Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
R5.0 angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it+_RVC [198] | 2.7 | 7.80 3 | 25.6 4 | 2.77 1 | 5.39 4 | 19.9 1 | 5.35 13 | 4.02 2 | 13.8 2 | 1.39 2 | 0.86 2 | 9.09 2 | 0.01 1 | 11.4 1 | 16.3 4 | 4.51 1 | 3.05 1 | 13.0 1 | 1.89 1 | 1.46 3 | 11.5 3 | 0.05 1 | 1.08 4 | 3.98 7 | 0.02 1 |
RAFT-it [194] | 9.2 | 9.16 12 | 28.0 12 | 3.69 5 | 6.15 9 | 22.7 3 | 5.47 15 | 4.36 3 | 14.6 3 | 2.64 7 | 0.76 1 | 8.31 1 | 0.15 3 | 13.4 9 | 18.7 11 | 6.14 6 | 5.09 3 | 13.6 2 | 5.33 4 | 4.89 25 | 23.7 74 | 0.67 6 | 0.87 2 | 3.19 2 | 0.05 2 |
MS_RAFT+_RVC [195] | 10.9 | 9.48 16 | 25.6 4 | 3.00 2 | 11.0 64 | 24.1 7 | 12.7 95 | 5.23 5 | 16.1 5 | 4.55 24 | 0.97 3 | 10.2 4 | 0.14 2 | 11.8 4 | 16.2 2 | 5.30 3 | 4.33 2 | 13.8 3 | 4.19 3 | 1.06 1 | 9.70 1 | 0.22 3 | 0.70 1 | 2.13 1 | 0.42 7 |
NNF-Local [75] | 16.3 | 7.69 2 | 26.2 7 | 3.54 4 | 7.19 19 | 30.7 33 | 6.11 27 | 5.88 8 | 19.3 12 | 4.53 22 | 4.01 15 | 23.9 25 | 2.00 18 | 11.7 2 | 16.4 5 | 5.52 5 | 10.4 22 | 29.7 14 | 9.30 15 | 5.25 32 | 20.0 30 | 2.61 22 | 1.88 13 | 6.47 35 | 0.19 5 |
MDP-Flow2 [68] | 18.0 | 10.3 24 | 30.4 22 | 6.57 28 | 5.28 2 | 23.9 5 | 4.13 3 | 5.46 6 | 17.6 6 | 3.58 12 | 4.49 24 | 25.3 31 | 2.11 21 | 15.8 28 | 21.4 28 | 10.2 36 | 10.6 24 | 29.9 15 | 9.87 25 | 4.44 16 | 19.3 22 | 2.81 23 | 1.39 8 | 4.82 12 | 1.11 11 |
OFLAF [78] | 19.2 | 8.96 10 | 27.9 11 | 4.57 12 | 7.36 23 | 26.4 13 | 6.68 30 | 4.80 4 | 14.9 4 | 3.37 11 | 4.43 23 | 21.2 15 | 2.81 37 | 13.4 9 | 19.0 13 | 7.08 11 | 11.4 34 | 28.0 8 | 9.28 13 | 5.35 34 | 19.1 20 | 3.15 26 | 2.47 25 | 5.73 26 | 5.50 49 |
NN-field [71] | 20.6 | 8.65 6 | 28.3 13 | 4.00 7 | 8.38 35 | 33.1 50 | 7.44 36 | 5.86 7 | 19.0 10 | 4.53 22 | 3.15 6 | 21.4 17 | 1.25 8 | 12.0 6 | 16.9 7 | 5.41 4 | 6.58 5 | 20.2 4 | 3.45 2 | 8.64 71 | 23.6 71 | 2.88 24 | 2.47 25 | 8.48 53 | 0.20 6 |
RAFT-TF_RVC [179] | 22.0 | 13.0 56 | 35.5 51 | 4.17 9 | 8.26 33 | 28.0 18 | 7.49 37 | 7.92 37 | 23.2 27 | 7.98 66 | 1.09 4 | 9.43 3 | 0.18 4 | 15.1 21 | 21.3 23 | 6.37 7 | 8.49 7 | 22.6 5 | 8.43 11 | 4.54 17 | 23.1 64 | 0.69 7 | 1.31 7 | 4.62 10 | 0.10 4 |
CoT-AMFlow [174] | 25.5 | 10.1 20 | 30.9 25 | 6.87 31 | 6.06 7 | 25.8 11 | 5.30 12 | 5.99 10 | 19.1 11 | 4.65 27 | 4.70 29 | 25.8 37 | 2.42 27 | 16.0 31 | 21.3 23 | 12.2 56 | 10.5 23 | 31.1 19 | 9.77 20 | 5.57 36 | 21.3 45 | 3.87 40 | 2.08 16 | 5.30 18 | 4.37 37 |
PMMST [112] | 27.1 | 12.9 54 | 32.6 35 | 8.45 54 | 10.2 50 | 30.5 30 | 10.7 67 | 7.39 24 | 22.2 19 | 6.31 42 | 3.87 14 | 13.5 5 | 2.73 33 | 14.0 13 | 18.7 11 | 7.52 12 | 10.9 30 | 28.9 11 | 9.95 26 | 4.99 28 | 20.8 37 | 3.18 28 | 1.52 9 | 3.87 6 | 1.12 12 |
HAST [107] | 30.3 | 7.13 1 | 21.8 1 | 3.37 3 | 7.28 21 | 26.1 12 | 6.10 26 | 3.86 1 | 12.2 1 | 0.97 1 | 3.85 13 | 21.3 16 | 1.50 9 | 11.7 2 | 16.5 6 | 4.64 2 | 15.1 79 | 35.5 41 | 14.0 82 | 19.4 117 | 36.3 123 | 39.0 148 | 1.24 6 | 3.55 4 | 1.32 13 |
ComponentFusion [94] | 31.0 | 8.86 9 | 28.7 15 | 5.91 21 | 6.30 10 | 24.2 8 | 5.98 22 | 6.79 17 | 21.6 16 | 4.99 30 | 4.11 16 | 24.4 26 | 2.04 20 | 16.2 37 | 22.0 35 | 11.3 48 | 13.4 54 | 40.4 70 | 12.4 67 | 7.66 63 | 21.3 45 | 5.22 55 | 2.05 15 | 5.21 16 | 3.61 28 |
ALD-Flow [66] | 31.3 | 8.44 5 | 27.6 10 | 4.09 8 | 6.49 12 | 27.2 16 | 5.04 11 | 7.66 29 | 24.1 32 | 3.72 14 | 4.58 27 | 27.1 45 | 2.01 19 | 16.0 31 | 22.7 43 | 8.55 17 | 9.39 14 | 33.3 28 | 8.46 12 | 7.21 58 | 18.5 14 | 17.3 115 | 4.06 65 | 11.1 68 | 5.94 59 |
nLayers [57] | 32.2 | 8.66 7 | 25.4 3 | 4.54 10 | 13.0 94 | 32.1 43 | 13.7 103 | 7.74 31 | 21.8 17 | 8.85 72 | 3.29 8 | 18.2 7 | 1.89 15 | 11.8 4 | 16.2 2 | 6.65 10 | 12.2 41 | 28.4 9 | 10.3 29 | 8.59 70 | 21.5 52 | 4.98 51 | 2.36 23 | 5.74 27 | 5.08 45 |
LME [70] | 32.8 | 9.71 17 | 29.0 17 | 6.46 27 | 5.49 6 | 22.8 4 | 4.79 9 | 8.62 46 | 22.4 21 | 11.2 85 | 4.73 30 | 28.3 62 | 2.35 26 | 16.5 41 | 21.9 33 | 12.6 64 | 10.7 25 | 34.0 34 | 9.81 23 | 5.57 36 | 21.3 45 | 3.87 40 | 2.40 24 | 6.32 32 | 4.52 39 |
NNF-EAC [101] | 33.3 | 10.9 34 | 31.8 30 | 6.97 32 | 6.64 14 | 26.4 13 | 5.65 16 | 6.61 13 | 20.7 13 | 4.44 21 | 5.48 51 | 27.1 45 | 2.97 42 | 16.5 41 | 22.3 39 | 11.1 45 | 12.1 40 | 30.7 17 | 9.97 27 | 6.42 48 | 21.4 48 | 3.94 42 | 2.95 41 | 7.51 45 | 4.63 42 |
TC/T-Flow [77] | 34.0 | 9.15 11 | 32.1 32 | 3.69 5 | 6.89 17 | 31.2 37 | 4.32 4 | 7.32 23 | 23.1 26 | 4.08 16 | 5.14 42 | 27.2 48 | 2.80 36 | 15.6 26 | 21.9 33 | 9.71 29 | 8.63 10 | 29.2 12 | 8.40 9 | 6.72 51 | 20.2 33 | 19.7 129 | 3.86 62 | 9.43 58 | 6.28 66 |
ProFlow_ROB [142] | 34.2 | 10.7 29 | 32.8 41 | 5.26 17 | 7.26 20 | 30.8 34 | 5.92 19 | 9.43 54 | 29.1 58 | 5.30 33 | 4.35 22 | 25.3 31 | 1.73 14 | 17.4 51 | 24.7 57 | 9.39 24 | 9.20 11 | 33.5 29 | 9.28 13 | 3.74 11 | 21.4 48 | 0.91 8 | 4.20 67 | 11.6 70 | 6.06 61 |
WLIF-Flow [91] | 35.3 | 9.40 15 | 27.1 8 | 6.06 23 | 10.0 47 | 33.0 48 | 9.71 52 | 7.26 22 | 22.4 21 | 5.90 41 | 4.53 25 | 23.7 23 | 2.56 32 | 16.1 33 | 22.3 39 | 11.3 48 | 12.8 43 | 33.2 27 | 10.4 32 | 6.85 53 | 18.8 17 | 7.36 72 | 2.80 37 | 6.48 36 | 5.62 53 |
FC-2Layers-FF [74] | 36.4 | 9.97 19 | 28.7 15 | 7.96 43 | 10.4 52 | 35.3 60 | 9.95 54 | 6.11 11 | 18.1 9 | 6.82 46 | 4.12 17 | 20.9 13 | 2.48 30 | 13.3 8 | 17.7 8 | 9.47 26 | 13.5 55 | 32.6 22 | 11.3 45 | 14.0 98 | 26.0 88 | 12.5 96 | 1.84 11 | 4.18 8 | 4.53 40 |
RNLOD-Flow [119] | 36.8 | 7.93 4 | 24.8 2 | 5.41 19 | 8.33 34 | 31.7 39 | 6.84 32 | 7.47 25 | 23.3 28 | 4.60 25 | 3.62 11 | 21.1 14 | 1.66 12 | 14.4 15 | 21.0 19 | 7.80 13 | 12.7 42 | 32.9 23 | 12.2 66 | 17.4 112 | 34.4 118 | 20.7 131 | 2.55 28 | 5.57 24 | 5.30 47 |
PRAFlow_RVC [177] | 36.9 | 18.4 91 | 41.9 72 | 7.63 36 | 13.9 105 | 36.5 64 | 13.3 100 | 11.1 68 | 30.2 63 | 10.6 80 | 2.23 5 | 15.0 6 | 0.54 5 | 15.3 23 | 21.3 23 | 8.44 16 | 9.59 17 | 24.7 6 | 9.82 24 | 2.25 5 | 20.1 31 | 0.44 4 | 1.96 14 | 4.67 11 | 1.90 16 |
Layers++ [37] | 37.2 | 10.2 22 | 29.1 18 | 8.58 57 | 10.8 58 | 30.6 31 | 11.0 73 | 5.90 9 | 17.7 7 | 6.34 43 | 3.40 9 | 18.2 7 | 1.66 12 | 12.2 7 | 16.0 1 | 9.69 28 | 13.9 62 | 33.6 30 | 11.9 59 | 13.9 97 | 27.9 94 | 8.74 78 | 2.33 22 | 4.94 13 | 5.70 56 |
UnDAF [187] | 37.2 | 10.6 28 | 32.9 42 | 6.71 29 | 6.11 8 | 28.4 23 | 4.73 7 | 6.87 18 | 22.3 20 | 4.21 18 | 4.82 32 | 28.2 60 | 2.25 23 | 16.2 37 | 21.8 32 | 11.5 50 | 11.7 35 | 38.7 61 | 9.79 21 | 5.77 40 | 21.1 41 | 3.69 36 | 5.19 80 | 16.5 111 | 4.58 41 |
FESL [72] | 38.8 | 8.67 8 | 25.6 4 | 4.73 13 | 13.6 100 | 39.4 101 | 12.9 97 | 8.22 40 | 24.3 36 | 7.10 50 | 3.76 12 | 20.3 12 | 2.12 22 | 14.1 14 | 20.1 15 | 9.08 20 | 11.2 33 | 31.0 18 | 9.80 22 | 11.3 81 | 30.4 104 | 7.66 74 | 2.10 17 | 5.40 20 | 2.40 18 |
SVFilterOh [109] | 38.9 | 12.7 52 | 28.4 14 | 8.58 57 | 9.41 42 | 29.1 25 | 8.31 43 | 6.39 12 | 17.7 7 | 5.05 32 | 3.23 7 | 18.8 10 | 0.95 6 | 14.9 18 | 20.9 18 | 6.51 9 | 13.2 49 | 32.1 21 | 11.6 51 | 22.0 123 | 46.5 150 | 30.5 142 | 1.61 10 | 4.97 15 | 2.45 20 |
TC-Flow [46] | 41.0 | 9.24 13 | 30.9 25 | 5.24 16 | 5.48 5 | 25.7 10 | 4.01 2 | 7.25 20 | 23.3 28 | 2.66 8 | 5.52 52 | 28.4 63 | 3.26 50 | 16.7 45 | 23.9 52 | 9.52 27 | 11.7 35 | 36.8 46 | 11.5 50 | 6.69 50 | 21.4 48 | 19.0 126 | 4.21 68 | 10.6 65 | 6.91 80 |
OAR-Flow [123] | 42.6 | 10.8 32 | 34.0 46 | 6.23 24 | 8.94 38 | 31.9 41 | 7.53 38 | 10.4 62 | 30.3 65 | 7.58 58 | 5.60 56 | 25.9 40 | 3.04 45 | 17.0 46 | 24.0 53 | 9.35 23 | 8.62 9 | 33.0 24 | 7.87 7 | 3.37 8 | 14.6 5 | 5.54 61 | 4.80 75 | 10.4 64 | 9.44 103 |
IROF++ [58] | 43.8 | 10.2 22 | 30.9 25 | 7.02 33 | 11.1 66 | 38.1 84 | 10.7 67 | 8.32 44 | 25.1 41 | 7.61 59 | 5.83 59 | 28.0 57 | 4.08 71 | 15.4 25 | 21.3 23 | 9.83 31 | 13.6 56 | 38.0 56 | 11.3 45 | 5.83 41 | 20.8 37 | 1.97 19 | 2.32 21 | 5.71 25 | 4.87 44 |
AGIF+OF [84] | 43.9 | 10.4 25 | 29.4 20 | 7.42 35 | 12.4 85 | 37.5 74 | 12.4 90 | 7.91 36 | 24.3 36 | 7.24 52 | 4.84 35 | 23.8 24 | 2.91 39 | 14.8 17 | 20.6 17 | 9.72 30 | 13.2 49 | 36.5 44 | 10.5 34 | 7.06 55 | 20.8 37 | 7.54 73 | 3.02 47 | 6.27 30 | 6.37 69 |
Efficient-NL [60] | 44.0 | 9.31 14 | 27.5 9 | 5.65 20 | 12.1 83 | 38.1 84 | 11.2 75 | 8.07 39 | 24.1 32 | 6.69 45 | 5.39 48 | 25.9 40 | 3.51 61 | 14.9 18 | 21.1 21 | 9.39 24 | 14.0 65 | 35.2 39 | 11.1 42 | 11.5 83 | 25.7 86 | 6.90 69 | 2.19 20 | 5.45 22 | 1.94 17 |
PMF [73] | 45.3 | 11.6 44 | 29.9 21 | 4.55 11 | 7.81 26 | 30.2 27 | 6.00 23 | 7.17 19 | 23.3 28 | 3.21 10 | 4.88 38 | 23.1 21 | 2.42 27 | 13.6 11 | 18.5 9 | 6.49 8 | 16.1 87 | 42.7 85 | 15.4 91 | 27.2 140 | 43.5 147 | 28.9 139 | 2.15 19 | 4.96 14 | 4.81 43 |
PH-Flow [99] | 45.4 | 10.9 34 | 32.6 35 | 7.94 42 | 10.9 60 | 37.4 72 | 10.5 61 | 7.56 28 | 22.8 25 | 7.74 63 | 5.75 58 | 27.2 48 | 4.04 69 | 14.4 15 | 19.8 14 | 8.81 18 | 13.0 45 | 33.6 30 | 11.1 42 | 12.7 91 | 23.1 64 | 17.6 118 | 1.84 11 | 4.19 9 | 4.50 38 |
Classic+CPF [82] | 46.8 | 10.9 34 | 31.7 29 | 7.88 41 | 11.5 72 | 37.9 80 | 10.9 71 | 8.27 42 | 25.1 41 | 7.51 57 | 5.05 40 | 25.8 37 | 3.16 47 | 15.1 21 | 21.0 19 | 10.6 37 | 13.1 46 | 34.6 37 | 10.3 29 | 9.87 75 | 22.0 58 | 13.1 102 | 2.68 31 | 5.85 28 | 5.53 50 |
3DFlow [133] | 47.8 | 12.6 51 | 34.9 47 | 5.05 15 | 8.12 30 | 31.5 38 | 5.95 20 | 6.67 15 | 21.9 18 | 2.51 5 | 4.59 28 | 18.4 9 | 3.30 53 | 16.6 43 | 23.0 45 | 10.9 40 | 19.7 108 | 46.8 108 | 19.8 118 | 18.3 115 | 24.2 79 | 33.3 144 | 1.20 5 | 3.86 5 | 0.68 8 |
COFM [59] | 47.9 | 10.1 20 | 32.0 31 | 7.63 36 | 8.06 29 | 30.4 29 | 7.17 33 | 8.93 51 | 25.9 47 | 8.04 68 | 4.17 18 | 24.9 29 | 1.63 11 | 18.8 63 | 24.0 53 | 18.6 112 | 14.4 69 | 33.0 24 | 11.7 53 | 8.15 66 | 20.4 34 | 14.7 109 | 3.16 49 | 5.36 19 | 8.09 96 |
Ramp [62] | 48.6 | 10.9 34 | 32.7 39 | 7.96 43 | 10.9 60 | 37.1 69 | 10.6 63 | 7.85 32 | 24.2 34 | 7.41 55 | 5.29 45 | 27.0 44 | 3.44 56 | 16.1 33 | 22.3 39 | 10.8 38 | 13.8 60 | 35.4 40 | 11.0 41 | 11.6 84 | 21.1 41 | 18.2 122 | 2.52 27 | 5.44 21 | 5.23 46 |
Sparse-NonSparse [56] | 49.2 | 10.7 29 | 32.5 34 | 8.38 52 | 10.9 60 | 36.8 67 | 10.7 67 | 7.95 38 | 24.5 40 | 7.30 53 | 5.42 50 | 27.6 51 | 3.49 60 | 16.1 33 | 22.1 36 | 11.0 43 | 13.3 51 | 36.0 43 | 10.6 36 | 10.6 79 | 21.1 41 | 10.9 87 | 2.91 38 | 5.93 29 | 6.18 64 |
Correlation Flow [76] | 49.5 | 11.9 48 | 35.3 48 | 6.03 22 | 6.85 16 | 28.0 18 | 4.77 8 | 8.29 43 | 25.8 45 | 2.17 4 | 4.84 35 | 27.2 48 | 2.77 35 | 18.5 59 | 25.9 70 | 11.7 52 | 16.9 95 | 39.5 64 | 16.7 99 | 12.1 87 | 24.6 81 | 17.8 119 | 2.59 29 | 7.33 43 | 3.08 21 |
JOF [136] | 49.9 | 9.77 18 | 29.1 18 | 7.11 34 | 12.1 83 | 37.9 80 | 12.0 86 | 7.25 20 | 21.2 15 | 7.73 61 | 4.82 32 | 25.8 37 | 3.02 44 | 14.9 18 | 20.2 16 | 10.0 35 | 13.1 46 | 33.7 32 | 10.6 36 | 17.8 113 | 29.5 99 | 28.8 138 | 2.94 40 | 6.80 39 | 5.71 57 |
LSM [39] | 50.2 | 10.4 25 | 32.6 35 | 8.24 47 | 10.8 58 | 37.4 72 | 10.4 60 | 7.85 32 | 24.3 36 | 7.05 48 | 5.32 46 | 27.6 51 | 3.41 55 | 15.8 28 | 21.5 29 | 11.1 45 | 13.7 58 | 35.6 42 | 10.9 40 | 13.0 92 | 23.2 66 | 12.5 96 | 2.99 46 | 6.43 34 | 6.14 63 |
ProbFlowFields [126] | 50.3 | 16.2 73 | 47.8 88 | 11.7 87 | 8.96 39 | 31.0 35 | 8.86 46 | 9.73 58 | 28.4 56 | 10.1 77 | 6.09 68 | 25.5 34 | 4.53 81 | 18.2 57 | 25.5 63 | 10.9 40 | 9.76 19 | 34.2 35 | 11.7 53 | 4.63 19 | 18.8 17 | 3.79 39 | 2.95 41 | 8.94 57 | 3.52 26 |
PBOFVI [189] | 50.5 | 19.4 100 | 38.3 59 | 13.1 94 | 7.96 28 | 31.8 40 | 6.15 28 | 6.77 16 | 21.0 14 | 2.12 3 | 3.57 10 | 19.8 11 | 1.24 7 | 18.5 59 | 25.4 60 | 11.5 50 | 14.7 73 | 38.6 60 | 16.2 97 | 7.61 61 | 21.6 53 | 17.3 115 | 3.38 54 | 8.26 52 | 6.29 68 |
Classic+NL [31] | 52.8 | 10.5 27 | 31.4 28 | 8.38 52 | 11.1 66 | 37.9 80 | 10.6 63 | 7.87 34 | 24.0 31 | 7.48 56 | 5.57 54 | 27.6 51 | 3.62 63 | 15.8 28 | 21.5 29 | 10.8 38 | 14.1 66 | 37.4 51 | 11.4 47 | 14.8 101 | 25.9 87 | 13.4 105 | 2.61 30 | 5.29 17 | 6.10 62 |
S2D-Matching [83] | 54.6 | 10.7 29 | 32.2 33 | 8.71 59 | 10.7 56 | 36.6 66 | 10.2 57 | 8.94 52 | 27.2 52 | 6.96 47 | 5.17 43 | 26.0 42 | 3.36 54 | 16.3 39 | 22.1 36 | 10.9 40 | 14.4 69 | 37.0 47 | 11.7 53 | 16.4 106 | 26.0 88 | 16.5 113 | 2.79 36 | 5.49 23 | 6.49 71 |
FMOF [92] | 54.6 | 11.0 42 | 30.4 22 | 8.33 51 | 13.0 94 | 38.5 91 | 12.6 92 | 7.51 26 | 22.6 23 | 7.34 54 | 5.06 41 | 25.2 30 | 3.44 56 | 15.3 23 | 21.3 23 | 9.87 33 | 14.9 77 | 33.1 26 | 11.4 47 | 11.7 86 | 24.3 80 | 15.0 111 | 3.92 63 | 8.59 54 | 6.28 66 |
HCFN [157] | 55.9 | 10.9 34 | 36.7 56 | 6.43 26 | 5.32 3 | 24.0 6 | 4.44 5 | 6.63 14 | 22.6 23 | 2.60 6 | 4.85 37 | 27.9 56 | 2.54 31 | 15.6 26 | 21.5 29 | 9.30 22 | 15.0 78 | 40.7 74 | 13.9 81 | 35.1 154 | 46.6 151 | 40.3 152 | 5.63 90 | 12.3 75 | 11.0 112 |
IROF-TV [53] | 56.2 | 11.6 44 | 35.3 48 | 9.03 62 | 11.2 69 | 38.2 87 | 10.9 71 | 8.85 50 | 26.5 48 | 7.73 61 | 6.04 66 | 33.0 86 | 3.62 63 | 17.1 49 | 23.1 47 | 13.5 80 | 16.3 88 | 44.8 93 | 13.5 79 | 3.41 9 | 16.9 7 | 1.13 14 | 2.71 33 | 6.80 39 | 5.67 55 |
IIOF-NLDP [129] | 56.6 | 14.6 60 | 41.6 71 | 6.71 29 | 11.0 64 | 37.5 74 | 8.25 42 | 8.77 49 | 26.9 50 | 4.19 17 | 6.07 67 | 28.0 57 | 3.76 65 | 19.7 78 | 27.1 85 | 12.6 64 | 16.7 92 | 40.7 74 | 15.4 91 | 4.68 23 | 23.0 62 | 4.41 46 | 2.78 35 | 7.26 42 | 3.16 22 |
TV-L1-MCT [64] | 58.0 | 10.9 34 | 30.5 24 | 8.56 56 | 13.8 103 | 40.9 112 | 13.2 99 | 8.68 47 | 25.8 45 | 7.98 66 | 4.83 34 | 25.7 35 | 3.26 50 | 17.4 51 | 23.5 50 | 13.7 84 | 14.8 76 | 36.7 45 | 12.7 69 | 5.84 42 | 19.4 23 | 10.1 84 | 3.53 57 | 6.42 33 | 6.63 73 |
SimpleFlow [49] | 59.2 | 11.6 44 | 33.7 43 | 8.98 61 | 12.5 90 | 38.9 94 | 12.6 92 | 10.4 62 | 29.3 60 | 9.20 73 | 5.99 63 | 27.6 51 | 4.08 71 | 16.3 39 | 22.2 38 | 11.1 45 | 16.7 92 | 37.4 51 | 12.7 69 | 8.29 67 | 19.9 28 | 6.11 65 | 2.74 34 | 6.28 31 | 5.86 58 |
2DHMM-SAS [90] | 59.2 | 10.9 34 | 32.6 35 | 8.06 45 | 11.5 72 | 39.5 102 | 10.6 63 | 10.0 61 | 28.3 55 | 7.91 65 | 5.93 62 | 28.2 60 | 4.07 70 | 16.1 33 | 22.3 39 | 11.0 43 | 13.7 58 | 38.3 58 | 11.1 42 | 12.3 89 | 23.2 66 | 18.0 121 | 3.08 48 | 6.48 36 | 6.24 65 |
CostFilter [40] | 59.8 | 14.1 59 | 36.2 55 | 8.48 55 | 8.61 37 | 30.6 31 | 7.43 35 | 8.26 41 | 26.9 50 | 4.40 20 | 5.72 57 | 28.1 59 | 3.24 49 | 13.7 12 | 18.5 9 | 7.81 14 | 16.6 91 | 45.0 98 | 16.0 95 | 26.8 138 | 48.6 154 | 32.7 143 | 2.93 39 | 7.59 46 | 5.38 48 |
AggregFlow [95] | 60.0 | 13.9 58 | 33.8 44 | 11.2 80 | 13.7 101 | 39.6 104 | 12.6 92 | 12.0 76 | 31.3 66 | 13.7 98 | 5.40 49 | 23.5 22 | 3.44 56 | 17.5 53 | 25.4 60 | 7.98 15 | 8.57 8 | 25.9 7 | 8.42 10 | 7.00 54 | 24.1 78 | 4.53 47 | 5.53 87 | 9.80 60 | 11.7 115 |
Adaptive [20] | 60.9 | 10.9 34 | 33.8 44 | 4.92 14 | 10.5 53 | 35.0 59 | 9.53 51 | 12.2 77 | 33.7 71 | 7.68 60 | 5.57 54 | 30.3 72 | 2.95 41 | 21.7 105 | 26.7 79 | 20.6 119 | 10.8 27 | 34.9 38 | 7.26 6 | 14.0 98 | 28.8 98 | 4.88 48 | 4.50 72 | 10.2 63 | 6.84 78 |
MDP-Flow [26] | 61.5 | 12.2 50 | 40.6 65 | 8.88 60 | 9.32 41 | 28.3 21 | 10.5 61 | 9.09 53 | 28.1 54 | 9.37 75 | 6.03 65 | 30.6 74 | 3.99 67 | 17.2 50 | 23.1 47 | 12.4 59 | 13.9 62 | 42.7 85 | 12.5 68 | 7.10 57 | 23.6 71 | 4.09 44 | 5.35 83 | 13.2 82 | 7.09 83 |
RFlow [88] | 62.8 | 14.8 61 | 43.9 76 | 11.2 80 | 6.64 14 | 26.6 15 | 5.76 17 | 11.7 72 | 35.9 81 | 5.04 31 | 4.31 20 | 27.1 45 | 1.94 16 | 19.4 69 | 26.8 82 | 13.0 75 | 14.7 73 | 42.2 82 | 11.8 58 | 13.1 93 | 22.2 59 | 13.1 102 | 5.87 95 | 14.1 91 | 8.71 100 |
Occlusion-TV-L1 [63] | 63.1 | 12.9 54 | 36.1 54 | 8.26 50 | 9.51 45 | 32.7 45 | 8.99 47 | 12.3 78 | 34.4 76 | 8.27 69 | 5.53 53 | 29.8 70 | 3.04 45 | 20.5 94 | 28.5 105 | 13.8 86 | 9.95 20 | 37.9 53 | 11.6 51 | 7.64 62 | 21.8 57 | 3.47 31 | 5.69 91 | 13.9 89 | 7.59 90 |
WRT [146] | 63.3 | 15.4 68 | 39.7 61 | 5.30 18 | 15.2 109 | 40.5 109 | 13.7 103 | 12.4 79 | 33.7 71 | 4.05 15 | 4.55 26 | 22.8 20 | 2.34 25 | 17.0 46 | 22.7 43 | 13.0 75 | 24.7 136 | 45.1 99 | 18.9 113 | 6.51 49 | 23.5 69 | 6.55 67 | 3.24 51 | 7.37 44 | 3.24 23 |
OFH [38] | 64.6 | 15.0 63 | 40.9 67 | 14.4 100 | 7.06 18 | 29.9 26 | 5.37 14 | 10.8 65 | 33.1 70 | 4.86 29 | 5.84 60 | 30.6 74 | 3.46 59 | 19.5 73 | 26.1 72 | 15.3 94 | 15.6 83 | 46.5 106 | 16.6 98 | 4.19 14 | 21.7 55 | 3.74 38 | 5.39 85 | 15.4 102 | 7.23 85 |
PWC-Net_RVC [143] | 66.5 | 23.5 113 | 52.0 110 | 13.4 96 | 13.0 94 | 37.8 78 | 12.4 90 | 14.0 90 | 39.3 90 | 14.4 101 | 7.08 79 | 24.7 27 | 2.76 34 | 19.9 82 | 25.7 69 | 12.7 68 | 13.8 60 | 43.4 88 | 13.4 78 | 3.79 13 | 22.4 60 | 1.03 11 | 2.14 18 | 6.78 38 | 1.08 10 |
MLDP_OF [87] | 67.5 | 18.8 97 | 51.3 105 | 16.0 103 | 8.16 31 | 32.0 42 | 6.76 31 | 10.7 64 | 31.9 68 | 5.45 36 | 4.81 31 | 26.1 43 | 2.44 29 | 18.7 61 | 24.3 55 | 13.7 84 | 15.6 83 | 37.9 53 | 18.6 111 | 19.2 116 | 28.5 96 | 38.7 147 | 3.53 57 | 7.25 41 | 4.27 35 |
DeepFlow2 [106] | 69.8 | 15.0 63 | 43.6 75 | 11.0 76 | 10.1 48 | 34.2 56 | 9.29 49 | 12.9 81 | 36.8 82 | 11.1 84 | 7.47 86 | 32.1 81 | 4.75 87 | 17.8 54 | 25.4 60 | 9.97 34 | 10.7 25 | 40.2 69 | 10.3 29 | 6.78 52 | 18.7 16 | 13.3 104 | 9.05 122 | 17.3 116 | 15.3 126 |
SegFlow [156] | 70.2 | 17.6 83 | 50.4 98 | 10.9 72 | 11.9 76 | 39.1 96 | 11.7 82 | 13.7 86 | 39.9 98 | 13.3 95 | 7.50 89 | 35.7 104 | 4.56 83 | 19.7 78 | 27.4 89 | 13.0 75 | 9.37 13 | 37.2 49 | 9.48 18 | 5.08 31 | 19.8 26 | 5.25 56 | 4.01 64 | 11.9 72 | 5.55 51 |
DMF_ROB [135] | 70.7 | 16.8 79 | 47.5 87 | 11.2 80 | 10.6 55 | 34.1 55 | 9.86 53 | 14.7 93 | 41.2 102 | 11.9 88 | 7.41 85 | 33.9 92 | 4.25 74 | 18.8 63 | 25.9 70 | 12.7 68 | 11.9 38 | 41.3 80 | 11.7 53 | 4.39 15 | 18.8 17 | 5.30 58 | 6.00 97 | 14.9 98 | 8.11 97 |
S2F-IF [121] | 71.0 | 18.0 89 | 51.9 108 | 10.9 72 | 11.1 66 | 38.6 92 | 10.6 63 | 13.9 88 | 40.6 100 | 13.4 97 | 7.68 95 | 32.6 83 | 5.18 94 | 19.7 78 | 27.2 86 | 13.3 79 | 10.8 27 | 39.5 64 | 11.9 59 | 4.99 28 | 19.9 28 | 6.26 66 | 3.26 52 | 10.1 62 | 3.57 27 |
PGM-C [118] | 71.1 | 17.7 84 | 50.5 99 | 11.0 76 | 11.9 76 | 39.1 96 | 11.6 80 | 13.9 88 | 40.4 99 | 13.3 95 | 7.52 90 | 35.8 106 | 4.62 86 | 19.6 76 | 27.5 90 | 12.4 59 | 9.48 16 | 37.9 53 | 9.36 16 | 4.63 19 | 16.9 7 | 5.02 52 | 4.83 76 | 14.2 94 | 6.69 74 |
Steered-L1 [116] | 71.4 | 11.4 43 | 37.9 58 | 7.71 40 | 4.42 1 | 21.7 2 | 3.76 1 | 7.71 30 | 25.7 43 | 4.29 19 | 4.91 39 | 29.8 70 | 2.26 24 | 20.2 88 | 26.7 79 | 16.6 102 | 18.1 101 | 46.1 105 | 14.6 84 | 32.4 147 | 37.9 131 | 51.5 158 | 8.58 119 | 15.5 104 | 15.2 125 |
Sparse Occlusion [54] | 72.0 | 12.7 52 | 35.8 53 | 8.24 47 | 12.4 85 | 33.4 51 | 13.4 101 | 9.67 56 | 29.1 58 | 6.55 44 | 5.99 63 | 28.5 64 | 3.56 62 | 19.4 69 | 26.4 77 | 12.4 59 | 14.7 73 | 39.4 63 | 11.7 53 | 37.7 155 | 48.6 154 | 17.8 119 | 3.66 59 | 9.43 58 | 5.64 54 |
CPM-Flow [114] | 72.2 | 17.7 84 | 50.5 99 | 11.0 76 | 11.9 76 | 39.0 95 | 11.7 82 | 13.7 86 | 39.8 96 | 13.2 93 | 7.49 88 | 35.5 101 | 4.58 85 | 19.5 73 | 27.2 86 | 12.3 58 | 9.44 15 | 37.3 50 | 9.46 17 | 5.05 30 | 19.5 24 | 5.17 54 | 5.21 81 | 14.8 96 | 7.36 88 |
Classic++ [32] | 72.4 | 10.8 32 | 32.7 39 | 8.25 49 | 10.5 53 | 32.9 46 | 10.7 67 | 10.8 65 | 31.6 67 | 8.46 70 | 5.25 44 | 29.7 69 | 2.99 43 | 20.0 84 | 28.0 98 | 13.9 88 | 15.2 81 | 44.1 91 | 11.9 59 | 17.3 111 | 26.2 90 | 18.3 123 | 5.82 93 | 12.7 78 | 8.14 98 |
FlowFields+ [128] | 72.5 | 18.4 91 | 52.2 112 | 11.4 84 | 11.9 76 | 39.9 105 | 11.5 77 | 14.9 97 | 43.4 109 | 14.4 101 | 7.97 98 | 33.1 87 | 5.58 99 | 19.4 69 | 26.9 84 | 12.7 68 | 10.2 21 | 39.9 67 | 10.5 34 | 4.74 24 | 20.1 31 | 4.29 45 | 3.80 60 | 12.4 77 | 3.48 25 |
MCPFlow_RVC [197] | 73.1 | 36.5 128 | 52.9 115 | 17.9 105 | 27.7 129 | 50.9 133 | 28.4 125 | 31.7 132 | 57.9 128 | 38.4 132 | 5.84 60 | 21.5 18 | 3.17 48 | 19.3 68 | 26.7 79 | 9.11 21 | 13.1 46 | 30.1 16 | 12.9 72 | 3.64 10 | 21.2 44 | 1.06 13 | 3.29 53 | 7.79 50 | 3.64 29 |
EpicFlow [100] | 73.8 | 17.7 84 | 50.6 101 | 10.9 72 | 12.0 81 | 39.3 100 | 11.7 82 | 14.5 92 | 42.2 104 | 13.2 93 | 7.47 86 | 35.5 101 | 4.57 84 | 19.8 81 | 27.6 91 | 12.8 73 | 9.73 18 | 38.1 57 | 10.1 28 | 4.63 19 | 17.2 9 | 4.88 48 | 5.31 82 | 14.3 95 | 7.47 89 |
VCN_RVC [178] | 74.1 | 24.5 114 | 58.3 120 | 19.8 110 | 13.8 103 | 38.2 87 | 14.0 106 | 13.4 84 | 39.2 89 | 10.1 77 | 7.66 94 | 35.8 106 | 4.85 90 | 18.7 61 | 24.6 56 | 12.6 64 | 13.6 56 | 41.1 79 | 13.2 77 | 3.76 12 | 21.4 48 | 1.03 11 | 2.97 44 | 8.89 56 | 4.24 34 |
NL-TV-NCC [25] | 74.5 | 16.5 75 | 40.4 63 | 9.10 63 | 10.7 56 | 37.0 68 | 8.07 40 | 8.59 45 | 26.8 49 | 3.17 9 | 6.24 70 | 33.4 88 | 3.26 50 | 21.4 102 | 29.7 119 | 12.7 68 | 21.2 116 | 48.2 110 | 17.3 104 | 13.4 96 | 35.6 121 | 13.0 101 | 4.73 74 | 12.8 79 | 3.24 23 |
ACK-Prior [27] | 75.0 | 19.5 103 | 41.5 69 | 14.3 99 | 6.57 13 | 27.6 17 | 4.53 6 | 7.87 34 | 25.7 43 | 3.70 13 | 4.33 21 | 25.7 35 | 1.53 10 | 20.5 94 | 25.6 66 | 18.3 109 | 23.1 131 | 44.0 90 | 18.5 110 | 29.9 143 | 33.1 112 | 45.6 156 | 7.91 115 | 14.8 96 | 11.7 115 |
BriefMatch [122] | 75.1 | 11.8 47 | 35.7 52 | 6.41 25 | 7.52 24 | 30.3 28 | 5.97 21 | 7.54 27 | 24.2 34 | 4.62 26 | 4.28 19 | 25.4 33 | 1.98 17 | 20.6 96 | 26.2 75 | 20.9 121 | 26.8 142 | 49.2 112 | 28.2 144 | 22.8 128 | 35.9 122 | 39.6 151 | 9.81 125 | 15.1 100 | 18.3 133 |
CombBMOF [111] | 75.5 | 15.2 65 | 48.2 90 | 7.67 38 | 11.3 70 | 34.5 57 | 9.95 54 | 8.75 48 | 27.2 52 | 5.37 35 | 7.60 93 | 32.1 81 | 5.65 102 | 18.0 56 | 23.0 45 | 13.9 88 | 21.7 121 | 44.9 95 | 24.3 135 | 22.6 125 | 37.2 126 | 14.5 108 | 2.97 44 | 7.73 49 | 4.35 36 |
FlowFields [108] | 75.7 | 18.3 90 | 51.9 108 | 11.1 79 | 11.9 76 | 39.5 102 | 11.5 77 | 14.8 94 | 43.3 108 | 14.2 99 | 7.96 97 | 33.5 91 | 5.52 98 | 19.9 82 | 27.6 91 | 13.6 82 | 11.0 31 | 40.5 71 | 12.1 63 | 4.93 27 | 19.7 25 | 5.34 59 | 3.85 61 | 12.3 75 | 3.89 31 |
Complementary OF [21] | 77.2 | 20.9 106 | 51.7 106 | 21.5 116 | 6.41 11 | 28.3 21 | 4.86 10 | 9.56 55 | 30.2 63 | 5.62 37 | 8.21 100 | 31.4 77 | 6.20 105 | 19.2 66 | 25.6 66 | 15.5 95 | 21.5 119 | 49.3 113 | 17.4 105 | 6.34 46 | 19.8 26 | 11.5 90 | 6.44 105 | 16.1 109 | 10.2 107 |
ROF-ND [105] | 78.2 | 18.4 91 | 45.8 83 | 11.5 85 | 7.31 22 | 25.4 9 | 6.02 24 | 9.70 57 | 29.4 61 | 4.66 28 | 9.09 107 | 28.7 65 | 5.98 104 | 21.6 104 | 29.5 116 | 14.5 91 | 19.9 109 | 44.8 93 | 15.3 90 | 33.3 151 | 41.0 137 | 30.1 141 | 2.95 41 | 7.63 48 | 2.41 19 |
TF+OM [98] | 78.3 | 14.8 61 | 35.4 50 | 7.68 39 | 9.06 40 | 28.4 23 | 9.32 50 | 11.6 71 | 28.4 56 | 16.0 107 | 6.43 71 | 29.0 67 | 4.29 75 | 20.2 88 | 25.6 66 | 18.4 110 | 17.9 99 | 38.5 59 | 16.9 102 | 16.6 107 | 33.8 114 | 14.7 109 | 6.87 108 | 15.5 104 | 9.68 104 |
DeepFlow [85] | 80.2 | 17.5 82 | 46.9 85 | 16.5 104 | 11.8 74 | 35.8 61 | 11.2 75 | 15.1 98 | 39.6 94 | 15.2 105 | 7.81 96 | 32.6 83 | 5.12 93 | 17.8 54 | 25.5 63 | 9.86 32 | 12.0 39 | 44.9 95 | 11.4 47 | 6.11 45 | 18.0 12 | 12.8 99 | 10.8 130 | 18.7 125 | 18.8 135 |
GMFlow_RVC [196] | 80.2 | 46.3 141 | 57.0 118 | 42.4 139 | 15.4 110 | 33.8 52 | 17.3 110 | 16.6 108 | 32.3 69 | 12.8 92 | 8.66 104 | 22.6 19 | 5.32 95 | 19.4 69 | 24.7 57 | 13.1 78 | 21.1 115 | 38.7 61 | 19.0 114 | 17.1 109 | 41.9 140 | 1.75 18 | 0.93 3 | 3.40 3 | 0.05 2 |
ComplOF-FED-GPU [35] | 80.4 | 17.9 87 | 52.0 110 | 15.4 102 | 7.90 27 | 33.9 54 | 5.82 18 | 10.8 65 | 34.2 74 | 5.67 38 | 6.99 78 | 31.5 78 | 4.51 80 | 19.2 66 | 26.3 76 | 12.9 74 | 18.2 102 | 50.5 121 | 18.6 111 | 15.1 103 | 23.6 71 | 22.3 133 | 5.37 84 | 15.4 102 | 6.76 75 |
TCOF [69] | 80.4 | 17.2 81 | 45.4 82 | 15.3 101 | 12.6 91 | 37.6 76 | 12.3 88 | 15.7 100 | 39.5 92 | 16.6 109 | 6.72 74 | 27.7 55 | 4.48 79 | 22.5 114 | 30.9 132 | 11.9 53 | 9.21 12 | 28.4 9 | 10.8 39 | 22.9 129 | 35.0 120 | 9.29 80 | 4.22 69 | 11.3 69 | 6.79 76 |
CVENG22+RIC [199] | 81.1 | 16.7 78 | 49.7 94 | 10.8 70 | 12.4 85 | 41.2 113 | 11.6 80 | 14.8 94 | 43.2 107 | 12.2 89 | 7.23 82 | 35.7 104 | 4.53 81 | 22.0 110 | 29.9 121 | 16.1 100 | 11.0 31 | 40.5 71 | 12.1 63 | 4.63 19 | 17.2 9 | 4.90 50 | 5.84 94 | 16.8 114 | 7.32 87 |
TV-L1-improved [17] | 81.2 | 11.9 48 | 36.8 57 | 8.23 46 | 8.49 36 | 31.0 35 | 7.83 39 | 11.9 74 | 33.7 71 | 7.19 51 | 5.35 47 | 28.9 66 | 2.91 39 | 20.3 92 | 28.0 98 | 12.0 55 | 27.2 144 | 55.4 135 | 30.4 146 | 23.1 131 | 38.0 132 | 22.9 134 | 5.61 89 | 14.0 90 | 7.74 93 |
EPPM w/o HM [86] | 81.8 | 19.4 100 | 53.2 116 | 11.2 80 | 8.23 32 | 34.8 58 | 6.07 25 | 11.1 68 | 35.1 79 | 5.89 40 | 7.31 83 | 33.4 88 | 4.76 88 | 18.9 65 | 23.2 49 | 17.1 104 | 21.3 117 | 50.3 120 | 20.1 119 | 20.7 121 | 30.3 103 | 40.9 154 | 3.20 50 | 8.13 51 | 5.59 52 |
HBM-GC [103] | 81.9 | 31.9 120 | 41.2 68 | 25.6 123 | 13.2 97 | 32.9 46 | 14.2 107 | 9.93 60 | 24.4 39 | 8.75 71 | 10.1 115 | 24.7 27 | 6.95 113 | 16.6 43 | 21.1 21 | 13.6 82 | 18.5 103 | 33.7 32 | 15.5 93 | 33.9 153 | 47.5 153 | 20.1 130 | 3.38 54 | 8.62 55 | 5.97 60 |
Rannacher [23] | 85.1 | 15.5 69 | 43.5 74 | 10.7 68 | 11.4 71 | 35.8 61 | 11.5 77 | 14.2 91 | 39.0 88 | 10.8 81 | 6.59 73 | 30.8 76 | 4.20 73 | 21.0 98 | 29.6 118 | 12.6 64 | 19.1 106 | 50.8 122 | 15.2 88 | 14.7 100 | 26.8 91 | 16.7 114 | 4.86 77 | 12.9 80 | 7.03 82 |
Aniso. Huber-L1 [22] | 85.2 | 13.6 57 | 40.4 63 | 9.77 64 | 19.4 114 | 40.1 107 | 22.0 116 | 16.4 104 | 38.4 84 | 18.3 112 | 7.56 91 | 33.4 88 | 5.00 92 | 20.1 87 | 27.7 96 | 12.5 62 | 14.5 71 | 39.7 66 | 10.4 32 | 20.8 122 | 32.0 108 | 12.9 100 | 4.35 70 | 10.8 66 | 6.56 72 |
SIOF [67] | 85.8 | 16.5 75 | 40.1 62 | 10.8 70 | 10.3 51 | 37.1 69 | 9.10 48 | 16.4 104 | 38.3 83 | 18.4 113 | 8.56 101 | 35.1 99 | 5.87 103 | 21.3 101 | 28.5 105 | 16.5 101 | 17.6 97 | 43.6 89 | 19.7 117 | 7.08 56 | 21.6 53 | 3.65 35 | 6.65 106 | 16.1 109 | 10.9 111 |
FF++_ROB [141] | 85.9 | 19.0 98 | 52.4 114 | 12.2 91 | 12.4 85 | 40.0 106 | 11.9 85 | 16.2 102 | 45.2 112 | 16.3 108 | 9.16 109 | 35.6 103 | 7.36 115 | 20.2 88 | 28.0 98 | 13.8 86 | 13.3 51 | 40.5 71 | 12.8 71 | 5.68 38 | 19.2 21 | 8.50 76 | 4.50 72 | 11.8 71 | 7.66 91 |
F-TV-L1 [15] | 86.1 | 31.8 119 | 60.6 123 | 43.6 143 | 13.7 101 | 38.4 90 | 13.1 98 | 15.6 99 | 39.4 91 | 10.1 77 | 10.9 118 | 37.3 113 | 8.78 119 | 20.0 84 | 26.5 78 | 16.0 99 | 12.9 44 | 40.7 74 | 10.7 38 | 9.68 74 | 23.7 74 | 3.52 33 | 4.49 71 | 12.0 73 | 4.19 33 |
Brox et al. [5] | 89.2 | 18.5 94 | 51.2 103 | 20.8 115 | 14.0 106 | 37.8 78 | 15.1 109 | 13.6 85 | 38.8 86 | 11.7 86 | 7.20 81 | 36.8 110 | 4.02 68 | 23.0 118 | 28.5 105 | 24.3 134 | 10.8 27 | 45.3 101 | 9.57 19 | 7.81 64 | 22.7 61 | 1.58 16 | 9.61 124 | 19.2 128 | 15.0 124 |
SRR-TVOF-NL [89] | 89.3 | 22.3 112 | 44.7 78 | 12.5 92 | 12.0 81 | 38.1 84 | 10.2 57 | 14.8 94 | 40.6 100 | 10.9 83 | 6.13 69 | 34.1 94 | 2.81 37 | 19.6 76 | 25.5 63 | 13.5 80 | 16.4 89 | 42.4 83 | 13.0 74 | 30.5 144 | 42.5 143 | 18.3 123 | 6.41 104 | 11.0 67 | 12.0 117 |
LocallyOriented [52] | 89.6 | 15.8 72 | 41.5 69 | 10.9 72 | 15.0 108 | 44.5 120 | 13.7 103 | 17.6 109 | 43.4 109 | 14.2 99 | 7.16 80 | 31.5 78 | 4.82 89 | 21.0 98 | 29.0 111 | 12.5 62 | 11.7 35 | 34.5 36 | 12.9 72 | 11.6 84 | 29.6 100 | 12.0 93 | 7.94 116 | 18.4 122 | 11.1 113 |
DPOF [18] | 90.1 | 20.5 105 | 50.2 97 | 10.5 65 | 12.6 91 | 41.8 115 | 11.0 73 | 11.8 73 | 34.3 75 | 10.8 81 | 8.61 103 | 38.9 121 | 5.43 96 | 19.5 73 | 26.1 72 | 15.1 92 | 16.8 94 | 41.5 81 | 15.2 88 | 23.3 132 | 23.9 77 | 50.1 157 | 5.05 78 | 14.1 91 | 4.13 32 |
CRTflow [81] | 91.2 | 16.5 75 | 49.5 93 | 10.6 67 | 9.63 46 | 33.8 52 | 8.65 45 | 13.1 82 | 38.8 86 | 7.80 64 | 6.86 76 | 34.3 96 | 4.44 78 | 20.0 84 | 27.8 97 | 12.2 56 | 31.4 150 | 59.0 146 | 36.7 150 | 10.3 76 | 30.4 104 | 12.0 93 | 8.56 118 | 20.4 134 | 12.9 122 |
Bartels [41] | 93.2 | 19.3 99 | 39.6 60 | 22.4 119 | 9.47 44 | 28.2 20 | 10.0 56 | 9.91 59 | 29.7 62 | 7.09 49 | 9.18 110 | 29.3 68 | 7.40 116 | 21.7 105 | 27.6 91 | 21.1 123 | 19.1 106 | 44.4 92 | 24.2 134 | 23.0 130 | 36.3 123 | 36.2 145 | 7.46 114 | 14.9 98 | 11.5 114 |
Dynamic MRF [7] | 94.2 | 22.0 110 | 52.3 113 | 25.2 121 | 7.67 25 | 33.0 48 | 6.18 29 | 12.4 79 | 39.8 96 | 5.34 34 | 6.49 72 | 35.4 100 | 3.86 66 | 22.9 116 | 29.2 114 | 20.7 120 | 22.2 125 | 57.8 143 | 22.9 129 | 7.42 59 | 18.1 13 | 25.1 135 | 13.2 137 | 21.3 139 | 20.5 139 |
CBF [12] | 96.3 | 15.2 65 | 44.8 79 | 12.1 89 | 23.7 121 | 37.7 77 | 30.9 128 | 13.2 83 | 34.6 77 | 14.5 103 | 6.86 76 | 32.8 85 | 4.32 76 | 22.6 115 | 28.4 104 | 20.2 118 | 15.6 83 | 41.0 78 | 12.1 63 | 32.9 149 | 39.7 135 | 29.8 140 | 5.49 86 | 13.2 82 | 8.30 99 |
Local-TV-L1 [65] | 97.1 | 24.6 115 | 51.2 103 | 30.0 125 | 22.5 120 | 40.6 110 | 25.2 119 | 23.5 120 | 46.1 114 | 28.3 123 | 9.73 113 | 37.4 114 | 6.92 112 | 18.3 58 | 25.2 59 | 12.7 68 | 13.9 62 | 43.2 87 | 12.0 62 | 5.25 32 | 20.6 35 | 5.15 53 | 15.8 142 | 21.0 137 | 32.1 147 |
DF-Auto [113] | 97.1 | 19.4 100 | 46.0 84 | 10.5 65 | 26.6 127 | 46.1 124 | 31.1 129 | 23.7 121 | 46.1 114 | 37.0 128 | 9.05 106 | 36.8 110 | 5.59 100 | 21.7 105 | 29.1 113 | 17.4 106 | 7.80 6 | 31.8 20 | 7.93 8 | 19.5 118 | 37.4 128 | 3.25 29 | 10.9 131 | 19.6 130 | 16.4 128 |
TriangleFlow [30] | 97.9 | 18.7 96 | 43.9 76 | 18.0 106 | 10.1 48 | 37.2 71 | 8.18 41 | 11.9 74 | 35.5 80 | 5.81 39 | 6.72 74 | 34.6 98 | 4.37 77 | 26.7 143 | 34.7 146 | 23.4 129 | 23.1 131 | 49.6 114 | 23.5 130 | 16.7 108 | 37.2 126 | 16.3 112 | 6.85 107 | 17.3 116 | 10.3 108 |
LDOF [28] | 98.7 | 17.1 80 | 48.0 89 | 12.9 93 | 13.3 98 | 40.6 110 | 12.2 87 | 15.8 101 | 42.4 105 | 12.7 91 | 9.70 112 | 44.0 130 | 6.27 107 | 20.7 97 | 28.0 98 | 16.8 103 | 14.3 68 | 45.9 104 | 13.8 80 | 8.36 68 | 23.3 68 | 7.98 75 | 11.2 134 | 21.2 138 | 18.3 133 |
CNN-flow-warp+ref [115] | 100.0 | 18.5 94 | 50.0 95 | 13.9 98 | 17.8 112 | 37.9 80 | 21.1 114 | 21.3 117 | 47.3 118 | 29.7 124 | 9.13 108 | 38.8 118 | 6.72 110 | 21.8 108 | 28.2 102 | 19.6 114 | 14.2 67 | 45.7 103 | 13.1 75 | 5.94 43 | 18.5 14 | 10.9 87 | 12.4 136 | 20.6 136 | 16.4 128 |
CLG-TV [48] | 100.5 | 15.7 71 | 42.2 73 | 11.7 87 | 20.9 115 | 39.2 99 | 24.8 118 | 16.4 104 | 39.5 92 | 18.0 111 | 9.23 111 | 37.9 115 | 6.54 108 | 22.9 116 | 30.0 124 | 17.9 108 | 16.5 90 | 47.2 109 | 14.2 83 | 19.9 119 | 30.4 104 | 11.5 90 | 5.79 92 | 14.1 91 | 6.98 81 |
TriFlow [93] | 100.5 | 21.3 108 | 44.9 80 | 13.5 97 | 16.0 111 | 36.5 64 | 18.7 112 | 18.2 111 | 38.6 85 | 27.8 120 | 7.35 84 | 30.3 72 | 5.59 100 | 21.2 100 | 27.3 88 | 18.5 111 | 15.1 79 | 37.1 48 | 15.0 87 | 49.5 160 | 41.7 139 | 95.6 163 | 6.38 103 | 13.3 84 | 9.77 105 |
p-harmonic [29] | 101.4 | 21.2 107 | 63.8 131 | 20.6 114 | 12.4 85 | 35.9 63 | 12.7 95 | 17.7 110 | 47.5 119 | 14.9 104 | 10.9 118 | 42.1 126 | 8.85 120 | 20.4 93 | 26.1 72 | 17.1 104 | 17.9 99 | 52.5 126 | 18.4 108 | 15.6 105 | 28.6 97 | 5.86 63 | 5.89 96 | 13.5 86 | 7.67 92 |
OFRF [132] | 102.0 | 20.1 104 | 40.7 66 | 18.8 108 | 25.4 125 | 43.7 117 | 27.8 124 | 20.4 115 | 39.7 95 | 25.4 116 | 12.5 121 | 34.3 96 | 11.1 126 | 17.0 46 | 23.7 51 | 8.99 19 | 17.6 97 | 40.0 68 | 16.7 99 | 15.0 102 | 28.4 95 | 28.3 137 | 16.1 143 | 19.4 129 | 34.6 148 |
FlowNetS+ft+v [110] | 102.2 | 15.2 65 | 44.9 80 | 10.7 68 | 13.4 99 | 38.2 87 | 13.4 101 | 18.8 113 | 42.8 106 | 24.4 115 | 9.01 105 | 38.8 118 | 6.24 106 | 23.2 121 | 31.5 137 | 15.9 97 | 13.3 51 | 42.6 84 | 13.1 75 | 18.2 114 | 32.6 111 | 21.9 132 | 8.73 120 | 19.1 127 | 12.8 121 |
Second-order prior [8] | 104.8 | 15.6 70 | 48.2 90 | 12.1 89 | 12.6 91 | 39.1 96 | 12.3 88 | 16.2 102 | 44.6 111 | 12.2 89 | 7.57 92 | 31.6 80 | 5.45 97 | 22.2 111 | 30.6 126 | 14.3 90 | 20.8 114 | 56.8 139 | 17.7 107 | 28.0 141 | 33.8 114 | 27.1 136 | 7.43 113 | 17.4 118 | 10.4 110 |
ContinualFlow_ROB [148] | 107.8 | 38.4 129 | 64.1 133 | 31.4 127 | 31.9 134 | 52.5 138 | 35.2 135 | 32.8 133 | 61.5 135 | 38.0 131 | 15.4 126 | 42.4 127 | 9.42 123 | 27.2 147 | 32.9 145 | 23.6 131 | 30.9 147 | 52.8 129 | 37.9 151 | 3.27 7 | 17.7 11 | 1.31 15 | 3.48 56 | 10.0 61 | 1.76 15 |
Fusion [6] | 109.2 | 17.9 87 | 57.7 119 | 18.6 107 | 9.42 43 | 32.3 44 | 10.2 57 | 11.4 70 | 34.8 78 | 11.7 86 | 8.57 102 | 40.2 122 | 6.89 111 | 25.0 133 | 30.8 131 | 24.9 140 | 23.9 134 | 52.3 125 | 25.0 138 | 33.3 151 | 43.4 145 | 19.3 128 | 9.01 121 | 18.8 126 | 13.4 123 |
C-RAFT_RVC [181] | 109.4 | 46.7 142 | 69.9 142 | 38.2 133 | 33.2 137 | 55.6 143 | 34.0 133 | 33.8 136 | 63.4 138 | 37.9 129 | 14.2 125 | 34.0 93 | 9.21 121 | 26.2 139 | 32.8 144 | 21.9 126 | 20.0 110 | 46.5 106 | 21.2 125 | 10.3 76 | 31.1 107 | 3.57 34 | 2.70 32 | 7.59 46 | 1.02 9 |
Learning Flow [11] | 109.7 | 16.4 74 | 47.3 86 | 11.5 85 | 14.0 106 | 40.3 108 | 14.4 108 | 16.4 104 | 41.7 103 | 15.6 106 | 8.05 99 | 40.7 124 | 4.87 91 | 27.1 145 | 35.0 148 | 22.5 127 | 17.2 96 | 50.0 119 | 16.0 95 | 15.5 104 | 34.1 117 | 13.9 107 | 10.1 127 | 20.2 133 | 12.5 120 |
LiteFlowNet [138] | 109.8 | 32.9 122 | 71.7 147 | 19.9 111 | 18.2 113 | 45.2 122 | 17.8 111 | 21.8 118 | 55.4 125 | 17.5 110 | 10.7 117 | 34.2 95 | 7.20 114 | 24.3 129 | 30.7 129 | 20.9 121 | 21.5 119 | 52.5 126 | 18.4 108 | 11.3 81 | 33.3 113 | 3.15 26 | 6.04 98 | 13.5 86 | 7.98 95 |
StereoFlow [44] | 109.9 | 85.4 163 | 89.0 163 | 87.9 162 | 73.1 163 | 88.5 163 | 68.8 158 | 66.8 162 | 87.5 161 | 52.4 154 | 81.5 162 | 91.1 162 | 78.5 161 | 25.9 138 | 27.6 91 | 29.7 149 | 6.38 4 | 29.4 13 | 6.60 5 | 1.39 2 | 10.9 2 | 0.20 2 | 6.34 102 | 13.8 88 | 10.3 108 |
SegOF [10] | 113.1 | 28.8 118 | 51.1 102 | 13.2 95 | 37.3 141 | 51.8 136 | 44.6 144 | 30.0 129 | 53.0 123 | 43.3 141 | 27.0 143 | 49.6 137 | 22.4 139 | 24.0 128 | 27.6 91 | 28.4 147 | 24.9 138 | 58.5 144 | 24.4 136 | 2.04 4 | 16.2 6 | 0.47 5 | 10.0 126 | 16.5 111 | 16.7 130 |
EAI-Flow [147] | 114.2 | 40.7 131 | 62.9 128 | 39.5 134 | 21.2 117 | 43.8 118 | 21.4 115 | 25.8 122 | 57.4 126 | 28.2 121 | 11.7 120 | 38.0 116 | 9.37 122 | 21.9 109 | 29.0 111 | 15.1 92 | 22.2 125 | 50.8 122 | 20.5 120 | 29.0 142 | 36.6 125 | 10.6 86 | 5.07 79 | 13.3 84 | 6.83 77 |
Shiralkar [42] | 115.6 | 22.0 110 | 69.5 140 | 19.6 109 | 10.9 60 | 42.6 116 | 8.48 44 | 18.4 112 | 54.0 124 | 9.43 76 | 10.1 115 | 45.4 131 | 7.72 117 | 21.5 103 | 28.9 110 | 15.9 97 | 26.8 142 | 60.7 147 | 25.4 140 | 24.3 136 | 29.9 102 | 39.4 149 | 11.0 132 | 23.8 144 | 12.2 118 |
Ad-TV-NDC [36] | 116.2 | 44.8 140 | 63.0 129 | 69.1 154 | 40.3 145 | 48.4 129 | 48.3 147 | 34.8 138 | 58.5 129 | 39.9 134 | 26.5 142 | 47.8 135 | 27.7 143 | 20.2 88 | 28.5 105 | 11.9 53 | 15.2 81 | 40.9 77 | 14.7 85 | 8.46 69 | 21.0 40 | 5.69 62 | 23.9 153 | 28.3 153 | 41.9 159 |
AugFNG_ROB [139] | 116.6 | 44.1 138 | 62.1 126 | 25.2 121 | 42.2 147 | 56.7 144 | 50.8 149 | 37.7 142 | 66.7 141 | 42.9 139 | 19.0 132 | 41.2 125 | 13.4 128 | 26.5 141 | 32.3 141 | 23.4 129 | 22.6 128 | 57.7 142 | 21.1 123 | 6.07 44 | 27.3 92 | 0.91 8 | 5.54 88 | 15.1 100 | 3.80 30 |
StereoOF-V1MT [117] | 116.7 | 21.7 109 | 68.0 138 | 20.3 113 | 11.8 74 | 50.4 132 | 7.18 34 | 20.7 116 | 62.8 136 | 9.21 74 | 9.80 114 | 50.8 138 | 6.56 109 | 27.9 149 | 35.8 150 | 23.9 132 | 25.0 139 | 67.3 151 | 24.0 132 | 8.00 65 | 27.7 93 | 12.2 95 | 13.4 138 | 23.5 143 | 15.8 127 |
CompactFlow_ROB [155] | 117.0 | 53.0 151 | 62.6 127 | 27.7 124 | 31.6 133 | 53.2 140 | 35.5 136 | 39.0 144 | 69.8 146 | 49.1 149 | 16.7 127 | 40.3 123 | 12.3 127 | 26.3 140 | 32.1 139 | 23.1 128 | 22.1 124 | 53.3 131 | 24.0 132 | 4.89 25 | 23.7 74 | 0.94 10 | 6.25 101 | 15.9 107 | 6.48 70 |
WOLF_ROB [144] | 117.2 | 26.7 117 | 70.6 143 | 21.9 117 | 21.8 119 | 51.3 135 | 19.4 113 | 28.0 126 | 61.1 134 | 26.7 119 | 12.6 122 | 42.5 128 | 10.5 125 | 22.2 111 | 28.7 109 | 19.4 113 | 21.3 117 | 55.6 136 | 19.6 116 | 7.42 59 | 23.5 69 | 8.87 79 | 11.1 133 | 20.5 135 | 20.0 138 |
FlowNet2 [120] | 121.0 | 47.2 144 | 61.0 124 | 42.4 139 | 44.5 149 | 57.5 145 | 51.3 150 | 37.6 141 | 64.7 139 | 43.1 140 | 21.0 135 | 35.8 106 | 17.9 135 | 25.8 134 | 30.6 126 | 24.6 136 | 20.4 111 | 49.7 117 | 21.0 121 | 32.5 148 | 53.3 159 | 4.06 43 | 4.13 66 | 13.0 81 | 1.49 14 |
LSM_FLOW_RVC [182] | 121.5 | 52.5 150 | 83.5 158 | 49.8 145 | 28.0 130 | 54.9 142 | 28.5 126 | 38.4 143 | 77.4 155 | 34.8 127 | 16.8 129 | 53.2 141 | 13.4 128 | 25.8 134 | 32.7 143 | 19.9 117 | 21.7 121 | 57.2 140 | 23.7 131 | 5.76 39 | 24.9 83 | 2.24 21 | 7.05 109 | 18.1 120 | 7.10 84 |
HBpMotionGpu [43] | 122.3 | 32.0 121 | 50.0 95 | 22.9 120 | 36.1 140 | 47.0 126 | 43.9 142 | 29.2 128 | 51.9 122 | 38.6 133 | 13.0 123 | 37.1 112 | 10.2 124 | 23.5 123 | 29.5 116 | 24.2 133 | 18.9 105 | 44.9 95 | 15.9 94 | 33.2 150 | 41.2 138 | 12.6 98 | 11.8 135 | 18.5 123 | 22.7 140 |
IAOF2 [51] | 123.4 | 25.3 116 | 49.2 92 | 22.2 118 | 24.6 122 | 44.3 119 | 28.6 127 | 20.0 114 | 45.4 113 | 25.5 117 | 49.8 152 | 57.5 147 | 60.5 155 | 23.2 121 | 31.0 133 | 15.7 96 | 23.2 133 | 49.6 114 | 19.3 115 | 30.5 144 | 39.0 134 | 19.0 126 | 9.25 123 | 18.6 124 | 9.82 106 |
Modified CLG [34] | 124.5 | 34.8 126 | 61.1 125 | 35.3 130 | 33.3 138 | 46.5 125 | 41.7 141 | 36.8 140 | 63.0 137 | 45.1 145 | 22.1 137 | 55.4 143 | 18.7 137 | 23.9 126 | 31.2 134 | 21.7 125 | 15.8 86 | 51.5 124 | 14.8 86 | 9.01 72 | 24.6 81 | 11.1 89 | 17.6 147 | 25.7 149 | 29.6 145 |
LFNet_ROB [145] | 125.5 | 42.0 133 | 80.9 156 | 30.7 126 | 25.2 124 | 54.8 141 | 25.3 120 | 33.7 135 | 74.4 149 | 26.0 118 | 17.2 130 | 48.0 136 | 14.4 131 | 26.5 141 | 32.5 142 | 24.8 139 | 23.0 130 | 56.4 137 | 22.7 127 | 12.5 90 | 38.3 133 | 6.87 68 | 6.05 99 | 15.7 106 | 9.05 102 |
Filter Flow [19] | 125.8 | 33.3 123 | 51.7 106 | 20.1 112 | 25.0 123 | 47.2 128 | 27.7 123 | 27.7 125 | 50.0 120 | 37.9 129 | 31.7 145 | 54.1 142 | 29.9 144 | 25.8 134 | 31.2 134 | 28.3 146 | 26.4 141 | 52.9 130 | 24.7 137 | 42.3 157 | 61.5 161 | 13.6 106 | 6.09 100 | 12.1 74 | 6.88 79 |
2D-CLG [1] | 126.0 | 44.0 137 | 63.3 130 | 36.1 131 | 44.3 148 | 52.3 137 | 55.1 152 | 49.1 153 | 75.4 150 | 50.5 151 | 64.3 158 | 76.4 157 | 67.8 158 | 24.8 131 | 29.7 119 | 27.4 144 | 20.5 113 | 53.6 132 | 22.4 126 | 2.52 6 | 13.0 4 | 3.50 32 | 22.8 152 | 27.9 152 | 36.9 151 |
EPMNet [131] | 126.8 | 47.1 143 | 71.6 146 | 41.3 137 | 41.8 146 | 61.0 150 | 47.5 146 | 34.2 137 | 60.0 132 | 40.1 135 | 22.9 140 | 38.8 118 | 20.2 138 | 25.8 134 | 30.6 126 | 24.6 136 | 20.4 111 | 49.7 117 | 21.0 121 | 23.9 135 | 44.7 148 | 3.33 30 | 7.39 112 | 18.0 119 | 7.28 86 |
ResPWCR_ROB [140] | 126.8 | 47.7 145 | 78.6 150 | 41.4 138 | 20.9 115 | 45.6 123 | 22.0 116 | 26.3 124 | 59.1 131 | 28.2 121 | 16.7 127 | 47.4 133 | 13.7 130 | 23.7 124 | 28.3 103 | 27.2 143 | 25.0 139 | 57.6 141 | 25.4 140 | 22.7 127 | 42.0 141 | 10.0 82 | 8.31 117 | 16.9 115 | 12.2 118 |
TVL1_RVC [175] | 126.8 | 66.5 157 | 79.2 153 | 85.9 159 | 52.8 155 | 52.7 139 | 65.9 156 | 51.6 154 | 78.1 156 | 53.5 157 | 55.5 156 | 75.9 156 | 58.3 154 | 23.0 118 | 31.4 136 | 17.6 107 | 14.5 71 | 49.6 114 | 17.1 103 | 4.61 18 | 20.7 36 | 2.07 20 | 26.8 157 | 31.4 154 | 40.9 158 |
BlockOverlap [61] | 126.9 | 41.4 132 | 54.1 117 | 36.2 132 | 27.3 128 | 41.4 114 | 32.6 131 | 26.2 123 | 46.5 116 | 31.8 125 | 20.0 133 | 36.6 109 | 18.1 136 | 22.4 113 | 26.8 82 | 25.7 141 | 24.5 135 | 45.6 102 | 21.1 123 | 39.3 156 | 47.0 152 | 43.5 155 | 13.8 139 | 16.0 108 | 28.7 144 |
SPSA-learn [13] | 127.3 | 35.8 127 | 71.2 144 | 43.1 142 | 28.4 131 | 47.0 126 | 32.8 132 | 31.4 131 | 57.7 127 | 42.2 138 | 22.2 138 | 51.0 139 | 22.9 141 | 23.9 126 | 29.4 115 | 24.6 136 | 24.8 137 | 56.5 138 | 25.1 139 | 10.7 80 | 25.1 84 | 3.72 37 | 21.7 150 | 24.9 148 | 35.5 150 |
IRR-PWC_RVC [180] | 127.4 | 50.0 149 | 66.8 136 | 32.5 129 | 39.5 143 | 57.5 145 | 44.5 143 | 42.2 147 | 69.5 145 | 50.4 150 | 21.9 136 | 43.8 129 | 17.4 133 | 27.1 145 | 30.7 129 | 29.0 148 | 18.7 104 | 49.0 111 | 17.4 105 | 23.6 133 | 53.1 158 | 2.93 25 | 7.06 110 | 16.5 111 | 7.87 94 |
IAOF [50] | 128.4 | 33.8 124 | 58.3 120 | 40.6 135 | 33.0 136 | 44.5 120 | 39.5 139 | 30.6 130 | 58.7 130 | 33.8 126 | 34.1 148 | 52.4 140 | 40.8 148 | 23.1 120 | 29.9 121 | 19.7 116 | 22.5 127 | 53.7 133 | 16.8 101 | 22.3 124 | 34.0 116 | 10.0 82 | 19.5 148 | 23.9 145 | 37.1 153 |
GraphCuts [14] | 129.4 | 34.5 125 | 59.0 122 | 32.1 128 | 26.2 126 | 51.1 134 | 26.4 122 | 28.1 127 | 51.7 121 | 40.4 137 | 13.0 123 | 47.5 134 | 7.98 118 | 23.7 124 | 30.0 124 | 24.3 134 | 33.4 151 | 45.2 100 | 25.7 142 | 31.2 146 | 37.7 130 | 36.8 146 | 10.7 129 | 19.7 131 | 17.7 132 |
Black & Anandan [4] | 131.3 | 38.5 130 | 69.5 140 | 53.4 146 | 28.5 132 | 49.6 131 | 32.0 130 | 33.4 134 | 60.5 133 | 40.2 136 | 22.6 139 | 55.9 144 | 22.8 140 | 24.5 130 | 32.2 140 | 19.6 114 | 21.7 121 | 58.9 145 | 22.7 127 | 22.6 125 | 37.6 129 | 5.27 57 | 16.7 145 | 22.6 142 | 25.4 142 |
GroupFlow [9] | 132.2 | 42.7 134 | 67.1 137 | 53.4 146 | 44.8 150 | 63.8 155 | 50.2 148 | 36.7 139 | 69.4 144 | 43.9 142 | 17.2 130 | 46.0 132 | 16.7 132 | 27.8 148 | 34.9 147 | 21.2 124 | 36.7 154 | 67.0 150 | 43.6 155 | 6.40 47 | 21.7 55 | 7.17 70 | 16.6 144 | 25.9 150 | 25.0 141 |
2bit-BM-tele [96] | 133.7 | 55.1 152 | 64.1 133 | 69.1 154 | 21.4 118 | 38.7 93 | 25.3 120 | 23.3 119 | 46.7 117 | 21.2 114 | 26.2 141 | 38.7 117 | 25.2 142 | 24.9 132 | 29.9 121 | 27.7 145 | 31.3 149 | 52.6 128 | 34.6 148 | 43.3 158 | 51.7 157 | 54.5 159 | 10.3 128 | 20.1 132 | 16.8 131 |
Nguyen [33] | 137.2 | 43.9 136 | 66.0 135 | 42.8 141 | 54.0 156 | 49.4 130 | 70.1 159 | 42.9 148 | 67.4 142 | 47.3 147 | 55.4 155 | 65.7 151 | 64.4 156 | 27.0 144 | 31.8 138 | 31.0 150 | 22.8 129 | 54.8 134 | 27.3 143 | 13.1 93 | 25.2 85 | 6.08 64 | 22.2 151 | 26.9 151 | 38.9 155 |
SILK [80] | 140.4 | 49.5 148 | 69.2 139 | 69.3 156 | 39.9 144 | 60.6 149 | 47.0 145 | 40.4 146 | 70.7 147 | 45.6 146 | 32.0 146 | 56.5 145 | 31.2 146 | 31.4 151 | 36.9 153 | 33.3 152 | 31.1 148 | 63.2 148 | 32.3 147 | 10.3 76 | 23.0 62 | 17.3 115 | 25.0 154 | 31.9 155 | 36.9 151 |
UnFlow [127] | 141.5 | 70.9 159 | 78.9 151 | 58.5 150 | 51.3 154 | 67.4 158 | 56.9 153 | 54.4 156 | 83.6 159 | 52.8 155 | 33.4 147 | 60.2 148 | 30.1 145 | 36.7 159 | 38.4 156 | 46.2 160 | 38.2 155 | 69.6 154 | 42.8 154 | 26.2 137 | 40.3 136 | 1.60 17 | 7.20 111 | 18.3 121 | 8.75 101 |
Periodicity [79] | 142.7 | 48.9 147 | 63.9 132 | 41.0 136 | 34.5 139 | 60.0 148 | 37.5 138 | 55.4 157 | 67.4 142 | 56.6 158 | 20.4 134 | 56.9 146 | 17.5 134 | 53.2 162 | 66.7 163 | 46.5 161 | 48.3 160 | 76.0 161 | 46.4 157 | 9.14 73 | 34.4 118 | 9.98 81 | 28.3 158 | 48.2 162 | 40.6 157 |
Horn & Schunck [3] | 143.3 | 43.3 135 | 80.7 155 | 58.6 151 | 32.5 135 | 59.7 147 | 35.1 134 | 40.2 145 | 76.3 153 | 44.7 144 | 31.5 144 | 64.8 149 | 32.6 147 | 29.3 150 | 36.4 152 | 27.0 142 | 27.5 145 | 68.7 152 | 29.7 145 | 27.0 139 | 43.3 144 | 7.32 71 | 25.9 155 | 36.5 158 | 34.6 148 |
H+S_RVC [176] | 145.7 | 57.6 153 | 76.9 148 | 55.7 149 | 56.7 157 | 76.2 161 | 62.8 155 | 60.6 159 | 89.2 163 | 51.5 153 | 78.6 161 | 78.7 158 | 82.0 162 | 34.1 155 | 35.7 149 | 43.6 159 | 46.6 159 | 75.5 160 | 53.1 160 | 5.52 35 | 32.5 110 | 5.42 60 | 34.3 159 | 35.1 157 | 37.9 154 |
Heeger++ [102] | 146.9 | 61.9 156 | 80.2 154 | 47.4 144 | 44.8 150 | 77.8 162 | 40.9 140 | 68.0 163 | 84.7 160 | 62.1 161 | 43.6 151 | 69.1 152 | 41.9 149 | 32.6 153 | 37.9 154 | 32.0 151 | 51.1 161 | 78.4 162 | 54.2 161 | 13.3 95 | 43.4 145 | 10.4 85 | 15.0 140 | 21.4 140 | 19.6 136 |
SLK [47] | 147.6 | 44.7 139 | 78.9 151 | 59.1 152 | 58.2 159 | 71.2 159 | 70.9 160 | 47.5 151 | 83.5 158 | 50.6 152 | 65.0 159 | 69.5 153 | 73.4 159 | 34.7 156 | 38.9 158 | 42.9 158 | 34.8 152 | 70.9 157 | 39.4 152 | 12.1 87 | 29.8 101 | 11.5 90 | 34.4 160 | 40.1 159 | 48.8 160 |
FFV1MT [104] | 149.9 | 59.9 155 | 77.8 149 | 53.6 148 | 37.7 142 | 72.5 160 | 37.0 137 | 63.6 161 | 82.1 157 | 62.4 162 | 42.8 150 | 73.9 155 | 42.6 150 | 41.9 161 | 45.8 161 | 52.3 162 | 52.5 162 | 81.8 163 | 56.1 162 | 20.2 120 | 42.4 142 | 18.3 123 | 15.0 140 | 21.4 140 | 19.6 136 |
TI-DOFE [24] | 150.2 | 73.1 160 | 84.6 161 | 89.6 163 | 61.2 161 | 64.7 157 | 74.8 162 | 58.6 158 | 88.7 162 | 58.0 159 | 70.9 160 | 81.6 160 | 76.1 160 | 31.7 152 | 38.0 155 | 35.4 153 | 29.7 146 | 68.7 152 | 36.3 149 | 17.1 109 | 32.0 108 | 8.67 77 | 35.5 161 | 42.8 160 | 49.8 161 |
FOLKI [16] | 152.3 | 48.0 146 | 71.5 145 | 68.8 153 | 48.6 153 | 63.2 152 | 59.5 154 | 43.0 149 | 75.6 151 | 44.0 143 | 40.4 149 | 65.6 150 | 45.8 151 | 35.3 157 | 40.6 159 | 41.6 156 | 36.3 153 | 71.6 159 | 44.4 156 | 23.6 133 | 44.7 148 | 40.4 153 | 36.9 162 | 43.4 161 | 54.5 162 |
PGAM+LK [55] | 154.8 | 58.6 154 | 80.9 156 | 69.8 157 | 45.1 152 | 63.7 154 | 51.9 151 | 43.2 150 | 76.2 152 | 47.5 148 | 50.3 153 | 82.2 161 | 51.4 152 | 32.7 154 | 36.0 151 | 42.3 157 | 41.4 156 | 70.1 155 | 41.2 153 | 56.3 161 | 58.0 160 | 55.0 160 | 25.9 155 | 32.4 156 | 40.3 156 |
Adaptive flow [45] | 155.3 | 76.7 162 | 83.7 160 | 86.4 160 | 57.9 158 | 63.6 153 | 67.3 157 | 48.7 152 | 73.2 148 | 52.9 156 | 52.7 154 | 69.9 154 | 56.0 153 | 35.4 158 | 38.4 156 | 39.4 155 | 46.1 157 | 70.6 156 | 47.6 158 | 73.1 162 | 75.2 162 | 88.1 161 | 17.2 146 | 24.6 147 | 25.6 143 |
HCIC-L [97] | 157.4 | 76.5 161 | 86.4 162 | 73.3 158 | 70.1 162 | 62.5 151 | 85.3 163 | 63.5 160 | 66.1 140 | 79.5 163 | 83.3 163 | 91.8 163 | 86.5 163 | 39.0 160 | 42.8 160 | 38.7 154 | 46.4 158 | 66.6 149 | 52.3 159 | 89.6 163 | 85.9 163 | 94.0 162 | 19.8 149 | 24.2 146 | 29.6 145 |
Pyramid LK [2] | 159.2 | 68.1 158 | 83.5 158 | 86.8 161 | 59.4 160 | 64.5 156 | 73.1 161 | 52.8 155 | 76.3 153 | 61.4 160 | 60.2 157 | 79.0 159 | 65.9 157 | 53.8 163 | 61.8 162 | 64.5 163 | 59.4 163 | 71.1 158 | 63.0 163 | 43.9 159 | 49.4 156 | 39.5 150 | 50.2 163 | 60.2 163 | 70.8 163 |
AdaConv-v1 [124] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SepConv-v1 [125] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SuperSlomo [130] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
CtxSyn [134] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
CyclicGen [149] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
TOF-M [150] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MPRN [151] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
DAIN [152] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
FRUCnet [153] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
OFRI [154] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
FGME [158] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MS-PFT [159] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MEMC-Net+ [160] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
ADC [161] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
DSepConv [162] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MAF-net [163] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
STAR-Net [164] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
AdaCoF [165] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
TC-GAN [166] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
FeFlow [167] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
DAI [168] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SoftSplat [169] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
STSR [170] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
BMBC [171] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
GDCN [172] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
EDSC [173] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
MV_VFI [183] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
DistillNet [184] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SepConv++ [185] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
EAFI [186] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
FLAVR [188] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
SoftsplatAug [190] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
ProBoost-Net [191] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
IDIAL [192] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
IFRNet [193] | 164.6 | 100.0 165 | 99.9 165 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 100.0 165 | 100.0 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.9 165 | 99.8 165 | 100.0 165 | 99.7 165 | 97.0 165 | 99.9 165 | 99.9 164 | 99.9 164 | 99.9 164 |
AVG_FLOW_ROB [137] | 165.5 | 99.9 164 | 99.7 164 | 100.0 164 | 100.0 164 | 100.0 164 | 100.0 164 | 99.9 164 | 99.9 164 | 99.9 164 | 99.6 164 | 98.8 164 | 99.5 164 | 99.6 164 | 99.7 164 | 99.0 164 | 97.0 164 | 96.3 164 | 95.6 164 | 99.1 164 | 92.9 164 | 99.6 164 | 100.0 199 | 99.9 164 | 99.9 164 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |