Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
A99 interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
SoftsplatAug [190] | 3.1 | 8.04 1 | 11.2 1 | 2.38 1 | 9.66 2 | 13.2 2 | 2.94 2 | 4.36 1 | 10.0 6 | 2.38 3 | 11.4 2 | 15.2 2 | 6.68 2 | 27.8 2 | 34.0 2 | 8.35 13 | 15.3 3 | 28.5 4 | 4.12 4 | 22.1 3 | 47.5 4 | 3.65 9 | 19.6 2 | 27.7 3 | 2.94 1 |
SoftSplat [169] | 5.7 | 8.35 4 | 11.9 4 | 2.65 12 | 11.1 5 | 15.7 8 | 3.00 3 | 4.36 1 | 8.76 3 | 2.16 1 | 11.2 1 | 15.5 3 | 6.68 2 | 31.2 19 | 39.2 19 | 8.29 12 | 16.5 7 | 29.8 5 | 4.12 4 | 23.6 5 | 50.2 5 | 3.56 5 | 19.7 3 | 28.6 4 | 2.94 1 |
EAFI [186] | 8.3 | 8.66 8 | 12.8 7 | 2.38 1 | 9.35 1 | 12.2 1 | 2.89 1 | 5.00 5 | 8.04 1 | 2.16 1 | 11.4 2 | 15.0 1 | 6.35 1 | 36.5 27 | 44.9 27 | 8.60 22 | 20.0 20 | 36.3 21 | 4.08 1 | 25.1 15 | 56.7 19 | 3.51 1 | 21.6 10 | 29.6 6 | 2.94 1 |
DistillNet [184] | 10.5 | 8.35 4 | 12.2 5 | 2.52 6 | 10.1 3 | 14.0 3 | 3.56 11 | 4.83 3 | 9.15 5 | 2.38 3 | 12.4 6 | 16.9 6 | 6.83 4 | 30.4 12 | 37.2 11 | 8.81 28 | 20.4 24 | 36.3 21 | 4.20 7 | 26.9 20 | 56.5 18 | 3.70 15 | 22.4 12 | 31.2 10 | 3.11 14 |
SepConv++ [185] | 11.7 | 9.09 19 | 15.7 25 | 2.71 16 | 11.7 9 | 16.4 10 | 3.42 4 | 10.7 33 | 11.0 12 | 3.00 17 | 14.7 15 | 21.6 17 | 7.51 45 | 29.7 8 | 36.8 8 | 7.79 1 | 14.1 2 | 27.8 3 | 4.08 1 | 22.2 4 | 47.1 3 | 3.51 1 | 20.3 5 | 34.4 21 | 2.94 1 |
FGME [158] | 12.8 | 8.37 6 | 12.8 7 | 2.38 1 | 13.8 30 | 18.1 21 | 4.65 129 | 6.35 7 | 10.0 6 | 3.00 17 | 12.1 5 | 16.3 5 | 7.14 7 | 28.2 3 | 35.1 3 | 8.10 4 | 15.5 5 | 31.7 8 | 4.24 14 | 19.6 2 | 44.9 2 | 3.56 5 | 20.4 6 | 29.6 6 | 3.00 7 |
IFRNet [193] | 13.8 | 8.19 2 | 11.4 2 | 2.65 12 | 10.6 4 | 14.7 4 | 3.87 71 | 4.83 3 | 8.68 2 | 2.38 3 | 11.6 4 | 16.0 4 | 7.85 116 | 28.6 4 | 35.1 3 | 8.60 22 | 18.4 11 | 33.5 12 | 4.24 14 | 24.1 10 | 53.2 7 | 3.51 1 | 21.1 9 | 29.2 5 | 3.00 7 |
BMBC [171] | 16.7 | 9.11 20 | 12.8 7 | 2.71 16 | 11.8 10 | 16.8 12 | 3.56 11 | 9.56 21 | 14.3 29 | 3.37 118 | 13.1 9 | 18.7 8 | 7.00 5 | 30.1 10 | 37.1 10 | 9.35 34 | 16.3 6 | 29.8 5 | 4.24 14 | 23.7 6 | 50.9 6 | 3.70 15 | 20.9 7 | 30.1 8 | 3.11 14 |
STAR-Net [164] | 17.3 | 8.39 7 | 12.4 6 | 2.71 16 | 14.7 59 | 20.0 38 | 3.92 79 | 10.2 26 | 10.4 10 | 2.94 15 | 14.1 12 | 19.8 11 | 7.05 6 | 28.6 4 | 35.2 5 | 8.35 13 | 19.0 13 | 33.0 11 | 4.20 7 | 24.3 11 | 54.7 15 | 3.70 15 | 21.9 11 | 31.8 11 | 3.11 14 |
EDSC [173] | 17.3 | 9.13 21 | 15.0 19 | 2.52 6 | 12.5 12 | 17.3 14 | 4.08 89 | 9.35 20 | 12.3 17 | 2.94 15 | 14.7 15 | 21.2 16 | 7.33 12 | 30.4 12 | 37.8 16 | 8.27 9 | 19.5 17 | 38.5 28 | 4.20 7 | 23.8 7 | 53.2 7 | 3.56 5 | 23.4 16 | 36.9 29 | 3.00 7 |
AdaCoF [165] | 22.0 | 9.18 22 | 15.6 24 | 2.83 52 | 12.2 11 | 16.6 11 | 3.87 71 | 10.3 27 | 11.4 13 | 3.00 17 | 17.1 32 | 22.6 22 | 7.72 102 | 34.7 24 | 43.0 24 | 8.35 13 | 16.9 9 | 30.9 7 | 4.12 4 | 25.0 13 | 54.0 10 | 3.51 1 | 21.0 8 | 30.7 9 | 2.94 1 |
CtxSyn [134] | 22.9 | 9.38 23 | 14.7 17 | 2.58 10 | 11.5 7 | 16.1 9 | 3.65 35 | 9.04 19 | 12.7 20 | 3.00 17 | 12.6 8 | 19.2 10 | 7.33 12 | 38.7 31 | 47.5 28 | 9.56 35 | 22.9 30 | 38.0 27 | 4.76 30 | 31.6 34 | 64.3 32 | 3.92 29 | 24.8 31 | 36.2 27 | 3.37 28 |
IDIAL [192] | 24.8 | 8.66 8 | 13.4 12 | 2.52 6 | 13.0 19 | 18.4 23 | 4.08 89 | 7.35 9 | 10.3 8 | 2.71 6 | 14.2 14 | 20.7 13 | 7.14 7 | 30.3 11 | 38.2 17 | 8.60 22 | 18.7 12 | 32.6 10 | 4.20 7 | 25.9 17 | 55.6 17 | 4.08 78 | 22.5 13 | 33.3 18 | 3.65 159 |
DSepConv [162] | 25.8 | 9.49 25 | 17.4 33 | 2.71 16 | 13.2 24 | 17.8 20 | 4.73 134 | 9.68 22 | 12.7 20 | 3.00 17 | 18.3 63 | 24.5 31 | 7.33 12 | 30.4 12 | 37.5 13 | 8.49 17 | 20.0 20 | 36.8 23 | 4.24 14 | 24.0 8 | 54.4 11 | 3.65 9 | 24.5 28 | 37.5 33 | 3.11 14 |
STSR [170] | 28.7 | 9.49 25 | 14.9 18 | 2.65 12 | 11.2 6 | 15.3 5 | 4.20 99 | 8.68 15 | 12.5 19 | 2.71 6 | 13.3 10 | 20.0 12 | 8.19 147 | 38.8 32 | 48.0 32 | 8.68 25 | 23.3 33 | 40.7 32 | 4.43 23 | 30.4 31 | 63.9 30 | 3.70 15 | 24.5 28 | 34.3 20 | 3.11 14 |
MV_VFI [183] | 28.9 | 8.98 14 | 15.4 23 | 2.83 52 | 12.9 17 | 17.4 15 | 5.07 147 | 8.68 15 | 12.7 20 | 2.71 6 | 15.8 21 | 23.3 26 | 8.60 162 | 30.5 15 | 37.4 12 | 8.23 7 | 19.1 14 | 34.9 17 | 4.24 14 | 28.5 24 | 59.7 24 | 3.65 9 | 23.6 18 | 33.0 14 | 3.00 7 |
DAIN [152] | 29.4 | 9.06 18 | 15.1 20 | 2.83 52 | 13.0 19 | 17.6 16 | 5.03 146 | 8.35 11 | 12.4 18 | 2.71 6 | 15.7 20 | 22.7 24 | 8.68 165 | 30.7 17 | 37.6 15 | 8.27 9 | 19.1 14 | 34.6 14 | 4.32 22 | 28.7 27 | 59.7 24 | 3.65 9 | 23.6 18 | 33.1 15 | 3.00 7 |
TC-GAN [166] | 29.5 | 9.04 16 | 15.2 22 | 2.83 52 | 12.9 17 | 17.6 16 | 5.07 147 | 8.68 15 | 12.7 20 | 2.71 6 | 15.8 21 | 23.2 25 | 8.76 169 | 30.5 15 | 37.5 13 | 8.23 7 | 19.1 14 | 34.7 16 | 4.24 14 | 28.5 24 | 59.8 26 | 3.65 9 | 23.7 21 | 33.1 15 | 3.00 7 |
ProBoost-Net [191] | 32.0 | 8.76 12 | 14.4 14 | 2.38 1 | 15.9 90 | 20.4 47 | 5.35 160 | 8.00 10 | 11.7 14 | 2.71 6 | 14.1 12 | 21.7 18 | 7.85 116 | 35.1 25 | 43.3 25 | 8.76 26 | 20.7 25 | 37.9 26 | 4.51 26 | 25.3 16 | 57.6 21 | 3.70 15 | 24.0 24 | 36.0 26 | 3.11 14 |
MEMC-Net+ [160] | 33.4 | 8.83 13 | 14.0 13 | 2.94 94 | 13.2 24 | 17.7 18 | 5.10 156 | 10.7 33 | 13.3 25 | 3.00 17 | 15.5 19 | 22.5 21 | 8.76 169 | 33.9 23 | 41.7 22 | 8.58 21 | 19.6 18 | 34.2 13 | 4.20 7 | 28.2 23 | 58.5 22 | 3.65 9 | 23.6 18 | 33.2 17 | 3.00 7 |
MAF-net [163] | 33.9 | 8.70 10 | 14.4 14 | 2.38 1 | 15.3 72 | 19.6 32 | 5.07 147 | 8.76 18 | 12.7 20 | 3.00 17 | 16.2 23 | 21.9 19 | 8.12 141 | 38.1 28 | 47.5 28 | 8.89 30 | 22.7 29 | 41.4 34 | 4.51 26 | 27.1 21 | 58.6 23 | 3.70 15 | 23.8 22 | 33.8 19 | 3.16 24 |
FRUCnet [153] | 34.8 | 9.49 25 | 16.1 28 | 3.42 174 | 13.1 23 | 17.7 18 | 4.55 121 | 9.68 22 | 12.0 16 | 3.56 141 | 15.3 18 | 21.9 19 | 7.59 69 | 31.6 21 | 39.4 20 | 7.94 2 | 18.3 10 | 34.6 14 | 4.24 14 | 25.0 13 | 54.4 11 | 3.70 15 | 22.8 14 | 32.7 13 | 3.11 14 |
CyclicGen [149] | 35.5 | 8.29 3 | 11.7 3 | 3.46 176 | 11.6 8 | 15.3 5 | 5.94 175 | 9.68 22 | 15.0 31 | 3.42 136 | 16.7 26 | 21.0 14 | 10.3 182 | 29.8 9 | 37.0 9 | 8.04 3 | 12.4 1 | 21.2 1 | 4.65 28 | 18.4 1 | 39.9 1 | 3.70 15 | 16.6 1 | 22.9 1 | 2.94 1 |
OFRI [154] | 35.5 | 8.70 10 | 12.8 7 | 3.00 112 | 13.8 30 | 18.7 26 | 4.83 141 | 7.00 8 | 9.04 4 | 2.71 6 | 13.4 11 | 18.7 8 | 8.74 168 | 31.1 18 | 38.2 17 | 8.50 18 | 22.0 27 | 37.5 24 | 4.43 23 | 28.5 24 | 61.2 27 | 4.08 78 | 23.0 15 | 32.6 12 | 3.42 38 |
ADC [161] | 36.9 | 9.68 30 | 16.1 28 | 2.94 94 | 12.7 13 | 17.1 13 | 4.43 114 | 12.0 104 | 13.4 26 | 3.00 17 | 19.3 86 | 24.9 32 | 8.04 133 | 33.7 22 | 41.9 23 | 8.27 9 | 20.0 20 | 35.9 20 | 4.20 7 | 24.0 8 | 53.9 9 | 3.56 5 | 24.4 27 | 37.3 31 | 3.11 14 |
PMMST [112] | 39.0 | 11.2 42 | 21.1 40 | 2.71 16 | 13.8 30 | 19.7 34 | 3.65 35 | 10.3 27 | 19.2 38 | 2.71 6 | 16.8 28 | 30.8 54 | 7.53 52 | 41.1 38 | 51.1 40 | 10.0 50 | 24.6 35 | 43.0 39 | 4.93 50 | 34.2 51 | 70.9 51 | 4.04 37 | 28.8 46 | 45.4 59 | 3.42 38 |
MDP-Flow2 [68] | 39.6 | 11.0 35 | 20.7 38 | 2.71 16 | 13.9 36 | 19.9 37 | 3.46 6 | 10.3 27 | 20.3 46 | 3.00 17 | 16.7 26 | 30.0 45 | 7.35 22 | 41.0 37 | 50.7 37 | 10.1 64 | 27.1 75 | 44.9 55 | 4.97 59 | 33.6 41 | 70.1 44 | 3.92 29 | 29.2 50 | 47.0 71 | 3.42 38 |
GDCN [172] | 40.5 | 9.04 16 | 15.1 20 | 2.65 12 | 16.0 94 | 20.4 47 | 4.55 121 | 8.35 11 | 11.7 14 | 3.37 118 | 21.2 129 | 23.7 27 | 8.16 144 | 31.3 20 | 39.5 21 | 8.16 5 | 19.8 19 | 35.3 19 | 4.43 23 | 24.4 12 | 54.7 15 | 3.79 24 | 23.9 23 | 35.8 24 | 3.11 14 |
DAI [168] | 40.7 | 9.42 24 | 13.1 11 | 3.37 165 | 14.7 59 | 19.1 29 | 8.35 195 | 5.29 6 | 10.3 8 | 2.71 6 | 12.4 6 | 17.6 7 | 12.6 191 | 36.4 26 | 44.6 26 | 8.50 18 | 21.7 26 | 37.7 25 | 4.24 14 | 28.8 28 | 64.1 31 | 3.70 15 | 24.1 25 | 34.7 22 | 3.11 14 |
FeFlow [167] | 41.0 | 9.00 15 | 14.6 16 | 2.58 10 | 14.4 48 | 19.0 28 | 5.74 168 | 8.35 11 | 10.7 11 | 3.11 109 | 15.2 17 | 21.1 15 | 8.91 172 | 29.5 7 | 35.8 6 | 8.54 20 | 20.2 23 | 35.2 18 | 4.20 7 | 26.1 18 | 54.4 11 | 4.08 78 | 24.2 26 | 39.3 34 | 3.56 115 |
CoT-AMFlow [174] | 43.6 | 11.1 39 | 21.0 39 | 2.71 16 | 14.0 37 | 20.0 38 | 3.56 11 | 10.7 33 | 24.0 89 | 3.00 17 | 16.8 28 | 30.0 45 | 7.35 22 | 41.4 41 | 51.1 40 | 10.1 64 | 26.7 67 | 45.3 58 | 4.97 59 | 34.0 46 | 70.0 43 | 4.04 37 | 29.5 59 | 47.8 81 | 3.42 38 |
MPRN [151] | 45.5 | 10.0 32 | 16.4 31 | 2.71 16 | 15.9 90 | 19.8 36 | 4.24 102 | 11.7 88 | 21.7 62 | 3.46 137 | 17.5 41 | 24.3 29 | 7.62 76 | 38.3 29 | 47.6 30 | 8.98 31 | 22.6 28 | 39.0 30 | 4.76 30 | 30.9 33 | 64.5 33 | 3.83 25 | 24.9 32 | 36.8 28 | 3.16 24 |
SuperSlomo [130] | 48.5 | 9.66 29 | 16.1 28 | 3.37 165 | 15.4 74 | 20.4 47 | 6.06 179 | 8.43 14 | 14.4 30 | 3.00 17 | 17.1 32 | 23.8 28 | 8.58 160 | 38.5 30 | 47.8 31 | 8.76 26 | 23.1 32 | 40.8 33 | 4.80 34 | 30.2 30 | 62.5 28 | 3.87 26 | 25.2 33 | 37.4 32 | 3.32 26 |
NNF-Local [75] | 50.8 | 11.4 48 | 21.6 43 | 2.71 16 | 12.8 14 | 18.4 23 | 3.56 11 | 10.4 31 | 20.0 44 | 3.00 17 | 19.8 99 | 37.3 135 | 7.35 22 | 41.5 44 | 51.4 42 | 10.0 50 | 28.2 108 | 47.3 79 | 5.07 93 | 34.5 54 | 71.9 66 | 4.04 37 | 29.1 49 | 46.1 65 | 3.37 28 |
TOF-M [150] | 53.8 | 10.2 33 | 16.8 32 | 2.71 16 | 15.9 90 | 20.5 53 | 5.74 168 | 11.1 61 | 14.0 28 | 3.70 142 | 17.7 46 | 24.3 29 | 7.94 125 | 39.4 33 | 49.1 33 | 9.11 33 | 23.0 31 | 38.8 29 | 4.80 34 | 29.5 29 | 63.4 29 | 4.04 37 | 25.8 34 | 37.1 30 | 3.56 115 |
NN-field [71] | 54.3 | 11.5 56 | 22.9 56 | 2.71 16 | 13.0 19 | 18.6 25 | 3.42 4 | 12.3 125 | 19.7 39 | 3.00 17 | 21.1 128 | 39.8 154 | 7.44 37 | 41.4 41 | 51.4 42 | 10.0 50 | 27.5 86 | 46.4 68 | 4.97 59 | 33.8 44 | 71.0 54 | 4.04 37 | 29.3 52 | 46.2 66 | 3.37 28 |
SepConv-v1 [125] | 54.9 | 9.68 30 | 19.1 34 | 2.52 6 | 15.4 74 | 20.1 42 | 5.26 158 | 11.0 45 | 16.7 33 | 3.87 158 | 20.4 115 | 26.8 33 | 9.59 181 | 41.9 47 | 52.5 54 | 9.00 32 | 24.7 36 | 42.4 36 | 4.69 29 | 30.7 32 | 67.4 34 | 3.92 29 | 24.7 30 | 35.8 24 | 3.32 26 |
MS-PFT [159] | 55.3 | 9.49 25 | 15.8 26 | 2.71 16 | 14.2 42 | 20.3 44 | 4.55 121 | 11.9 102 | 13.7 27 | 5.00 173 | 16.8 28 | 22.6 22 | 9.20 179 | 29.3 6 | 35.9 7 | 8.87 29 | 16.8 8 | 32.2 9 | 4.80 34 | 27.4 22 | 56.8 20 | 4.69 184 | 23.4 16 | 35.2 23 | 3.70 165 |
NNF-EAC [101] | 61.6 | 11.5 56 | 21.7 44 | 3.11 130 | 14.5 56 | 21.0 67 | 3.70 38 | 12.3 125 | 22.6 72 | 3.00 17 | 17.7 46 | 32.4 75 | 7.55 60 | 43.2 78 | 55.1 86 | 10.1 64 | 25.1 39 | 43.8 42 | 4.90 43 | 34.0 46 | 70.5 47 | 4.08 78 | 29.4 55 | 47.5 77 | 3.42 38 |
FLAVR [188] | 62.7 | 11.7 69 | 15.8 26 | 3.00 112 | 12.8 14 | 15.6 7 | 4.65 129 | 11.3 65 | 15.0 31 | 4.00 160 | 31.5 185 | 36.5 127 | 13.5 192 | 27.7 1 | 33.7 1 | 8.35 13 | 15.3 3 | 26.0 2 | 4.08 1 | 26.5 19 | 54.4 11 | 4.24 165 | 20.0 4 | 27.5 2 | 3.70 165 |
PH-Flow [99] | 63.8 | 11.9 90 | 25.7 103 | 2.83 52 | 13.3 26 | 19.7 34 | 3.56 11 | 10.7 33 | 22.7 74 | 3.00 17 | 16.5 25 | 30.2 47 | 7.33 12 | 42.3 55 | 52.1 50 | 10.1 64 | 28.7 126 | 50.9 141 | 5.20 123 | 35.6 79 | 77.0 108 | 4.04 37 | 29.6 63 | 47.0 71 | 3.51 91 |
DeepFlow [85] | 65.5 | 11.3 46 | 24.2 73 | 3.00 112 | 16.6 111 | 23.0 115 | 4.32 106 | 11.0 45 | 20.3 46 | 3.00 17 | 19.3 86 | 28.1 37 | 7.59 69 | 42.7 63 | 54.5 72 | 10.2 89 | 25.2 41 | 44.1 43 | 5.00 85 | 32.9 36 | 68.2 35 | 4.04 37 | 28.4 42 | 44.6 50 | 3.56 115 |
DeepFlow2 [106] | 65.5 | 11.4 48 | 23.5 60 | 3.00 112 | 16.7 112 | 23.0 115 | 4.04 84 | 11.0 45 | 20.3 46 | 3.00 17 | 19.0 81 | 29.8 43 | 7.53 52 | 42.7 63 | 54.0 65 | 10.3 97 | 25.0 37 | 43.0 39 | 4.93 50 | 35.2 71 | 73.8 82 | 4.04 37 | 28.9 47 | 44.9 54 | 3.56 115 |
CombBMOF [111] | 65.9 | 12.0 97 | 24.3 74 | 2.83 52 | 14.3 46 | 20.6 56 | 3.56 11 | 11.3 65 | 25.7 103 | 3.00 17 | 20.3 113 | 34.9 105 | 7.55 60 | 43.2 78 | 54.0 65 | 10.1 64 | 26.4 58 | 47.7 87 | 4.90 43 | 36.2 102 | 71.4 58 | 4.08 78 | 29.5 59 | 45.7 62 | 3.37 28 |
GMFlow_RVC [196] | 66.2 | 12.7 150 | 31.3 161 | 2.71 16 | 13.8 30 | 20.2 43 | 3.46 6 | 10.7 33 | 21.0 55 | 3.00 17 | 19.0 81 | 37.3 135 | 7.33 12 | 43.6 87 | 54.3 69 | 10.2 89 | 28.3 111 | 54.5 171 | 4.83 37 | 34.0 46 | 71.7 62 | 4.04 37 | 29.4 55 | 44.5 47 | 3.42 38 |
DF-Auto [113] | 69.0 | 10.9 34 | 19.2 35 | 3.11 130 | 17.2 125 | 23.4 127 | 4.43 114 | 10.4 31 | 20.6 54 | 3.00 17 | 18.1 59 | 29.7 40 | 7.55 60 | 41.4 41 | 52.1 50 | 10.0 50 | 26.2 53 | 47.2 76 | 4.97 59 | 35.2 71 | 79.3 124 | 4.08 78 | 29.6 63 | 44.7 51 | 3.56 115 |
LME [70] | 70.0 | 11.4 48 | 22.0 49 | 2.71 16 | 15.1 68 | 21.8 80 | 3.87 71 | 11.3 65 | 36.0 179 | 3.00 17 | 17.4 36 | 32.0 72 | 7.48 41 | 44.5 108 | 57.0 106 | 11.4 187 | 27.6 88 | 47.2 76 | 4.97 59 | 33.6 41 | 69.7 39 | 4.04 37 | 30.0 70 | 48.6 90 | 3.42 38 |
IROF++ [58] | 71.6 | 11.9 90 | 24.1 71 | 2.83 52 | 14.7 59 | 21.3 69 | 3.56 11 | 12.1 121 | 29.0 136 | 3.00 17 | 16.3 24 | 27.9 35 | 7.35 22 | 43.9 94 | 56.0 95 | 11.1 144 | 26.4 58 | 47.0 75 | 4.93 50 | 34.5 54 | 72.3 68 | 4.08 78 | 30.3 80 | 49.3 100 | 3.56 115 |
MS_RAFT+_RVC [195] | 71.7 | 12.3 130 | 28.1 134 | 2.83 52 | 14.2 42 | 20.5 53 | 3.56 11 | 10.0 25 | 19.7 39 | 3.00 17 | 17.5 41 | 31.5 63 | 7.35 22 | 45.9 146 | 58.6 139 | 11.2 153 | 25.4 43 | 44.4 48 | 4.76 30 | 32.7 35 | 69.8 41 | 4.04 37 | 44.0 191 | 64.5 190 | 3.42 38 |
WLIF-Flow [91] | 72.0 | 11.5 56 | 22.1 51 | 2.83 52 | 15.2 69 | 21.6 76 | 3.79 61 | 11.3 65 | 26.4 113 | 3.00 17 | 17.4 36 | 30.3 49 | 7.59 69 | 42.5 59 | 53.5 60 | 10.4 107 | 29.0 134 | 51.1 144 | 5.29 142 | 34.8 60 | 69.7 39 | 4.04 37 | 30.0 70 | 48.4 86 | 3.46 76 |
CBF [12] | 72.1 | 11.0 35 | 19.8 36 | 3.00 112 | 17.1 120 | 22.9 111 | 4.24 102 | 12.0 104 | 19.0 35 | 3.00 17 | 17.8 52 | 28.0 36 | 7.85 116 | 40.6 36 | 49.9 35 | 9.97 42 | 26.2 53 | 44.6 50 | 4.97 59 | 36.3 104 | 76.3 100 | 4.12 137 | 27.9 37 | 41.2 37 | 3.70 165 |
FMOF [92] | 72.2 | 12.2 121 | 24.5 83 | 2.94 94 | 14.0 37 | 20.0 38 | 3.56 11 | 12.3 125 | 27.7 123 | 3.00 17 | 19.8 99 | 35.4 110 | 7.70 95 | 42.4 57 | 52.1 50 | 10.1 64 | 28.1 104 | 49.1 104 | 4.93 50 | 34.6 57 | 72.7 73 | 3.87 26 | 30.2 76 | 47.6 80 | 3.42 38 |
Aniso. Huber-L1 [22] | 72.9 | 11.4 48 | 21.7 44 | 3.11 130 | 19.7 166 | 24.7 164 | 4.55 121 | 12.0 104 | 19.7 39 | 3.11 109 | 18.4 66 | 29.8 43 | 7.55 60 | 42.5 59 | 54.4 71 | 9.98 47 | 25.2 41 | 42.2 35 | 4.83 37 | 35.6 79 | 71.5 59 | 4.04 37 | 27.9 37 | 42.0 39 | 3.56 115 |
CLG-TV [48] | 75.4 | 11.1 39 | 21.8 47 | 3.11 130 | 18.8 148 | 24.0 144 | 4.43 114 | 11.3 65 | 20.0 44 | 3.70 142 | 18.6 72 | 28.9 38 | 7.72 102 | 42.8 66 | 55.0 85 | 10.0 50 | 25.0 37 | 42.9 38 | 4.93 50 | 36.0 94 | 71.6 60 | 4.04 37 | 29.0 48 | 44.0 45 | 3.56 115 |
IROF-TV [53] | 75.9 | 11.7 69 | 24.7 90 | 3.00 112 | 15.5 78 | 22.0 91 | 3.70 38 | 11.0 45 | 23.7 84 | 3.00 17 | 17.3 34 | 31.3 58 | 7.57 68 | 43.8 92 | 56.0 95 | 11.2 153 | 27.6 88 | 48.4 95 | 4.97 59 | 35.9 92 | 74.5 91 | 4.08 78 | 28.0 39 | 42.6 41 | 3.56 115 |
PRAFlow_RVC [177] | 76.1 | 12.6 147 | 29.8 150 | 2.71 16 | 14.7 59 | 20.4 47 | 3.70 38 | 10.7 33 | 21.7 62 | 3.00 17 | 19.2 84 | 34.7 101 | 7.75 107 | 41.7 45 | 51.6 45 | 10.2 89 | 27.1 75 | 49.6 108 | 4.93 50 | 33.1 37 | 68.9 38 | 4.04 37 | 34.5 166 | 54.9 161 | 3.56 115 |
nLayers [57] | 76.2 | 11.8 78 | 22.9 56 | 2.83 52 | 14.1 40 | 20.4 47 | 3.56 11 | 11.0 45 | 19.7 39 | 3.00 17 | 18.3 63 | 34.2 97 | 7.39 31 | 46.7 168 | 60.1 163 | 11.0 137 | 27.9 96 | 50.1 114 | 5.20 123 | 35.5 77 | 72.6 72 | 4.08 78 | 30.8 86 | 49.3 100 | 3.42 38 |
RAFT-it+_RVC [198] | 76.3 | 12.7 150 | 36.8 177 | 2.71 16 | 13.8 30 | 20.3 44 | 3.46 6 | 10.7 33 | 24.4 96 | 3.00 17 | 20.8 124 | 41.9 165 | 7.33 12 | 42.3 55 | 52.0 48 | 10.1 64 | 29.0 134 | 52.8 162 | 8.39 198 | 33.1 37 | 68.5 36 | 4.04 37 | 30.5 83 | 46.9 70 | 3.42 38 |
Brox et al. [5] | 76.6 | 11.4 48 | 24.9 95 | 2.94 94 | 15.9 90 | 22.2 95 | 4.04 84 | 11.3 65 | 21.0 55 | 3.37 118 | 18.4 66 | 27.0 34 | 7.59 69 | 42.2 53 | 53.3 58 | 10.0 50 | 28.2 108 | 51.5 149 | 5.00 85 | 36.8 108 | 88.0 157 | 4.04 37 | 28.4 42 | 42.3 40 | 3.42 38 |
ALD-Flow [66] | 77.2 | 12.0 97 | 28.4 139 | 3.11 130 | 16.3 102 | 22.8 107 | 3.83 66 | 11.0 45 | 21.7 62 | 3.00 17 | 17.9 55 | 33.6 88 | 7.39 31 | 43.4 84 | 54.6 76 | 10.8 129 | 25.8 47 | 44.8 54 | 5.00 85 | 34.1 49 | 70.4 46 | 4.04 37 | 31.9 118 | 50.3 112 | 3.46 76 |
HCFN [157] | 78.4 | 12.0 97 | 27.4 126 | 2.71 16 | 15.5 78 | 21.9 87 | 3.70 38 | 11.3 65 | 23.9 88 | 3.00 17 | 17.9 55 | 34.4 98 | 7.33 12 | 43.1 74 | 53.9 64 | 10.2 89 | 26.4 58 | 46.2 65 | 6.68 194 | 37.4 116 | 76.8 105 | 4.08 78 | 31.6 108 | 50.5 115 | 3.42 38 |
Layers++ [37] | 78.5 | 11.4 48 | 21.7 44 | 2.94 94 | 12.8 14 | 18.2 22 | 3.46 6 | 11.0 45 | 26.7 116 | 3.00 17 | 17.7 46 | 32.9 80 | 7.53 52 | 46.6 166 | 60.9 176 | 10.6 121 | 30.9 177 | 60.2 187 | 5.00 85 | 34.9 66 | 72.7 73 | 3.87 26 | 29.9 69 | 47.5 77 | 3.46 76 |
MDP-Flow [26] | 78.6 | 11.2 42 | 21.2 41 | 2.71 16 | 14.2 42 | 20.5 53 | 3.70 38 | 10.7 33 | 19.0 35 | 3.00 17 | 19.7 97 | 32.4 75 | 7.70 95 | 44.2 99 | 57.0 106 | 11.2 153 | 30.0 161 | 51.4 148 | 5.51 173 | 36.1 99 | 72.9 76 | 4.08 78 | 30.8 86 | 48.4 86 | 3.42 38 |
JOF [136] | 79.2 | 12.0 97 | 23.6 62 | 3.11 130 | 14.0 37 | 20.0 38 | 3.70 38 | 11.0 45 | 23.8 87 | 3.00 17 | 18.1 59 | 31.5 63 | 7.35 22 | 44.7 111 | 57.6 115 | 11.3 174 | 29.5 151 | 50.1 114 | 5.07 93 | 34.5 54 | 71.6 60 | 4.04 37 | 31.2 95 | 50.3 112 | 3.51 91 |
RAFT-it [194] | 80.8 | 12.6 147 | 36.5 173 | 2.71 16 | 13.4 28 | 19.5 31 | 3.46 6 | 10.3 27 | 22.6 72 | 3.00 17 | 19.3 86 | 37.0 130 | 7.26 10 | 41.7 45 | 51.4 42 | 10.1 64 | 30.0 161 | 51.1 144 | 7.44 197 | 33.2 39 | 70.9 51 | 3.92 29 | 46.5 194 | 66.7 193 | 3.42 38 |
COFM [59] | 82.5 | 11.8 78 | 24.3 74 | 2.94 94 | 14.5 56 | 20.9 64 | 3.65 35 | 11.0 45 | 26.4 113 | 3.00 17 | 17.4 36 | 32.3 73 | 7.35 22 | 44.2 99 | 55.1 86 | 10.1 64 | 30.0 161 | 54.4 170 | 5.20 123 | 35.8 87 | 79.3 124 | 4.08 78 | 31.2 95 | 48.8 94 | 3.51 91 |
p-harmonic [29] | 82.5 | 11.4 48 | 23.5 60 | 2.83 52 | 19.1 153 | 24.3 153 | 4.80 138 | 11.3 65 | 22.0 66 | 3.70 142 | 20.9 126 | 31.7 66 | 7.62 76 | 42.6 62 | 54.2 68 | 10.1 64 | 25.7 46 | 43.5 41 | 5.07 93 | 36.1 99 | 71.8 63 | 4.08 78 | 29.6 63 | 46.5 67 | 3.51 91 |
LDOF [28] | 82.7 | 11.4 48 | 22.5 53 | 3.56 179 | 16.1 96 | 21.4 74 | 6.35 184 | 12.0 104 | 20.3 46 | 3.70 142 | 19.0 81 | 29.7 40 | 7.94 125 | 41.2 39 | 50.9 38 | 10.1 64 | 26.8 68 | 50.2 117 | 4.90 43 | 34.8 60 | 80.2 128 | 4.08 78 | 29.4 55 | 44.5 47 | 3.46 76 |
ProbFlowFields [126] | 83.0 | 11.6 61 | 25.4 99 | 2.83 52 | 14.4 48 | 21.1 68 | 3.56 11 | 10.7 33 | 23.7 84 | 3.00 17 | 18.4 66 | 33.4 85 | 7.59 69 | 46.2 154 | 59.2 148 | 11.2 153 | 28.5 122 | 50.7 135 | 5.32 148 | 34.7 58 | 76.9 106 | 4.08 78 | 29.4 55 | 46.5 67 | 3.46 76 |
Second-order prior [8] | 83.2 | 11.3 46 | 22.0 49 | 3.11 130 | 19.0 152 | 24.2 151 | 4.32 106 | 13.3 142 | 27.7 123 | 3.70 142 | 18.8 76 | 31.6 65 | 7.51 45 | 42.9 69 | 54.7 79 | 10.0 50 | 26.2 53 | 45.0 56 | 4.97 59 | 35.6 79 | 71.2 55 | 4.04 37 | 29.5 59 | 45.4 59 | 3.56 115 |
VCN_RVC [178] | 83.4 | 13.1 164 | 36.7 175 | 2.71 16 | 14.4 48 | 20.6 56 | 3.56 11 | 12.1 121 | 29.5 145 | 3.00 17 | 20.8 124 | 45.5 176 | 7.53 52 | 44.2 99 | 55.1 86 | 10.1 64 | 26.4 58 | 46.9 73 | 4.83 37 | 35.2 71 | 73.6 81 | 4.04 37 | 32.4 133 | 50.7 120 | 3.42 38 |
FlowFields [108] | 83.8 | 11.8 78 | 25.6 102 | 2.83 52 | 14.4 48 | 20.9 64 | 3.56 11 | 11.3 65 | 24.3 94 | 3.00 17 | 20.0 106 | 38.1 142 | 7.51 45 | 43.6 87 | 54.5 72 | 11.0 137 | 28.2 108 | 50.7 135 | 5.16 117 | 34.8 60 | 75.1 95 | 4.04 37 | 32.0 124 | 52.0 140 | 3.46 76 |
SIOF [67] | 84.0 | 11.7 69 | 23.1 58 | 3.11 130 | 19.4 160 | 24.8 167 | 4.76 135 | 11.3 65 | 25.7 103 | 3.11 109 | 18.4 66 | 31.4 60 | 8.04 133 | 40.3 35 | 50.3 36 | 9.95 40 | 25.8 47 | 45.3 58 | 4.97 59 | 33.9 45 | 71.2 55 | 4.08 78 | 30.0 70 | 47.4 74 | 3.70 165 |
EAI-Flow [147] | 85.0 | 12.5 143 | 26.8 118 | 2.83 52 | 15.8 88 | 21.8 80 | 4.20 99 | 12.3 125 | 30.4 156 | 3.00 17 | 19.3 86 | 34.0 94 | 7.39 31 | 44.9 118 | 57.1 110 | 11.1 144 | 26.1 52 | 46.0 62 | 5.00 85 | 36.0 94 | 72.4 70 | 4.08 78 | 29.3 52 | 45.2 57 | 3.37 28 |
Local-TV-L1 [65] | 85.2 | 11.2 42 | 21.5 42 | 3.56 179 | 19.6 164 | 24.4 156 | 5.57 167 | 11.0 45 | 19.1 37 | 3.00 17 | 18.3 63 | 30.4 52 | 7.87 122 | 42.8 66 | 54.5 72 | 10.2 89 | 26.2 53 | 44.7 51 | 5.45 161 | 34.2 51 | 76.1 98 | 4.08 78 | 28.0 39 | 42.8 43 | 3.65 159 |
TV-L1-MCT [64] | 87.1 | 12.4 138 | 24.7 90 | 2.83 52 | 16.4 103 | 23.1 117 | 3.83 66 | 11.9 102 | 32.7 166 | 3.00 17 | 17.6 43 | 31.7 66 | 7.53 52 | 47.0 177 | 61.2 177 | 11.0 137 | 25.5 44 | 44.7 51 | 4.97 59 | 36.0 94 | 80.7 132 | 4.04 37 | 28.4 42 | 44.8 53 | 3.46 76 |
UnDAF [187] | 87.3 | 12.7 150 | 29.8 150 | 2.71 16 | 15.6 82 | 22.1 92 | 3.70 38 | 13.0 138 | 34.3 173 | 3.00 17 | 24.8 167 | 43.3 172 | 7.55 60 | 42.0 48 | 52.0 48 | 10.0 50 | 26.6 65 | 44.3 47 | 5.07 93 | 37.2 115 | 73.5 80 | 4.08 78 | 30.8 86 | 48.7 93 | 3.42 38 |
HAST [107] | 87.8 | 11.7 69 | 23.6 62 | 2.94 94 | 13.8 30 | 19.6 32 | 3.56 11 | 12.0 104 | 31.7 162 | 3.00 17 | 17.8 52 | 31.7 66 | 7.14 7 | 45.3 126 | 57.0 106 | 9.97 42 | 33.7 190 | 62.8 193 | 5.10 111 | 38.4 132 | 88.4 159 | 4.04 37 | 33.0 145 | 51.0 122 | 3.42 38 |
Sparse-NonSparse [56] | 88.2 | 12.0 97 | 24.3 74 | 2.83 52 | 15.0 66 | 21.3 69 | 3.56 11 | 11.7 88 | 29.0 136 | 3.00 17 | 17.6 43 | 29.7 40 | 7.39 31 | 45.7 137 | 59.3 149 | 11.0 137 | 28.8 127 | 48.7 100 | 5.07 93 | 38.6 137 | 90.1 168 | 4.04 37 | 32.4 133 | 51.8 136 | 3.42 38 |
SegFlow [156] | 88.8 | 11.9 90 | 28.2 136 | 2.83 52 | 14.4 48 | 20.6 56 | 3.70 38 | 11.3 65 | 22.4 70 | 3.00 17 | 20.4 115 | 42.0 166 | 7.62 76 | 45.9 146 | 58.7 143 | 11.2 153 | 27.2 77 | 46.8 72 | 5.23 131 | 35.1 70 | 70.8 49 | 4.08 78 | 30.8 86 | 50.1 106 | 3.51 91 |
RAFT-TF_RVC [179] | 88.9 | 12.9 157 | 33.5 167 | 2.71 16 | 14.4 48 | 20.7 61 | 3.56 11 | 10.7 33 | 25.7 103 | 3.00 17 | 19.5 93 | 36.1 120 | 7.62 76 | 42.8 66 | 52.7 55 | 10.0 50 | 29.7 154 | 56.4 176 | 6.81 196 | 34.1 49 | 73.2 77 | 3.92 29 | 37.5 175 | 59.3 177 | 3.37 28 |
CPM-Flow [114] | 90.0 | 11.8 78 | 27.3 122 | 2.83 52 | 14.4 48 | 20.4 47 | 3.70 38 | 11.7 88 | 24.0 89 | 3.00 17 | 21.4 138 | 40.1 157 | 7.77 108 | 45.5 132 | 58.1 126 | 11.2 153 | 26.6 65 | 48.0 91 | 5.07 93 | 36.0 94 | 72.3 68 | 4.04 37 | 30.9 91 | 50.4 114 | 3.56 115 |
FlowFields+ [128] | 90.2 | 11.8 78 | 26.1 113 | 2.71 16 | 14.1 40 | 20.6 56 | 3.70 38 | 11.2 63 | 24.8 99 | 3.00 17 | 20.1 108 | 40.2 159 | 7.53 52 | 45.5 132 | 58.0 123 | 11.2 153 | 28.6 125 | 50.6 130 | 5.20 123 | 35.6 79 | 77.5 113 | 4.04 37 | 32.2 128 | 52.5 145 | 3.42 38 |
OAR-Flow [123] | 90.4 | 12.0 97 | 24.9 95 | 3.00 112 | 16.4 103 | 22.4 98 | 4.08 89 | 11.0 45 | 20.5 53 | 3.00 17 | 17.4 36 | 33.6 88 | 7.33 12 | 46.2 154 | 60.0 162 | 11.3 174 | 27.0 71 | 47.6 84 | 5.23 131 | 37.6 119 | 74.0 85 | 4.08 78 | 31.0 93 | 49.2 98 | 3.46 76 |
AGIF+OF [84] | 91.0 | 12.2 121 | 24.3 74 | 2.71 16 | 15.2 69 | 21.8 80 | 3.70 38 | 11.7 88 | 27.7 123 | 3.00 17 | 18.0 57 | 33.0 82 | 7.55 60 | 45.8 141 | 58.8 145 | 11.2 153 | 30.0 161 | 53.4 164 | 5.07 93 | 35.4 74 | 74.8 93 | 3.92 29 | 32.2 128 | 52.6 149 | 3.37 28 |
ComponentFusion [94] | 91.0 | 12.0 97 | 29.6 148 | 2.71 16 | 14.5 56 | 21.3 69 | 3.56 11 | 11.0 45 | 22.0 66 | 3.00 17 | 18.8 76 | 36.2 125 | 7.33 12 | 45.5 132 | 58.2 132 | 10.7 126 | 27.2 77 | 46.3 66 | 4.97 59 | 40.5 164 | 93.3 178 | 4.12 137 | 34.4 163 | 58.3 175 | 3.42 38 |
2DHMM-SAS [90] | 91.8 | 12.2 121 | 24.5 83 | 2.83 52 | 17.9 135 | 24.1 148 | 3.87 71 | 12.0 104 | 28.7 133 | 3.00 17 | 17.3 34 | 31.4 60 | 7.51 45 | 45.1 122 | 58.2 132 | 11.2 153 | 27.9 96 | 49.0 102 | 4.83 37 | 37.0 110 | 76.1 98 | 4.08 78 | 31.9 118 | 50.5 115 | 3.42 38 |
BlockOverlap [61] | 92.9 | 11.1 39 | 20.1 37 | 3.56 179 | 19.3 157 | 23.7 136 | 6.16 180 | 11.3 65 | 20.4 52 | 3.70 142 | 18.4 66 | 29.6 39 | 8.72 166 | 43.1 74 | 54.5 72 | 10.2 89 | 27.4 83 | 48.6 98 | 5.35 155 | 34.8 60 | 72.8 75 | 4.08 78 | 27.2 36 | 40.9 36 | 3.56 115 |
TC/T-Flow [77] | 93.9 | 12.4 138 | 26.4 115 | 2.83 52 | 16.5 109 | 23.1 117 | 3.83 66 | 11.0 45 | 22.4 70 | 3.00 17 | 18.9 78 | 34.5 99 | 7.33 12 | 45.5 132 | 58.1 126 | 11.4 187 | 27.3 82 | 47.6 84 | 4.93 50 | 41.1 167 | 80.4 130 | 4.20 154 | 30.9 91 | 49.7 104 | 3.37 28 |
Modified CLG [34] | 94.5 | 11.0 35 | 21.9 48 | 3.11 130 | 19.6 164 | 23.9 140 | 5.94 175 | 12.4 131 | 26.3 110 | 3.87 158 | 19.8 99 | 30.8 54 | 8.12 141 | 42.1 50 | 52.9 56 | 10.1 64 | 27.0 71 | 48.1 93 | 5.23 131 | 34.7 58 | 70.8 49 | 4.08 78 | 29.5 59 | 45.3 58 | 3.56 115 |
DPOF [18] | 94.5 | 12.3 130 | 29.4 146 | 3.11 130 | 13.3 26 | 19.1 29 | 3.56 11 | 15.7 159 | 25.2 101 | 3.70 142 | 19.4 91 | 37.5 138 | 7.59 69 | 43.1 74 | 54.6 76 | 10.0 50 | 29.1 140 | 49.7 109 | 4.90 43 | 36.6 106 | 77.0 108 | 4.08 78 | 31.5 106 | 50.5 115 | 3.51 91 |
F-TV-L1 [15] | 94.8 | 12.0 97 | 26.5 116 | 3.56 179 | 19.2 155 | 24.7 164 | 4.83 141 | 11.7 88 | 21.5 60 | 4.00 160 | 19.3 86 | 32.7 78 | 7.68 88 | 43.1 74 | 55.3 90 | 9.83 36 | 25.1 39 | 42.8 37 | 5.07 93 | 34.8 60 | 74.0 85 | 4.16 147 | 28.5 45 | 42.7 42 | 3.56 115 |
AdaConv-v1 [124] | 94.8 | 15.0 185 | 28.2 136 | 3.70 183 | 17.6 132 | 20.7 61 | 7.68 192 | 17.4 170 | 22.0 66 | 7.00 187 | 27.5 176 | 33.7 92 | 17.0 194 | 39.9 34 | 49.8 34 | 8.19 6 | 23.8 34 | 39.5 31 | 4.76 30 | 34.2 51 | 68.5 36 | 4.12 137 | 26.9 35 | 39.5 35 | 3.42 38 |
PMF [73] | 95.5 | 12.2 121 | 25.9 107 | 2.71 16 | 15.4 74 | 21.8 80 | 3.56 11 | 12.7 133 | 35.7 177 | 3.00 17 | 20.2 111 | 35.9 117 | 7.51 45 | 44.4 106 | 54.9 83 | 10.1 64 | 28.4 114 | 50.5 128 | 5.32 148 | 37.9 125 | 81.1 135 | 4.04 37 | 34.2 160 | 54.1 156 | 3.37 28 |
PGM-C [118] | 96.0 | 11.8 78 | 27.3 122 | 2.83 52 | 14.4 48 | 20.7 61 | 3.70 38 | 12.3 125 | 23.0 78 | 3.00 17 | 20.6 120 | 42.3 167 | 7.62 76 | 45.8 141 | 59.5 156 | 11.2 153 | 27.2 77 | 47.4 80 | 4.97 59 | 37.1 112 | 79.2 121 | 4.04 37 | 32.4 133 | 55.0 163 | 3.51 91 |
Ramp [62] | 96.7 | 12.0 97 | 24.6 86 | 2.94 94 | 14.8 64 | 21.3 69 | 3.70 38 | 11.7 88 | 29.4 142 | 3.00 17 | 16.9 31 | 30.3 49 | 7.39 31 | 45.4 129 | 58.5 135 | 11.0 137 | 30.2 169 | 50.9 141 | 5.23 131 | 39.8 154 | 89.6 165 | 4.04 37 | 32.4 133 | 52.5 145 | 3.42 38 |
OFLAF [78] | 97.0 | 11.7 69 | 24.5 83 | 2.71 16 | 13.6 29 | 20.3 44 | 3.56 11 | 11.0 45 | 23.0 78 | 3.00 17 | 17.6 43 | 31.3 58 | 7.39 31 | 47.3 179 | 61.7 182 | 11.2 153 | 29.6 152 | 51.9 156 | 5.32 148 | 41.8 173 | 95.6 183 | 4.16 147 | 33.6 152 | 52.1 142 | 3.42 38 |
ProFlow_ROB [142] | 97.8 | 11.8 78 | 27.5 127 | 2.83 52 | 15.8 88 | 22.6 102 | 3.79 61 | 11.4 84 | 20.3 46 | 3.00 17 | 18.9 78 | 37.0 130 | 7.35 22 | 47.3 179 | 61.8 185 | 11.2 153 | 25.5 44 | 44.2 44 | 4.83 37 | 40.0 160 | 81.4 137 | 4.08 78 | 34.3 162 | 56.5 169 | 3.56 115 |
S2F-IF [121] | 97.9 | 12.1 113 | 29.8 150 | 2.71 16 | 14.2 42 | 20.6 56 | 3.56 11 | 11.3 65 | 26.3 110 | 3.00 17 | 20.2 111 | 40.1 157 | 7.53 52 | 45.9 146 | 58.7 143 | 11.3 174 | 28.4 114 | 50.7 135 | 5.20 123 | 35.7 84 | 76.0 96 | 4.08 78 | 32.3 131 | 53.1 150 | 3.46 76 |
TF+OM [98] | 98.3 | 11.6 61 | 30.1 155 | 3.11 130 | 15.0 66 | 21.6 76 | 4.04 84 | 11.7 88 | 24.0 89 | 3.00 17 | 21.3 134 | 39.0 152 | 7.68 88 | 44.3 102 | 56.7 104 | 10.3 97 | 28.8 127 | 50.4 124 | 5.07 93 | 37.7 120 | 83.5 147 | 4.08 78 | 29.2 50 | 46.0 63 | 3.56 115 |
ComplOF-FED-GPU [35] | 99.5 | 12.0 97 | 27.9 131 | 2.94 94 | 15.7 85 | 22.2 95 | 3.79 61 | 16.0 160 | 21.4 58 | 3.70 142 | 18.4 66 | 33.6 88 | 7.48 41 | 44.9 118 | 57.7 116 | 10.7 126 | 27.4 83 | 45.9 61 | 5.00 85 | 36.6 106 | 78.7 119 | 4.08 78 | 32.6 143 | 52.3 143 | 3.51 91 |
AggregFlow [95] | 99.8 | 13.7 171 | 37.1 179 | 3.11 130 | 16.2 100 | 22.6 102 | 4.04 84 | 11.0 45 | 23.3 83 | 3.00 17 | 21.8 141 | 40.7 161 | 7.66 86 | 43.2 78 | 53.5 60 | 10.3 97 | 27.0 71 | 46.0 62 | 5.00 85 | 38.0 126 | 82.4 143 | 4.08 78 | 31.9 118 | 51.9 139 | 3.42 38 |
Classic+NL [31] | 99.9 | 12.1 113 | 24.3 74 | 3.00 112 | 15.3 72 | 21.8 80 | 3.70 38 | 11.7 88 | 29.4 142 | 3.00 17 | 17.4 36 | 31.4 60 | 7.53 52 | 45.7 137 | 59.4 151 | 10.8 129 | 29.0 134 | 49.8 112 | 5.10 111 | 39.6 151 | 90.4 170 | 4.08 78 | 32.2 128 | 51.8 136 | 3.46 76 |
Ad-TV-NDC [36] | 99.9 | 12.2 121 | 22.5 53 | 4.32 192 | 20.6 185 | 24.8 167 | 5.80 171 | 11.7 88 | 21.6 61 | 3.37 118 | 21.6 139 | 31.8 69 | 8.04 133 | 42.5 59 | 53.4 59 | 9.97 42 | 26.4 58 | 47.6 84 | 5.16 117 | 36.8 108 | 70.9 51 | 4.08 78 | 28.3 41 | 41.8 38 | 3.70 165 |
FC-2Layers-FF [74] | 100.1 | 12.1 113 | 26.0 112 | 2.83 52 | 13.0 19 | 18.7 26 | 3.56 11 | 11.4 84 | 25.7 103 | 3.00 17 | 17.8 52 | 33.5 87 | 7.48 41 | 46.5 162 | 60.3 169 | 11.2 153 | 30.4 172 | 52.3 161 | 5.32 148 | 39.8 154 | 90.0 167 | 4.08 78 | 31.8 114 | 51.6 132 | 3.46 76 |
LSM [39] | 101.0 | 12.3 130 | 24.7 90 | 2.83 52 | 15.4 74 | 21.9 87 | 3.56 11 | 12.0 104 | 30.3 154 | 3.00 17 | 18.7 74 | 33.2 84 | 7.44 37 | 46.1 153 | 59.4 151 | 11.1 144 | 29.3 144 | 51.9 156 | 5.07 93 | 39.2 144 | 91.0 173 | 4.04 37 | 32.3 131 | 52.5 145 | 3.42 38 |
Classic++ [32] | 101.6 | 11.6 61 | 23.7 64 | 3.11 130 | 17.8 134 | 24.4 156 | 4.08 89 | 11.7 88 | 20.3 46 | 3.37 118 | 20.1 108 | 33.8 93 | 7.62 76 | 44.7 111 | 57.8 119 | 10.0 50 | 28.0 99 | 49.7 109 | 5.35 155 | 37.4 116 | 81.4 137 | 4.08 78 | 30.7 85 | 49.5 102 | 3.56 115 |
DMF_ROB [135] | 101.8 | 11.9 90 | 25.4 99 | 3.00 112 | 17.1 120 | 22.8 107 | 4.08 89 | 19.4 179 | 29.7 146 | 3.70 142 | 20.4 115 | 34.5 99 | 7.68 88 | 45.3 126 | 58.1 126 | 11.1 144 | 26.4 58 | 45.6 60 | 4.97 59 | 35.7 84 | 73.8 82 | 4.08 78 | 31.2 95 | 50.2 107 | 3.42 38 |
MLDP_OF [87] | 103.4 | 11.9 90 | 24.7 90 | 2.83 52 | 17.4 128 | 23.8 138 | 3.87 71 | 10.7 33 | 24.6 97 | 3.00 17 | 20.5 119 | 33.6 88 | 8.35 154 | 44.1 96 | 56.5 100 | 10.1 64 | 29.3 144 | 50.5 128 | 5.57 174 | 35.8 87 | 73.4 79 | 4.20 154 | 31.2 95 | 50.6 119 | 3.70 165 |
MCPFlow_RVC [197] | 103.9 | 14.9 183 | 36.3 172 | 2.83 52 | 14.7 59 | 21.4 74 | 3.74 56 | 11.2 63 | 26.3 110 | 3.00 17 | 19.8 99 | 37.2 134 | 7.70 95 | 43.4 84 | 54.0 65 | 10.1 64 | 31.9 185 | 59.9 184 | 5.03 92 | 33.2 39 | 70.1 44 | 4.04 37 | 52.6 197 | 69.2 194 | 4.20 194 |
C-RAFT_RVC [181] | 104.5 | 15.3 186 | 39.1 184 | 2.94 94 | 15.7 85 | 21.8 80 | 4.08 89 | 12.7 133 | 30.0 151 | 3.11 109 | 21.2 129 | 37.1 133 | 7.70 95 | 42.1 50 | 52.4 53 | 9.97 42 | 28.8 127 | 51.1 144 | 4.97 59 | 35.0 69 | 72.2 67 | 4.04 37 | 33.8 156 | 52.5 145 | 3.51 91 |
TCOF [69] | 104.8 | 12.0 97 | 24.7 90 | 2.83 52 | 20.3 180 | 26.4 195 | 5.07 147 | 11.1 61 | 29.0 136 | 3.00 17 | 17.7 46 | 32.4 75 | 7.68 88 | 43.2 78 | 55.5 91 | 9.97 42 | 28.8 127 | 46.3 66 | 5.07 93 | 41.2 170 | 94.9 181 | 4.08 78 | 31.8 114 | 51.3 126 | 3.70 165 |
FlowNetS+ft+v [110] | 104.9 | 11.5 56 | 23.7 64 | 3.46 176 | 19.9 171 | 24.6 162 | 7.87 194 | 12.0 104 | 21.1 57 | 3.37 118 | 19.5 93 | 30.6 53 | 8.91 172 | 43.7 90 | 56.6 103 | 11.2 153 | 26.0 49 | 44.5 49 | 4.97 59 | 38.6 137 | 87.8 155 | 4.08 78 | 30.0 70 | 46.0 63 | 3.51 91 |
RNLOD-Flow [119] | 105.2 | 11.8 78 | 24.6 86 | 2.89 90 | 17.3 127 | 24.0 144 | 3.74 56 | 12.7 133 | 36.0 179 | 3.11 109 | 18.1 59 | 31.2 57 | 7.48 41 | 45.8 141 | 59.6 157 | 11.1 144 | 29.3 144 | 50.6 130 | 5.16 117 | 35.4 74 | 74.1 88 | 4.08 78 | 32.0 124 | 51.6 132 | 3.42 38 |
Fusion [6] | 105.8 | 11.6 61 | 24.3 74 | 2.89 90 | 15.6 82 | 21.9 87 | 3.83 66 | 11.0 45 | 23.7 84 | 3.37 118 | 21.0 127 | 33.4 85 | 7.62 76 | 44.1 96 | 56.3 99 | 10.1 64 | 30.3 171 | 54.1 168 | 5.45 161 | 38.0 126 | 83.7 148 | 4.08 78 | 34.0 159 | 54.7 158 | 3.56 115 |
CRTflow [81] | 106.0 | 11.7 69 | 24.4 81 | 3.32 161 | 19.5 163 | 24.9 171 | 4.51 117 | 12.0 104 | 22.7 74 | 4.00 160 | 18.1 59 | 30.3 49 | 7.68 88 | 45.0 120 | 58.1 126 | 11.3 174 | 26.0 49 | 45.1 57 | 4.97 59 | 37.7 120 | 87.9 156 | 4.08 78 | 30.8 86 | 50.2 107 | 3.56 115 |
Sparse Occlusion [54] | 106.2 | 11.7 69 | 25.9 107 | 3.00 112 | 18.1 139 | 24.6 162 | 3.83 66 | 11.3 65 | 22.7 74 | 3.11 109 | 18.7 74 | 34.1 96 | 7.70 95 | 45.0 120 | 58.0 123 | 11.1 144 | 28.5 122 | 44.2 44 | 5.26 136 | 39.3 148 | 83.7 148 | 3.92 29 | 31.9 118 | 51.7 134 | 3.56 115 |
S2D-Matching [83] | 106.2 | 12.3 130 | 25.7 103 | 2.94 94 | 17.2 125 | 23.7 136 | 4.00 81 | 11.7 88 | 28.7 133 | 3.00 17 | 17.7 46 | 31.9 71 | 7.55 60 | 46.8 172 | 60.1 163 | 10.4 107 | 30.0 161 | 51.5 149 | 5.29 142 | 37.0 110 | 77.7 114 | 4.04 37 | 31.8 114 | 50.9 121 | 3.46 76 |
RFlow [88] | 106.3 | 11.6 61 | 24.3 74 | 3.00 112 | 19.3 157 | 24.8 167 | 4.36 109 | 11.6 87 | 29.7 146 | 3.37 118 | 20.0 106 | 36.1 120 | 7.72 102 | 43.0 70 | 55.2 89 | 10.1 64 | 27.9 96 | 51.8 155 | 4.97 59 | 37.1 112 | 82.8 145 | 4.08 78 | 31.6 108 | 49.5 102 | 3.56 115 |
SVFilterOh [109] | 106.5 | 11.9 90 | 26.1 113 | 2.94 94 | 14.3 46 | 20.9 64 | 3.70 38 | 12.0 104 | 26.7 116 | 3.00 17 | 19.9 104 | 36.1 120 | 7.62 76 | 46.7 168 | 59.8 160 | 11.4 187 | 30.7 176 | 55.1 172 | 5.07 93 | 36.0 94 | 77.2 110 | 4.04 37 | 32.4 133 | 53.2 152 | 3.51 91 |
TC-Flow [46] | 107.6 | 12.0 97 | 30.3 157 | 2.89 90 | 16.8 114 | 23.4 127 | 3.92 79 | 11.7 88 | 21.4 58 | 3.00 17 | 19.5 93 | 36.1 120 | 8.12 141 | 46.5 162 | 59.8 160 | 11.3 174 | 27.0 71 | 48.4 95 | 5.26 136 | 35.5 77 | 74.6 92 | 4.04 37 | 33.3 149 | 54.5 157 | 3.51 91 |
HBM-GC [103] | 107.7 | 11.8 78 | 23.8 67 | 3.11 130 | 16.8 114 | 24.2 151 | 3.87 71 | 10.7 33 | 18.7 34 | 3.00 17 | 18.9 78 | 32.9 80 | 7.68 88 | 46.8 172 | 60.8 173 | 11.5 193 | 34.5 194 | 61.7 189 | 5.48 169 | 37.7 120 | 81.9 142 | 4.04 37 | 30.5 83 | 47.8 81 | 3.51 91 |
Classic+CPF [82] | 108.5 | 12.2 121 | 24.6 86 | 2.83 52 | 15.6 82 | 22.1 92 | 3.74 56 | 12.0 104 | 30.7 157 | 3.00 17 | 17.7 46 | 30.9 56 | 7.44 37 | 47.2 178 | 61.3 178 | 11.2 153 | 31.2 180 | 55.9 173 | 5.26 136 | 39.9 157 | 88.8 162 | 4.04 37 | 33.6 152 | 54.0 155 | 3.42 38 |
3DFlow [133] | 108.7 | 12.4 138 | 27.1 121 | 2.83 52 | 15.5 78 | 22.1 92 | 3.87 71 | 13.7 144 | 24.0 89 | 3.00 17 | 19.2 84 | 38.7 149 | 7.68 88 | 44.0 95 | 56.0 95 | 10.1 64 | 31.2 180 | 53.8 167 | 5.60 176 | 39.5 149 | 79.2 121 | 4.16 147 | 31.1 94 | 48.0 83 | 3.56 115 |
FESL [72] | 108.9 | 12.2 121 | 25.1 98 | 2.83 52 | 14.9 65 | 21.6 76 | 3.70 38 | 12.1 121 | 33.7 171 | 3.00 17 | 19.7 97 | 35.0 107 | 7.72 102 | 46.2 154 | 60.2 168 | 11.3 174 | 29.3 144 | 50.4 124 | 5.32 148 | 39.6 151 | 88.6 161 | 3.92 29 | 32.4 133 | 51.2 124 | 3.42 38 |
CostFilter [40] | 109.8 | 13.1 164 | 33.1 165 | 2.71 16 | 15.2 69 | 21.3 69 | 3.56 11 | 14.0 148 | 42.7 192 | 3.00 17 | 22.0 143 | 44.4 175 | 7.26 10 | 45.8 141 | 57.2 112 | 10.4 107 | 27.2 77 | 48.1 93 | 5.45 161 | 39.9 157 | 89.4 164 | 4.08 78 | 35.6 170 | 56.1 167 | 3.37 28 |
Black & Anandan [4] | 110.5 | 12.3 130 | 24.0 69 | 3.46 176 | 21.2 188 | 25.4 179 | 5.35 160 | 18.1 174 | 25.0 100 | 5.35 177 | 24.4 164 | 34.9 105 | 7.77 108 | 42.2 53 | 53.5 60 | 10.1 64 | 26.9 70 | 46.5 69 | 4.97 59 | 39.5 149 | 77.2 110 | 4.08 78 | 29.3 52 | 42.8 43 | 3.56 115 |
Efficient-NL [60] | 112.0 | 11.8 78 | 23.8 67 | 2.83 52 | 16.7 112 | 23.3 123 | 3.70 38 | 18.4 176 | 29.0 136 | 3.70 142 | 19.4 91 | 34.0 94 | 7.51 45 | 45.1 122 | 58.5 135 | 11.1 144 | 30.0 161 | 51.5 149 | 5.07 93 | 40.1 161 | 88.9 163 | 4.08 78 | 33.0 145 | 52.4 144 | 3.42 38 |
EpicFlow [100] | 112.0 | 11.9 90 | 27.6 128 | 2.83 52 | 16.0 94 | 22.2 95 | 3.79 61 | 11.8 101 | 21.7 62 | 3.00 17 | 21.3 134 | 42.9 169 | 7.85 116 | 46.3 157 | 59.4 151 | 11.2 153 | 27.4 83 | 47.5 82 | 5.16 117 | 38.2 129 | 76.6 102 | 4.12 137 | 35.2 169 | 58.0 173 | 3.56 115 |
SRR-TVOF-NL [89] | 113.7 | 12.9 157 | 28.7 140 | 3.00 112 | 16.9 118 | 23.1 117 | 4.69 132 | 11.5 86 | 27.0 120 | 3.00 17 | 22.2 145 | 37.3 135 | 7.59 69 | 44.8 116 | 57.9 121 | 11.0 137 | 29.1 140 | 51.9 156 | 4.90 43 | 35.7 84 | 77.7 114 | 4.08 78 | 33.0 145 | 51.5 131 | 3.56 115 |
Bartels [41] | 114.8 | 12.2 121 | 29.9 153 | 3.37 165 | 17.4 128 | 24.3 153 | 4.83 141 | 11.3 65 | 24.7 98 | 3.70 142 | 21.2 129 | 35.4 110 | 9.15 178 | 41.3 40 | 51.0 39 | 9.87 37 | 29.7 154 | 50.2 117 | 6.32 191 | 33.7 43 | 70.7 48 | 4.20 154 | 30.2 76 | 48.4 86 | 3.79 186 |
Filter Flow [19] | 114.9 | 11.8 78 | 23.1 58 | 3.37 165 | 20.0 173 | 25.1 173 | 5.23 157 | 12.2 124 | 26.0 107 | 3.70 142 | 22.1 144 | 32.7 78 | 7.94 125 | 42.1 50 | 51.9 46 | 10.4 107 | 28.1 104 | 49.0 102 | 5.07 93 | 38.4 132 | 81.6 139 | 4.16 147 | 30.0 70 | 45.5 61 | 3.74 183 |
2D-CLG [1] | 115.7 | 11.6 61 | 24.1 71 | 3.11 130 | 19.4 160 | 23.3 123 | 6.24 182 | 18.7 177 | 24.3 94 | 4.69 170 | 22.4 147 | 31.8 69 | 8.66 164 | 43.3 83 | 56.1 98 | 10.4 107 | 26.0 49 | 44.2 44 | 5.35 155 | 40.2 162 | 91.5 175 | 4.20 154 | 29.6 63 | 44.5 47 | 3.51 91 |
Steered-L1 [116] | 116.9 | 11.2 42 | 22.6 55 | 2.89 90 | 16.2 100 | 22.6 102 | 4.55 121 | 21.7 180 | 32.4 165 | 5.00 173 | 23.4 157 | 38.3 144 | 10.7 184 | 44.7 111 | 57.4 113 | 9.88 38 | 28.0 99 | 48.5 97 | 5.32 148 | 37.1 112 | 79.2 121 | 4.12 137 | 31.4 102 | 51.1 123 | 3.51 91 |
OFH [38] | 118.2 | 12.0 97 | 27.3 122 | 3.00 112 | 18.1 139 | 23.4 127 | 4.20 99 | 12.4 131 | 32.7 166 | 3.00 17 | 18.6 72 | 35.4 110 | 7.35 22 | 46.5 162 | 60.1 163 | 10.8 129 | 27.5 86 | 47.2 76 | 5.26 136 | 41.1 167 | 81.1 135 | 4.20 154 | 35.7 171 | 56.1 167 | 3.46 76 |
EPPM w/o HM [86] | 118.4 | 12.7 150 | 30.9 159 | 2.71 16 | 16.1 96 | 23.1 117 | 3.70 38 | 17.7 171 | 42.4 191 | 3.70 142 | 21.3 134 | 42.5 168 | 7.70 95 | 43.0 70 | 53.1 57 | 10.3 97 | 30.2 169 | 57.1 179 | 4.97 59 | 38.5 135 | 89.6 165 | 4.12 137 | 32.4 133 | 51.3 126 | 3.42 38 |
Occlusion-TV-L1 [63] | 119.0 | 11.6 61 | 25.0 97 | 3.11 130 | 19.8 169 | 26.0 190 | 4.83 141 | 11.3 65 | 23.0 78 | 3.46 137 | 22.5 150 | 43.0 171 | 7.94 125 | 43.0 70 | 54.8 82 | 9.88 38 | 28.0 99 | 50.7 135 | 5.32 148 | 39.6 151 | 76.6 102 | 4.62 182 | 31.5 106 | 50.5 115 | 3.56 115 |
FF++_ROB [141] | 119.2 | 12.1 113 | 28.2 136 | 2.71 16 | 15.5 78 | 21.6 76 | 3.74 56 | 12.0 104 | 29.4 142 | 3.00 17 | 23.3 156 | 49.1 183 | 7.83 115 | 48.1 185 | 61.6 181 | 11.3 174 | 29.1 140 | 49.5 107 | 5.94 187 | 36.5 105 | 76.4 101 | 4.08 78 | 32.1 126 | 51.3 126 | 3.65 159 |
Adaptive [20] | 119.8 | 11.6 61 | 26.7 117 | 3.11 130 | 20.2 177 | 25.9 186 | 5.07 147 | 12.0 104 | 23.0 78 | 3.37 118 | 20.4 115 | 36.6 128 | 7.77 108 | 44.3 102 | 58.5 135 | 9.98 47 | 28.3 111 | 49.1 104 | 5.16 117 | 42.5 178 | 90.6 172 | 4.08 78 | 31.6 108 | 48.8 94 | 3.65 159 |
LFNet_ROB [145] | 120.6 | 13.4 168 | 37.5 181 | 2.71 16 | 16.1 96 | 21.8 80 | 4.08 89 | 12.0 104 | 36.3 182 | 3.37 118 | 20.7 121 | 36.0 118 | 7.94 125 | 45.4 129 | 57.8 119 | 11.6 196 | 30.6 173 | 57.4 180 | 5.20 123 | 34.9 66 | 71.8 63 | 4.08 78 | 31.3 100 | 49.9 105 | 3.70 165 |
PBOFVI [189] | 121.9 | 12.8 156 | 27.9 131 | 2.83 52 | 19.4 160 | 25.6 182 | 4.51 117 | 16.3 162 | 35.0 175 | 3.00 17 | 20.3 113 | 37.9 139 | 8.04 133 | 45.5 132 | 59.4 151 | 11.3 174 | 28.0 99 | 47.5 82 | 4.97 59 | 39.8 154 | 78.5 117 | 4.08 78 | 31.7 112 | 52.0 140 | 3.51 91 |
PWC-Net_RVC [143] | 122.5 | 13.5 170 | 35.8 171 | 2.71 16 | 16.4 103 | 23.3 123 | 3.74 56 | 12.0 104 | 30.3 154 | 3.00 17 | 21.3 134 | 45.6 178 | 7.51 45 | 48.8 192 | 63.0 188 | 11.2 153 | 29.7 154 | 53.0 163 | 5.29 142 | 35.8 87 | 74.9 94 | 4.08 78 | 34.2 160 | 56.0 166 | 3.51 91 |
CNN-flow-warp+ref [115] | 122.5 | 11.0 35 | 22.4 52 | 3.11 130 | 17.6 132 | 22.9 111 | 5.92 174 | 16.1 161 | 28.3 132 | 4.00 160 | 23.5 158 | 30.2 47 | 10.7 184 | 44.8 116 | 58.5 135 | 11.3 174 | 26.5 64 | 46.5 69 | 5.29 142 | 41.5 171 | 91.5 175 | 4.32 170 | 30.4 81 | 47.5 77 | 3.51 91 |
TriFlow [93] | 123.0 | 12.5 143 | 36.7 175 | 3.00 112 | 18.7 146 | 24.5 159 | 4.76 135 | 11.7 88 | 28.1 130 | 3.00 17 | 21.7 140 | 41.4 163 | 7.62 76 | 46.8 172 | 60.4 170 | 11.2 153 | 29.9 158 | 51.7 154 | 4.97 59 | 37.8 124 | 76.9 106 | 4.08 78 | 31.7 112 | 48.6 90 | 3.51 91 |
CompactFlow_ROB [155] | 123.2 | 14.6 182 | 39.6 186 | 2.83 52 | 16.4 103 | 22.7 105 | 4.32 106 | 14.3 153 | 38.7 184 | 3.00 17 | 31.2 184 | 71.5 195 | 8.08 140 | 43.6 87 | 54.6 76 | 10.3 97 | 29.7 154 | 55.9 173 | 4.93 50 | 37.7 120 | 83.9 150 | 4.08 78 | 33.0 145 | 51.4 129 | 3.51 91 |
IAOF [50] | 123.6 | 13.0 161 | 29.2 144 | 3.37 165 | 23.7 196 | 27.4 198 | 6.45 186 | 16.4 164 | 28.7 133 | 3.46 137 | 22.7 151 | 33.1 83 | 8.37 155 | 43.4 84 | 55.6 93 | 10.0 50 | 27.6 88 | 50.1 114 | 4.97 59 | 38.3 130 | 82.7 144 | 4.08 78 | 30.0 70 | 46.8 69 | 3.56 115 |
Horn & Schunck [3] | 123.8 | 12.1 113 | 23.7 64 | 3.32 161 | 21.4 190 | 25.6 182 | 5.89 173 | 17.0 167 | 28.2 131 | 5.35 177 | 27.3 175 | 37.9 139 | 8.04 133 | 42.4 57 | 54.3 69 | 10.3 97 | 26.2 53 | 44.7 51 | 5.07 93 | 40.9 165 | 81.7 140 | 4.20 154 | 30.2 76 | 44.3 46 | 3.70 165 |
HBpMotionGpu [43] | 124.2 | 12.3 130 | 32.0 163 | 3.79 187 | 20.6 185 | 25.4 179 | 6.00 177 | 11.3 65 | 26.1 109 | 3.00 17 | 23.2 154 | 44.0 174 | 7.85 116 | 44.3 102 | 56.9 105 | 10.8 129 | 29.0 134 | 53.5 166 | 5.26 136 | 34.9 66 | 69.8 41 | 4.04 37 | 31.8 114 | 51.4 129 | 3.70 165 |
TV-L1-improved [17] | 124.5 | 11.5 56 | 25.4 99 | 3.11 130 | 20.1 176 | 26.0 190 | 5.26 158 | 16.8 165 | 19.7 39 | 4.04 166 | 19.5 93 | 32.3 73 | 7.79 112 | 43.8 92 | 56.5 100 | 10.0 50 | 28.9 133 | 51.1 144 | 5.07 93 | 43.2 181 | 98.9 187 | 4.43 177 | 31.4 102 | 50.2 107 | 3.70 165 |
Nguyen [33] | 126.1 | 12.0 97 | 25.9 107 | 3.37 165 | 21.2 188 | 24.5 159 | 6.27 183 | 12.7 133 | 28.0 128 | 3.70 142 | 23.8 159 | 34.7 101 | 8.58 160 | 43.0 70 | 54.7 79 | 10.1 64 | 27.7 93 | 50.7 135 | 4.97 59 | 43.4 183 | 93.7 179 | 4.43 177 | 30.2 76 | 47.4 74 | 3.56 115 |
TVL1_RVC [175] | 126.8 | 11.8 78 | 25.9 107 | 3.70 183 | 21.7 191 | 25.9 186 | 6.03 178 | 12.3 125 | 26.8 119 | 3.70 142 | 22.9 153 | 35.4 110 | 8.33 151 | 43.2 78 | 54.9 83 | 10.1 64 | 28.4 114 | 50.6 130 | 5.10 111 | 41.0 166 | 91.6 177 | 4.24 165 | 29.6 63 | 44.9 54 | 3.56 115 |
GraphCuts [14] | 127.0 | 13.9 176 | 30.2 156 | 3.32 161 | 16.4 103 | 22.5 99 | 4.36 109 | 33.4 194 | 24.1 93 | 5.35 177 | 22.3 146 | 34.7 101 | 7.87 122 | 44.5 108 | 57.0 106 | 9.98 47 | 28.3 111 | 50.3 122 | 4.90 43 | 38.5 135 | 88.2 158 | 4.20 154 | 33.9 158 | 53.6 154 | 3.56 115 |
BriefMatch [122] | 128.2 | 12.1 113 | 29.2 144 | 3.11 130 | 16.5 109 | 22.5 99 | 6.61 188 | 18.0 173 | 22.7 74 | 5.69 180 | 26.2 171 | 35.5 115 | 18.2 196 | 43.7 90 | 54.7 79 | 10.4 107 | 29.6 152 | 50.2 117 | 5.94 187 | 35.8 87 | 72.5 71 | 4.16 147 | 32.1 126 | 50.2 107 | 3.56 115 |
FlowNet2 [120] | 129.8 | 19.1 192 | 47.5 193 | 3.11 130 | 17.1 120 | 24.1 148 | 4.55 121 | 14.2 151 | 29.8 149 | 3.37 118 | 23.8 159 | 42.9 169 | 8.33 151 | 45.9 146 | 58.1 126 | 10.6 121 | 27.6 88 | 49.4 106 | 4.93 50 | 39.2 144 | 81.0 133 | 4.08 78 | 31.6 108 | 49.2 98 | 3.56 115 |
TI-DOFE [24] | 129.9 | 12.7 150 | 27.6 128 | 3.87 191 | 22.2 194 | 25.3 175 | 6.66 189 | 14.1 150 | 25.3 102 | 4.36 168 | 27.7 177 | 38.7 149 | 9.06 177 | 42.7 63 | 53.6 63 | 10.1 64 | 26.8 68 | 48.8 101 | 4.97 59 | 38.3 130 | 76.0 96 | 4.24 165 | 31.9 118 | 44.7 51 | 3.87 189 |
CVENG22+RIC [199] | 130.3 | 12.0 97 | 25.8 105 | 3.00 112 | 17.1 120 | 23.1 117 | 3.87 71 | 13.0 138 | 27.3 121 | 3.00 17 | 24.2 162 | 45.5 176 | 7.87 122 | 46.3 157 | 60.5 172 | 11.3 174 | 28.8 127 | 50.4 124 | 5.10 111 | 40.2 162 | 79.0 120 | 4.12 137 | 41.6 185 | 62.5 185 | 3.56 115 |
ROF-ND [105] | 131.2 | 12.4 138 | 24.4 81 | 2.83 52 | 17.9 135 | 23.9 140 | 4.08 89 | 12.0 104 | 26.6 115 | 3.00 17 | 29.5 183 | 48.9 182 | 8.72 166 | 45.4 129 | 58.6 139 | 11.1 144 | 31.1 179 | 53.4 164 | 5.26 136 | 38.9 142 | 74.2 89 | 4.20 154 | 38.0 177 | 60.3 179 | 3.56 115 |
AugFNG_ROB [139] | 131.2 | 13.7 171 | 36.6 174 | 3.00 112 | 17.5 131 | 22.9 111 | 4.80 138 | 14.3 153 | 36.0 179 | 3.37 118 | 27.8 178 | 64.0 190 | 7.96 132 | 48.6 191 | 63.0 188 | 11.4 187 | 28.0 99 | 51.6 153 | 4.83 37 | 36.1 99 | 76.6 102 | 4.08 78 | 31.9 118 | 47.2 73 | 3.42 38 |
Correlation Flow [76] | 132.3 | 12.6 147 | 28.0 133 | 2.71 16 | 20.0 173 | 25.8 184 | 4.36 109 | 11.3 65 | 22.3 69 | 3.00 17 | 20.7 121 | 38.6 148 | 7.72 102 | 45.7 137 | 59.0 147 | 10.3 97 | 33.4 188 | 60.4 188 | 5.45 161 | 45.6 188 | 99.9 188 | 4.40 172 | 33.4 150 | 54.9 161 | 3.56 115 |
NL-TV-NCC [25] | 134.1 | 13.7 171 | 27.3 122 | 2.94 94 | 18.5 141 | 24.7 164 | 4.04 84 | 15.0 157 | 29.0 136 | 3.70 142 | 25.6 168 | 46.4 180 | 7.94 125 | 42.0 48 | 51.9 46 | 10.4 107 | 30.6 173 | 51.9 156 | 5.29 142 | 41.9 174 | 81.7 140 | 4.40 172 | 31.3 100 | 48.6 90 | 3.79 186 |
Complementary OF [21] | 134.2 | 12.4 138 | 34.5 169 | 2.83 52 | 16.4 103 | 23.5 131 | 3.79 61 | 30.7 187 | 32.2 164 | 7.05 190 | 19.9 104 | 43.9 173 | 7.44 37 | 46.9 175 | 60.4 170 | 10.7 126 | 28.1 104 | 47.7 87 | 5.23 131 | 41.1 167 | 80.3 129 | 4.12 137 | 42.0 186 | 62.0 184 | 3.56 115 |
TriangleFlow [30] | 134.2 | 12.5 143 | 25.9 107 | 3.11 130 | 18.8 148 | 24.3 153 | 4.24 102 | 13.2 141 | 29.7 146 | 3.46 137 | 21.2 129 | 35.4 110 | 7.94 125 | 44.4 106 | 57.7 116 | 9.95 40 | 29.4 149 | 48.6 98 | 5.07 93 | 43.9 184 | 99.9 188 | 4.43 177 | 42.1 188 | 69.7 195 | 3.56 115 |
LocallyOriented [52] | 135.0 | 12.2 121 | 28.1 134 | 3.27 159 | 20.5 183 | 25.9 186 | 5.07 147 | 14.3 153 | 30.0 151 | 3.37 118 | 24.2 162 | 41.7 164 | 7.66 86 | 44.7 111 | 57.1 110 | 10.1 64 | 28.8 127 | 47.4 80 | 5.48 169 | 42.4 176 | 80.6 131 | 4.12 137 | 32.4 133 | 51.2 124 | 3.56 115 |
IAOF2 [51] | 136.0 | 12.7 150 | 28.7 140 | 3.32 161 | 20.4 181 | 25.9 186 | 4.76 135 | 12.7 133 | 31.7 162 | 3.11 109 | 22.4 147 | 35.8 116 | 8.06 139 | 45.9 146 | 59.6 157 | 10.8 129 | 29.9 158 | 51.5 149 | 5.10 111 | 39.0 143 | 79.7 126 | 4.08 78 | 31.2 95 | 49.0 97 | 3.56 115 |
LSM_FLOW_RVC [182] | 136.5 | 16.3 188 | 45.1 191 | 2.94 94 | 17.4 128 | 23.3 123 | 4.36 109 | 13.7 144 | 39.4 186 | 3.00 17 | 25.7 169 | 64.9 192 | 7.77 108 | 46.4 161 | 60.1 163 | 11.0 137 | 27.7 93 | 46.6 71 | 5.16 117 | 38.1 128 | 78.5 117 | 4.12 137 | 35.1 168 | 56.5 169 | 3.70 165 |
ContinualFlow_ROB [148] | 137.3 | 14.3 179 | 37.0 178 | 2.94 94 | 17.0 119 | 23.6 133 | 4.51 117 | 13.8 147 | 33.5 170 | 3.37 118 | 23.2 154 | 53.7 186 | 7.70 95 | 49.9 193 | 66.1 194 | 11.3 174 | 27.2 77 | 49.8 112 | 4.90 43 | 38.7 140 | 86.6 153 | 4.04 37 | 42.0 186 | 61.1 181 | 3.56 115 |
H+S_RVC [176] | 137.8 | 13.7 171 | 27.7 130 | 3.11 130 | 18.5 141 | 22.5 99 | 5.74 168 | 17.7 171 | 27.7 123 | 5.74 183 | 27.2 174 | 34.7 101 | 9.04 176 | 44.1 96 | 56.5 100 | 10.4 107 | 27.7 93 | 47.9 89 | 5.35 155 | 39.2 144 | 83.4 146 | 4.80 186 | 32.5 142 | 48.8 94 | 3.83 188 |
EPMNet [131] | 139.5 | 19.3 193 | 47.9 194 | 3.11 130 | 16.8 114 | 23.2 122 | 4.55 121 | 14.2 151 | 29.8 149 | 3.37 118 | 33.0 190 | 78.1 197 | 8.29 149 | 45.9 146 | 58.1 126 | 10.6 121 | 30.0 161 | 51.9 156 | 4.97 59 | 39.2 144 | 81.0 133 | 4.08 78 | 33.8 156 | 53.1 150 | 3.51 91 |
IIOF-NLDP [129] | 139.6 | 12.9 157 | 29.0 143 | 2.71 16 | 18.6 145 | 24.8 167 | 4.08 89 | 13.4 143 | 26.7 116 | 3.00 17 | 21.9 142 | 39.8 154 | 8.16 144 | 45.8 141 | 59.4 151 | 10.4 107 | 31.6 183 | 59.9 184 | 6.06 190 | 54.7 197 | 99.9 188 | 6.03 196 | 35.7 171 | 57.2 172 | 3.42 38 |
ACK-Prior [27] | 140.4 | 12.5 143 | 29.7 149 | 2.83 52 | 16.1 96 | 22.7 105 | 4.00 81 | 25.6 183 | 27.7 123 | 5.72 182 | 22.4 147 | 36.0 118 | 10.7 184 | 45.7 137 | 59.3 149 | 11.4 187 | 31.8 184 | 50.6 130 | 5.35 155 | 38.8 141 | 79.9 127 | 4.16 147 | 33.5 151 | 51.7 134 | 3.70 165 |
Rannacher [23] | 140.9 | 11.7 69 | 28.7 140 | 3.16 158 | 20.4 181 | 26.3 193 | 5.07 147 | 19.0 178 | 26.0 107 | 4.80 172 | 19.8 99 | 38.1 142 | 7.79 112 | 44.5 108 | 57.4 113 | 10.1 64 | 29.0 134 | 50.3 122 | 5.20 123 | 42.6 179 | 97.0 184 | 4.40 172 | 33.7 154 | 55.9 165 | 3.70 165 |
LiteFlowNet [138] | 142.1 | 14.1 178 | 39.6 186 | 2.71 16 | 15.7 85 | 21.9 87 | 4.00 81 | 14.0 148 | 43.0 193 | 3.00 17 | 36.3 195 | 70.9 194 | 9.02 174 | 48.3 187 | 63.2 191 | 11.5 193 | 30.1 168 | 57.7 181 | 5.10 111 | 42.1 175 | 87.4 154 | 4.24 165 | 32.4 133 | 50.2 107 | 3.51 91 |
Learning Flow [11] | 143.2 | 12.1 113 | 24.6 86 | 3.27 159 | 19.7 166 | 25.2 174 | 5.00 145 | 39.7 196 | 47.7 197 | 7.68 192 | 24.6 165 | 35.0 107 | 8.19 147 | 45.2 125 | 58.6 139 | 10.5 120 | 28.4 114 | 48.0 91 | 5.45 161 | 38.4 132 | 77.8 116 | 4.40 172 | 32.6 143 | 48.4 86 | 3.92 191 |
2bit-BM-tele [96] | 143.6 | 11.7 69 | 27.0 120 | 3.79 187 | 20.2 177 | 26.3 193 | 5.07 147 | 12.0 104 | 23.2 82 | 4.00 160 | 21.2 129 | 36.1 120 | 8.16 144 | 45.3 126 | 58.0 123 | 10.3 97 | 34.0 192 | 61.8 190 | 5.92 184 | 54.1 196 | 99.9 188 | 5.72 194 | 29.8 68 | 47.4 74 | 3.74 183 |
SimpleFlow [49] | 145.2 | 12.0 97 | 24.0 69 | 2.94 94 | 18.5 141 | 24.4 156 | 4.24 102 | 32.7 190 | 39.0 185 | 5.69 180 | 18.0 57 | 36.2 125 | 7.55 60 | 46.9 175 | 60.8 173 | 11.1 144 | 31.4 182 | 58.1 182 | 5.35 155 | 49.4 192 | 99.9 188 | 5.16 192 | 40.0 181 | 63.0 188 | 3.46 76 |
FOLKI [16] | 146.2 | 13.0 161 | 30.9 159 | 4.97 196 | 22.2 194 | 24.9 171 | 9.00 196 | 17.3 169 | 33.0 168 | 7.00 187 | 33.4 191 | 38.7 149 | 17.0 194 | 44.3 102 | 55.8 94 | 10.4 107 | 27.6 88 | 49.7 109 | 5.48 169 | 36.2 102 | 74.2 89 | 4.80 186 | 30.4 81 | 44.9 54 | 4.08 193 |
SILK [80] | 146.7 | 13.3 167 | 30.7 158 | 3.83 190 | 22.0 193 | 25.3 175 | 7.16 190 | 34.7 195 | 40.0 188 | 7.77 194 | 26.6 172 | 36.6 128 | 8.60 162 | 45.1 122 | 57.9 121 | 10.0 50 | 28.4 114 | 50.9 141 | 6.03 189 | 34.8 60 | 71.8 63 | 4.51 181 | 31.4 102 | 48.0 83 | 3.74 183 |
ResPWCR_ROB [140] | 147.9 | 12.9 157 | 34.8 170 | 2.94 94 | 17.1 120 | 24.0 144 | 4.36 109 | 16.8 165 | 31.4 161 | 3.37 118 | 25.7 169 | 57.3 188 | 8.29 149 | 46.7 168 | 60.8 173 | 11.2 153 | 29.9 158 | 58.2 183 | 5.92 184 | 35.6 79 | 74.0 85 | 4.20 154 | 36.6 174 | 60.5 180 | 3.56 115 |
IRR-PWC_RVC [180] | 148.1 | 16.8 189 | 47.4 192 | 3.11 130 | 16.8 114 | 23.9 140 | 4.55 121 | 14.4 156 | 38.1 183 | 3.11 109 | 38.2 196 | 83.8 199 | 7.85 116 | 47.8 183 | 61.8 185 | 11.8 198 | 30.6 173 | 56.6 177 | 4.97 59 | 38.6 137 | 85.0 152 | 4.04 37 | 42.6 189 | 61.3 182 | 3.42 38 |
StereoFlow [44] | 148.7 | 22.8 198 | 48.3 195 | 3.74 186 | 20.5 183 | 26.8 196 | 5.07 147 | 11.3 65 | 29.3 141 | 3.37 118 | 20.1 108 | 37.0 130 | 7.62 76 | 59.3 196 | 75.2 196 | 10.8 129 | 39.3 198 | 71.4 197 | 5.45 161 | 35.8 87 | 73.9 84 | 4.08 78 | 35.7 171 | 55.1 164 | 3.70 165 |
OFRF [132] | 151.2 | 14.4 180 | 38.4 183 | 3.70 183 | 19.9 171 | 25.3 175 | 5.48 164 | 13.0 138 | 33.0 168 | 3.11 109 | 20.7 121 | 38.4 145 | 7.79 112 | 47.8 183 | 61.4 179 | 10.9 135 | 31.9 185 | 56.8 178 | 5.29 142 | 41.5 171 | 90.5 171 | 4.08 78 | 34.4 163 | 54.7 158 | 3.42 38 |
Shiralkar [42] | 151.4 | 13.2 166 | 31.6 162 | 3.00 112 | 19.7 166 | 24.5 159 | 4.65 129 | 17.0 167 | 30.7 157 | 4.08 167 | 32.1 188 | 53.1 185 | 8.04 133 | 46.3 157 | 59.7 159 | 10.3 97 | 28.4 114 | 50.2 117 | 5.45 161 | 45.5 187 | 95.2 182 | 4.24 165 | 39.2 180 | 62.6 186 | 3.42 38 |
StereoOF-V1MT [117] | 151.5 | 13.7 171 | 32.7 164 | 3.00 112 | 18.7 146 | 23.6 133 | 4.80 138 | 21.8 182 | 28.0 128 | 5.07 176 | 31.6 186 | 40.6 160 | 9.57 180 | 46.5 162 | 58.9 146 | 11.5 193 | 29.2 143 | 50.2 117 | 6.45 193 | 42.4 176 | 94.7 180 | 4.80 186 | 31.4 102 | 48.3 85 | 3.46 76 |
Dynamic MRF [7] | 153.5 | 12.1 113 | 26.8 118 | 2.94 94 | 18.0 138 | 23.9 140 | 4.16 98 | 18.3 175 | 30.7 157 | 5.00 173 | 28.9 180 | 39.8 154 | 10.5 183 | 45.9 146 | 58.6 139 | 11.2 153 | 30.9 177 | 56.0 175 | 5.80 183 | 43.0 180 | 90.3 169 | 4.65 183 | 33.7 154 | 51.8 136 | 3.70 165 |
Adaptive flow [45] | 154.5 | 13.4 168 | 25.8 105 | 4.51 193 | 21.8 192 | 25.4 179 | 7.26 191 | 13.7 144 | 27.5 122 | 4.69 170 | 24.1 161 | 35.2 109 | 8.76 169 | 47.3 179 | 61.5 180 | 10.2 89 | 33.8 191 | 61.9 191 | 5.45 161 | 35.9 92 | 73.2 77 | 4.20 154 | 34.7 167 | 54.7 158 | 3.70 165 |
UnFlow [127] | 158.7 | 14.9 183 | 40.2 188 | 3.11 130 | 18.5 141 | 23.4 127 | 5.48 164 | 15.3 158 | 31.3 160 | 4.36 168 | 22.8 152 | 38.0 141 | 8.45 157 | 48.3 187 | 63.0 188 | 10.9 135 | 32.4 187 | 62.0 192 | 5.72 178 | 35.4 74 | 71.2 55 | 4.32 170 | 45.5 193 | 66.0 192 | 3.87 189 |
SPSA-learn [13] | 160.5 | 12.3 130 | 33.7 168 | 3.37 165 | 19.2 155 | 23.6 133 | 5.45 163 | 30.0 186 | 39.7 187 | 7.00 187 | 26.9 173 | 41.3 162 | 8.41 156 | 46.7 168 | 60.1 163 | 10.2 89 | 29.4 149 | 50.6 130 | 5.20 123 | 53.7 195 | 99.9 188 | 8.43 198 | 51.4 196 | 72.0 197 | 3.51 91 |
SegOF [10] | 162.8 | 12.3 130 | 33.1 165 | 3.11 130 | 17.9 135 | 23.8 138 | 4.51 117 | 29.0 185 | 34.3 173 | 6.16 184 | 32.8 189 | 78.9 198 | 8.33 151 | 48.1 185 | 63.6 192 | 11.2 153 | 28.5 122 | 54.3 169 | 5.72 178 | 44.6 185 | 99.9 188 | 4.97 190 | 37.9 176 | 61.4 183 | 3.51 91 |
WRT [146] | 163.4 | 13.0 161 | 29.4 146 | 2.83 52 | 18.8 148 | 23.5 131 | 4.69 132 | 32.7 190 | 30.0 151 | 6.73 185 | 24.7 166 | 39.3 153 | 9.02 174 | 47.4 182 | 61.7 182 | 10.4 107 | 34.4 193 | 63.1 194 | 5.92 184 | 57.2 198 | 99.9 188 | 7.68 197 | 49.8 195 | 72.2 198 | 3.56 115 |
HCIC-L [97] | 164.6 | 21.0 197 | 41.8 189 | 5.07 197 | 20.2 177 | 26.1 192 | 5.80 171 | 16.3 162 | 42.3 190 | 4.00 160 | 31.7 187 | 51.0 184 | 8.50 158 | 44.7 111 | 55.5 91 | 10.4 107 | 35.2 195 | 69.8 196 | 5.07 93 | 39.9 157 | 91.2 174 | 4.16 147 | 40.4 184 | 58.0 173 | 3.65 159 |
FFV1MT [104] | 166.1 | 17.0 190 | 37.6 182 | 3.37 165 | 19.3 157 | 22.9 111 | 6.40 185 | 28.2 184 | 46.7 196 | 6.95 186 | 29.3 181 | 38.4 145 | 11.4 188 | 46.3 157 | 58.2 132 | 10.4 107 | 29.0 134 | 50.4 124 | 5.72 178 | 46.7 189 | 88.5 160 | 4.93 189 | 39.0 179 | 56.9 171 | 4.43 196 |
PGAM+LK [55] | 166.5 | 15.5 187 | 39.4 185 | 4.55 194 | 19.8 169 | 24.0 144 | 7.68 192 | 33.1 193 | 43.4 194 | 8.00 195 | 34.5 193 | 45.7 179 | 11.2 187 | 46.6 166 | 57.7 116 | 10.6 121 | 29.3 144 | 50.8 140 | 5.74 182 | 37.4 116 | 77.2 110 | 4.43 177 | 34.4 163 | 53.3 153 | 4.24 195 |
Heeger++ [102] | 167.6 | 19.8 194 | 44.7 190 | 3.11 130 | 18.9 151 | 22.8 107 | 6.45 186 | 33.0 192 | 35.2 176 | 7.16 191 | 29.3 181 | 38.4 145 | 11.4 188 | 51.5 194 | 65.2 193 | 11.3 174 | 28.4 114 | 46.9 73 | 6.78 195 | 47.9 191 | 84.5 151 | 4.69 184 | 40.1 182 | 58.8 176 | 3.70 165 |
SLK [47] | 168.7 | 13.9 176 | 29.9 153 | 3.79 187 | 20.0 173 | 22.8 107 | 6.22 181 | 32.0 189 | 33.7 171 | 7.72 193 | 33.4 191 | 46.4 180 | 16.1 193 | 48.5 190 | 61.7 182 | 10.3 97 | 28.4 114 | 47.9 89 | 5.72 178 | 43.2 181 | 97.9 185 | 4.97 190 | 38.7 178 | 59.8 178 | 4.04 192 |
WOLF_ROB [144] | 178.6 | 19.8 194 | 50.0 197 | 3.37 165 | 21.0 187 | 25.8 184 | 5.42 162 | 21.7 180 | 43.4 194 | 3.37 118 | 28.0 179 | 54.1 187 | 8.54 159 | 48.3 187 | 62.7 187 | 11.3 174 | 33.4 188 | 60.0 186 | 5.57 174 | 49.5 193 | 99.9 188 | 4.40 172 | 40.3 183 | 64.3 189 | 3.65 159 |
Pyramid LK [2] | 179.0 | 14.4 180 | 37.3 180 | 4.93 195 | 23.7 196 | 25.3 175 | 9.98 198 | 42.2 197 | 35.7 177 | 12.3 197 | 56.2 198 | 64.2 191 | 35.8 198 | 65.6 197 | 83.9 197 | 10.6 121 | 28.1 104 | 46.1 64 | 5.48 169 | 45.2 186 | 99.9 188 | 5.89 195 | 53.6 198 | 75.1 199 | 5.42 197 |
GroupFlow [9] | 180.9 | 19.9 196 | 49.6 196 | 3.42 174 | 19.1 153 | 24.1 148 | 5.48 164 | 31.4 188 | 40.0 188 | 8.19 196 | 36.2 194 | 61.9 189 | 12.1 190 | 55.6 195 | 71.3 195 | 11.4 187 | 36.3 196 | 67.0 195 | 5.60 176 | 46.7 189 | 98.5 186 | 4.20 154 | 43.6 190 | 62.8 187 | 3.56 115 |
Periodicity [79] | 195.8 | 17.6 191 | 55.7 198 | 5.45 198 | 26.8 198 | 27.0 197 | 9.75 197 | 49.4 199 | 51.5 199 | 17.7 198 | 51.3 197 | 70.3 193 | 27.9 197 | 66.6 198 | 86.3 198 | 11.7 197 | 38.7 197 | 82.5 198 | 6.38 192 | 51.8 194 | 99.9 188 | 5.48 193 | 44.3 192 | 65.5 191 | 5.80 198 |
AVG_FLOW_ROB [137] | 198.2 | 64.1 199 | 67.2 199 | 12.2 199 | 44.0 199 | 47.3 199 | 16.5 199 | 48.3 198 | 50.5 198 | 29.0 199 | 68.4 199 | 77.2 196 | 51.4 199 | 78.9 199 | 90.3 199 | 20.4 199 | 80.7 199 | 99.9 199 | 17.7 199 | 73.1 199 | 99.9 188 | 14.0 199 | 64.2 199 | 71.2 196 | 16.7 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |