Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
Average angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
RAFT-it+_RVC [198] | 2.8 | 2.71 5 | 7.60 5 | 1.50 1 | 1.66 1 | 5.67 1 | 1.39 1 | 1.89 2 | 4.53 2 | 1.26 2 | 1.13 4 | 7.34 8 | 0.46 1 | 2.17 2 | 2.88 2 | 1.36 2 | 1.16 1 | 4.33 3 | 0.82 1 | 1.12 1 | 2.62 2 | 0.68 1 | 1.10 6 | 2.44 10 | 0.57 3 |
RAFT-it [194] | 5.3 | 2.92 11 | 8.22 22 | 1.76 3 | 1.80 2 | 6.23 3 | 1.45 2 | 2.05 3 | 5.08 3 | 1.39 3 | 0.86 1 | 3.99 2 | 0.51 2 | 2.41 9 | 3.23 10 | 1.50 4 | 1.29 3 | 3.82 2 | 1.11 2 | 1.32 4 | 3.23 12 | 0.79 4 | 1.10 6 | 2.44 10 | 0.64 5 |
NNF-Local [75] | 9.3 | 2.69 3 | 7.56 4 | 1.98 6 | 1.97 6 | 7.01 10 | 1.59 7 | 2.18 4 | 5.36 5 | 1.53 6 | 1.87 8 | 9.14 14 | 1.06 8 | 2.28 4 | 2.94 3 | 1.57 5 | 2.39 10 | 6.78 9 | 2.15 14 | 2.00 34 | 3.36 23 | 1.62 30 | 0.99 2 | 2.16 5 | 0.57 3 |
MS_RAFT+_RVC [195] | 10.7 | 2.96 12 | 7.79 10 | 1.69 2 | 2.63 36 | 6.02 2 | 2.72 84 | 2.57 11 | 6.57 14 | 1.78 22 | 1.12 3 | 6.65 7 | 0.54 3 | 2.15 1 | 2.83 1 | 1.33 1 | 1.24 2 | 3.59 1 | 1.12 3 | 1.18 2 | 2.47 1 | 0.94 5 | 1.19 10 | 2.13 3 | 1.24 20 |
NN-field [71] | 15.1 | 2.89 9 | 8.13 17 | 2.11 8 | 2.10 11 | 7.15 16 | 1.77 20 | 2.27 6 | 5.59 7 | 1.61 11 | 1.58 5 | 8.52 13 | 0.79 5 | 2.35 6 | 3.05 7 | 1.60 6 | 1.89 5 | 5.20 5 | 1.37 4 | 2.43 70 | 3.70 64 | 1.95 58 | 1.01 3 | 2.25 6 | 0.53 1 |
RAFT-TF_RVC [179] | 19.1 | 3.89 62 | 11.3 82 | 2.11 8 | 2.21 15 | 6.86 9 | 1.88 25 | 2.82 19 | 7.00 19 | 2.47 62 | 0.96 2 | 3.49 1 | 0.64 4 | 2.75 27 | 3.60 27 | 1.89 12 | 1.78 4 | 5.10 4 | 1.60 5 | 1.44 5 | 3.27 16 | 0.98 7 | 1.33 17 | 2.96 20 | 0.81 6 |
OFLAF [78] | 19.1 | 3.04 17 | 7.80 11 | 2.40 18 | 2.14 12 | 7.02 11 | 1.72 14 | 2.25 5 | 5.32 4 | 1.56 8 | 2.62 28 | 13.7 36 | 1.37 28 | 2.35 6 | 3.13 8 | 1.62 7 | 2.98 31 | 7.73 14 | 2.57 29 | 2.08 42 | 3.27 16 | 2.05 63 | 1.33 17 | 2.43 9 | 1.40 25 |
PMMST [112] | 20.0 | 3.42 48 | 7.60 5 | 2.65 37 | 2.32 17 | 6.39 4 | 2.20 41 | 2.63 14 | 6.08 10 | 2.03 35 | 2.06 11 | 6.07 5 | 1.44 36 | 2.60 13 | 3.27 11 | 1.91 14 | 2.56 13 | 6.78 9 | 2.09 10 | 2.06 37 | 3.53 46 | 1.63 31 | 1.27 14 | 2.29 7 | 1.02 11 |
nLayers [57] | 23.0 | 2.80 7 | 7.42 3 | 2.20 12 | 2.71 37 | 7.24 17 | 2.55 67 | 2.61 12 | 6.24 11 | 2.45 61 | 2.30 19 | 12.7 22 | 1.16 12 | 2.30 5 | 3.02 5 | 1.70 8 | 2.62 17 | 6.95 11 | 2.09 10 | 2.29 61 | 3.46 33 | 1.89 54 | 1.38 21 | 3.06 24 | 1.29 23 |
MDP-Flow2 [68] | 25.2 | 3.23 34 | 7.93 14 | 2.60 28 | 1.92 4 | 6.64 6 | 1.52 3 | 2.46 9 | 5.91 9 | 1.56 8 | 3.05 55 | 15.8 71 | 1.51 47 | 2.77 29 | 3.50 21 | 2.16 33 | 2.86 27 | 8.58 25 | 2.70 42 | 2.00 34 | 3.50 41 | 1.59 27 | 1.28 15 | 2.67 16 | 0.89 8 |
ComponentFusion [94] | 26.4 | 2.78 6 | 8.20 19 | 2.05 7 | 2.04 9 | 7.31 18 | 1.66 13 | 2.55 10 | 6.78 18 | 1.61 11 | 2.24 16 | 13.1 25 | 1.01 6 | 2.71 24 | 3.56 25 | 2.10 28 | 3.55 66 | 12.4 75 | 3.22 71 | 2.19 55 | 3.60 56 | 1.54 26 | 1.32 16 | 2.91 19 | 1.13 14 |
TC/T-Flow [77] | 29.1 | 2.69 3 | 7.75 9 | 1.87 5 | 2.76 40 | 10.2 57 | 1.73 15 | 3.33 32 | 9.01 40 | 1.49 4 | 2.86 44 | 16.7 83 | 1.21 14 | 2.60 13 | 3.49 20 | 1.90 13 | 2.21 7 | 7.65 12 | 2.04 8 | 1.84 21 | 3.23 12 | 3.14 116 | 2.03 50 | 4.53 50 | 1.49 30 |
CoT-AMFlow [174] | 30.6 | 3.23 34 | 8.15 18 | 2.70 40 | 1.97 6 | 6.55 5 | 1.65 11 | 2.68 15 | 6.72 17 | 1.81 23 | 3.09 57 | 16.3 79 | 1.54 53 | 2.79 31 | 3.52 22 | 2.38 51 | 2.82 24 | 8.98 29 | 2.69 40 | 2.12 48 | 3.53 46 | 1.73 34 | 1.33 17 | 2.71 17 | 1.20 18 |
FC-2Layers-FF [74] | 33.1 | 3.02 16 | 7.87 13 | 2.61 29 | 2.72 38 | 9.35 44 | 2.29 48 | 2.36 7 | 5.47 6 | 2.15 42 | 2.48 20 | 12.6 21 | 1.28 19 | 2.49 10 | 3.19 9 | 2.03 21 | 3.39 54 | 8.92 27 | 2.83 55 | 2.83 95 | 3.92 81 | 2.80 94 | 1.25 12 | 2.57 15 | 1.20 18 |
UnDAF [187] | 35.0 | 3.41 47 | 9.06 42 | 2.64 34 | 2.01 8 | 7.11 14 | 1.58 6 | 2.82 19 | 7.21 22 | 1.70 17 | 3.13 59 | 16.5 81 | 1.52 49 | 2.84 37 | 3.61 29 | 2.28 42 | 3.03 34 | 10.2 44 | 2.70 42 | 2.13 50 | 3.51 42 | 1.72 33 | 1.61 33 | 3.74 39 | 1.17 16 |
HAST [107] | 35.1 | 2.58 1 | 7.12 1 | 1.81 4 | 2.41 22 | 7.05 13 | 2.10 35 | 1.83 1 | 4.19 1 | 1.17 1 | 2.84 43 | 15.5 65 | 1.08 9 | 2.23 3 | 2.97 4 | 1.40 3 | 3.72 71 | 10.0 43 | 3.92 100 | 3.40 119 | 4.90 123 | 5.66 147 | 1.20 11 | 2.09 2 | 1.24 20 |
Layers++ [37] | 35.3 | 3.11 20 | 8.22 22 | 2.79 50 | 2.43 25 | 7.02 11 | 2.24 44 | 2.43 8 | 5.77 8 | 2.18 45 | 2.13 13 | 9.71 17 | 1.15 11 | 2.35 6 | 3.02 5 | 1.96 15 | 3.81 75 | 11.4 59 | 3.22 71 | 2.74 89 | 4.01 89 | 2.35 77 | 1.45 22 | 3.05 23 | 1.79 43 |
WLIF-Flow [91] | 35.6 | 2.96 12 | 7.67 7 | 2.40 18 | 2.41 22 | 7.70 22 | 2.10 35 | 2.98 24 | 7.63 27 | 1.97 34 | 2.71 36 | 13.5 32 | 1.33 22 | 3.01 53 | 4.00 59 | 2.40 56 | 3.03 34 | 8.32 19 | 2.44 23 | 2.09 44 | 3.36 23 | 2.04 62 | 2.26 59 | 4.97 62 | 2.59 69 |
AGIF+OF [84] | 37.2 | 3.06 18 | 8.20 19 | 2.55 26 | 3.17 70 | 10.6 64 | 2.46 61 | 3.46 38 | 8.97 38 | 2.24 48 | 2.61 26 | 13.7 36 | 1.33 22 | 2.63 18 | 3.46 18 | 2.11 29 | 2.88 29 | 8.34 21 | 2.35 18 | 2.10 46 | 3.56 51 | 2.09 66 | 1.80 39 | 3.68 38 | 2.24 54 |
FESL [72] | 37.5 | 2.96 12 | 7.70 8 | 2.54 25 | 3.26 81 | 10.4 61 | 2.56 68 | 3.25 30 | 8.39 31 | 2.17 43 | 2.56 22 | 13.2 26 | 1.31 21 | 2.57 12 | 3.40 14 | 2.12 31 | 2.60 15 | 7.65 12 | 2.30 16 | 2.64 85 | 4.22 98 | 2.47 81 | 1.75 37 | 3.49 34 | 1.71 36 |
LME [70] | 37.5 | 3.15 25 | 8.04 16 | 2.31 15 | 1.95 5 | 6.65 7 | 1.59 7 | 4.03 56 | 9.31 41 | 4.57 110 | 2.69 34 | 13.6 34 | 1.42 33 | 2.85 38 | 3.61 29 | 2.42 58 | 3.47 61 | 12.8 82 | 3.17 67 | 2.12 48 | 3.53 46 | 1.73 34 | 1.34 20 | 2.75 18 | 1.18 17 |
Efficient-NL [60] | 37.6 | 2.99 15 | 8.23 24 | 2.28 13 | 2.72 38 | 8.95 40 | 2.25 46 | 3.81 49 | 9.87 47 | 2.07 39 | 2.77 40 | 14.3 47 | 1.46 42 | 2.61 15 | 3.48 19 | 1.96 15 | 3.31 49 | 8.33 20 | 2.59 31 | 2.60 80 | 3.75 66 | 2.54 84 | 1.60 30 | 3.02 21 | 1.66 33 |
ALD-Flow [66] | 38.0 | 2.82 8 | 7.86 12 | 2.16 10 | 2.84 47 | 10.1 54 | 1.86 23 | 3.73 47 | 10.4 51 | 1.67 15 | 3.10 58 | 16.8 84 | 1.28 19 | 2.69 23 | 3.60 27 | 1.85 11 | 2.79 21 | 11.3 58 | 2.32 17 | 2.07 39 | 3.25 15 | 3.10 113 | 2.03 50 | 5.11 64 | 1.94 46 |
RNLOD-Flow [119] | 39.0 | 2.66 2 | 7.33 2 | 2.17 11 | 2.53 32 | 9.46 46 | 1.86 23 | 3.94 54 | 10.7 57 | 1.95 31 | 2.50 21 | 13.5 32 | 1.21 14 | 2.68 21 | 3.62 32 | 2.05 23 | 2.99 32 | 8.59 26 | 2.75 47 | 3.00 106 | 4.54 110 | 3.25 121 | 1.48 24 | 3.24 28 | 1.76 41 |
IROF++ [58] | 39.4 | 3.17 28 | 8.69 34 | 2.61 29 | 2.79 42 | 9.61 47 | 2.33 49 | 3.43 35 | 8.86 35 | 2.38 55 | 2.87 47 | 14.8 52 | 1.52 49 | 2.74 26 | 3.57 26 | 2.19 37 | 3.20 45 | 9.70 40 | 2.71 44 | 1.96 32 | 3.45 32 | 1.22 16 | 1.80 39 | 4.06 42 | 2.50 65 |
PH-Flow [99] | 39.6 | 3.19 31 | 8.87 39 | 2.71 41 | 2.84 47 | 9.33 43 | 2.37 51 | 2.85 21 | 7.20 21 | 2.36 52 | 2.92 50 | 15.4 62 | 1.51 47 | 2.63 18 | 3.42 15 | 2.04 22 | 3.03 34 | 8.52 24 | 2.49 25 | 2.69 87 | 3.60 56 | 3.13 115 | 1.25 12 | 2.53 13 | 1.34 24 |
NNF-EAC [101] | 40.0 | 3.31 39 | 8.21 21 | 2.68 39 | 2.19 14 | 7.49 20 | 1.76 18 | 2.73 17 | 6.62 15 | 1.70 17 | 3.18 65 | 15.8 71 | 1.64 61 | 2.87 41 | 3.66 35 | 2.24 39 | 3.02 33 | 8.07 17 | 2.59 31 | 2.19 55 | 3.48 37 | 1.74 36 | 2.85 78 | 6.52 81 | 3.12 81 |
ProFlow_ROB [142] | 40.2 | 3.29 36 | 9.91 62 | 2.35 17 | 2.50 30 | 10.0 52 | 1.83 21 | 4.04 57 | 11.6 66 | 1.96 33 | 2.86 44 | 15.0 55 | 1.22 16 | 2.87 41 | 3.89 50 | 1.97 18 | 2.60 15 | 10.5 49 | 2.20 15 | 1.53 9 | 3.54 49 | 1.53 25 | 2.50 66 | 6.37 80 | 2.33 59 |
Classic+CPF [82] | 40.7 | 3.14 23 | 8.60 31 | 2.63 33 | 3.03 65 | 10.6 64 | 2.33 49 | 3.66 42 | 9.58 43 | 2.20 46 | 2.61 26 | 14.1 42 | 1.34 25 | 2.68 21 | 3.53 23 | 2.21 38 | 2.85 26 | 7.95 16 | 2.38 19 | 2.44 72 | 3.49 39 | 2.90 105 | 1.67 35 | 3.40 31 | 2.43 63 |
PRAFlow_RVC [177] | 41.0 | 4.24 82 | 10.2 66 | 2.85 52 | 2.93 57 | 8.16 27 | 2.65 80 | 3.81 49 | 9.57 42 | 2.86 78 | 2.05 10 | 9.67 16 | 1.03 7 | 2.93 48 | 3.77 44 | 2.17 35 | 2.07 6 | 5.50 6 | 2.06 9 | 1.48 7 | 3.51 42 | 0.68 1 | 2.83 77 | 4.62 54 | 3.47 90 |
Sparse-NonSparse [56] | 42.8 | 3.14 23 | 8.75 36 | 2.76 48 | 3.02 63 | 10.6 64 | 2.43 56 | 3.45 37 | 8.96 36 | 2.36 52 | 2.66 31 | 13.7 36 | 1.42 33 | 2.85 38 | 3.75 43 | 2.33 45 | 3.28 48 | 9.40 35 | 2.73 45 | 2.42 69 | 3.31 19 | 2.69 89 | 1.47 23 | 3.07 25 | 1.66 33 |
3DFlow [133] | 44.3 | 3.44 49 | 8.63 33 | 2.46 21 | 2.43 25 | 8.59 34 | 1.75 17 | 3.71 45 | 9.93 49 | 1.64 13 | 1.61 7 | 4.58 3 | 1.23 17 | 2.86 40 | 3.72 40 | 2.16 33 | 4.52 101 | 11.6 65 | 4.20 108 | 3.16 114 | 4.02 90 | 4.44 139 | 1.13 8 | 2.14 4 | 0.89 8 |
TC-Flow [46] | 44.4 | 2.91 10 | 8.00 15 | 2.34 16 | 2.18 13 | 8.77 35 | 1.52 3 | 3.84 52 | 10.7 57 | 1.49 4 | 3.13 59 | 16.6 82 | 1.46 42 | 2.78 30 | 3.73 42 | 1.96 15 | 3.08 40 | 11.4 59 | 2.66 35 | 1.94 30 | 3.43 29 | 3.20 120 | 3.06 84 | 7.04 86 | 4.08 108 |
LSM [39] | 45.5 | 3.12 21 | 8.62 32 | 2.75 47 | 3.00 61 | 10.5 63 | 2.44 58 | 3.43 35 | 8.85 34 | 2.35 51 | 2.66 31 | 13.6 34 | 1.44 36 | 2.82 33 | 3.68 36 | 2.36 48 | 3.38 53 | 9.41 36 | 2.81 53 | 2.69 87 | 3.52 44 | 2.84 98 | 1.59 28 | 3.38 30 | 1.80 44 |
SVFilterOh [109] | 45.6 | 3.63 55 | 8.82 37 | 2.86 53 | 2.60 34 | 8.06 25 | 2.05 34 | 2.95 22 | 7.09 20 | 2.03 35 | 2.80 42 | 13.8 39 | 1.41 32 | 2.63 18 | 3.42 15 | 1.75 10 | 3.49 62 | 10.3 46 | 3.23 74 | 3.63 128 | 5.75 146 | 4.47 140 | 1.09 5 | 2.45 12 | 0.92 10 |
Ramp [62] | 46.3 | 3.18 30 | 8.83 38 | 2.73 44 | 2.89 53 | 10.1 54 | 2.44 58 | 3.27 31 | 8.43 32 | 2.38 55 | 2.74 38 | 14.2 43 | 1.46 42 | 2.82 33 | 3.69 39 | 2.29 43 | 3.37 52 | 9.31 33 | 2.93 58 | 2.62 83 | 3.38 27 | 3.19 119 | 1.54 26 | 3.21 27 | 2.24 54 |
Correlation Flow [76] | 46.5 | 3.38 45 | 8.40 26 | 2.64 34 | 2.23 16 | 7.54 21 | 1.56 5 | 5.14 81 | 13.1 81 | 1.60 10 | 2.09 12 | 8.15 10 | 1.35 27 | 3.12 61 | 4.09 67 | 2.34 46 | 4.01 87 | 11.5 63 | 4.00 102 | 2.59 79 | 3.61 58 | 3.00 110 | 1.49 25 | 3.04 22 | 1.42 28 |
PMF [73] | 46.6 | 3.61 53 | 9.07 43 | 2.62 31 | 2.40 20 | 8.05 24 | 1.83 21 | 2.61 12 | 6.27 12 | 1.65 14 | 3.35 75 | 15.4 62 | 1.58 56 | 2.54 11 | 3.27 11 | 1.71 9 | 3.59 67 | 11.1 56 | 3.46 82 | 4.07 138 | 6.18 153 | 4.02 135 | 1.06 4 | 2.38 8 | 1.25 22 |
ProbFlowFields [126] | 47.6 | 4.18 76 | 12.4 93 | 3.40 85 | 2.43 25 | 8.16 27 | 2.19 40 | 3.65 41 | 9.72 45 | 2.86 78 | 2.22 14 | 9.42 15 | 1.42 33 | 3.01 53 | 3.96 56 | 2.36 48 | 2.73 20 | 10.9 51 | 2.51 26 | 1.89 28 | 3.39 28 | 1.82 42 | 2.59 69 | 6.21 78 | 2.75 72 |
COFM [59] | 48.1 | 3.17 28 | 9.90 61 | 2.46 21 | 2.41 22 | 8.34 31 | 1.92 28 | 3.77 48 | 10.5 52 | 2.54 65 | 2.71 36 | 14.9 54 | 1.19 13 | 3.08 58 | 3.92 54 | 3.25 105 | 3.83 78 | 10.9 51 | 3.15 66 | 2.20 58 | 3.35 21 | 2.91 107 | 1.62 34 | 2.56 14 | 2.09 50 |
JOF [136] | 49.0 | 3.08 19 | 8.56 29 | 2.51 24 | 3.27 82 | 10.2 57 | 2.81 93 | 3.02 26 | 7.55 24 | 2.42 59 | 2.64 29 | 14.2 43 | 1.34 25 | 2.62 16 | 3.42 15 | 2.08 24 | 3.26 46 | 8.96 28 | 2.56 27 | 3.12 113 | 4.26 99 | 4.09 137 | 2.11 56 | 4.58 52 | 2.18 52 |
FMOF [92] | 49.3 | 3.12 21 | 8.23 24 | 2.73 44 | 3.25 78 | 10.7 73 | 2.52 65 | 3.01 25 | 7.61 25 | 2.20 46 | 2.56 22 | 13.4 30 | 1.33 22 | 2.75 27 | 3.61 29 | 2.24 39 | 3.66 69 | 8.50 23 | 2.78 51 | 2.62 83 | 3.84 74 | 3.27 123 | 2.66 74 | 5.69 69 | 1.95 48 |
OAR-Flow [123] | 50.0 | 3.37 43 | 9.87 60 | 2.67 38 | 4.22 105 | 12.8 101 | 2.87 95 | 4.95 76 | 13.4 84 | 2.66 68 | 3.23 67 | 16.4 80 | 1.37 28 | 2.83 35 | 3.82 47 | 1.97 18 | 2.49 11 | 10.9 51 | 1.87 7 | 1.52 8 | 2.82 3 | 1.86 49 | 1.85 43 | 4.35 47 | 1.68 35 |
Classic+NL [31] | 50.5 | 3.20 33 | 8.72 35 | 2.81 51 | 3.02 63 | 10.6 64 | 2.44 58 | 3.46 38 | 8.84 33 | 2.38 55 | 2.78 41 | 14.3 47 | 1.46 42 | 2.83 35 | 3.68 36 | 2.31 44 | 3.40 55 | 9.09 31 | 2.76 49 | 2.87 98 | 3.82 73 | 2.86 102 | 1.67 35 | 3.53 35 | 2.26 58 |
HCFN [157] | 51.6 | 3.15 25 | 8.58 30 | 2.42 20 | 2.09 10 | 8.31 30 | 1.63 10 | 2.81 18 | 7.61 25 | 1.54 7 | 2.86 44 | 15.3 59 | 1.44 36 | 2.73 25 | 3.55 24 | 2.08 24 | 3.42 57 | 10.4 47 | 3.28 76 | 4.88 152 | 6.08 151 | 5.70 148 | 2.45 64 | 5.24 67 | 3.47 90 |
TV-L1-MCT [64] | 51.8 | 3.16 27 | 8.48 28 | 2.71 41 | 3.28 83 | 10.8 77 | 2.60 76 | 3.95 55 | 10.5 52 | 2.38 55 | 2.69 34 | 13.9 40 | 1.45 41 | 2.94 49 | 3.79 45 | 2.63 80 | 3.50 63 | 9.75 41 | 3.06 62 | 2.08 42 | 3.35 21 | 2.29 74 | 1.95 46 | 3.89 41 | 2.71 71 |
PWC-Net_RVC [143] | 54.1 | 4.86 111 | 12.4 93 | 3.56 94 | 3.14 67 | 10.3 60 | 2.60 76 | 4.38 65 | 11.6 66 | 3.18 86 | 2.56 22 | 10.6 19 | 1.52 49 | 3.25 79 | 4.18 72 | 2.46 60 | 3.10 42 | 10.6 50 | 2.75 47 | 1.44 5 | 3.56 51 | 1.01 8 | 1.60 30 | 3.41 32 | 1.14 15 |
GMFlow_RVC [196] | 55.5 | 7.14 130 | 11.8 88 | 5.82 130 | 3.15 68 | 6.81 8 | 3.23 104 | 3.37 33 | 6.69 16 | 2.71 72 | 2.59 25 | 8.42 12 | 1.78 71 | 3.34 86 | 4.16 71 | 2.68 84 | 3.03 34 | 6.45 8 | 2.66 35 | 2.86 97 | 5.05 127 | 1.60 28 | 0.91 1 | 2.08 1 | 0.55 2 |
IIOF-NLDP [129] | 55.8 | 3.65 56 | 9.81 59 | 2.56 27 | 2.79 42 | 9.36 45 | 2.00 30 | 4.28 63 | 11.3 63 | 1.69 16 | 2.02 9 | 7.52 9 | 1.38 31 | 3.36 88 | 4.52 102 | 2.40 56 | 3.82 76 | 11.2 57 | 3.67 93 | 2.07 39 | 3.79 70 | 1.88 52 | 2.91 80 | 5.30 68 | 4.17 109 |
CostFilter [40] | 55.9 | 3.84 60 | 9.64 55 | 3.06 62 | 2.55 33 | 8.09 26 | 2.03 32 | 2.69 16 | 6.47 13 | 1.88 27 | 3.66 86 | 16.8 84 | 1.88 76 | 2.62 16 | 3.34 13 | 1.99 20 | 4.05 88 | 11.0 55 | 3.65 92 | 4.16 140 | 7.18 160 | 4.66 142 | 1.16 9 | 3.36 29 | 0.87 7 |
VCN_RVC [178] | 56.4 | 5.03 113 | 12.9 102 | 3.98 105 | 3.16 69 | 10.0 52 | 2.74 87 | 3.66 42 | 9.00 39 | 2.85 77 | 3.14 61 | 14.0 41 | 1.78 71 | 3.16 62 | 4.08 66 | 2.47 61 | 3.03 34 | 10.4 47 | 2.77 50 | 1.75 13 | 3.70 64 | 1.08 9 | 1.56 27 | 3.54 36 | 1.41 26 |
SimpleFlow [49] | 56.5 | 3.35 40 | 9.20 46 | 2.98 60 | 3.18 73 | 10.7 73 | 2.71 83 | 5.06 79 | 12.6 79 | 2.70 70 | 2.95 52 | 15.1 57 | 1.58 56 | 2.91 46 | 3.79 45 | 2.47 61 | 3.59 67 | 9.49 37 | 2.99 60 | 2.39 67 | 3.46 33 | 2.24 73 | 1.60 30 | 3.56 37 | 1.57 31 |
PBOFVI [189] | 56.8 | 4.02 68 | 9.26 47 | 3.26 67 | 2.84 47 | 10.6 64 | 1.89 27 | 4.97 77 | 12.4 75 | 1.77 21 | 2.29 18 | 10.5 18 | 1.23 17 | 3.27 82 | 4.31 87 | 2.50 68 | 3.72 71 | 9.62 38 | 3.58 86 | 2.35 65 | 3.99 87 | 3.08 112 | 1.82 41 | 3.84 40 | 1.76 41 |
2DHMM-SAS [90] | 59.2 | 3.19 31 | 8.89 40 | 2.71 41 | 3.20 76 | 11.5 87 | 2.38 52 | 5.19 82 | 12.2 74 | 2.73 73 | 2.92 50 | 15.2 58 | 1.53 52 | 2.79 31 | 3.65 34 | 2.27 41 | 3.45 59 | 9.34 34 | 2.78 51 | 2.66 86 | 3.56 51 | 3.07 111 | 2.34 62 | 5.12 65 | 2.97 79 |
S2D-Matching [83] | 60.2 | 3.36 41 | 9.66 56 | 2.86 53 | 3.19 75 | 11.1 81 | 2.46 61 | 4.86 75 | 12.9 80 | 2.47 62 | 2.67 33 | 13.2 26 | 1.44 36 | 2.87 41 | 3.72 40 | 2.38 51 | 3.45 59 | 9.76 42 | 2.95 59 | 3.05 107 | 3.79 70 | 3.30 125 | 1.95 46 | 4.16 45 | 3.00 80 |
FlowFields+ [128] | 60.5 | 4.57 96 | 13.7 108 | 3.35 76 | 2.94 59 | 10.1 54 | 2.58 72 | 4.05 58 | 10.6 54 | 3.26 89 | 2.90 49 | 13.2 26 | 1.81 74 | 3.18 66 | 4.20 76 | 2.54 69 | 2.68 19 | 11.4 59 | 2.40 21 | 1.84 21 | 3.62 59 | 1.77 37 | 2.48 65 | 5.86 71 | 2.77 73 |
MLDP_OF [87] | 60.7 | 4.13 73 | 10.3 70 | 3.60 95 | 2.34 18 | 7.70 22 | 1.88 25 | 4.23 62 | 10.9 60 | 1.87 26 | 2.74 38 | 14.6 51 | 1.37 28 | 3.10 59 | 3.91 53 | 2.48 66 | 3.40 55 | 9.00 30 | 3.79 97 | 3.46 121 | 4.20 96 | 5.55 146 | 2.31 60 | 4.64 56 | 1.98 49 |
AggregFlow [95] | 61.0 | 4.25 83 | 11.9 90 | 3.26 67 | 4.46 111 | 13.7 113 | 3.43 107 | 4.76 73 | 12.4 75 | 3.93 107 | 3.28 70 | 15.6 67 | 1.68 63 | 2.89 44 | 3.89 50 | 2.08 24 | 2.32 8 | 7.75 15 | 2.14 12 | 2.06 37 | 3.77 68 | 1.48 22 | 2.07 54 | 4.11 43 | 2.36 60 |
IROF-TV [53] | 61.5 | 3.40 46 | 9.29 49 | 2.95 59 | 2.99 60 | 11.1 81 | 2.53 66 | 3.81 49 | 9.81 46 | 2.44 60 | 3.25 69 | 16.9 86 | 1.78 71 | 3.27 82 | 4.10 68 | 2.93 95 | 4.47 98 | 16.0 117 | 3.53 84 | 1.70 11 | 3.21 9 | 1.12 13 | 1.91 45 | 4.75 58 | 2.19 53 |
MDP-Flow [26] | 61.5 | 3.48 51 | 9.46 52 | 3.10 64 | 2.45 28 | 7.36 19 | 2.41 53 | 3.21 29 | 8.31 30 | 2.78 75 | 3.18 65 | 17.8 92 | 1.70 67 | 3.03 55 | 3.87 48 | 2.60 76 | 3.43 58 | 12.6 79 | 2.81 53 | 2.19 55 | 3.88 78 | 1.60 28 | 4.13 105 | 9.96 114 | 3.86 103 |
CombBMOF [111] | 63.0 | 3.94 65 | 10.6 74 | 2.74 46 | 2.80 44 | 8.55 33 | 2.16 38 | 3.10 28 | 7.99 29 | 1.76 19 | 2.99 53 | 13.4 30 | 1.95 80 | 3.04 56 | 3.89 50 | 2.49 67 | 5.64 127 | 12.3 73 | 6.74 141 | 3.54 124 | 5.16 132 | 2.81 95 | 1.85 43 | 4.60 53 | 1.10 13 |
S2F-IF [121] | 63.3 | 4.51 94 | 13.6 107 | 3.31 72 | 2.90 54 | 10.4 61 | 2.48 64 | 4.07 60 | 10.8 59 | 3.15 84 | 3.31 71 | 15.7 70 | 1.90 77 | 3.17 64 | 4.19 74 | 2.55 72 | 2.81 23 | 11.6 65 | 2.60 33 | 1.86 24 | 3.67 62 | 1.87 50 | 2.11 56 | 4.64 56 | 2.54 68 |
WRT [146] | 63.5 | 3.74 58 | 9.34 50 | 2.48 23 | 3.37 89 | 10.2 57 | 2.58 72 | 6.80 108 | 15.3 100 | 2.24 48 | 1.58 5 | 5.01 4 | 1.09 10 | 2.89 44 | 3.68 36 | 2.35 47 | 5.52 125 | 12.0 69 | 4.21 110 | 2.30 62 | 3.85 75 | 2.34 76 | 3.20 87 | 4.91 60 | 4.21 110 |
FlowFields [108] | 66.1 | 4.57 96 | 13.7 108 | 3.38 79 | 3.01 62 | 10.6 64 | 2.59 74 | 4.19 61 | 11.1 61 | 3.30 90 | 3.17 64 | 15.0 55 | 1.96 81 | 3.21 74 | 4.24 83 | 2.61 79 | 2.91 30 | 12.4 75 | 2.66 35 | 1.84 21 | 3.46 33 | 1.84 46 | 2.50 66 | 6.15 76 | 2.79 74 |
Sparse Occlusion [54] | 67.4 | 3.62 54 | 9.12 44 | 2.90 55 | 2.92 56 | 9.08 41 | 2.56 68 | 4.49 70 | 11.8 72 | 2.11 41 | 3.14 61 | 15.8 71 | 1.57 55 | 3.26 80 | 4.22 78 | 2.36 48 | 3.52 65 | 10.9 51 | 2.66 35 | 5.10 156 | 6.32 154 | 3.15 117 | 2.02 49 | 4.92 61 | 1.71 36 |
MCPFlow_RVC [197] | 67.6 | 6.41 123 | 13.7 108 | 4.20 113 | 4.72 116 | 10.6 64 | 4.53 119 | 5.73 92 | 11.5 64 | 5.88 117 | 2.25 17 | 8.26 11 | 1.68 63 | 3.29 84 | 4.29 84 | 2.17 35 | 2.52 12 | 6.29 7 | 2.40 21 | 2.07 39 | 3.92 81 | 1.08 9 | 3.00 82 | 4.76 59 | 3.83 102 |
NL-TV-NCC [25] | 68.0 | 3.89 62 | 9.16 45 | 2.98 60 | 2.87 52 | 9.69 48 | 1.99 29 | 4.44 69 | 11.6 66 | 1.76 19 | 2.64 29 | 11.8 20 | 1.48 46 | 3.49 99 | 4.60 109 | 2.47 61 | 4.67 108 | 13.5 88 | 4.26 114 | 2.83 95 | 4.57 112 | 2.84 98 | 2.62 72 | 6.00 75 | 2.25 56 |
EPPM w/o HM [86] | 68.5 | 4.25 83 | 11.1 78 | 3.13 65 | 2.36 19 | 8.35 32 | 1.76 18 | 3.72 46 | 10.2 50 | 1.81 23 | 3.24 68 | 14.5 50 | 1.94 79 | 3.16 62 | 3.94 55 | 2.82 90 | 4.78 112 | 12.9 83 | 4.32 115 | 3.64 130 | 4.54 110 | 5.73 149 | 1.76 38 | 4.11 43 | 1.94 46 |
PGM-C [118] | 68.7 | 4.62 101 | 14.0 115 | 3.39 81 | 3.29 85 | 12.3 93 | 2.70 82 | 4.39 68 | 11.7 69 | 3.43 94 | 4.00 95 | 19.8 102 | 2.15 86 | 3.19 68 | 4.23 79 | 2.54 69 | 2.79 21 | 11.9 68 | 2.45 24 | 1.83 19 | 3.21 9 | 1.83 43 | 2.31 60 | 5.87 72 | 1.82 45 |
OFH [38] | 68.9 | 3.90 64 | 9.77 58 | 3.62 98 | 2.84 47 | 11.0 80 | 2.04 33 | 5.52 89 | 14.4 93 | 1.89 28 | 3.52 78 | 20.5 115 | 1.60 59 | 3.18 66 | 4.06 64 | 2.82 90 | 3.86 79 | 14.1 96 | 3.59 87 | 1.77 16 | 3.62 59 | 1.81 41 | 2.64 73 | 7.08 89 | 2.15 51 |
SegFlow [156] | 69.7 | 4.62 101 | 14.1 118 | 3.39 81 | 3.35 88 | 12.6 100 | 2.73 85 | 4.38 65 | 11.7 69 | 3.45 97 | 4.06 98 | 20.2 110 | 2.15 86 | 3.20 70 | 4.23 79 | 2.60 76 | 2.83 25 | 12.0 69 | 2.56 27 | 1.86 24 | 3.36 23 | 1.84 46 | 1.96 48 | 4.63 55 | 1.60 32 |
Occlusion-TV-L1 [63] | 70.9 | 3.59 52 | 9.61 53 | 2.64 34 | 2.93 57 | 10.6 64 | 2.41 53 | 6.16 99 | 15.2 98 | 2.70 70 | 3.32 73 | 17.0 87 | 1.68 63 | 3.38 90 | 4.44 95 | 2.82 90 | 3.10 42 | 13.2 86 | 2.68 39 | 2.17 52 | 3.52 44 | 1.46 20 | 4.63 120 | 11.1 128 | 3.53 92 |
Complementary OF [21] | 71.9 | 4.44 89 | 11.2 80 | 4.04 108 | 2.51 31 | 9.77 50 | 1.74 16 | 3.93 53 | 10.6 54 | 2.04 37 | 3.87 90 | 18.8 94 | 2.19 92 | 3.17 64 | 4.00 59 | 2.92 94 | 4.64 106 | 13.8 93 | 3.64 91 | 2.17 52 | 3.36 23 | 2.51 82 | 3.08 85 | 7.04 86 | 3.65 96 |
Adaptive [20] | 73.4 | 3.29 36 | 9.43 51 | 2.28 13 | 3.10 66 | 11.4 84 | 2.46 61 | 6.58 103 | 15.7 105 | 2.52 64 | 3.14 61 | 15.6 67 | 1.56 54 | 3.67 110 | 4.46 97 | 3.48 115 | 3.32 50 | 13.0 85 | 2.38 19 | 2.76 92 | 4.39 104 | 1.93 56 | 3.58 93 | 8.18 99 | 2.88 76 |
ACK-Prior [27] | 74.8 | 4.19 78 | 9.27 48 | 3.60 95 | 2.40 20 | 8.21 29 | 1.65 11 | 3.40 34 | 8.96 36 | 1.84 25 | 2.87 47 | 14.4 49 | 1.44 36 | 3.36 88 | 4.15 69 | 3.07 99 | 6.35 137 | 16.1 119 | 4.90 125 | 4.21 143 | 4.80 117 | 6.03 151 | 3.29 90 | 5.99 74 | 2.82 75 |
CPM-Flow [114] | 75.8 | 4.63 103 | 14.1 118 | 3.39 81 | 3.33 86 | 12.5 97 | 2.73 85 | 4.37 64 | 11.7 69 | 3.43 94 | 4.00 95 | 19.9 105 | 2.14 85 | 3.19 68 | 4.23 79 | 2.54 69 | 3.08 40 | 12.0 69 | 2.88 57 | 1.87 26 | 3.44 30 | 1.84 46 | 2.91 80 | 7.48 95 | 2.91 78 |
DPOF [18] | 75.8 | 4.67 106 | 12.6 99 | 3.30 70 | 3.57 94 | 10.6 64 | 3.12 102 | 3.09 27 | 7.50 23 | 2.32 50 | 3.06 56 | 14.8 52 | 1.82 75 | 3.21 74 | 4.18 72 | 2.79 89 | 4.47 98 | 12.5 77 | 3.33 77 | 4.09 139 | 3.92 81 | 6.96 153 | 2.09 55 | 4.39 48 | 1.74 39 |
EpicFlow [100] | 76.2 | 4.61 100 | 14.0 115 | 3.39 81 | 3.33 86 | 12.5 97 | 2.74 87 | 5.37 85 | 14.8 96 | 3.46 98 | 3.94 93 | 19.2 98 | 2.13 84 | 3.20 70 | 4.23 79 | 2.58 75 | 2.87 28 | 12.2 72 | 2.64 34 | 1.83 19 | 3.28 18 | 1.83 43 | 3.21 88 | 7.12 90 | 3.61 93 |
DeepFlow2 [106] | 77.8 | 4.04 70 | 11.2 80 | 3.38 79 | 3.80 98 | 12.4 96 | 2.86 94 | 5.12 80 | 13.4 84 | 3.00 80 | 4.17 103 | 20.1 107 | 2.18 91 | 2.96 50 | 3.97 57 | 2.08 24 | 3.06 39 | 12.6 79 | 2.69 40 | 2.17 52 | 3.24 14 | 2.71 90 | 4.74 122 | 10.4 122 | 4.38 116 |
ROF-ND [105] | 77.9 | 4.12 71 | 10.0 63 | 3.37 78 | 2.78 41 | 8.82 37 | 2.12 37 | 4.61 72 | 11.9 73 | 2.09 40 | 2.23 15 | 6.56 6 | 1.69 66 | 3.60 106 | 4.75 120 | 2.85 93 | 4.92 115 | 13.6 91 | 3.75 95 | 4.59 149 | 5.18 133 | 4.10 138 | 2.67 75 | 5.19 66 | 3.46 89 |
TCOF [69] | 78.0 | 4.17 75 | 10.4 72 | 3.71 101 | 3.17 70 | 10.7 73 | 2.59 74 | 6.58 103 | 15.7 105 | 3.82 105 | 3.69 88 | 16.1 76 | 2.37 101 | 3.78 114 | 4.95 133 | 2.47 61 | 2.59 14 | 8.47 22 | 2.58 30 | 3.66 132 | 4.83 118 | 2.67 88 | 1.83 42 | 4.20 46 | 1.46 29 |
HBM-GC [103] | 79.7 | 5.25 115 | 10.5 73 | 4.34 116 | 3.17 70 | 8.78 36 | 2.94 98 | 4.38 65 | 10.6 54 | 2.68 69 | 3.59 82 | 12.8 23 | 2.47 104 | 2.96 50 | 3.64 33 | 2.64 81 | 3.96 85 | 8.26 18 | 3.56 85 | 4.40 146 | 5.92 149 | 3.62 129 | 2.55 68 | 6.34 79 | 3.29 84 |
RFlow [88] | 80.2 | 3.82 59 | 10.0 63 | 3.44 88 | 2.61 35 | 9.73 49 | 2.02 31 | 5.66 91 | 14.5 94 | 2.05 38 | 3.93 92 | 23.1 128 | 1.90 77 | 3.24 76 | 4.19 74 | 2.66 83 | 4.12 91 | 15.2 112 | 3.34 79 | 2.61 81 | 3.56 51 | 2.65 87 | 4.48 115 | 10.5 125 | 3.93 107 |
Steered-L1 [116] | 81.2 | 3.30 38 | 8.44 27 | 2.91 56 | 1.89 3 | 7.14 15 | 1.60 9 | 3.61 40 | 9.91 48 | 1.89 28 | 3.45 76 | 19.4 101 | 1.64 61 | 3.42 92 | 4.30 86 | 3.39 108 | 5.18 120 | 14.5 100 | 4.37 118 | 5.09 155 | 5.05 127 | 10.1 157 | 5.56 129 | 10.2 120 | 6.24 135 |
DMF_ROB [135] | 82.4 | 4.37 86 | 12.3 92 | 3.62 98 | 3.46 92 | 12.9 103 | 2.60 76 | 5.98 96 | 15.8 107 | 3.23 88 | 4.05 97 | 19.8 102 | 2.15 86 | 3.10 59 | 4.06 64 | 2.57 74 | 3.79 74 | 14.3 97 | 3.13 64 | 1.88 27 | 3.12 7 | 1.99 61 | 4.34 108 | 10.0 115 | 3.87 104 |
SRR-TVOF-NL [89] | 82.5 | 4.47 91 | 10.9 76 | 3.32 75 | 4.04 102 | 13.2 108 | 2.90 96 | 4.81 74 | 12.5 77 | 3.15 84 | 3.33 74 | 15.3 59 | 1.61 60 | 3.24 76 | 4.03 63 | 2.70 86 | 3.94 83 | 11.8 67 | 3.33 77 | 4.16 140 | 5.21 136 | 3.44 128 | 2.06 53 | 3.48 33 | 2.42 61 |
ComplOF-FED-GPU [35] | 83.1 | 4.28 85 | 11.3 82 | 3.70 100 | 3.25 78 | 13.0 105 | 2.16 38 | 4.06 59 | 11.2 62 | 1.95 31 | 3.91 91 | 19.2 98 | 2.01 82 | 3.20 70 | 4.15 69 | 2.64 81 | 4.61 104 | 16.1 119 | 3.90 99 | 2.98 104 | 3.77 68 | 3.69 130 | 2.85 78 | 7.44 94 | 2.53 67 |
FF++_ROB [141] | 84.5 | 4.84 110 | 14.8 126 | 3.46 89 | 3.18 73 | 11.4 84 | 2.69 81 | 5.30 84 | 14.1 89 | 3.73 104 | 3.31 71 | 14.2 43 | 2.20 93 | 3.26 80 | 4.29 84 | 2.72 87 | 4.58 103 | 12.7 81 | 3.70 94 | 1.91 29 | 3.46 33 | 2.19 72 | 3.65 95 | 7.31 91 | 5.97 132 |
CVENG22+RIC [199] | 85.7 | 4.48 92 | 13.8 114 | 3.31 72 | 3.62 95 | 13.9 114 | 2.78 90 | 5.82 93 | 16.1 110 | 3.33 91 | 4.06 98 | 20.3 112 | 2.16 89 | 3.80 119 | 4.89 129 | 3.22 103 | 3.34 51 | 14.3 97 | 3.13 64 | 1.82 18 | 3.21 9 | 1.83 43 | 3.27 89 | 8.77 104 | 2.42 61 |
TF+OM [98] | 86.3 | 3.97 66 | 10.2 66 | 2.94 58 | 2.91 55 | 9.12 42 | 2.57 71 | 5.22 83 | 11.5 64 | 6.92 121 | 3.59 82 | 16.1 76 | 2.28 98 | 3.20 70 | 3.97 57 | 3.11 100 | 4.70 110 | 14.5 100 | 4.32 115 | 3.06 109 | 4.84 120 | 2.71 90 | 3.93 100 | 8.79 105 | 4.32 114 |
Aniso. Huber-L1 [22] | 87.2 | 3.71 57 | 10.1 65 | 3.08 63 | 4.36 110 | 13.0 105 | 3.77 111 | 6.92 109 | 15.3 100 | 3.60 101 | 3.54 79 | 15.9 74 | 2.04 83 | 3.38 90 | 4.45 96 | 2.47 61 | 3.88 80 | 12.9 83 | 2.74 46 | 3.37 118 | 4.36 102 | 2.85 101 | 3.16 86 | 7.52 96 | 2.90 77 |
DeepFlow [85] | 88.0 | 4.49 93 | 11.7 86 | 4.14 110 | 4.26 106 | 12.8 101 | 3.36 105 | 5.96 95 | 14.2 91 | 5.10 111 | 4.89 117 | 23.1 128 | 2.67 107 | 2.98 52 | 4.00 59 | 2.11 29 | 3.26 46 | 13.5 88 | 2.84 56 | 2.09 44 | 3.10 5 | 2.77 92 | 5.83 131 | 11.4 130 | 5.45 129 |
Classic++ [32] | 89.2 | 3.37 43 | 9.67 57 | 2.91 56 | 3.28 83 | 12.1 91 | 2.61 79 | 5.46 88 | 14.1 89 | 3.00 80 | 3.63 84 | 20.2 110 | 1.70 67 | 3.24 76 | 4.34 89 | 2.60 76 | 4.65 107 | 16.0 117 | 3.60 88 | 3.09 110 | 3.94 85 | 3.28 124 | 4.64 121 | 10.4 122 | 3.71 98 |
TV-L1-improved [17] | 89.8 | 3.36 41 | 9.63 54 | 2.62 31 | 2.82 45 | 10.7 73 | 2.23 42 | 6.50 102 | 15.8 107 | 2.73 73 | 3.80 89 | 21.3 120 | 1.76 70 | 3.34 86 | 4.38 93 | 2.39 53 | 5.97 131 | 18.1 132 | 5.67 132 | 3.57 126 | 4.92 125 | 3.43 127 | 4.01 103 | 9.84 113 | 3.44 88 |
C-RAFT_RVC [181] | 91.2 | 8.04 140 | 17.7 137 | 5.83 131 | 5.93 124 | 12.9 103 | 5.70 127 | 6.68 105 | 14.2 91 | 6.14 118 | 3.99 94 | 13.3 29 | 2.76 108 | 4.04 132 | 5.02 138 | 3.54 117 | 3.51 64 | 9.20 32 | 3.62 89 | 2.76 92 | 4.72 115 | 1.78 38 | 1.59 28 | 3.15 26 | 1.07 12 |
LocallyOriented [52] | 92.7 | 4.54 95 | 12.8 101 | 3.27 69 | 4.73 117 | 14.8 121 | 3.73 110 | 7.77 116 | 18.3 124 | 3.44 96 | 3.56 80 | 15.6 67 | 2.22 94 | 3.46 96 | 4.47 98 | 2.69 85 | 3.15 44 | 10.2 44 | 3.19 69 | 2.61 81 | 4.20 96 | 2.52 83 | 4.39 112 | 8.52 101 | 5.23 125 |
SIOF [67] | 93.0 | 4.23 80 | 10.2 66 | 3.31 72 | 3.97 100 | 14.5 119 | 2.97 99 | 7.81 117 | 16.4 112 | 7.48 124 | 4.82 113 | 20.1 107 | 2.96 111 | 3.54 102 | 4.49 99 | 3.12 101 | 4.31 93 | 13.5 88 | 4.13 106 | 2.36 66 | 3.59 55 | 1.68 32 | 3.46 92 | 7.39 92 | 3.37 86 |
LiteFlowNet [138] | 94.6 | 6.29 122 | 16.5 132 | 4.45 118 | 3.68 96 | 10.8 77 | 3.13 103 | 5.43 86 | 13.7 87 | 3.60 101 | 3.57 81 | 12.8 23 | 2.25 97 | 3.85 122 | 4.78 122 | 3.61 120 | 4.37 95 | 12.5 77 | 3.63 90 | 2.55 76 | 4.51 109 | 1.52 24 | 4.05 104 | 7.05 88 | 5.16 121 |
Brox et al. [5] | 95.8 | 4.44 89 | 12.4 93 | 4.22 114 | 3.72 97 | 13.5 112 | 3.06 100 | 4.97 77 | 13.3 83 | 3.11 82 | 4.58 109 | 22.0 123 | 2.37 101 | 3.79 116 | 4.60 109 | 4.33 142 | 3.91 82 | 17.0 126 | 3.45 81 | 2.22 59 | 3.79 70 | 1.19 14 | 4.62 119 | 10.0 115 | 3.38 87 |
TriangleFlow [30] | 96.3 | 4.12 71 | 10.6 74 | 3.47 90 | 3.47 93 | 13.1 107 | 2.41 53 | 6.00 97 | 15.2 98 | 2.17 43 | 2.99 53 | 16.0 75 | 1.58 56 | 4.46 146 | 5.79 152 | 4.15 138 | 5.42 124 | 13.9 95 | 5.24 127 | 3.10 112 | 5.47 142 | 2.90 105 | 3.02 83 | 6.82 83 | 3.64 95 |
CRTflow [81] | 96.4 | 4.18 76 | 11.8 88 | 3.20 66 | 3.22 77 | 10.8 77 | 2.43 56 | 6.20 100 | 15.5 103 | 2.63 67 | 4.21 104 | 22.0 123 | 2.24 95 | 3.32 85 | 4.34 89 | 2.44 59 | 7.43 144 | 19.3 139 | 8.15 147 | 2.55 76 | 4.09 92 | 2.59 86 | 4.60 118 | 11.2 129 | 4.45 117 |
OFRF [132] | 97.7 | 4.77 109 | 11.6 84 | 4.03 107 | 8.72 139 | 15.3 126 | 8.51 142 | 8.49 128 | 16.7 114 | 7.32 122 | 4.55 108 | 15.3 59 | 3.16 118 | 2.92 47 | 3.87 48 | 2.13 32 | 3.76 73 | 9.69 39 | 3.22 71 | 2.98 104 | 4.50 108 | 4.04 136 | 4.59 117 | 5.76 70 | 8.61 143 |
BriefMatch [122] | 97.7 | 3.44 49 | 9.01 41 | 2.77 49 | 2.85 51 | 9.93 51 | 2.23 42 | 2.97 23 | 7.65 28 | 1.94 30 | 3.64 85 | 20.1 107 | 1.75 69 | 4.10 136 | 4.90 131 | 5.82 152 | 7.95 146 | 17.8 129 | 8.08 146 | 4.73 151 | 5.20 134 | 12.2 159 | 7.88 148 | 12.0 134 | 13.7 154 |
Rannacher [23] | 99.1 | 4.13 73 | 11.0 77 | 3.61 97 | 3.39 90 | 12.3 93 | 2.80 92 | 7.26 111 | 17.4 120 | 3.59 100 | 4.40 106 | 23.1 128 | 2.24 95 | 3.43 94 | 4.54 105 | 2.56 73 | 5.41 123 | 18.5 134 | 4.23 111 | 2.92 101 | 3.91 80 | 2.82 96 | 3.45 91 | 9.14 106 | 3.27 83 |
F-TV-L1 [15] | 100.2 | 5.44 118 | 12.5 98 | 5.69 128 | 5.46 121 | 15.0 124 | 4.03 114 | 7.48 113 | 16.3 111 | 3.42 93 | 5.08 120 | 23.3 131 | 2.81 110 | 3.42 92 | 4.34 89 | 3.03 97 | 4.05 88 | 15.1 109 | 3.18 68 | 2.43 70 | 3.92 81 | 1.87 50 | 3.90 99 | 9.35 110 | 2.61 70 |
TriFlow [93] | 101.1 | 4.73 108 | 12.4 93 | 3.49 92 | 4.03 101 | 12.5 97 | 3.70 109 | 8.18 125 | 17.2 118 | 10.4 134 | 3.50 77 | 15.4 62 | 2.32 100 | 3.43 94 | 4.21 77 | 3.42 109 | 3.90 81 | 12.3 73 | 3.76 96 | 7.86 161 | 5.72 145 | 16.2 161 | 2.80 76 | 5.89 73 | 2.50 65 |
Local-TV-L1 [65] | 101.2 | 5.33 116 | 12.6 99 | 5.19 123 | 6.90 131 | 15.7 129 | 6.22 130 | 10.0 134 | 18.2 123 | 8.89 127 | 5.81 129 | 24.7 137 | 3.70 127 | 3.05 57 | 4.00 59 | 2.39 53 | 4.05 88 | 14.6 102 | 3.09 63 | 1.95 31 | 3.11 6 | 2.15 68 | 5.85 132 | 10.8 126 | 7.34 138 |
DF-Auto [113] | 101.5 | 5.04 114 | 13.7 108 | 3.30 70 | 6.51 128 | 14.1 118 | 6.09 129 | 8.14 121 | 16.5 113 | 10.2 133 | 5.06 119 | 21.3 120 | 3.10 117 | 3.74 112 | 4.91 132 | 3.25 105 | 2.67 18 | 11.4 59 | 2.14 12 | 3.36 117 | 5.23 138 | 1.45 19 | 4.45 114 | 9.18 107 | 4.28 113 |
ContinualFlow_ROB [148] | 101.6 | 7.36 133 | 17.7 137 | 5.46 125 | 5.94 125 | 12.2 92 | 5.98 128 | 8.16 124 | 18.3 124 | 7.89 125 | 5.11 121 | 19.3 100 | 3.18 119 | 4.15 139 | 5.04 139 | 3.68 122 | 5.65 128 | 15.1 109 | 6.17 138 | 1.72 12 | 3.34 20 | 1.11 12 | 2.34 62 | 4.48 49 | 2.25 56 |
CLG-TV [48] | 102.4 | 4.00 67 | 10.3 70 | 3.40 85 | 4.33 109 | 12.3 93 | 4.08 115 | 6.78 106 | 15.5 103 | 3.64 103 | 4.07 100 | 17.7 91 | 2.39 103 | 3.79 116 | 4.86 125 | 3.23 104 | 4.48 100 | 16.5 124 | 3.80 98 | 3.55 125 | 4.65 114 | 2.89 104 | 4.00 102 | 10.1 118 | 3.18 82 |
CBF [12] | 102.8 | 3.88 61 | 10.2 66 | 3.50 93 | 4.60 113 | 11.3 83 | 5.06 121 | 5.43 86 | 13.1 81 | 3.39 92 | 4.09 101 | 21.2 119 | 2.16 89 | 3.80 119 | 4.72 118 | 3.52 116 | 4.33 94 | 14.4 99 | 3.01 61 | 4.97 153 | 5.51 143 | 4.93 144 | 3.99 101 | 9.27 109 | 3.91 106 |
Bartels [41] | 105.1 | 4.43 87 | 11.1 78 | 4.17 112 | 2.83 46 | 8.84 38 | 2.56 68 | 4.54 71 | 12.5 77 | 2.80 76 | 4.87 114 | 22.1 125 | 3.05 115 | 3.58 105 | 4.35 92 | 4.15 138 | 5.55 126 | 17.5 127 | 5.78 133 | 3.74 133 | 5.02 126 | 5.98 150 | 5.21 128 | 11.9 133 | 5.20 124 |
Fusion [6] | 105.9 | 4.43 87 | 13.7 108 | 4.08 109 | 2.47 29 | 8.91 39 | 2.24 44 | 3.70 44 | 9.68 44 | 3.12 83 | 3.68 87 | 19.8 102 | 2.54 106 | 4.26 143 | 5.16 144 | 4.31 141 | 6.32 134 | 16.8 125 | 6.15 137 | 4.55 148 | 5.78 147 | 3.10 113 | 7.12 142 | 13.6 143 | 7.86 142 |
p-harmonic [29] | 106.6 | 4.64 104 | 13.0 103 | 4.43 117 | 3.41 91 | 11.9 88 | 2.93 97 | 7.60 114 | 18.1 122 | 3.96 108 | 4.65 110 | 21.0 117 | 2.97 113 | 3.46 96 | 4.33 88 | 3.34 107 | 4.75 111 | 17.5 127 | 4.60 122 | 3.05 107 | 4.17 94 | 2.15 68 | 5.09 127 | 10.9 127 | 3.77 100 |
CNN-flow-warp+ref [115] | 107.2 | 4.93 112 | 14.5 123 | 4.29 115 | 4.18 104 | 11.9 88 | 4.24 117 | 8.23 126 | 19.7 132 | 6.35 120 | 5.13 122 | 24.4 136 | 2.96 111 | 3.55 103 | 4.40 94 | 3.85 127 | 3.82 76 | 15.0 106 | 3.39 80 | 1.96 32 | 3.44 30 | 2.14 67 | 10.0 152 | 14.8 149 | 10.8 150 |
CompactFlow_ROB [155] | 107.4 | 8.85 145 | 18.7 141 | 5.45 124 | 5.55 122 | 12.0 90 | 5.64 126 | 8.73 130 | 17.0 117 | 11.7 138 | 5.19 124 | 17.5 89 | 3.62 125 | 4.11 137 | 4.99 136 | 3.72 124 | 4.37 95 | 14.6 102 | 4.01 103 | 1.75 13 | 3.64 61 | 0.96 6 | 4.14 106 | 7.40 93 | 5.55 130 |
Dynamic MRF [7] | 107.6 | 4.58 98 | 12.4 93 | 4.14 110 | 3.25 78 | 13.9 114 | 2.27 47 | 6.02 98 | 16.8 115 | 2.36 52 | 4.39 105 | 22.6 127 | 2.51 105 | 3.61 107 | 4.55 106 | 3.46 111 | 6.81 139 | 22.2 149 | 6.78 143 | 2.41 68 | 3.48 37 | 3.69 130 | 9.26 150 | 17.8 153 | 10.2 147 |
EAI-Flow [147] | 108.4 | 7.40 134 | 16.3 130 | 6.04 133 | 5.29 120 | 15.0 124 | 4.27 118 | 6.28 101 | 15.0 97 | 5.22 114 | 4.99 118 | 19.1 97 | 3.49 122 | 3.55 103 | 4.55 106 | 3.01 96 | 4.69 109 | 14.8 104 | 4.25 113 | 4.16 140 | 4.83 118 | 2.55 85 | 2.61 71 | 6.99 85 | 2.48 64 |
SegOF [10] | 109.5 | 5.85 120 | 13.5 106 | 3.98 105 | 7.40 132 | 14.9 122 | 8.13 140 | 8.55 129 | 17.3 119 | 9.01 128 | 6.50 136 | 18.1 93 | 5.14 138 | 3.90 126 | 4.53 103 | 4.81 146 | 6.57 138 | 21.7 147 | 6.81 144 | 1.65 10 | 3.49 39 | 1.08 9 | 3.71 96 | 9.23 108 | 3.63 94 |
FlowNetS+ft+v [110] | 109.8 | 4.22 79 | 12.1 91 | 3.48 91 | 4.50 112 | 13.4 110 | 3.85 112 | 8.29 127 | 18.4 126 | 6.20 119 | 4.87 114 | 21.6 122 | 3.01 114 | 3.93 127 | 5.04 139 | 3.47 114 | 3.71 70 | 15.3 113 | 3.21 70 | 3.32 115 | 5.12 130 | 3.87 132 | 3.76 97 | 9.44 111 | 3.74 99 |
LDOF [28] | 110.1 | 4.60 99 | 13.0 103 | 3.77 102 | 4.67 114 | 15.5 128 | 3.67 108 | 5.63 90 | 14.0 88 | 4.21 109 | 5.80 128 | 27.1 146 | 3.43 121 | 3.52 101 | 4.50 101 | 3.46 111 | 4.84 114 | 17.8 129 | 4.04 104 | 2.46 74 | 4.14 93 | 3.25 121 | 4.85 124 | 12.0 134 | 3.78 101 |
ResPWCR_ROB [140] | 110.5 | 7.29 132 | 16.3 130 | 6.15 135 | 4.28 107 | 11.4 84 | 3.95 113 | 5.85 94 | 13.6 86 | 5.20 113 | 4.75 112 | 17.5 89 | 3.50 123 | 3.80 119 | 4.53 103 | 4.12 137 | 4.96 118 | 15.0 106 | 4.81 124 | 3.52 123 | 5.22 137 | 2.40 78 | 3.61 94 | 6.77 82 | 4.27 112 |
LSM_FLOW_RVC [182] | 110.8 | 9.03 146 | 21.8 151 | 7.45 143 | 6.24 127 | 17.5 136 | 5.30 124 | 9.61 132 | 23.0 139 | 7.32 122 | 6.08 133 | 23.9 135 | 4.08 130 | 4.01 131 | 4.95 133 | 3.55 119 | 5.00 119 | 15.3 113 | 5.06 126 | 2.01 36 | 3.95 86 | 1.48 22 | 2.20 58 | 5.00 63 | 1.71 36 |
Second-order prior [8] | 111.0 | 4.03 69 | 11.6 84 | 3.35 76 | 3.88 99 | 14.0 117 | 3.08 101 | 7.21 110 | 17.6 121 | 3.57 99 | 4.14 102 | 19.9 105 | 2.31 99 | 3.66 109 | 4.86 125 | 2.73 88 | 7.32 142 | 21.2 145 | 6.76 142 | 4.02 136 | 4.58 113 | 4.01 134 | 4.27 107 | 10.4 122 | 5.12 120 |
WOLF_ROB [144] | 112.4 | 5.79 119 | 16.6 133 | 4.49 119 | 7.62 134 | 21.2 148 | 5.10 123 | 9.70 133 | 21.0 137 | 5.66 116 | 5.32 125 | 19.0 95 | 3.78 128 | 3.61 107 | 4.49 99 | 3.54 117 | 4.63 105 | 13.6 91 | 4.34 117 | 2.30 62 | 3.89 79 | 2.16 71 | 4.37 110 | 7.52 96 | 6.03 133 |
AugFNG_ROB [139] | 113.7 | 8.29 141 | 19.2 143 | 5.66 127 | 7.67 135 | 16.0 132 | 8.01 139 | 10.1 135 | 20.5 135 | 11.0 136 | 5.13 122 | 15.5 65 | 3.64 126 | 4.11 137 | 4.97 135 | 3.93 129 | 4.45 97 | 15.1 109 | 4.20 108 | 2.27 60 | 4.37 103 | 1.23 17 | 3.80 98 | 6.87 84 | 4.34 115 |
StereoFlow [44] | 116.3 | 17.1 163 | 28.1 163 | 17.9 162 | 18.7 160 | 29.7 161 | 16.5 155 | 20.1 160 | 30.9 160 | 17.5 155 | 21.2 160 | 38.3 162 | 17.9 158 | 4.60 147 | 5.05 141 | 5.52 148 | 2.38 9 | 11.5 63 | 1.77 6 | 1.25 3 | 2.92 4 | 0.71 3 | 4.49 116 | 10.3 121 | 4.23 111 |
FlowNet2 [120] | 116.9 | 8.58 144 | 18.6 139 | 6.31 136 | 9.39 144 | 17.6 137 | 9.09 145 | 8.06 120 | 15.8 107 | 9.81 131 | 5.61 127 | 16.2 78 | 4.12 131 | 4.04 132 | 4.88 127 | 3.79 125 | 4.92 115 | 16.2 121 | 4.50 119 | 4.28 144 | 6.73 156 | 2.84 98 | 2.05 52 | 4.54 51 | 1.41 26 |
IRR-PWC_RVC [180] | 117.5 | 9.55 148 | 20.9 149 | 6.05 134 | 7.60 133 | 15.8 131 | 7.44 134 | 10.1 135 | 19.7 132 | 12.6 142 | 6.06 132 | 14.2 43 | 4.96 135 | 3.98 129 | 4.74 119 | 3.86 128 | 3.99 86 | 13.3 87 | 3.24 75 | 3.34 116 | 5.99 150 | 1.93 56 | 4.35 109 | 8.07 98 | 4.75 118 |
EPMNet [131] | 118.6 | 8.37 143 | 18.8 142 | 6.44 138 | 9.35 143 | 18.4 139 | 8.78 144 | 7.42 112 | 14.7 95 | 8.61 126 | 5.98 131 | 20.4 114 | 4.27 133 | 4.04 132 | 4.88 127 | 3.79 125 | 4.92 115 | 16.2 121 | 4.50 119 | 3.65 131 | 6.14 152 | 2.42 80 | 2.60 70 | 6.15 76 | 1.74 39 |
Ad-TV-NDC [36] | 118.9 | 8.36 142 | 14.0 115 | 11.1 155 | 12.9 151 | 19.9 145 | 12.8 151 | 14.4 147 | 23.1 140 | 12.1 140 | 7.40 139 | 20.6 116 | 6.33 139 | 3.47 98 | 4.66 114 | 2.39 53 | 3.95 84 | 13.8 93 | 3.51 83 | 2.48 75 | 3.75 66 | 2.05 63 | 9.75 151 | 12.1 136 | 16.7 158 |
LFNet_ROB [145] | 119.9 | 7.69 135 | 19.8 144 | 5.72 129 | 4.70 115 | 13.3 109 | 4.13 116 | 8.15 123 | 20.0 134 | 5.42 115 | 4.73 111 | 17.1 88 | 3.42 120 | 4.15 139 | 5.10 143 | 4.05 133 | 5.28 122 | 18.0 131 | 4.64 123 | 2.87 98 | 4.74 116 | 1.98 60 | 4.92 125 | 11.4 130 | 5.01 119 |
Shiralkar [42] | 120.7 | 4.64 104 | 14.1 118 | 3.94 103 | 4.29 108 | 16.9 134 | 2.77 89 | 7.75 115 | 18.8 128 | 3.19 87 | 5.54 126 | 25.0 139 | 3.56 124 | 3.51 100 | 4.55 106 | 3.04 98 | 7.41 143 | 20.1 143 | 6.41 139 | 3.76 134 | 4.35 101 | 5.28 145 | 6.56 138 | 14.4 148 | 5.30 127 |
Learning Flow [11] | 121.8 | 4.23 80 | 11.7 86 | 3.41 87 | 4.16 103 | 15.3 126 | 3.42 106 | 6.78 106 | 16.9 116 | 3.83 106 | 6.41 135 | 25.3 140 | 4.25 132 | 4.66 149 | 6.01 157 | 4.00 132 | 6.33 136 | 20.7 144 | 5.30 128 | 3.09 110 | 4.84 120 | 2.91 107 | 7.08 141 | 15.0 150 | 5.27 126 |
StereoOF-V1MT [117] | 122.3 | 4.71 107 | 14.1 118 | 3.95 104 | 5.10 119 | 20.3 147 | 2.78 90 | 7.98 119 | 20.7 136 | 2.57 66 | 4.48 107 | 21.1 118 | 2.79 109 | 4.20 142 | 5.29 146 | 4.10 135 | 6.85 141 | 22.3 150 | 6.42 140 | 2.45 73 | 4.17 94 | 3.15 117 | 10.5 153 | 18.4 156 | 10.5 148 |
IAOF2 [51] | 123.6 | 5.38 117 | 13.7 108 | 4.50 120 | 5.95 126 | 14.6 120 | 5.61 125 | 8.80 131 | 18.8 128 | 9.40 129 | 12.2 149 | 23.8 134 | 13.1 153 | 3.86 123 | 4.89 129 | 3.12 101 | 5.21 121 | 14.9 105 | 4.54 121 | 4.33 145 | 5.15 131 | 3.93 133 | 4.39 112 | 8.57 102 | 3.87 104 |
TVL1_RVC [175] | 125.1 | 11.3 152 | 19.8 144 | 13.0 157 | 13.0 152 | 19.6 144 | 13.7 153 | 17.4 154 | 27.8 153 | 18.0 156 | 12.6 151 | 28.9 148 | 11.8 151 | 3.71 111 | 4.78 122 | 3.46 111 | 4.21 92 | 18.1 132 | 3.98 101 | 1.78 17 | 3.54 49 | 1.21 15 | 7.64 146 | 13.9 146 | 9.00 145 |
Modified CLG [34] | 126.3 | 7.17 131 | 17.1 136 | 6.47 139 | 6.85 130 | 14.9 122 | 7.48 135 | 14.0 143 | 24.8 144 | 15.7 151 | 8.35 142 | 27.3 147 | 6.36 140 | 3.96 128 | 4.99 136 | 4.08 134 | 4.54 102 | 19.3 139 | 4.15 107 | 2.33 64 | 3.86 77 | 2.40 78 | 6.00 133 | 13.8 145 | 5.40 128 |
GraphCuts [14] | 126.6 | 6.25 121 | 14.3 122 | 5.53 126 | 8.60 138 | 20.1 146 | 6.61 132 | 7.91 118 | 15.4 102 | 10.9 135 | 4.88 116 | 19.0 95 | 3.05 115 | 3.78 114 | 4.71 116 | 3.94 130 | 8.74 151 | 16.4 123 | 5.39 130 | 4.04 137 | 4.87 122 | 4.85 143 | 6.35 136 | 12.2 137 | 6.05 134 |
2D-CLG [1] | 126.8 | 10.1 149 | 22.6 154 | 7.59 145 | 9.84 146 | 16.9 134 | 11.1 150 | 16.9 153 | 28.2 154 | 18.8 159 | 14.1 153 | 31.1 152 | 13.1 153 | 3.86 123 | 4.62 112 | 4.53 143 | 5.98 132 | 21.2 145 | 5.97 135 | 1.76 15 | 3.14 8 | 1.46 20 | 6.29 135 | 12.9 142 | 5.81 131 |
Filter Flow [19] | 127.0 | 6.48 124 | 14.6 124 | 4.96 121 | 5.73 123 | 15.7 129 | 5.07 122 | 10.1 135 | 18.6 127 | 14.3 147 | 9.04 144 | 23.3 131 | 7.80 144 | 3.98 129 | 4.71 116 | 4.21 140 | 5.86 130 | 15.0 106 | 5.41 131 | 4.98 154 | 6.87 157 | 2.78 93 | 4.82 123 | 8.66 103 | 3.65 96 |
SPSA-learn [13] | 128.0 | 6.84 129 | 16.7 134 | 6.74 140 | 8.47 137 | 19.4 142 | 7.49 136 | 12.5 139 | 23.1 140 | 13.1 145 | 8.40 143 | 25.8 143 | 7.08 142 | 3.87 125 | 4.66 114 | 4.10 135 | 6.32 134 | 18.8 135 | 6.89 145 | 2.56 78 | 3.85 75 | 1.79 39 | 7.29 143 | 12.5 139 | 7.47 140 |
HBpMotionGpu [43] | 129.5 | 6.57 126 | 15.0 127 | 5.17 122 | 8.29 136 | 18.0 138 | 8.29 141 | 14.1 144 | 26.5 147 | 13.2 146 | 6.12 134 | 25.3 140 | 3.94 129 | 3.79 116 | 4.62 112 | 3.97 131 | 4.80 113 | 15.7 115 | 4.11 105 | 4.40 146 | 5.20 134 | 2.87 103 | 6.28 134 | 11.7 132 | 7.31 137 |
IAOF [50] | 130.5 | 6.49 125 | 14.6 124 | 6.42 137 | 9.22 142 | 18.5 140 | 7.94 138 | 16.4 152 | 27.4 151 | 13.0 144 | 8.22 140 | 22.2 126 | 7.73 143 | 3.77 113 | 4.76 121 | 3.42 109 | 6.84 140 | 18.8 135 | 4.23 111 | 3.59 127 | 4.46 106 | 2.83 97 | 7.51 145 | 10.1 118 | 10.6 149 |
GroupFlow [9] | 131.2 | 8.00 137 | 18.6 139 | 8.09 147 | 11.1 149 | 23.7 153 | 10.3 148 | 12.6 140 | 25.6 145 | 12.8 143 | 5.84 130 | 20.3 112 | 4.39 134 | 4.69 150 | 5.81 153 | 3.67 121 | 9.29 152 | 22.4 151 | 10.1 154 | 2.11 47 | 3.99 87 | 2.29 74 | 5.75 130 | 10.0 115 | 7.39 139 |
Black & Anandan [4] | 131.8 | 6.81 128 | 15.4 128 | 7.43 142 | 8.77 140 | 19.5 143 | 7.35 133 | 13.0 141 | 22.9 138 | 12.5 141 | 8.29 141 | 26.1 144 | 6.77 141 | 4.18 141 | 5.28 145 | 3.69 123 | 6.19 133 | 20.0 142 | 5.34 129 | 3.63 128 | 5.05 127 | 1.79 39 | 6.45 137 | 12.2 137 | 5.17 123 |
BlockOverlap [61] | 134.8 | 6.67 127 | 13.1 105 | 5.87 132 | 6.62 129 | 13.9 114 | 6.53 131 | 10.6 138 | 19.5 131 | 10.1 132 | 6.97 138 | 24.9 138 | 5.13 137 | 4.38 144 | 4.61 111 | 6.37 155 | 7.47 145 | 15.7 115 | 6.05 136 | 6.23 157 | 6.41 155 | 13.0 160 | 6.92 140 | 9.60 112 | 12.2 152 |
Nguyen [33] | 135.8 | 7.88 136 | 16.8 135 | 7.02 141 | 13.4 154 | 19.0 141 | 15.3 154 | 17.6 155 | 28.9 155 | 17.2 154 | 12.0 148 | 26.9 145 | 11.6 150 | 4.38 144 | 5.07 142 | 5.58 151 | 5.69 129 | 19.7 141 | 5.93 134 | 2.75 90 | 4.02 90 | 1.91 55 | 6.59 139 | 12.5 139 | 6.52 136 |
2bit-BM-tele [96] | 136.6 | 8.00 137 | 15.8 129 | 8.40 149 | 4.91 118 | 13.4 110 | 4.67 120 | 8.14 121 | 19.0 130 | 5.12 112 | 6.62 137 | 23.5 133 | 5.04 136 | 4.08 135 | 4.78 122 | 4.61 145 | 8.68 150 | 18.8 135 | 8.31 148 | 6.46 159 | 7.08 159 | 9.47 156 | 7.36 144 | 14.1 147 | 9.62 146 |
UnFlow [127] | 136.6 | 14.6 161 | 25.8 159 | 9.09 151 | 9.40 145 | 16.8 133 | 9.89 147 | 14.2 145 | 26.9 148 | 11.2 137 | 10.0 145 | 25.4 142 | 8.67 146 | 5.43 157 | 5.90 154 | 6.72 156 | 8.64 149 | 24.0 153 | 9.41 152 | 3.51 122 | 4.90 123 | 1.37 18 | 4.37 110 | 12.6 141 | 3.33 85 |
Horn & Schunck [3] | 142.5 | 8.01 139 | 19.9 146 | 8.38 148 | 9.13 141 | 23.2 152 | 7.71 137 | 14.2 145 | 25.9 146 | 14.6 149 | 12.4 150 | 30.6 150 | 11.3 149 | 4.64 148 | 5.64 149 | 4.60 144 | 8.21 148 | 24.4 154 | 8.45 149 | 4.01 135 | 5.41 139 | 1.95 58 | 9.16 149 | 17.5 151 | 8.86 144 |
SILK [80] | 143.8 | 9.34 147 | 20.4 147 | 10.5 154 | 10.4 147 | 21.9 149 | 10.3 148 | 16.0 151 | 27.5 152 | 14.5 148 | 10.3 146 | 29.0 149 | 8.54 145 | 4.81 151 | 5.65 150 | 5.56 150 | 9.41 153 | 25.4 156 | 8.74 150 | 2.79 94 | 3.68 63 | 4.62 141 | 10.9 154 | 17.8 153 | 12.3 153 |
Heeger++ [102] | 145.6 | 11.9 155 | 21.8 151 | 8.08 146 | 12.5 150 | 29.7 161 | 9.42 146 | 14.8 148 | 27.1 149 | 9.68 130 | 14.3 154 | 31.0 151 | 12.7 152 | 4.98 153 | 5.74 151 | 4.97 147 | 17.5 161 | 34.1 162 | 18.4 161 | 2.75 90 | 5.44 140 | 2.15 68 | 12.3 156 | 18.8 157 | 14.8 156 |
TI-DOFE [24] | 146.6 | 13.4 159 | 23.2 155 | 16.5 161 | 16.5 157 | 24.1 154 | 18.2 159 | 20.2 161 | 31.1 161 | 20.6 160 | 19.9 159 | 32.9 155 | 20.8 160 | 4.89 152 | 5.90 154 | 5.54 149 | 8.04 147 | 23.9 152 | 8.81 151 | 2.97 103 | 4.34 100 | 1.88 52 | 10.9 154 | 17.7 152 | 11.9 151 |
H+S_RVC [176] | 146.7 | 12.8 157 | 27.1 162 | 9.43 152 | 13.2 153 | 24.7 156 | 13.1 152 | 18.4 159 | 30.6 159 | 18.2 158 | 24.9 162 | 35.5 159 | 25.3 162 | 5.24 154 | 5.33 147 | 8.05 158 | 13.9 159 | 30.6 160 | 16.1 159 | 2.14 51 | 4.43 105 | 2.05 63 | 15.1 160 | 20.0 159 | 14.2 155 |
HCIC-L [97] | 151.0 | 15.7 162 | 22.0 153 | 10.1 153 | 31.5 163 | 26.6 159 | 41.0 163 | 14.8 148 | 23.1 140 | 16.8 153 | 18.4 158 | 34.4 157 | 18.2 159 | 5.94 158 | 6.35 158 | 6.35 154 | 10.6 156 | 19.2 138 | 11.4 156 | 18.7 163 | 17.8 163 | 19.2 162 | 4.93 126 | 8.34 100 | 5.16 121 |
SLK [47] | 151.0 | 11.6 153 | 26.0 160 | 14.6 160 | 15.3 156 | 25.0 157 | 17.5 157 | 17.8 157 | 30.1 158 | 18.1 157 | 25.4 163 | 33.6 156 | 28.0 163 | 5.25 155 | 5.90 154 | 7.03 157 | 10.3 155 | 27.4 158 | 10.6 155 | 2.89 100 | 4.47 107 | 2.94 109 | 14.9 159 | 20.7 160 | 18.8 159 |
FFV1MT [104] | 152.0 | 12.0 156 | 23.3 156 | 8.83 150 | 10.7 148 | 26.6 159 | 8.71 143 | 15.6 150 | 29.0 156 | 12.0 139 | 16.6 157 | 36.3 161 | 15.5 156 | 6.51 161 | 6.40 159 | 10.4 161 | 16.2 160 | 30.7 161 | 17.7 160 | 3.41 120 | 5.44 140 | 3.35 126 | 12.3 156 | 18.8 157 | 14.8 156 |
Adaptive flow [45] | 153.9 | 13.2 158 | 20.8 148 | 14.0 159 | 17.1 159 | 22.0 150 | 17.9 158 | 18.1 158 | 27.1 149 | 22.8 162 | 11.8 147 | 31.1 152 | 10.5 147 | 6.35 160 | 7.13 161 | 6.25 153 | 9.87 154 | 21.8 148 | 9.44 153 | 12.6 162 | 11.4 162 | 20.0 163 | 7.75 147 | 13.6 143 | 7.73 141 |
PGAM+LK [55] | 155.3 | 11.8 154 | 25.6 157 | 13.9 158 | 14.8 155 | 24.4 155 | 16.7 156 | 13.2 142 | 24.0 143 | 15.0 150 | 16.2 156 | 41.2 163 | 15.3 155 | 5.40 156 | 5.45 148 | 8.10 159 | 12.3 158 | 26.5 157 | 12.1 157 | 7.42 160 | 8.24 161 | 7.87 154 | 13.2 158 | 18.3 155 | 19.4 160 |
Periodicity [79] | 156.1 | 11.2 151 | 27.0 161 | 7.46 144 | 16.6 158 | 29.8 163 | 18.2 159 | 25.3 163 | 31.2 163 | 24.9 163 | 12.7 152 | 35.7 160 | 11.1 148 | 31.7 163 | 41.4 163 | 25.1 163 | 23.8 163 | 41.5 163 | 23.8 163 | 2.92 101 | 5.62 144 | 6.90 152 | 18.6 162 | 33.1 163 | 22.3 161 |
FOLKI [16] | 157.0 | 10.5 150 | 25.6 157 | 11.9 156 | 20.9 161 | 26.2 158 | 26.1 161 | 17.6 155 | 31.1 161 | 16.5 152 | 15.4 155 | 32.6 154 | 16.0 157 | 6.16 159 | 6.53 160 | 9.07 160 | 12.2 157 | 29.7 159 | 13.0 158 | 4.67 150 | 5.83 148 | 9.41 155 | 18.2 161 | 22.8 161 | 25.1 162 |
Pyramid LK [2] | 159.8 | 13.9 160 | 20.9 149 | 21.4 163 | 24.1 162 | 23.1 151 | 30.2 162 | 20.9 162 | 29.5 157 | 21.9 161 | 22.2 161 | 34.6 158 | 25.0 161 | 18.7 162 | 23.1 162 | 20.2 162 | 21.2 162 | 24.5 155 | 21.0 162 | 6.41 158 | 7.02 158 | 10.8 158 | 25.6 163 | 31.5 162 | 34.5 163 |
AdaConv-v1 [124] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
SepConv-v1 [125] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
SuperSlomo [130] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
CtxSyn [134] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
CyclicGen [149] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
TOF-M [150] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
MPRN [151] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
DAIN [152] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
FRUCnet [153] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
OFRI [154] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
FGME [158] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
MS-PFT [159] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
MEMC-Net+ [160] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
ADC [161] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
DSepConv [162] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
MAF-net [163] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
STAR-Net [164] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
AdaCoF [165] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
TC-GAN [166] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
FeFlow [167] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
DAI [168] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
SoftSplat [169] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
STSR [170] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
BMBC [171] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
GDCN [172] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
EDSC [173] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
MV_VFI [183] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
DistillNet [184] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
SepConv++ [185] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
EAFI [186] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
FLAVR [188] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
SoftsplatAug [190] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
ProBoost-Net [191] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
IDIAL [192] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
IFRNet [193] | 164.4 | 39.2 164 | 39.9 164 | 41.8 164 | 73.0 164 | 74.5 164 | 71.1 164 | 70.1 164 | 67.3 164 | 71.8 164 | 64.4 164 | 66.2 164 | 65.9 164 | 76.5 165 | 78.1 165 | 72.0 165 | 68.2 165 | 64.9 165 | 66.5 165 | 52.3 165 | 45.1 165 | 70.9 165 | 81.8 164 | 81.6 164 | 82.3 164 |
AVG_FLOW_ROB [137] | 185.9 | 62.1 199 | 56.6 199 | 61.5 199 | 99.9 199 | 96.7 199 | 99.9 199 | 81.2 199 | 81.9 199 | 80.3 199 | 65.8 199 | 68.9 199 | 67.4 199 | 68.4 164 | 75.2 164 | 67.5 164 | 62.4 164 | 55.3 164 | 59.6 164 | 31.5 164 | 28.0 164 | 29.3 164 | 86.1 199 | 96.7 199 | 87.2 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |