.4 170 | 20.7 191 | 21.6 166 | 30.1 158 | 17.0 168 | 14.1 83 | 31.0 83 | 8.47 92 | 4.93 34 | 5.87 39 | 3.94 33 | 9.10 38 | 18.6 37 | 6.40 36 | 2.84 104 | 4.62 134 | 3.66 125 | 12.6 100 | 16.7 75 | 15.9 132 |
LocallyOriented [52] | 107.5 | 9.89 119 | 19.9 169 | 6.55 98 | 14.7 161 | 27.7 162 | 11.0 126 | 21.7 169 | 31.9 178 | 7.32 89 | 13.3 66 | 30.5 77 | 8.32 90 | 5.16 75 | 6.04 74 | 4.11 47 | 9.90 55 | 21.6 92 | 8.75 74 | 2.20 75 | 3.43 85 | 2.17 75 | 18.3 137 | 26.0 128 | 19.6 159 |
EAI-Flow [147] | 108.6 | 10.4 129 | 19.0 158 | 7.83 125 | 13.2 154 | 25.8 143 | 9.43 118 | 13.7 101 | 21.6 92 | 8.47 140 | 14.8 92 | 33.0 110 | 9.68 108 | 5.12 63 | 6.01 67 | 4.74 94 | 11.6 83 | 25.7 128 | 9.23 82 | 3.66 129 | 3.57 96 | 2.04 70 | 13.4 109 | 24.8 123 | 10.5 93 |
AugFNG_ROB [139] | 108.9 | 12.7 146 | 22.1 185 | 9.46 182 | 12.1 143 | 24.6 135 | 9.39 117 | 18.8 143 | 27.1 137 | 14.7 164 | 14.0 81 | 30.9 81 | 9.24 99 | 5.03 52 | 5.72 18 | 5.09 106 | 11.0 77 | 24.0 116 | 9.53 87 | 1.82 43 | 3.25 62 | 1.22 16 | 18.2 136 | 23.7 118 | 21.6 170 |
LFNet_ROB [145] | 110.1 | 10.1 124 | 17.0 122 | 8.16 133 | 9.48 66 | 21.8 108 | 6.00 74 | 16.8 127 | 26.1 123 | 11.1 151 | 13.4 67 | 29.9 71 | 8.73 95 | 5.40 106 | 6.20 98 | 5.58 121 | 13.3 108 | 29.4 155 | 10.0 96 | 2.04 62 | 3.21 58 | 1.85 62 | 22.7 169 | 35.6 173 | 21.8 174 |
SegOF [10] | 110.9 | 9.43 111 | 17.7 137 | 8.06 130 | 12.0 142 | 22.9 121 | 10.4 123 | 17.0 128 | 26.1 123 | 12.6 159 | 13.8 78 | 26.8 55 | 11.2 126 | 5.53 110 | 6.26 106 | 6.06 129 | 19.0 148 | 35.6 192 | 18.8 151 | 1.37 4 | 2.60 2 | 0.83 4 | 16.4 124 | 30.0 143 | 14.0 115 |
TriangleFlow [30] | 111.7 | 8.08 79 | 17.0 122 | 5.12 46 | 11.7 140 | 26.1 147 | 6.98 95 | 19.5 146 | 30.3 161 | 6.34 72 | 12.9 53 | 33.0 110 | 6.71 40 | 7.00 152 | 8.16 156 | 6.63 143 | 12.8 103 | 24.5 119 | 10.5 100 | 3.59 126 | 5.17 147 | 3.27 112 | 12.9 101 | 21.9 107 | 12.1 103 |
CVENG22+RIC [199] | 111.8 | 9.46 113 | 18.8 156 | 7.38 115 | 11.2 132 | 25.8 143 | 6.73 89 | 17.4 132 | 28.7 142 | 7.56 93 | 16.3 114 | 36.4 151 | 10.1 118 | 6.99 151 | 7.88 153 | 6.07 131 | 12.4 95 | 28.3 142 | 10.7 105 | 1.62 13 | 2.75 8 | 1.48 38 | 16.0 121 | 28.6 138 | 10.1 90 |
SIOF [67] | 112.0 | 8.21 85 | 17.0 122 | 5.49 68 | 13.0 152 | 27.4 160 | 8.63 111 | 20.1 153 | 29.0 146 | 16.3 167 | 16.8 153 | 37.3 157 | 10.0 116 | 5.40 106 | 6.34 112 | 4.88 100 | 11.6 83 | 25.4 126 | 10.1 97 | 1.81 42 | 3.27 64 | 1.34 23 | 15.1 118 | 25.1 125 | 11.9 101 |
CRTflow [81] | 112.8 | 7.92 66 | 16.0 54 | 5.91 79 | 11.4 134 | 23.7 127 | 6.55 86 | 19.8 150 | 30.1 158 | 7.77 132 | 17.2 158 | 41.3 183 | 9.76 110 | 5.34 98 | 6.30 109 | 3.69 19 | 15.8 131 | 31.0 168 | 14.3 136 | 2.12 70 | 2.92 25 | 2.35 86 | 19.2 145 | 32.9 160 | 15.3 122 |
DeepFlow [85] | 114.0 | 8.73 98 | 17.1 128 | 6.26 93 | 15.3 165 | 26.7 157 | 11.9 165 | 17.3 130 | 26.5 129 | 14.1 163 | 18.6 169 | 42.8 192 | 11.0 123 | 5.00 46 | 5.91 44 | 3.75 24 | 11.2 81 | 26.2 131 | 8.35 70 | 1.88 47 | 2.80 11 | 2.60 94 | 22.5 167 | 33.6 163 | 17.5 145 |
Fusion [6] | 114.4 | 8.76 99 | 17.7 137 | 7.01 107 | 7.82 31 | 19.7 80 | 4.78 45 | 10.9 69 | 18.4 67 | 7.23 85 | 12.8 50 | 32.6 103 | 8.32 90 | 7.04 153 | 8.11 154 | 6.57 141 | 14.9 124 | 28.3 142 | 13.2 127 | 4.37 146 | 5.18 148 | 2.77 97 | 26.2 182 | 38.6 184 | 26.4 184 |
IRR-PWC_RVC [180] | 114.6 | 13.4 186 | 23.3 190 | 9.25 181 | 13.0 152 | 24.1 133 | 9.24 116 | 17.7 134 | 26.2 125 | 17.2 169 | 13.2 63 | 25.9 52 | 11.0 123 | 5.13 67 | 5.96 51 | 4.77 96 | 9.91 56 | 23.0 104 | 6.24 32 | 2.59 95 | 4.31 123 | 1.70 56 | 19.3 147 | 26.4 131 | 21.5 169 |
TriFlow [93] | 114.9 | 9.01 104 | 18.5 149 | 6.60 101 | 11.4 134 | 26.4 152 | 7.40 99 | 20.9 158 | 29.9 156 | 20.9 178 | 12.2 35 | 30.8 80 | 6.95 56 | 5.26 95 | 6.16 90 | 4.88 100 | 12.0 89 | 26.5 132 | 11.6 115 | 6.97 156 | 4.54 130 | 6.57 148 | 13.0 104 | 22.0 108 | 9.86 89 |
p-harmonic [29] | 115.2 | 8.15 83 | 16.2 64 | 6.50 97 | 9.66 71 | 22.6 117 | 6.57 87 | 21.2 162 | 31.2 169 | 9.65 144 | 15.7 102 | 33.9 120 | 10.0 116 | 5.18 81 | 6.04 74 | 5.31 113 | 14.3 120 | 30.3 163 | 12.2 123 | 3.10 115 | 3.55 92 | 1.91 64 | 23.1 171 | 34.8 170 | 17.8 147 |
CBF [12] | 115.9 | 7.23 34 | 14.9 18 | 5.16 48 | 9.95 79 | 21.9 110 | 7.69 103 | 17.6 133 | 27.0 133 | 7.28 88 | 16.4 150 | 39.3 171 | 9.18 98 | 6.34 143 | 7.35 149 | 6.11 133 | 13.4 111 | 28.4 144 | 8.52 72 | 5.54 152 | 5.11 144 | 6.41 146 | 18.7 139 | 30.8 146 | 16.4 137 |
Brox et al. [5] | 116.0 | 8.46 96 | 16.7 113 | 6.56 99 | 11.3 133 | 26.2 149 | 6.94 94 | 15.0 113 | 25.4 116 | 6.89 79 | 17.4 159 | 38.8 167 | 9.80 112 | 5.99 130 | 6.88 134 | 6.26 135 | 14.1 118 | 31.1 171 | 12.0 119 | 2.03 61 | 3.41 82 | 1.14 12 | 19.1 144 | 30.3 144 | 12.1 103 |
CLG-TV [48] | 117.9 | 7.94 69 | 16.2 64 | 5.80 78 | 10.5 123 | 24.0 132 | 6.44 84 | 19.9 151 | 29.8 154 | 6.83 77 | 14.1 83 | 31.5 90 | 7.73 82 | 5.98 128 | 7.01 138 | 5.15 109 | 14.8 123 | 31.0 168 | 12.2 123 | 4.20 143 | 4.80 138 | 5.22 140 | 19.3 147 | 32.6 157 | 15.7 129 |
TV-L1-improved [17] | 118.7 | 7.64 62 | 16.2 64 | 5.67 73 | 10.1 82 | 23.4 123 | 6.38 83 | 21.3 164 | 32.0 181 | 9.27 143 | 17.5 160 | 42.1 187 | 9.54 103 | 5.25 90 | 6.13 85 | 4.07 42 | 14.5 121 | 30.4 165 | 11.4 111 | 3.38 121 | 5.02 141 | 2.99 105 | 19.6 150 | 32.1 154 | 16.6 139 |
EPMNet [131] | 120.2 | 11.6 139 | 20.5 176 | 8.03 129 | 17.7 171 | 28.9 166 | 13.2 171 | 12.9 89 | 20.3 77 | 10.7 147 | 15.5 99 | 37.4 158 | 9.48 102 | 5.36 102 | 6.23 101 | 4.94 103 | 14.0 116 | 29.9 159 | 12.2 123 | 2.97 111 | 5.82 151 | 2.01 69 | 10.1 82 | 18.8 90 | 3.51 54 |
FlowNet2 [120] | 120.9 | 12.8 147 | 23.3 190 | 8.09 131 | 16.8 168 | 28.5 163 | 12.5 167 | 13.9 103 | 21.6 92 | 12.0 156 | 15.0 96 | 34.0 121 | 9.98 115 | 5.36 102 | 6.23 101 | 4.94 103 | 14.0 116 | 29.9 159 | 12.2 123 | 3.36 120 | 6.60 157 | 2.24 79 | 8.83 70 | 16.6 74 | 3.02 48 |
Classic++ [32] | 122.0 | 8.05 77 | 17.4 133 | 6.09 86 | 11.5 137 | 26.3 151 | 6.91 92 | 18.1 138 | 28.7 142 | 8.18 137 | 16.2 110 | 39.0 169 | 8.57 93 | 5.36 102 | 6.33 110 | 4.54 74 | 15.0 126 | 30.4 165 | 11.6 115 | 2.70 100 | 3.55 92 | 2.94 104 | 21.9 162 | 34.0 166 | 17.9 148 |
WOLF_ROB [144] | 122.1 | 9.97 122 | 18.4 146 | 7.33 114 | 20.8 179 | 34.8 195 | 13.9 173 | 22.2 176 | 30.7 165 | 10.9 148 | 17.0 157 | 33.2 114 | 12.3 134 | 5.16 75 | 6.01 67 | 5.11 108 | 10.2 64 | 20.7 86 | 9.05 79 | 1.97 55 | 3.28 65 | 2.48 92 | 17.9 135 | 23.1 114 | 21.3 168 |
Local-TV-L1 [65] | 123.0 | 9.74 118 | 17.9 141 | 6.89 104 | 18.4 174 | 29.4 170 | 14.9 175 | 24.4 180 | 30.8 166 | 20.2 176 | 19.4 174 | 42.4 190 | 12.7 136 | 5.35 101 | 6.00 64 | 4.10 45 | 13.6 112 | 28.9 150 | 9.26 83 | 1.62 13 | 2.58 1 | 1.48 38 | 20.3 153 | 32.0 152 | 16.4 137 |
Rannacher [23] | 124.5 | 8.07 78 | 16.8 115 | 6.15 89 | 10.6 124 | 24.8 137 | 6.51 85 | 21.9 173 | 32.6 187 | 10.9 148 | 18.4 166 | 43.3 194 | 10.5 119 | 5.27 96 | 6.18 95 | 4.17 53 | 15.5 129 | 32.3 178 | 12.0 119 | 2.69 99 | 3.57 96 | 2.68 95 | 17.8 133 | 31.0 147 | 16.1 133 |
StereoOF-V1MT [117] | 125.0 | 8.14 81 | 15.8 45 | 5.42 66 | 17.6 170 | 34.3 193 | 10.3 121 | 21.6 166 | 31.5 173 | 7.27 87 | 15.8 104 | 32.7 105 | 10.7 120 | 5.62 117 | 6.40 114 | 6.00 128 | 16.6 134 | 30.0 161 | 15.5 138 | 2.01 58 | 3.08 38 | 3.15 108 | 33.6 192 | 44.0 193 | 32.8 189 |
BriefMatch [122] | 125.3 | 6.91 17 | 14.8 16 | 4.85 32 | 11.0 130 | 22.8 119 | 8.24 108 | 9.42 19 | 16.6 55 | 5.13 46 | 16.7 152 | 40.7 179 | 8.61 94 | 9.76 159 | 10.6 195 | 14.1 159 | 18.2 145 | 31.0 168 | 17.4 147 | 9.26 160 | 6.60 157 | 20.9 198 | 28.0 186 | 36.5 175 | 34.9 191 |
F-TV-L1 [15] | 126.5 | 8.41 94 | 16.8 115 | 6.31 94 | 18.0 173 | 29.7 172 | 12.8 168 | 21.6 166 | 30.5 162 | 10.1 146 | 18.2 163 | 42.3 189 | 9.65 105 | 5.02 51 | 5.97 54 | 3.91 29 | 14.1 118 | 30.8 167 | 10.6 104 | 2.79 101 | 4.90 139 | 2.35 86 | 20.5 156 | 32.7 158 | 15.6 125 |
Dynamic MRF [7] | 128.9 | 8.32 92 | 17.3 132 | 5.95 80 | 12.3 145 | 28.5 163 | 7.75 104 | 19.6 148 | 31.8 177 | 7.56 93 | 18.4 166 | 42.2 188 | 11.6 130 | 5.25 90 | 6.16 90 | 4.80 97 | 17.7 139 | 34.4 188 | 16.6 143 | 1.89 49 | 2.63 3 | 3.21 111 | 30.3 188 | 43.6 192 | 29.0 186 |
Bartels [41] | 129.1 | 8.31 91 | 17.7 137 | 5.51 69 | 8.46 47 | 20.6 90 | 4.89 46 | 14.8 110 | 26.0 121 | 7.89 133 | 18.5 168 | 43.6 195 | 11.1 125 | 6.18 136 | 6.51 122 | 8.63 154 | 15.6 130 | 32.6 180 | 13.9 132 | 3.86 137 | 4.56 131 | 7.09 150 | 22.5 167 | 36.5 175 | 18.4 152 |
Shiralkar [42] | 130.8 | 7.92 66 | 15.2 30 | 5.73 75 | 14.6 160 | 30.3 173 | 9.04 113 | 21.7 169 | 31.2 169 | 9.77 145 | 19.6 176 | 41.5 184 | 13.2 138 | 5.17 78 | 6.04 74 | 4.63 81 | 18.0 144 | 31.1 171 | 14.7 137 | 3.67 130 | 3.40 80 | 4.74 136 | 23.9 177 | 36.6 177 | 18.9 155 |
DF-Auto [113] | 130.9 | 10.7 132 | 19.8 168 | 7.42 117 | 16.3 167 | 25.3 139 | 13.1 170 | 19.5 146 | 28.5 139 | 17.8 172 | 16.9 155 | 37.2 154 | 10.8 121 | 6.76 150 | 8.12 155 | 5.56 120 | 10.8 73 | 25.2 123 | 6.95 45 | 3.69 131 | 4.92 140 | 1.48 38 | 17.7 132 | 27.9 137 | 14.6 117 |
GraphCuts [14] | 132.4 | 9.24 108 | 17.2 129 | 7.53 122 | 22.1 186 | 33.0 187 | 16.8 183 | 15.9 124 | 23.1 102 | 15.6 166 | 14.2 86 | 28.9 65 | 9.34 100 | 5.83 124 | 6.82 130 | 6.25 134 | 18.5 147 | 29.7 157 | 12.0 119 | 2.85 105 | 3.39 78 | 3.52 119 | 23.8 176 | 36.1 174 | 19.1 156 |
Second-order prior [8] | 134.8 | 8.04 76 | 16.3 72 | 6.01 85 | 12.5 147 | 26.5 154 | 9.10 115 | 21.0 159 | 31.1 168 | 9.23 142 | 16.2 110 | 36.2 147 | 9.93 114 | 5.70 121 | 6.67 126 | 5.09 106 | 20.7 188 | 34.1 186 | 21.0 190 | 3.76 133 | 3.89 110 | 4.25 132 | 18.9 141 | 31.8 151 | 19.9 161 |
Filter Flow [19] | 136.7 | 10.5 130 | 19.4 161 | 8.33 135 | 12.5 147 | 25.8 143 | 8.69 112 | 19.9 151 | 27.0 133 | 21.7 181 | 19.0 171 | 33.1 113 | 15.9 177 | 5.34 98 | 6.21 99 | 5.37 115 | 16.2 133 | 26.7 134 | 15.5 138 | 3.46 123 | 4.48 129 | 2.26 80 | 23.3 175 | 31.5 150 | 18.5 153 |
CNN-flow-warp+ref [115] | 136.9 | 9.91 120 | 19.6 164 | 7.85 126 | 10.6 124 | 22.9 121 | 8.55 109 | 21.3 164 | 32.1 183 | 11.9 155 | 18.7 170 | 42.0 186 | 11.3 127 | 5.56 113 | 6.34 112 | 6.08 132 | 12.3 93 | 27.6 138 | 10.8 106 | 2.06 64 | 3.69 102 | 3.16 109 | 33.3 190 | 40.4 187 | 34.7 190 |
FlowNetS+ft+v [110] | 137.7 | 8.96 103 | 17.8 140 | 6.83 102 | 14.2 157 | 26.2 149 | 11.1 127 | 22.3 177 | 32.2 184 | 12.7 160 | 16.8 153 | 36.1 146 | 10.9 122 | 6.31 142 | 7.29 147 | 6.26 135 | 12.5 100 | 28.8 148 | 9.88 91 | 3.84 136 | 6.75 159 | 6.30 145 | 16.4 124 | 29.0 140 | 14.7 118 |
IAOF2 [51] | 139.2 | 10.0 123 | 19.9 169 | 7.91 128 | 14.4 159 | 26.7 157 | 10.9 125 | 22.0 175 | 32.2 184 | 17.6 171 | 19.1 172 | 33.0 110 | 17.1 181 | 5.81 123 | 6.86 132 | 4.94 103 | 12.6 101 | 25.9 129 | 11.9 118 | 4.26 145 | 4.11 118 | 7.75 153 | 16.2 123 | 26.5 132 | 13.5 111 |
StereoFlow [44] | 139.5 | 16.2 193 | 22.6 188 | 13.9 195 | 22.1 186 | 31.6 179 | 18.8 188 | 24.7 181 | 30.6 164 | 21.2 180 | 23.3 188 | 39.9 173 | 19.6 188 | 5.98 128 | 6.22 100 | 7.11 148 | 11.6 83 | 27.6 138 | 8.05 64 | 1.36 3 | 2.85 17 | 0.65 1 | 20.7 157 | 33.7 164 | 17.0 143 |
Ad-TV-NDC [36] | 143.5 | 12.1 144 | 18.6 152 | 10.7 187 | 25.5 192 | 32.0 183 | 22.2 192 | 29.3 194 | 34.3 192 | 22.8 185 | 16.9 155 | 32.8 107 | 12.2 133 | 5.99 130 | 7.20 145 | 3.83 26 | 12.6 101 | 28.5 146 | 10.3 98 | 2.79 101 | 4.07 115 | 1.78 59 | 24.1 178 | 31.4 149 | 25.1 181 |
TVL1_RVC [175] | 144.4 | 12.9 148 | 20.8 179 | 9.79 185 | 21.3 183 | 30.9 176 | 17.9 187 | 27.9 188 | 33.7 188 | 23.5 189 | 20.6 178 | 37.9 162 | 16.7 179 | 5.57 114 | 6.47 119 | 5.47 118 | 14.5 121 | 32.1 177 | 12.0 119 | 1.69 26 | 2.82 15 | 1.22 16 | 23.1 171 | 36.6 177 | 18.3 151 |
LDOF [28] | 145.5 | 9.66 116 | 18.9 157 | 7.13 111 | 15.1 162 | 29.1 168 | 11.3 128 | 15.6 121 | 25.1 114 | 10.9 148 | 20.9 181 | 43.1 193 | 14.9 175 | 6.12 134 | 7.01 138 | 6.26 135 | 16.0 132 | 31.2 173 | 13.2 127 | 3.89 139 | 5.61 150 | 8.96 189 | 19.0 142 | 33.0 161 | 11.7 99 |
IAOF [50] | 145.6 | 10.1 124 | 18.6 152 | 7.89 127 | 22.2 188 | 33.7 190 | 15.9 179 | 33.0 198 | 39.2 199 | 23.7 190 | 16.2 110 | 32.1 97 | 11.6 130 | 5.80 122 | 6.87 133 | 5.39 117 | 17.8 141 | 30.1 162 | 11.4 111 | 3.13 117 | 3.69 102 | 3.88 129 | 22.4 166 | 29.3 141 | 21.6 170 |
Nguyen [33] | 145.8 | 11.4 135 | 19.6 164 | 8.44 137 | 21.0 182 | 31.7 181 | 17.7 185 | 29.8 196 | 36.3 196 | 24.1 193 | 18.2 163 | 34.6 127 | 13.9 139 | 6.28 138 | 6.85 131 | 7.51 151 | 15.4 128 | 33.0 181 | 14.0 133 | 2.24 79 | 3.11 45 | 1.79 60 | 21.6 160 | 33.9 165 | 15.8 131 |
2D-CLG [1] | 147.2 | 15.2 191 | 24.5 195 | 11.2 189 | 15.1 162 | 25.9 146 | 13.5 172 | 27.5 187 | 33.9 189 | 24.7 194 | 22.2 185 | 38.3 165 | 19.0 187 | 5.67 119 | 6.44 117 | 6.29 138 | 17.5 137 | 34.3 187 | 16.4 142 | 1.47 5 | 2.68 5 | 1.54 50 | 21.7 161 | 34.6 169 | 16.9 142 |
SPSA-learn [13] | 148.4 | 11.3 133 | 19.4 161 | 8.52 139 | 20.9 180 | 34.2 192 | 16.2 182 | 26.5 185 | 33.9 189 | 22.4 184 | 22.5 187 | 39.9 173 | 18.9 186 | 5.59 115 | 6.41 115 | 5.94 126 | 17.8 141 | 31.4 175 | 18.3 150 | 2.11 68 | 3.11 45 | 1.37 26 | 24.3 179 | 35.1 171 | 19.7 160 |
UnFlow [127] | 149.5 | 16.0 192 | 25.1 196 | 11.3 190 | 12.7 151 | 22.2 114 | 11.7 164 | 20.4 154 | 27.6 138 | 13.6 161 | 20.8 179 | 36.0 144 | 17.9 184 | 6.34 143 | 6.89 135 | 7.74 152 | 17.7 139 | 33.5 183 | 17.1 146 | 2.92 109 | 4.33 124 | 1.37 26 | 20.7 157 | 37.3 182 | 15.6 125 |
Learning Flow [11] | 149.5 | 8.28 88 | 17.0 122 | 5.75 76 | 12.3 145 | 28.5 163 | 7.79 106 | 18.4 139 | 28.7 142 | 8.29 138 | 22.2 185 | 40.6 178 | 17.3 182 | 8.52 154 | 10.3 194 | 7.04 147 | 19.9 186 | 35.1 190 | 16.8 145 | 3.11 116 | 4.59 133 | 3.59 123 | 26.9 184 | 40.0 186 | 20.9 167 |
HBpMotionGpu [43] | 149.6 | 12.2 145 | 22.1 185 | 8.34 136 | 17.9 172 | 31.4 178 | 14.7 174 | 29.2 193 | 37.8 198 | 20.6 177 | 19.1 172 | 44.6 197 | 11.5 129 | 5.60 116 | 6.45 118 | 6.06 129 | 13.2 106 | 28.8 148 | 11.1 109 | 3.45 122 | 3.97 113 | 2.04 70 | 23.1 171 | 34.1 167 | 20.7 165 |
Modified CLG [34] | 153.7 | 11.6 139 | 20.5 176 | 9.14 180 | 12.6 150 | 25.4 141 | 10.3 121 | 27.4 186 | 34.4 193 | 23.8 191 | 21.8 183 | 42.7 191 | 16.7 179 | 6.18 136 | 7.06 141 | 6.57 141 | 14.9 124 | 33.0 181 | 13.4 130 | 2.45 88 | 3.80 108 | 3.81 128 | 22.0 164 | 36.6 177 | 16.8 140 |
Black & Anandan [4] | 155.3 | 10.5 130 | 18.0 143 | 8.14 132 | 21.4 185 | 32.8 186 | 16.1 181 | 26.1 184 | 32.3 186 | 21.8 182 | 20.8 179 | 38.9 168 | 16.1 178 | 6.29 140 | 7.41 150 | 5.62 123 | 17.1 135 | 31.2 173 | 13.7 131 | 4.06 142 | 5.11 144 | 2.37 88 | 23.1 171 | 34.1 167 | 15.7 129 |
2bit-BM-tele [96] | 156.7 | 10.3 126 | 20.1 173 | 7.40 116 | 11.5 137 | 26.7 157 | 7.57 102 | 20.6 155 | 32.0 181 | 11.4 153 | 17.9 161 | 40.3 176 | 12.3 134 | 6.29 140 | 6.80 129 | 6.93 145 | 21.0 189 | 32.0 176 | 18.0 149 | 7.61 157 | 6.57 156 | 11.1 191 | 27.5 185 | 39.4 185 | 29.2 187 |
GroupFlow [9] | 157.0 | 11.5 137 | 21.2 183 | 8.71 175 | 20.5 177 | 33.0 187 | 15.7 178 | 23.6 178 | 31.6 174 | 20.1 175 | 16.2 110 | 34.5 124 | 11.3 127 | 8.86 155 | 9.84 193 | 6.50 140 | 18.2 145 | 30.3 163 | 17.4 147 | 3.82 135 | 5.05 142 | 6.55 147 | 21.1 159 | 28.8 139 | 22.4 178 |
H+S_RVC [176] | 158.8 | 16.6 195 | 23.7 193 | 11.9 192 | 19.0 175 | 30.6 175 | 15.5 177 | 24.8 182 | 30.2 160 | 23.4 187 | 29.3 194 | 36.5 152 | 28.2 195 | 6.53 147 | 6.24 104 | 9.34 156 | 25.9 195 | 38.4 197 | 27.0 196 | 1.69 26 | 2.81 13 | 1.42 32 | 32.3 189 | 41.4 190 | 30.3 188 |
BlockOverlap [61] | 160.6 | 10.3 126 | 19.1 159 | 7.74 124 | 15.4 166 | 25.3 139 | 13.0 169 | 24.3 179 | 31.9 178 | 21.0 179 | 19.5 175 | 43.8 196 | 13.1 137 | 9.14 156 | 7.60 151 | 13.9 158 | 19.0 148 | 29.0 152 | 15.7 140 | 11.0 161 | 8.77 161 | 24.8 199 | 23.0 170 | 31.3 148 | 25.9 183 |
Heeger++ [102] | 160.9 | 11.7 142 | 18.3 145 | 9.04 178 | 23.3 191 | 37.0 198 | 17.4 184 | 21.0 159 | 29.1 148 | 11.1 151 | 27.0 192 | 40.5 177 | 24.4 191 | 5.69 120 | 6.33 110 | 5.80 124 | 25.9 195 | 37.5 195 | 26.3 195 | 2.48 91 | 3.88 109 | 2.20 77 | 37.6 195 | 46.0 196 | 41.6 198 |
HCIC-L [97] | 161.9 | 14.6 188 | 21.1 181 | 9.67 183 | 42.7 199 | 36.7 197 | 46.6 199 | 21.8 171 | 30.5 162 | 17.9 173 | 21.1 182 | 35.1 133 | 18.6 185 | 6.42 145 | 6.58 123 | 7.35 150 | 17.8 141 | 28.6 147 | 16.6 143 | 12.8 163 | 14.3 163 | 15.3 194 | 16.8 129 | 25.7 127 | 12.7 107 |
TI-DOFE [24] | 163.2 | 14.6 188 | 21.1 181 | 11.7 191 | 22.4 190 | 31.6 179 | 19.6 189 | 28.6 191 | 31.2 169 | 26.3 195 | 26.3 191 | 36.0 144 | 25.1 192 | 6.43 146 | 7.34 148 | 6.67 144 | 19.1 150 | 33.8 184 | 18.9 152 | 2.88 107 | 3.15 52 | 2.82 100 | 25.7 181 | 36.6 177 | 22.3 177 |
Horn & Schunck [3] | 165.5 | 11.8 143 | 19.3 160 | 8.85 177 | 20.1 176 | 33.5 189 | 15.3 176 | 25.5 183 | 31.2 169 | 24.0 192 | 26.1 190 | 38.6 166 | 23.5 189 | 6.12 134 | 6.99 136 | 6.34 139 | 19.9 186 | 33.9 185 | 19.6 188 | 3.95 141 | 4.28 122 | 2.46 91 | 25.3 180 | 37.5 183 | 22.0 176 |
FFV1MT [104] | 174.5 | 13.9 187 | 23.4 192 | 10.8 188 | 20.9 180 | 34.5 194 | 16.0 180 | 21.8 171 | 29.5 151 | 13.8 162 | 31.0 197 | 41.7 185 | 29.4 196 | 9.97 160 | 6.78 128 | 17.9 196 | 23.8 192 | 35.3 191 | 25.0 194 | 2.99 112 | 4.24 120 | 3.57 122 | 37.6 195 | 46.0 196 | 41.6 198 |
SILK [80] | 175.5 | 13.2 184 | 22.4 187 | 10.2 186 | 20.5 177 | 32.2 185 | 17.7 185 | 29.0 192 | 34.1 191 | 23.4 187 | 22.0 184 | 40.8 180 | 17.3 182 | 6.28 138 | 7.17 144 | 7.12 149 | 21.7 190 | 35.8 193 | 19.6 188 | 5.44 151 | 3.45 88 | 10.8 190 | 29.3 187 | 40.6 189 | 26.7 185 |
PGAM+LK [55] | 175.8 | 14.9 190 | 22.8 189 | 14.1 196 | 25.5 192 | 31.3 177 | 26.6 194 | 21.9 173 | 26.4 128 | 22.2 183 | 26.0 189 | 39.1 170 | 24.0 190 | 9.61 158 | 6.49 121 | 14.1 159 | 24.3 193 | 35.0 189 | 23.0 192 | 6.19 154 | 6.24 155 | 7.26 151 | 34.3 193 | 40.4 187 | 40.8 197 |
SLK [47] | 176.2 | 17.2 197 | 24.0 194 | 18.2 197 | 21.3 183 | 30.4 174 | 20.1 190 | 27.9 188 | 31.9 178 | 23.3 186 | 31.4 198 | 39.9 173 | 30.0 198 | 6.60 148 | 7.04 140 | 8.37 153 | 22.8 191 | 36.4 194 | 21.6 191 | 3.90 140 | 3.75 106 | 5.02 138 | 33.3 190 | 41.7 191 | 35.2 192 |
Adaptive flow [45] | 176.4 | 13.2 184 | 20.2 174 | 9.78 184 | 27.3 194 | 31.9 182 | 25.4 193 | 28.3 190 | 31.6 174 | 30.5 198 | 19.7 177 | 37.6 160 | 15.3 176 | 11.2 196 | 12.6 196 | 8.93 155 | 17.6 138 | 29.8 158 | 15.8 141 | 13.1 164 | 11.0 162 | 18.3 195 | 26.4 183 | 36.8 181 | 22.7 179 |
AVG_FLOW_ROB [137] | 183.9 | 32.4 199 | 34.1 199 | 37.7 199 | 35.1 198 | 33.7 190 | 37.0 198 | 20.7 157 | 24.1 108 | 19.4 174 | 34.1 199 | 35.1 133 | 34.8 199 | 39.6 198 | 37.0 198 | 44.9 198 | 40.6 199 | 42.2 198 | 38.5 199 | 11.3 162 | 15.3 164 | 7.36 152 | 46.5 199 | 52.3 199 | 38.9 194 |
FOLKI [16] | 185.8 | 16.2 193 | 25.9 197 | 12.7 194 | 32.5 196 | 35.6 196 | 34.7 196 | 29.4 195 | 35.1 195 | 26.9 196 | 29.1 193 | 41.0 182 | 27.9 194 | 9.58 157 | 8.90 157 | 13.5 157 | 25.7 194 | 38.3 196 | 24.5 193 | 7.71 158 | 5.13 146 | 14.5 193 | 36.5 194 | 44.4 194 | 36.1 193 |
Pyramid LK [2] | 188.6 | 17.0 196 | 20.4 175 | 19.4 198 | 31.7 195 | 32.1 184 | 32.5 195 | 32.9 197 | 34.8 194 | 29.9 197 | 29.4 195 | 35.3 138 | 29.9 197 | 31.7 197 | 35.5 197 | 29.8 197 | 29.9 197 | 32.3 178 | 28.0 197 | 9.01 159 | 7.93 160 | 18.9 196 | 39.9 197 | 45.4 195 | 39.0 195 |
Periodicity [79] | 193.9 | 18.0 198 | 30.5 198 | 12.3 193 | 34.0 197 | 41.4 199 | 35.6 197 | 36.5 199 | 36.5 197 | 35.2 199 | 29.7 196 | 46.6 199 | 26.8 193 | 51.8 199 | 56.5 199 | 45.5 199 | 36.7 198 | 42.4 199 | 37.1 198 | 5.99 153 | 6.16 154 | 19.3 197 | 40.1 198 | 51.1 198 | 40.4 196 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |