Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
R10.0 interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
SoftsplatAug [190] | 3.9 | 0.55 1 | 1.38 1 | 0.01 7 | 0.89 2 | 2.19 2 | 0.06 5 | 0.27 2 | 0.98 6 | 0.06 1 | 1.50 3 | 3.04 3 | 0.32 2 | 8.10 2 | 13.4 2 | 0.69 17 | 2.17 4 | 8.99 4 | 0.02 1 | 3.03 5 | 16.8 4 | 0.05 7 | 4.81 3 | 12.2 3 | 0.10 6 |
EAFI [186] | 9.2 | 0.71 11 | 1.92 8 | 0.00 1 | 0.81 1 | 1.85 1 | 0.04 1 | 0.23 1 | 0.67 1 | 0.06 1 | 1.46 2 | 2.72 1 | 0.37 10 | 11.4 26 | 18.9 26 | 0.70 19 | 3.29 22 | 13.6 22 | 0.02 1 | 3.39 15 | 18.9 16 | 0.03 1 | 6.61 15 | 16.7 16 | 0.09 2 |
SoftSplat [169] | 9.4 | 0.60 5 | 1.65 3 | 0.00 1 | 1.31 5 | 3.46 7 | 0.15 56 | 0.28 3 | 0.82 3 | 0.07 3 | 1.42 1 | 2.96 2 | 0.38 12 | 9.15 17 | 15.1 17 | 0.63 5 | 2.47 7 | 10.2 6 | 0.03 7 | 3.25 14 | 18.1 15 | 0.05 7 | 4.83 4 | 12.2 3 | 0.14 23 |
FGME [158] | 15.2 | 0.61 7 | 1.77 6 | 0.01 7 | 2.07 29 | 4.59 13 | 0.33 130 | 0.43 7 | 1.03 7 | 0.13 23 | 1.74 5 | 3.35 5 | 0.49 85 | 7.62 1 | 12.6 1 | 0.66 9 | 2.09 3 | 8.67 3 | 0.02 1 | 2.52 1 | 14.0 1 | 0.03 1 | 4.84 5 | 12.3 5 | 0.11 11 |
IFRNet [193] | 15.3 | 0.56 3 | 1.41 2 | 0.01 7 | 1.18 4 | 2.92 4 | 0.23 95 | 0.31 4 | 0.75 2 | 0.07 3 | 1.56 4 | 3.24 4 | 0.58 128 | 8.74 7 | 14.4 6 | 0.72 23 | 2.74 11 | 11.3 11 | 0.02 1 | 3.14 8 | 17.5 8 | 0.04 3 | 5.92 9 | 15.0 9 | 0.11 11 |
BMBC [171] | 15.7 | 0.77 17 | 1.96 9 | 0.01 7 | 1.57 10 | 4.13 11 | 0.10 34 | 0.89 19 | 2.31 30 | 0.12 15 | 2.14 10 | 4.27 9 | 0.41 31 | 8.96 12 | 14.8 12 | 0.86 34 | 2.45 6 | 10.2 6 | 0.04 16 | 3.22 12 | 17.8 12 | 0.06 20 | 5.33 6 | 13.5 6 | 0.16 32 |
SepConv++ [185] | 16.9 | 0.77 17 | 2.72 22 | 0.01 7 | 1.49 9 | 4.07 10 | 0.07 12 | 1.09 30 | 1.23 12 | 0.21 99 | 2.77 16 | 5.92 24 | 0.56 119 | 8.13 3 | 13.4 2 | 0.55 1 | 1.78 2 | 7.39 2 | 0.02 1 | 2.88 3 | 16.1 3 | 0.05 7 | 4.21 2 | 10.7 2 | 0.08 1 |
DistillNet [184] | 17.2 | 0.59 4 | 1.71 4 | 0.01 7 | 1.03 3 | 2.63 3 | 0.11 44 | 0.33 5 | 0.83 4 | 0.08 5 | 1.91 7 | 3.87 7 | 0.47 73 | 9.21 18 | 15.2 18 | 0.75 28 | 3.36 24 | 13.9 24 | 0.04 16 | 3.76 17 | 20.7 20 | 0.06 20 | 6.75 17 | 17.1 17 | 0.15 27 |
EDSC [173] | 21.2 | 0.78 20 | 2.49 17 | 0.01 7 | 1.77 12 | 4.62 15 | 0.27 108 | 0.91 21 | 1.46 17 | 0.16 45 | 2.64 15 | 5.70 22 | 0.57 123 | 8.58 5 | 14.1 5 | 0.66 9 | 2.87 12 | 11.9 12 | 0.03 7 | 3.00 4 | 16.8 4 | 0.05 7 | 6.23 10 | 15.8 10 | 0.09 2 |
STAR-Net [164] | 22.9 | 0.60 5 | 1.73 5 | 0.00 1 | 2.34 53 | 5.83 36 | 0.21 85 | 1.04 26 | 1.08 10 | 0.18 67 | 2.40 13 | 4.54 11 | 0.49 85 | 8.24 4 | 13.6 4 | 0.67 14 | 3.13 20 | 13.0 20 | 0.04 16 | 3.79 18 | 17.8 12 | 0.06 20 | 6.45 12 | 16.2 11 | 0.09 2 |
AdaCoF [165] | 25.2 | 0.80 22 | 2.69 21 | 0.01 7 | 1.72 11 | 4.46 12 | 0.18 68 | 1.04 26 | 1.38 15 | 0.19 81 | 3.46 57 | 6.23 26 | 0.64 143 | 10.4 24 | 17.2 24 | 0.67 14 | 2.41 5 | 10.0 5 | 0.02 1 | 3.17 9 | 17.7 11 | 0.04 3 | 5.44 7 | 13.8 7 | 0.10 6 |
IDIAL [192] | 25.2 | 0.68 8 | 2.03 11 | 0.01 7 | 1.87 16 | 4.85 20 | 0.25 100 | 0.70 8 | 1.06 9 | 0.11 9 | 2.52 14 | 4.81 13 | 0.48 78 | 8.73 6 | 14.4 6 | 0.72 23 | 3.12 19 | 12.9 18 | 0.03 7 | 3.94 23 | 19.1 17 | 0.14 144 | 6.58 14 | 16.5 13 | 0.14 23 |
CyclicGen [149] | 26.7 | 0.55 1 | 1.82 7 | 0.01 7 | 1.48 8 | 3.28 5 | 0.45 164 | 0.94 22 | 2.65 32 | 0.17 55 | 3.61 69 | 6.73 28 | 1.04 182 | 9.11 16 | 14.9 13 | 0.60 3 | 1.58 1 | 6.55 1 | 0.03 7 | 2.59 2 | 14.4 2 | 0.04 3 | 3.82 1 | 9.70 1 | 0.11 11 |
FRUCnet [153] | 28.6 | 0.89 27 | 2.84 26 | 0.01 7 | 1.94 21 | 4.76 17 | 0.36 135 | 0.96 24 | 1.45 16 | 0.20 90 | 2.99 23 | 5.85 23 | 0.63 139 | 9.22 19 | 15.2 18 | 0.57 2 | 2.70 10 | 11.2 10 | 0.03 7 | 3.18 11 | 17.5 8 | 0.06 20 | 6.56 13 | 16.6 15 | 0.10 6 |
MV_VFI [183] | 30.8 | 0.75 14 | 2.61 18 | 0.01 7 | 1.92 18 | 4.77 18 | 0.45 164 | 0.83 16 | 1.58 21 | 0.17 55 | 2.83 20 | 5.63 21 | 0.80 166 | 9.05 13 | 14.9 13 | 0.65 7 | 3.09 16 | 12.8 16 | 0.05 25 | 3.86 20 | 21.2 24 | 0.05 7 | 7.14 22 | 18.0 22 | 0.12 16 |
TC-GAN [166] | 31.0 | 0.76 16 | 2.64 19 | 0.01 7 | 1.94 21 | 4.83 19 | 0.45 164 | 0.83 16 | 1.60 23 | 0.17 55 | 2.81 17 | 5.56 19 | 0.83 171 | 9.05 13 | 14.9 13 | 0.66 9 | 3.09 16 | 12.8 16 | 0.04 16 | 3.86 20 | 21.2 24 | 0.05 7 | 7.16 24 | 18.1 24 | 0.12 16 |
DSepConv [162] | 31.1 | 0.88 26 | 3.15 29 | 0.01 7 | 2.05 27 | 4.93 25 | 0.45 164 | 0.95 23 | 1.51 19 | 0.14 28 | 3.79 100 | 6.79 31 | 0.56 119 | 8.79 8 | 14.5 8 | 0.65 7 | 2.96 13 | 12.3 13 | 0.04 16 | 3.04 6 | 17.0 6 | 0.06 20 | 6.95 20 | 17.6 20 | 0.11 11 |
ProBoost-Net [191] | 31.1 | 0.72 13 | 2.33 16 | 0.01 7 | 2.94 99 | 6.49 58 | 0.47 171 | 0.75 11 | 1.32 13 | 0.09 6 | 2.30 12 | 4.74 12 | 0.57 123 | 10.3 23 | 17.0 23 | 0.74 26 | 3.23 21 | 13.4 21 | 0.04 16 | 3.22 12 | 18.0 14 | 0.05 7 | 6.89 18 | 17.4 18 | 0.10 6 |
DAIN [152] | 31.2 | 0.78 20 | 2.72 22 | 0.01 7 | 1.98 23 | 4.89 23 | 0.44 161 | 0.81 15 | 1.50 18 | 0.16 45 | 2.82 19 | 5.58 20 | 0.83 171 | 9.07 15 | 15.0 16 | 0.66 9 | 3.06 15 | 12.7 15 | 0.05 25 | 3.86 20 | 21.2 24 | 0.05 7 | 7.14 22 | 18.0 22 | 0.12 16 |
GDCN [172] | 33.0 | 0.77 17 | 2.80 25 | 0.01 7 | 2.99 108 | 6.52 60 | 0.24 97 | 0.80 13 | 1.35 14 | 0.13 23 | 3.99 126 | 5.28 16 | 0.67 148 | 8.91 11 | 14.7 10 | 0.64 6 | 3.10 18 | 12.9 18 | 0.05 25 | 3.17 9 | 17.5 8 | 0.05 7 | 6.43 11 | 16.3 12 | 0.09 2 |
STSR [170] | 35.5 | 0.87 25 | 2.75 24 | 0.01 7 | 1.35 6 | 3.28 5 | 0.30 120 | 0.80 13 | 1.55 20 | 0.22 107 | 2.03 9 | 4.43 10 | 0.72 157 | 12.6 29 | 20.8 29 | 0.72 23 | 3.93 31 | 16.2 30 | 0.06 32 | 4.13 28 | 22.9 32 | 0.07 40 | 7.92 32 | 20.0 32 | 0.11 11 |
MAF-net [163] | 35.8 | 0.69 10 | 2.29 15 | 0.01 7 | 2.57 73 | 5.86 37 | 0.47 171 | 0.85 18 | 1.64 24 | 0.16 45 | 2.81 17 | 5.13 15 | 0.65 144 | 12.0 28 | 19.7 28 | 0.77 30 | 3.68 28 | 15.3 28 | 0.05 25 | 3.46 16 | 19.3 19 | 0.05 7 | 7.40 26 | 18.7 27 | 0.13 22 |
PMMST [112] | 36.8 | 1.35 43 | 4.72 45 | 0.01 7 | 2.31 49 | 6.03 42 | 0.07 12 | 1.11 31 | 3.99 38 | 0.12 15 | 3.07 25 | 6.79 31 | 0.40 22 | 13.6 39 | 22.1 36 | 1.00 48 | 4.53 38 | 18.6 38 | 0.11 41 | 4.33 37 | 24.1 43 | 0.07 40 | 8.94 62 | 22.6 61 | 0.19 39 |
FeFlow [167] | 36.8 | 0.75 14 | 2.27 14 | 0.01 7 | 2.35 54 | 5.57 32 | 0.49 180 | 0.78 12 | 1.22 11 | 0.11 9 | 2.92 21 | 5.53 18 | 0.84 173 | 8.90 10 | 14.7 10 | 0.70 19 | 3.32 23 | 13.7 23 | 0.03 7 | 3.96 24 | 19.2 18 | 0.14 144 | 6.92 19 | 17.4 18 | 0.14 23 |
CtxSyn [134] | 37.1 | 0.83 23 | 2.64 19 | 0.01 7 | 1.46 7 | 3.91 8 | 0.12 48 | 0.89 19 | 1.58 21 | 0.21 99 | 1.91 7 | 4.91 14 | 0.47 73 | 13.3 34 | 21.6 34 | 0.88 35 | 4.13 33 | 16.8 33 | 0.05 25 | 5.12 167 | 24.8 69 | 0.06 20 | 7.83 31 | 19.5 31 | 0.17 34 |
MEMC-Net+ [160] | 38.7 | 0.71 11 | 2.21 13 | 0.01 7 | 2.01 26 | 4.85 20 | 0.48 174 | 1.07 28 | 1.64 24 | 0.22 107 | 2.96 22 | 5.29 17 | 0.82 170 | 10.5 25 | 17.3 25 | 0.71 21 | 3.40 25 | 14.1 25 | 0.05 25 | 4.01 25 | 21.0 22 | 0.07 40 | 7.41 27 | 18.7 27 | 0.14 23 |
SuperSlomo [130] | 40.0 | 0.91 29 | 2.94 27 | 0.01 7 | 2.72 83 | 6.28 49 | 0.48 174 | 0.71 10 | 1.99 28 | 0.12 15 | 3.19 30 | 6.15 25 | 0.81 168 | 12.7 30 | 20.8 29 | 0.74 26 | 3.92 30 | 16.2 30 | 0.04 16 | 4.20 29 | 22.7 31 | 0.05 7 | 7.68 30 | 19.4 30 | 0.15 27 |
ADC [161] | 40.1 | 0.92 30 | 3.15 29 | 0.02 101 | 1.92 18 | 4.61 14 | 0.32 125 | 1.31 64 | 1.92 26 | 0.18 67 | 4.07 133 | 7.05 39 | 0.69 151 | 9.99 22 | 16.4 22 | 0.61 4 | 2.99 14 | 12.4 14 | 0.03 7 | 3.11 7 | 17.4 7 | 0.06 20 | 7.06 21 | 17.9 21 | 0.10 6 |
MDP-Flow2 [68] | 40.8 | 1.29 36 | 4.46 39 | 0.01 7 | 2.18 34 | 6.04 43 | 0.06 5 | 1.11 31 | 4.13 43 | 0.14 28 | 3.08 26 | 6.86 34 | 0.36 7 | 13.5 35 | 22.1 36 | 1.01 60 | 4.96 71 | 20.4 73 | 0.18 75 | 4.31 35 | 24.0 41 | 0.07 40 | 8.94 62 | 22.6 61 | 0.20 58 |
DAI [168] | 41.8 | 0.85 24 | 2.04 12 | 0.20 198 | 2.39 64 | 5.22 28 | 0.75 193 | 0.39 6 | 1.05 8 | 0.11 9 | 1.85 6 | 3.73 6 | 1.39 191 | 11.6 27 | 19.1 27 | 0.71 21 | 3.61 26 | 14.9 26 | 0.03 7 | 3.83 19 | 21.2 24 | 0.04 3 | 7.36 25 | 18.6 26 | 0.15 27 |
OFRI [154] | 42.8 | 0.68 8 | 1.98 10 | 0.02 101 | 2.09 30 | 4.70 16 | 0.44 161 | 0.70 8 | 0.86 5 | 0.17 55 | 2.16 11 | 4.06 8 | 0.77 163 | 9.25 20 | 15.3 20 | 0.66 9 | 3.64 27 | 14.9 26 | 0.03 7 | 5.14 169 | 21.0 22 | 0.08 68 | 7.41 27 | 18.2 25 | 0.16 32 |
CoT-AMFlow [174] | 44.8 | 1.32 39 | 4.67 43 | 0.01 7 | 2.20 37 | 6.12 46 | 0.05 2 | 1.15 38 | 4.42 50 | 0.15 37 | 3.10 27 | 6.95 36 | 0.36 7 | 13.6 39 | 22.2 41 | 1.02 75 | 4.99 80 | 20.5 79 | 0.20 84 | 4.36 44 | 24.2 46 | 0.06 20 | 8.96 69 | 22.7 70 | 0.20 58 |
MPRN [151] | 49.3 | 1.02 32 | 3.42 32 | 0.01 7 | 2.81 88 | 5.90 39 | 0.24 97 | 1.40 89 | 5.46 125 | 0.14 28 | 3.69 81 | 7.51 56 | 0.61 134 | 12.7 30 | 20.8 29 | 0.78 31 | 3.89 29 | 16.1 29 | 0.07 34 | 4.37 46 | 23.6 34 | 0.07 40 | 7.54 29 | 19.1 29 | 0.12 16 |
NN-field [71] | 52.8 | 1.45 61 | 5.41 78 | 0.01 7 | 1.87 16 | 5.01 27 | 0.06 5 | 1.51 115 | 3.94 36 | 0.16 45 | 3.78 98 | 8.92 125 | 0.41 31 | 13.6 39 | 22.2 41 | 1.00 48 | 5.05 88 | 20.7 87 | 0.20 84 | 4.27 30 | 23.7 35 | 0.07 40 | 8.85 46 | 22.4 45 | 0.19 39 |
NNF-Local [75] | 54.0 | 1.41 50 | 5.16 63 | 0.01 7 | 1.85 14 | 5.00 26 | 0.07 12 | 1.12 33 | 4.05 39 | 0.14 28 | 3.68 80 | 8.61 107 | 0.42 39 | 13.6 39 | 22.3 44 | 1.00 48 | 5.21 113 | 21.4 116 | 0.24 109 | 4.35 39 | 24.1 43 | 0.11 116 | 8.85 46 | 22.4 45 | 0.19 39 |
TOF-M [150] | 56.0 | 1.06 33 | 3.25 31 | 0.02 101 | 2.86 94 | 6.62 67 | 0.50 181 | 1.17 40 | 2.25 29 | 0.21 99 | 3.42 52 | 6.74 29 | 0.59 131 | 13.0 33 | 21.2 33 | 0.84 33 | 4.19 34 | 17.3 34 | 0.08 35 | 4.61 106 | 22.9 32 | 0.06 20 | 8.43 35 | 21.0 34 | 0.15 27 |
DeepFlow [85] | 57.8 | 1.35 43 | 4.67 43 | 0.00 1 | 3.01 110 | 8.09 106 | 0.21 85 | 1.26 51 | 5.00 79 | 0.12 15 | 3.97 124 | 8.00 76 | 0.44 55 | 13.7 47 | 22.4 51 | 1.03 87 | 4.46 36 | 18.3 36 | 0.08 35 | 4.40 49 | 24.5 57 | 0.06 20 | 8.74 42 | 22.1 41 | 0.21 98 |
DeepFlow2 [106] | 60.0 | 1.40 49 | 4.87 49 | 0.01 7 | 3.01 110 | 8.13 108 | 0.20 79 | 1.25 50 | 5.01 83 | 0.11 9 | 3.83 109 | 8.21 88 | 0.43 48 | 13.7 47 | 22.4 51 | 1.03 87 | 4.49 37 | 18.5 37 | 0.08 35 | 4.49 69 | 24.8 69 | 0.06 20 | 8.87 49 | 22.5 52 | 0.21 98 |
MS-PFT [159] | 60.1 | 0.89 27 | 3.07 28 | 0.01 7 | 2.25 43 | 5.71 33 | 0.32 125 | 1.26 51 | 1.95 27 | 0.31 152 | 4.49 155 | 8.39 95 | 0.91 179 | 9.43 21 | 15.5 21 | 0.75 28 | 2.64 9 | 10.9 9 | 0.04 16 | 4.98 158 | 21.5 28 | 0.21 175 | 6.65 16 | 16.5 13 | 0.15 27 |
SepConv-v1 [125] | 61.4 | 0.93 31 | 3.75 33 | 0.02 101 | 2.74 85 | 6.52 60 | 0.46 169 | 1.13 34 | 2.38 31 | 0.42 165 | 3.64 77 | 7.10 42 | 0.94 180 | 13.6 39 | 22.1 36 | 0.82 32 | 4.01 32 | 16.5 32 | 0.05 25 | 4.02 26 | 22.3 29 | 0.12 133 | 8.05 33 | 20.3 33 | 0.12 16 |
DF-Auto [113] | 61.6 | 1.26 34 | 3.92 34 | 0.00 1 | 3.13 118 | 7.98 101 | 0.29 115 | 1.14 36 | 4.08 41 | 0.16 45 | 3.57 63 | 7.48 54 | 0.46 67 | 13.5 35 | 22.0 35 | 1.01 60 | 4.66 39 | 19.2 40 | 0.15 56 | 4.49 69 | 24.8 69 | 0.09 88 | 9.09 90 | 23.0 90 | 0.21 98 |
FLAVR [188] | 61.8 | 1.62 123 | 4.22 35 | 0.01 7 | 2.23 41 | 3.98 9 | 0.20 79 | 1.23 48 | 2.89 33 | 0.21 99 | 12.2 197 | 17.1 196 | 1.42 192 | 8.82 9 | 14.6 9 | 0.67 14 | 2.53 8 | 10.5 8 | 0.04 16 | 4.66 119 | 20.7 20 | 0.19 169 | 5.78 8 | 14.3 8 | 0.18 35 |
IROF++ [58] | 62.7 | 1.54 92 | 5.77 106 | 0.01 7 | 2.35 54 | 6.39 51 | 0.10 34 | 1.50 112 | 5.04 85 | 0.25 128 | 3.10 27 | 6.75 30 | 0.39 15 | 13.7 47 | 22.4 51 | 1.16 133 | 4.66 39 | 19.2 40 | 0.11 41 | 4.55 92 | 25.1 89 | 0.10 102 | 8.84 45 | 22.4 45 | 0.19 39 |
PH-Flow [99] | 62.9 | 1.54 92 | 5.76 104 | 0.01 7 | 1.93 20 | 5.29 29 | 0.08 21 | 1.17 40 | 4.41 49 | 0.17 55 | 3.05 24 | 6.71 27 | 0.39 15 | 13.6 39 | 22.3 44 | 1.01 60 | 5.35 134 | 21.9 137 | 0.34 158 | 4.36 44 | 24.3 50 | 0.10 102 | 8.92 60 | 22.6 61 | 0.22 137 |
NNF-EAC [101] | 64.4 | 1.48 66 | 4.99 55 | 0.03 169 | 2.49 69 | 6.76 75 | 0.08 21 | 1.56 122 | 4.39 48 | 0.24 121 | 3.28 34 | 7.08 40 | 0.39 15 | 13.7 47 | 22.3 44 | 1.01 60 | 4.66 39 | 19.1 39 | 0.12 45 | 4.41 53 | 24.5 57 | 0.11 116 | 9.02 76 | 22.8 77 | 0.20 58 |
Layers++ [37] | 66.3 | 1.44 59 | 5.17 64 | 0.01 7 | 1.83 13 | 4.87 22 | 0.05 2 | 1.32 67 | 4.86 68 | 0.22 107 | 3.34 41 | 7.36 48 | 0.43 48 | 13.8 63 | 22.6 80 | 1.13 126 | 5.37 141 | 22.0 141 | 0.24 109 | 4.39 48 | 24.3 50 | 0.05 7 | 9.00 73 | 22.7 70 | 0.22 137 |
GMFlow_RVC [196] | 66.7 | 1.69 147 | 7.05 162 | 0.01 7 | 2.20 37 | 6.24 47 | 0.06 5 | 1.14 36 | 4.29 45 | 0.12 15 | 3.43 55 | 8.12 83 | 0.39 15 | 13.9 89 | 22.6 80 | 1.03 87 | 5.16 104 | 21.2 109 | 0.14 53 | 4.44 58 | 24.7 65 | 0.07 40 | 9.05 82 | 22.9 82 | 0.21 98 |
nLayers [57] | 67.2 | 1.51 77 | 5.46 81 | 0.01 7 | 2.17 33 | 5.91 40 | 0.08 21 | 1.24 49 | 3.88 35 | 0.18 67 | 3.47 58 | 7.71 67 | 0.40 22 | 13.9 89 | 22.7 106 | 1.18 141 | 5.25 115 | 21.6 122 | 0.31 139 | 4.35 39 | 23.8 36 | 0.09 88 | 8.99 72 | 22.7 70 | 0.19 39 |
Local-TV-L1 [65] | 68.0 | 1.34 41 | 4.39 37 | 0.02 101 | 4.19 161 | 9.42 148 | 0.37 141 | 1.34 69 | 4.34 47 | 0.15 37 | 3.61 69 | 7.78 69 | 0.44 55 | 13.8 63 | 22.5 61 | 1.04 94 | 4.71 45 | 19.5 48 | 0.16 65 | 4.40 49 | 24.5 57 | 0.07 40 | 8.70 40 | 22.0 38 | 0.20 58 |
Brox et al. [5] | 68.5 | 1.43 56 | 4.82 47 | 0.01 7 | 2.95 100 | 7.80 96 | 0.18 68 | 1.40 89 | 5.17 98 | 0.16 45 | 3.73 89 | 7.70 66 | 0.45 60 | 13.7 47 | 22.4 51 | 1.00 48 | 5.04 86 | 20.6 84 | 0.27 122 | 4.52 75 | 25.1 89 | 0.09 88 | 8.87 49 | 22.4 45 | 0.19 39 |
ALD-Flow [66] | 69.5 | 1.53 89 | 5.62 91 | 0.01 7 | 2.86 94 | 7.94 98 | 0.16 57 | 1.29 56 | 5.15 95 | 0.12 15 | 3.34 41 | 7.68 64 | 0.38 12 | 14.0 129 | 22.8 127 | 1.15 131 | 4.71 45 | 19.2 40 | 0.11 41 | 4.41 53 | 24.4 54 | 0.06 20 | 9.30 125 | 23.5 126 | 0.20 58 |
LME [70] | 71.0 | 1.39 47 | 5.10 59 | 0.01 7 | 2.49 69 | 6.95 80 | 0.10 34 | 1.35 75 | 5.64 133 | 0.15 37 | 3.29 36 | 7.55 58 | 0.39 15 | 14.1 156 | 23.0 160 | 1.26 193 | 5.13 101 | 21.1 105 | 0.19 81 | 4.37 46 | 24.2 46 | 0.06 20 | 8.89 56 | 22.5 52 | 0.19 39 |
CBF [12] | 72.7 | 1.28 35 | 4.40 38 | 0.01 7 | 3.24 126 | 8.20 113 | 0.25 100 | 1.59 129 | 4.63 54 | 0.18 67 | 3.60 68 | 7.61 61 | 0.49 85 | 13.8 63 | 22.5 61 | 0.99 43 | 4.89 60 | 20.2 63 | 0.18 75 | 4.56 94 | 25.3 107 | 0.07 40 | 9.21 109 | 23.3 111 | 0.18 35 |
JOF [136] | 72.8 | 1.58 113 | 5.80 109 | 0.01 7 | 2.18 34 | 5.88 38 | 0.10 34 | 1.28 54 | 4.68 56 | 0.19 81 | 3.37 48 | 7.21 45 | 0.42 39 | 13.9 89 | 22.7 106 | 1.21 156 | 5.35 134 | 21.9 137 | 0.20 84 | 4.33 37 | 24.0 41 | 0.07 40 | 9.18 104 | 23.2 104 | 0.20 58 |
Aniso. Huber-L1 [22] | 72.9 | 1.43 56 | 5.00 56 | 0.01 7 | 4.12 157 | 9.46 152 | 0.36 135 | 1.60 132 | 4.77 59 | 0.17 55 | 3.69 81 | 7.99 74 | 0.43 48 | 13.7 47 | 22.3 44 | 1.00 48 | 4.90 63 | 20.1 58 | 0.12 45 | 4.62 109 | 25.2 97 | 0.07 40 | 8.95 67 | 22.6 61 | 0.20 58 |
WLIF-Flow [91] | 72.9 | 1.44 59 | 5.19 66 | 0.01 7 | 2.52 72 | 6.81 77 | 0.16 57 | 1.38 82 | 4.67 55 | 0.20 90 | 3.21 31 | 6.98 37 | 0.42 39 | 13.7 47 | 22.4 51 | 1.07 108 | 5.37 141 | 22.1 147 | 0.28 128 | 4.43 56 | 24.4 54 | 0.08 68 | 9.09 90 | 23.0 90 | 0.21 98 |
ComponentFusion [94] | 73.0 | 1.54 92 | 6.05 126 | 0.01 7 | 2.33 52 | 6.57 64 | 0.07 12 | 1.31 64 | 4.82 63 | 0.16 45 | 3.35 45 | 7.66 63 | 0.37 10 | 13.9 89 | 22.6 80 | 1.13 126 | 4.93 65 | 20.3 67 | 0.20 84 | 4.61 106 | 25.7 128 | 0.13 140 | 9.06 83 | 22.9 82 | 0.20 58 |
RAFT-it+_RVC [198] | 73.9 | 1.63 127 | 6.74 156 | 0.01 7 | 2.14 31 | 6.06 45 | 0.06 5 | 1.18 42 | 4.75 57 | 0.11 9 | 3.65 78 | 8.80 119 | 0.41 31 | 13.9 89 | 22.6 80 | 1.02 75 | 5.56 163 | 21.7 128 | 0.62 198 | 4.35 39 | 24.2 46 | 0.08 68 | 8.71 41 | 22.1 41 | 0.21 98 |
HCFN [157] | 75.1 | 1.51 77 | 5.76 104 | 0.01 7 | 2.65 77 | 7.50 86 | 0.11 44 | 1.34 69 | 5.07 88 | 0.18 67 | 3.35 45 | 7.86 71 | 0.32 2 | 13.7 47 | 22.3 44 | 1.04 94 | 5.13 101 | 20.3 67 | 0.34 158 | 4.58 98 | 25.3 107 | 0.11 116 | 9.08 86 | 23.0 90 | 0.20 58 |
TV-L1-MCT [64] | 75.7 | 1.70 149 | 6.35 142 | 0.02 101 | 2.90 96 | 7.98 101 | 0.17 62 | 1.39 86 | 5.19 102 | 0.20 90 | 3.32 40 | 7.10 42 | 0.45 60 | 13.9 89 | 22.6 80 | 1.17 139 | 4.67 42 | 19.3 44 | 0.15 56 | 4.44 58 | 24.4 54 | 0.08 68 | 8.67 38 | 22.0 38 | 0.19 39 |
VCN_RVC [178] | 76.6 | 1.77 158 | 7.53 172 | 0.02 101 | 2.31 49 | 6.52 60 | 0.08 21 | 1.49 109 | 6.27 156 | 0.16 45 | 3.70 85 | 9.04 132 | 0.41 31 | 13.8 63 | 22.6 80 | 1.01 60 | 4.96 71 | 20.3 67 | 0.12 45 | 4.53 80 | 25.1 89 | 0.07 40 | 8.79 43 | 22.3 43 | 0.19 39 |
COFM [59] | 77.2 | 1.49 72 | 5.57 86 | 0.01 7 | 2.37 57 | 6.48 57 | 0.11 44 | 1.30 59 | 4.84 66 | 0.23 115 | 3.29 36 | 7.33 47 | 0.40 22 | 13.8 63 | 22.5 61 | 1.02 75 | 5.52 157 | 22.7 163 | 0.39 175 | 4.04 27 | 22.5 30 | 0.11 116 | 9.33 129 | 23.6 131 | 0.20 58 |
CLG-TV [48] | 77.3 | 1.35 43 | 4.56 40 | 0.02 101 | 3.84 145 | 9.35 143 | 0.29 115 | 1.38 82 | 5.11 90 | 0.18 67 | 3.71 87 | 7.93 72 | 0.50 97 | 13.8 63 | 22.4 51 | 1.00 48 | 4.74 48 | 19.5 48 | 0.13 50 | 4.59 103 | 25.2 97 | 0.07 40 | 9.08 86 | 22.9 82 | 0.20 58 |
CombBMOF [111] | 78.1 | 1.59 115 | 5.46 81 | 0.02 101 | 2.30 48 | 6.40 52 | 0.10 34 | 1.39 86 | 4.83 65 | 0.21 99 | 3.90 118 | 8.60 105 | 0.46 67 | 13.8 63 | 22.5 61 | 1.01 60 | 4.92 64 | 20.1 58 | 0.11 41 | 5.35 180 | 25.9 135 | 0.10 102 | 8.89 56 | 22.4 45 | 0.19 39 |
MS_RAFT+_RVC [195] | 78.1 | 1.63 127 | 6.51 149 | 0.02 101 | 2.29 47 | 6.57 64 | 0.07 12 | 0.99 25 | 3.73 34 | 0.14 28 | 3.17 29 | 6.90 35 | 0.45 60 | 13.8 63 | 22.6 80 | 1.20 150 | 4.74 48 | 19.4 46 | 0.06 32 | 4.28 32 | 23.8 36 | 0.11 116 | 10.3 182 | 26.1 187 | 0.28 192 |
Sparse-NonSparse [56] | 79.6 | 1.54 92 | 5.67 97 | 0.02 101 | 2.38 61 | 6.47 56 | 0.12 48 | 1.42 96 | 5.13 92 | 0.17 55 | 3.42 52 | 7.36 48 | 0.42 39 | 13.8 63 | 22.5 61 | 1.18 141 | 5.29 123 | 21.7 128 | 0.23 101 | 4.43 56 | 24.5 57 | 0.10 102 | 9.11 94 | 23.0 90 | 0.20 58 |
TF+OM [98] | 80.0 | 1.41 50 | 5.19 66 | 0.01 7 | 2.38 61 | 6.62 67 | 0.12 48 | 1.42 96 | 5.51 127 | 0.15 37 | 3.87 113 | 8.66 112 | 0.49 85 | 13.9 89 | 22.6 80 | 1.05 100 | 4.96 71 | 20.3 67 | 0.16 65 | 4.54 86 | 25.3 107 | 0.10 102 | 9.12 96 | 23.0 90 | 0.21 98 |
ProbFlowFields [126] | 80.2 | 1.46 63 | 5.63 92 | 0.02 101 | 2.23 41 | 6.35 50 | 0.09 28 | 1.19 43 | 4.55 52 | 0.20 90 | 3.51 60 | 8.02 78 | 0.45 60 | 13.9 89 | 22.7 106 | 1.24 182 | 5.28 122 | 21.6 122 | 0.39 175 | 4.32 36 | 24.1 43 | 0.11 116 | 8.68 39 | 22.0 38 | 0.21 98 |
SegFlow [156] | 80.2 | 1.52 85 | 5.83 112 | 0.01 7 | 2.37 57 | 6.71 73 | 0.10 34 | 1.34 69 | 5.00 79 | 0.12 15 | 3.69 81 | 8.87 122 | 0.49 85 | 13.9 89 | 22.6 80 | 1.22 169 | 5.08 94 | 20.9 95 | 0.33 154 | 4.58 98 | 25.3 107 | 0.08 68 | 8.87 49 | 22.4 45 | 0.20 58 |
PGM-C [118] | 80.4 | 1.50 74 | 5.75 102 | 0.01 7 | 2.37 57 | 6.68 70 | 0.10 34 | 1.48 108 | 5.32 110 | 0.15 37 | 3.77 95 | 9.13 138 | 0.50 97 | 13.9 89 | 22.6 80 | 1.21 156 | 4.97 77 | 20.4 73 | 0.23 101 | 4.54 86 | 25.1 89 | 0.08 68 | 8.94 62 | 22.6 61 | 0.20 58 |
IROF-TV [53] | 80.7 | 1.51 77 | 5.64 93 | 0.02 101 | 2.60 74 | 6.84 78 | 0.16 57 | 1.34 69 | 5.38 118 | 0.18 67 | 3.29 36 | 7.49 55 | 0.42 39 | 14.0 129 | 22.8 127 | 1.21 156 | 5.05 88 | 20.8 91 | 0.20 84 | 4.52 75 | 25.2 97 | 0.07 40 | 8.82 44 | 22.3 43 | 0.21 98 |
FlowFields [108] | 80.7 | 1.52 85 | 5.99 121 | 0.02 101 | 2.31 49 | 6.55 63 | 0.09 28 | 1.30 59 | 4.97 76 | 0.20 90 | 3.76 93 | 9.03 130 | 0.40 22 | 13.9 89 | 22.7 106 | 1.16 133 | 5.16 104 | 21.3 111 | 0.28 128 | 4.40 49 | 24.5 57 | 0.07 40 | 8.88 52 | 22.5 52 | 0.21 98 |
HAST [107] | 80.8 | 1.48 66 | 5.42 79 | 0.01 7 | 2.14 31 | 5.79 34 | 0.06 5 | 1.52 117 | 5.24 104 | 0.23 115 | 3.27 33 | 7.14 44 | 0.33 4 | 14.0 129 | 22.8 127 | 0.99 43 | 5.52 157 | 22.7 163 | 0.31 139 | 4.35 39 | 24.3 50 | 0.07 40 | 9.68 158 | 24.4 158 | 0.21 98 |
CPM-Flow [114] | 81.0 | 1.50 74 | 5.73 101 | 0.01 7 | 2.37 57 | 6.69 71 | 0.10 34 | 1.38 82 | 5.06 87 | 0.12 15 | 4.02 132 | 9.68 152 | 0.51 103 | 13.9 89 | 22.6 80 | 1.21 156 | 4.83 53 | 19.9 52 | 0.15 56 | 4.63 112 | 25.6 122 | 0.08 68 | 8.88 52 | 22.5 52 | 0.22 137 |
SIOF [67] | 81.1 | 1.53 89 | 5.38 76 | 0.01 7 | 4.17 158 | 10.1 169 | 0.31 122 | 1.40 89 | 5.38 118 | 0.14 28 | 3.62 72 | 7.99 74 | 0.61 134 | 13.5 35 | 22.1 36 | 0.98 40 | 4.87 56 | 20.1 58 | 0.13 50 | 4.49 69 | 24.9 79 | 0.08 68 | 9.34 131 | 23.6 131 | 0.20 58 |
RAFT-TF_RVC [179] | 81.7 | 1.70 149 | 7.21 165 | 0.02 101 | 2.25 43 | 6.40 52 | 0.06 5 | 1.16 39 | 4.53 51 | 0.18 67 | 3.67 79 | 8.70 113 | 0.47 73 | 13.9 89 | 22.6 80 | 1.00 48 | 5.44 149 | 20.7 87 | 0.28 128 | 4.35 39 | 24.2 46 | 0.06 20 | 9.06 83 | 22.9 82 | 0.24 173 |
FMOF [92] | 82.5 | 1.67 144 | 5.98 119 | 0.03 169 | 2.22 39 | 6.04 43 | 0.08 21 | 1.56 122 | 5.22 103 | 0.28 144 | 3.81 106 | 8.34 92 | 0.49 85 | 13.8 63 | 22.5 61 | 1.01 60 | 5.01 83 | 20.5 79 | 0.15 56 | 4.30 34 | 23.9 39 | 0.07 40 | 9.21 109 | 23.3 111 | 0.20 58 |
ProFlow_ROB [142] | 83.2 | 1.48 66 | 5.67 97 | 0.01 7 | 2.74 85 | 7.77 95 | 0.14 53 | 1.36 77 | 4.82 63 | 0.15 37 | 3.58 65 | 8.56 102 | 0.35 5 | 14.0 129 | 22.8 127 | 1.22 169 | 4.69 44 | 19.3 44 | 0.09 38 | 4.75 132 | 25.9 135 | 0.08 68 | 9.34 131 | 23.6 131 | 0.21 98 |
Ramp [62] | 83.4 | 1.57 111 | 5.75 102 | 0.01 7 | 2.38 61 | 6.51 59 | 0.19 72 | 1.41 93 | 5.11 90 | 0.17 55 | 3.26 32 | 7.09 41 | 0.41 31 | 13.9 89 | 22.6 80 | 1.15 131 | 5.51 155 | 22.5 156 | 0.32 148 | 4.48 65 | 24.7 65 | 0.07 40 | 9.33 129 | 23.6 131 | 0.20 58 |
RAFT-it [194] | 84.0 | 1.65 136 | 6.90 160 | 0.02 101 | 2.05 27 | 5.79 34 | 0.05 2 | 1.08 29 | 4.23 44 | 0.10 7 | 3.56 62 | 8.52 99 | 0.39 15 | 13.8 63 | 22.5 61 | 1.03 87 | 5.47 151 | 21.3 111 | 0.34 158 | 4.29 33 | 23.9 39 | 0.07 40 | 10.7 191 | 27.0 192 | 0.24 173 |
PRAFlow_RVC [177] | 84.0 | 1.67 144 | 6.70 154 | 0.02 101 | 2.39 64 | 6.57 64 | 0.11 44 | 1.13 34 | 4.12 42 | 0.15 37 | 3.70 85 | 8.75 114 | 0.48 78 | 13.8 63 | 22.5 61 | 1.03 87 | 4.85 55 | 19.9 52 | 0.15 56 | 4.40 49 | 24.5 57 | 0.11 116 | 9.52 148 | 23.9 149 | 0.23 163 |
FlowFields+ [128] | 85.8 | 1.52 85 | 5.97 118 | 0.02 101 | 2.26 45 | 6.42 55 | 0.09 28 | 1.29 56 | 5.05 86 | 0.19 81 | 3.69 81 | 8.96 127 | 0.44 55 | 14.0 129 | 22.8 127 | 1.21 156 | 5.26 116 | 21.6 122 | 0.33 154 | 4.41 53 | 24.5 57 | 0.08 68 | 8.86 48 | 22.5 52 | 0.20 58 |
2DHMM-SAS [90] | 86.2 | 1.65 136 | 6.25 138 | 0.02 101 | 3.41 131 | 8.58 121 | 0.22 89 | 1.36 77 | 4.84 66 | 0.19 81 | 3.28 34 | 7.02 38 | 0.43 48 | 13.8 63 | 22.5 61 | 1.19 147 | 4.94 68 | 20.1 58 | 0.09 38 | 4.52 75 | 24.8 69 | 0.12 133 | 9.25 120 | 23.4 120 | 0.20 58 |
F-TV-L1 [15] | 86.8 | 1.54 92 | 5.24 70 | 0.02 101 | 4.11 156 | 9.73 163 | 0.32 125 | 1.50 112 | 5.44 122 | 0.23 115 | 3.76 93 | 8.03 79 | 0.47 73 | 13.5 35 | 22.1 36 | 0.94 36 | 4.71 45 | 19.4 46 | 0.17 70 | 4.61 106 | 25.3 107 | 0.13 140 | 8.92 60 | 22.6 61 | 0.19 39 |
Classic++ [32] | 86.9 | 1.46 63 | 5.27 71 | 0.01 7 | 3.38 130 | 8.81 131 | 0.25 100 | 1.47 107 | 5.14 94 | 0.17 55 | 3.93 123 | 8.15 85 | 0.46 67 | 13.8 63 | 22.6 80 | 1.00 48 | 5.16 104 | 21.2 109 | 0.25 117 | 4.59 103 | 25.2 97 | 0.08 68 | 9.17 102 | 23.2 104 | 0.20 58 |
MDP-Flow [26] | 87.2 | 1.35 43 | 4.97 54 | 0.02 101 | 2.22 39 | 6.25 48 | 0.09 28 | 1.20 44 | 4.07 40 | 0.14 28 | 3.89 116 | 8.34 92 | 0.48 78 | 13.8 63 | 22.5 61 | 1.24 182 | 5.74 174 | 23.6 179 | 0.50 193 | 4.63 112 | 25.6 122 | 0.11 116 | 8.97 70 | 22.7 70 | 0.19 39 |
BlockOverlap [61] | 87.2 | 1.34 41 | 4.33 36 | 0.02 101 | 4.04 154 | 9.04 136 | 0.48 174 | 1.36 77 | 4.31 46 | 0.32 153 | 3.43 55 | 6.81 33 | 0.71 155 | 14.0 129 | 22.8 127 | 1.04 94 | 4.89 60 | 20.0 56 | 0.22 95 | 4.44 58 | 24.7 65 | 0.11 116 | 8.64 37 | 21.8 36 | 0.20 58 |
Classic+NL [31] | 88.0 | 1.62 123 | 5.98 119 | 0.02 101 | 2.48 66 | 6.65 69 | 0.17 62 | 1.41 93 | 5.13 92 | 0.19 81 | 3.37 48 | 7.27 46 | 0.44 55 | 13.9 89 | 22.6 80 | 1.12 125 | 5.34 131 | 21.8 134 | 0.22 95 | 4.48 65 | 24.8 69 | 0.09 88 | 9.27 123 | 23.4 120 | 0.19 39 |
Second-order prior [8] | 88.7 | 1.39 47 | 4.88 50 | 0.02 101 | 3.85 147 | 9.45 151 | 0.27 108 | 1.83 151 | 5.99 148 | 0.26 133 | 3.83 109 | 8.56 102 | 0.49 85 | 13.6 39 | 22.3 44 | 1.01 60 | 4.82 52 | 19.9 52 | 0.18 75 | 4.67 120 | 25.6 122 | 0.06 20 | 9.03 78 | 22.8 77 | 0.20 58 |
OAR-Flow [123] | 89.3 | 1.56 107 | 5.61 90 | 0.01 7 | 2.99 108 | 8.09 106 | 0.22 89 | 1.29 56 | 4.89 70 | 0.10 7 | 3.29 36 | 7.60 60 | 0.38 12 | 14.0 129 | 22.8 127 | 1.23 175 | 5.11 99 | 21.0 98 | 0.29 133 | 4.78 137 | 26.1 143 | 0.09 88 | 9.19 105 | 23.2 104 | 0.20 58 |
LSM [39] | 90.0 | 1.64 132 | 6.31 141 | 0.01 7 | 2.48 66 | 6.79 76 | 0.12 48 | 1.51 115 | 5.55 129 | 0.17 55 | 3.59 67 | 7.98 73 | 0.41 31 | 13.9 89 | 22.6 80 | 1.19 147 | 5.36 137 | 21.9 137 | 0.25 117 | 4.47 62 | 24.7 65 | 0.10 102 | 9.23 115 | 23.3 111 | 0.20 58 |
AggregFlow [95] | 90.7 | 1.89 171 | 7.48 170 | 0.01 7 | 2.95 100 | 8.13 108 | 0.16 57 | 1.22 46 | 4.86 68 | 0.14 28 | 4.18 140 | 9.69 153 | 0.45 60 | 13.9 89 | 22.6 80 | 1.04 94 | 4.94 68 | 20.2 63 | 0.15 56 | 4.51 73 | 25.0 84 | 0.12 133 | 9.24 119 | 23.3 111 | 0.21 98 |
LDOF [28] | 90.8 | 1.45 61 | 4.81 46 | 0.02 101 | 3.10 115 | 7.33 83 | 0.56 189 | 1.58 127 | 5.39 121 | 0.22 107 | 3.92 122 | 8.47 97 | 0.63 139 | 13.8 63 | 22.5 61 | 1.02 75 | 4.68 43 | 19.2 40 | 0.13 50 | 4.48 65 | 25.0 84 | 0.10 102 | 9.01 74 | 22.8 77 | 0.22 137 |
DMF_ROB [135] | 91.6 | 1.54 92 | 5.65 94 | 0.01 7 | 3.31 129 | 8.76 128 | 0.28 113 | 2.11 167 | 6.42 161 | 0.44 167 | 4.01 130 | 8.89 124 | 0.46 67 | 13.7 47 | 22.4 51 | 1.20 150 | 4.87 56 | 20.1 58 | 0.22 95 | 4.54 86 | 24.8 69 | 0.07 40 | 8.90 58 | 22.5 52 | 0.20 58 |
ComplOF-FED-GPU [35] | 92.1 | 1.56 107 | 5.92 114 | 0.02 101 | 2.71 82 | 7.63 90 | 0.17 62 | 1.95 159 | 5.09 89 | 0.39 164 | 3.63 73 | 8.64 109 | 0.40 22 | 13.7 47 | 22.5 61 | 1.13 126 | 4.98 78 | 20.5 79 | 0.17 70 | 4.70 124 | 25.7 128 | 0.07 40 | 9.31 126 | 23.4 120 | 0.19 39 |
CRTflow [81] | 92.4 | 1.50 74 | 5.48 83 | 0.02 101 | 3.87 148 | 9.40 147 | 0.36 135 | 1.62 135 | 6.22 155 | 0.24 121 | 3.55 61 | 7.76 68 | 0.43 48 | 13.9 89 | 22.7 106 | 1.21 156 | 4.77 51 | 19.6 50 | 0.14 53 | 4.53 80 | 25.2 97 | 0.07 40 | 9.04 79 | 22.9 82 | 0.20 58 |
DPOF [18] | 93.0 | 1.64 132 | 6.52 151 | 0.04 188 | 1.98 23 | 5.37 30 | 0.07 12 | 1.83 151 | 4.75 57 | 0.34 156 | 3.75 92 | 8.80 119 | 0.48 78 | 13.7 47 | 22.3 44 | 1.01 60 | 5.16 104 | 21.0 98 | 0.14 53 | 4.67 120 | 25.3 107 | 0.06 20 | 9.31 126 | 23.5 126 | 0.22 137 |
S2F-IF [121] | 93.4 | 1.55 103 | 6.13 130 | 0.01 7 | 2.26 45 | 6.41 54 | 0.09 28 | 1.30 59 | 5.17 98 | 0.17 55 | 3.72 88 | 9.01 129 | 0.45 60 | 14.0 129 | 22.9 149 | 1.24 182 | 5.27 117 | 21.6 122 | 0.32 148 | 4.54 86 | 25.2 97 | 0.09 88 | 8.88 52 | 22.5 52 | 0.23 163 |
TC-Flow [46] | 93.9 | 1.51 77 | 5.70 100 | 0.01 7 | 2.97 103 | 8.31 116 | 0.21 85 | 1.46 104 | 5.35 113 | 0.11 9 | 3.63 73 | 8.10 81 | 0.58 128 | 14.0 129 | 22.8 127 | 1.21 156 | 5.10 96 | 21.0 98 | 0.29 133 | 4.53 80 | 25.0 84 | 0.07 40 | 9.19 105 | 23.3 111 | 0.21 98 |
OFLAF [78] | 94.9 | 1.48 66 | 5.49 85 | 0.01 7 | 2.00 25 | 5.50 31 | 0.07 12 | 1.30 59 | 4.97 76 | 0.15 37 | 3.34 41 | 7.40 51 | 0.40 22 | 14.0 129 | 22.8 127 | 1.21 156 | 5.56 163 | 22.8 167 | 0.41 178 | 4.83 144 | 26.3 152 | 0.17 164 | 9.73 163 | 24.5 164 | 0.20 58 |
UnDAF [187] | 95.4 | 1.65 136 | 6.82 159 | 0.02 101 | 2.70 79 | 7.50 86 | 0.07 12 | 1.65 139 | 7.12 176 | 0.18 67 | 4.54 159 | 11.8 180 | 0.44 55 | 13.7 47 | 22.4 51 | 1.00 48 | 5.07 91 | 20.8 91 | 0.22 95 | 4.50 72 | 24.9 79 | 0.09 88 | 9.21 109 | 23.3 111 | 0.20 58 |
p-harmonic [29] | 95.7 | 1.42 53 | 4.96 53 | 0.01 7 | 4.00 151 | 9.50 153 | 0.39 147 | 1.38 82 | 5.68 135 | 0.19 81 | 4.20 142 | 8.58 104 | 0.49 85 | 13.9 89 | 22.6 80 | 1.01 60 | 4.93 65 | 20.3 67 | 0.21 90 | 4.81 140 | 26.1 143 | 0.11 116 | 9.12 96 | 23.1 100 | 0.20 58 |
SVFilterOh [109] | 96.0 | 1.51 77 | 5.48 83 | 0.02 101 | 2.19 36 | 5.94 41 | 0.10 34 | 1.50 112 | 5.00 79 | 0.25 128 | 3.78 98 | 8.01 77 | 0.40 22 | 14.3 174 | 23.2 172 | 1.22 169 | 5.35 134 | 22.0 141 | 0.23 101 | 4.27 30 | 23.8 36 | 0.06 20 | 9.55 149 | 24.1 152 | 0.22 137 |
FC-2Layers-FF [74] | 97.0 | 1.56 107 | 5.94 116 | 0.02 101 | 1.86 15 | 4.90 24 | 0.08 21 | 1.39 86 | 5.29 108 | 0.20 90 | 3.34 41 | 7.46 53 | 0.40 22 | 13.9 89 | 22.8 127 | 1.20 150 | 5.56 163 | 22.9 168 | 0.37 171 | 4.53 80 | 24.9 79 | 0.11 116 | 9.35 134 | 23.6 131 | 0.22 137 |
EAI-Flow [147] | 97.8 | 1.65 136 | 5.96 117 | 0.03 169 | 2.84 91 | 7.64 92 | 0.25 100 | 1.56 122 | 5.73 139 | 0.19 81 | 3.82 107 | 8.93 126 | 0.35 5 | 13.9 89 | 22.6 80 | 1.18 141 | 4.87 56 | 20.0 56 | 0.22 95 | 4.75 132 | 26.0 138 | 0.14 144 | 8.63 36 | 21.8 36 | 0.20 58 |
Occlusion-TV-L1 [63] | 101.1 | 1.43 56 | 5.20 69 | 0.01 7 | 4.18 160 | 10.3 173 | 0.37 141 | 1.34 69 | 5.35 113 | 0.27 140 | 4.19 141 | 9.14 139 | 0.56 119 | 13.7 47 | 22.4 51 | 0.97 37 | 4.99 80 | 20.6 84 | 0.33 154 | 5.12 167 | 25.4 115 | 0.27 182 | 9.01 74 | 22.7 70 | 0.19 39 |
S2D-Matching [83] | 102.2 | 1.65 136 | 6.07 128 | 0.02 101 | 3.21 122 | 8.58 121 | 0.23 95 | 1.34 69 | 5.00 79 | 0.23 115 | 3.35 45 | 7.36 48 | 0.42 39 | 13.9 89 | 22.7 106 | 1.07 108 | 5.53 160 | 22.6 159 | 0.35 164 | 4.57 97 | 24.8 69 | 0.07 40 | 9.22 114 | 23.3 111 | 0.22 137 |
TC/T-Flow [77] | 102.3 | 1.69 147 | 6.24 136 | 0.02 101 | 2.98 105 | 8.17 111 | 0.19 72 | 1.27 53 | 4.78 60 | 0.13 23 | 3.58 65 | 8.26 89 | 0.36 7 | 14.1 156 | 23.0 160 | 1.23 175 | 5.03 85 | 20.6 84 | 0.12 45 | 4.85 147 | 26.3 152 | 0.16 160 | 9.40 140 | 23.8 144 | 0.19 39 |
HBM-GC [103] | 102.8 | 1.54 92 | 5.66 95 | 0.01 7 | 2.98 105 | 8.21 114 | 0.17 62 | 1.20 44 | 3.96 37 | 0.18 67 | 3.63 73 | 7.79 70 | 0.43 48 | 14.4 180 | 23.5 181 | 1.29 196 | 5.96 186 | 24.4 188 | 0.48 189 | 4.46 61 | 24.6 64 | 0.05 7 | 9.35 134 | 23.6 131 | 0.22 137 |
EpicFlow [100] | 103.3 | 1.51 77 | 5.82 111 | 0.01 7 | 2.90 96 | 8.08 104 | 0.18 68 | 1.43 99 | 5.25 105 | 0.16 45 | 3.88 115 | 9.42 146 | 0.54 113 | 13.9 89 | 22.7 106 | 1.21 156 | 5.13 101 | 21.1 105 | 0.31 139 | 4.71 126 | 25.8 132 | 0.14 144 | 9.13 98 | 23.1 100 | 0.21 98 |
RFlow [88] | 104.0 | 1.41 50 | 5.18 65 | 0.02 101 | 3.96 150 | 9.67 160 | 0.35 132 | 1.41 93 | 5.37 116 | 0.26 133 | 3.91 121 | 8.76 115 | 0.52 105 | 13.7 47 | 22.5 61 | 1.01 60 | 4.96 71 | 20.5 79 | 0.21 90 | 4.58 98 | 25.5 118 | 0.09 88 | 9.37 138 | 23.7 141 | 0.23 163 |
AGIF+OF [84] | 104.7 | 1.66 143 | 6.04 125 | 0.02 101 | 2.48 66 | 6.73 74 | 0.19 72 | 1.44 100 | 4.96 75 | 0.26 133 | 3.41 51 | 7.54 57 | 0.45 60 | 14.1 156 | 23.1 169 | 1.21 156 | 5.47 151 | 22.3 152 | 0.27 122 | 4.52 75 | 24.3 50 | 0.07 40 | 9.41 143 | 23.8 144 | 0.21 98 |
MLDP_OF [87] | 104.9 | 1.55 103 | 6.03 124 | 0.02 101 | 3.12 117 | 8.40 119 | 0.20 79 | 1.22 46 | 4.97 76 | 0.13 23 | 3.77 95 | 7.62 62 | 0.73 158 | 13.9 89 | 22.7 106 | 1.01 60 | 5.60 168 | 23.0 172 | 0.31 139 | 4.63 112 | 25.3 107 | 0.14 144 | 9.21 109 | 23.3 111 | 0.21 98 |
OFH [38] | 105.5 | 1.56 107 | 5.79 108 | 0.01 7 | 3.55 136 | 8.78 130 | 0.30 120 | 1.62 135 | 6.44 162 | 0.16 45 | 3.57 63 | 8.52 99 | 0.39 15 | 13.8 63 | 22.6 80 | 1.16 133 | 5.18 109 | 21.3 111 | 0.31 139 | 4.94 155 | 26.6 155 | 0.15 153 | 9.36 136 | 23.6 131 | 0.19 39 |
RNLOD-Flow [119] | 105.8 | 1.52 85 | 5.81 110 | 0.01 7 | 3.05 114 | 8.32 118 | 0.19 72 | 1.58 127 | 5.84 145 | 0.32 153 | 3.47 58 | 7.69 65 | 0.43 48 | 13.9 89 | 22.7 106 | 1.19 147 | 5.36 137 | 22.0 141 | 0.26 121 | 4.51 73 | 24.8 69 | 0.14 144 | 9.66 154 | 24.4 158 | 0.21 98 |
PMF [73] | 106.0 | 1.59 115 | 6.16 134 | 0.01 7 | 2.73 84 | 7.62 89 | 0.07 12 | 1.65 139 | 6.90 171 | 0.28 144 | 3.74 90 | 8.38 94 | 0.40 22 | 14.1 156 | 23.0 160 | 1.02 75 | 5.10 96 | 20.9 95 | 0.19 81 | 4.56 94 | 25.4 115 | 0.09 88 | 9.84 169 | 24.9 177 | 0.22 137 |
Ad-TV-NDC [36] | 107.2 | 1.63 127 | 4.88 50 | 0.03 169 | 5.06 184 | 10.3 173 | 0.36 135 | 1.45 102 | 5.55 129 | 0.20 90 | 4.53 158 | 9.15 140 | 0.57 123 | 14.1 156 | 22.9 149 | 0.99 43 | 4.74 48 | 19.6 50 | 0.16 65 | 4.80 139 | 25.8 132 | 0.06 20 | 9.02 76 | 22.8 77 | 0.19 39 |
Sparse Occlusion [54] | 108.8 | 1.51 77 | 5.58 87 | 0.02 101 | 3.51 135 | 9.43 150 | 0.19 72 | 1.37 81 | 4.95 74 | 0.18 67 | 3.80 103 | 8.33 90 | 0.49 85 | 13.9 89 | 22.7 106 | 1.20 150 | 5.58 166 | 22.9 168 | 0.37 171 | 4.73 129 | 25.8 132 | 0.07 40 | 9.38 139 | 23.7 141 | 0.20 58 |
TCOF [69] | 108.8 | 1.54 92 | 5.59 88 | 0.01 7 | 4.46 169 | 10.4 176 | 0.43 158 | 1.28 54 | 5.15 95 | 0.14 28 | 3.63 73 | 8.04 80 | 0.42 39 | 13.9 89 | 22.7 106 | 0.98 40 | 5.41 145 | 22.3 152 | 0.24 109 | 5.00 160 | 26.7 158 | 0.09 88 | 9.76 164 | 24.6 168 | 0.24 173 |
C-RAFT_RVC [181] | 109.1 | 2.24 186 | 9.02 185 | 0.02 101 | 2.91 98 | 8.15 110 | 0.18 68 | 1.54 120 | 5.96 147 | 0.28 144 | 4.11 137 | 9.64 151 | 0.48 78 | 13.8 63 | 22.5 61 | 0.99 43 | 5.29 123 | 21.7 128 | 0.21 90 | 4.60 105 | 25.4 115 | 0.06 20 | 9.19 105 | 23.2 104 | 0.22 137 |
CostFilter [40] | 110.8 | 1.77 158 | 7.36 168 | 0.01 7 | 2.66 78 | 7.51 88 | 0.08 21 | 1.82 150 | 7.88 187 | 0.29 149 | 4.00 128 | 9.50 149 | 0.31 1 | 14.2 170 | 23.1 169 | 1.07 108 | 4.98 78 | 20.4 73 | 0.17 70 | 4.62 109 | 25.6 122 | 0.08 68 | 9.65 152 | 24.4 158 | 0.21 98 |
HBpMotionGpu [43] | 111.4 | 1.64 132 | 5.67 97 | 0.02 101 | 5.07 185 | 11.0 188 | 0.48 174 | 1.33 68 | 4.89 70 | 0.22 107 | 4.40 148 | 9.95 160 | 0.52 105 | 13.8 63 | 22.6 80 | 1.17 139 | 5.30 126 | 21.4 116 | 0.29 133 | 4.48 65 | 24.9 79 | 0.06 20 | 9.23 115 | 23.2 104 | 0.21 98 |
Modified CLG [34] | 111.5 | 1.31 37 | 4.60 41 | 0.01 7 | 4.56 174 | 9.63 158 | 0.50 181 | 1.63 137 | 6.45 164 | 0.33 155 | 4.14 139 | 9.05 133 | 0.62 137 | 13.9 89 | 22.6 80 | 1.02 75 | 5.08 94 | 20.8 91 | 0.31 139 | 4.65 116 | 25.9 135 | 0.09 88 | 9.08 86 | 22.9 82 | 0.22 137 |
Adaptive [20] | 112.2 | 1.48 66 | 5.33 74 | 0.02 101 | 4.48 170 | 10.6 182 | 0.43 158 | 1.53 119 | 5.50 126 | 0.18 67 | 3.84 111 | 8.33 90 | 0.54 113 | 13.9 89 | 22.7 106 | 1.00 48 | 5.20 112 | 21.4 116 | 0.28 128 | 4.89 149 | 26.1 143 | 0.07 40 | 9.41 143 | 23.8 144 | 0.21 98 |
FF++_ROB [141] | 113.4 | 1.55 103 | 6.13 130 | 0.01 7 | 2.70 79 | 7.41 84 | 0.14 53 | 1.46 104 | 5.35 113 | 0.25 128 | 3.98 125 | 9.53 150 | 0.53 110 | 14.1 156 | 22.9 149 | 1.25 190 | 5.34 131 | 21.9 137 | 0.32 148 | 4.55 92 | 25.2 97 | 0.12 133 | 8.94 62 | 22.6 61 | 0.25 180 |
AdaConv-v1 [124] | 114.0 | 2.34 188 | 9.17 186 | 0.04 188 | 4.08 155 | 8.31 116 | 0.75 193 | 2.48 178 | 6.07 152 | 0.62 180 | 7.79 191 | 14.5 194 | 2.10 197 | 12.8 32 | 20.9 32 | 0.69 17 | 4.24 35 | 17.6 35 | 0.09 38 | 4.52 75 | 25.1 89 | 0.22 180 | 8.39 34 | 21.2 35 | 0.12 16 |
PWC-Net_RVC [143] | 114.0 | 1.82 164 | 7.81 175 | 0.02 101 | 3.01 110 | 8.61 124 | 0.12 48 | 1.46 104 | 6.05 150 | 0.19 81 | 3.79 100 | 9.29 145 | 0.41 31 | 14.1 156 | 23.1 169 | 1.24 182 | 5.30 126 | 21.3 111 | 0.20 84 | 4.54 86 | 25.0 84 | 0.10 102 | 8.98 71 | 22.7 70 | 0.23 163 |
TriFlow [93] | 114.9 | 1.65 136 | 6.58 152 | 0.01 7 | 3.78 144 | 9.53 155 | 0.29 115 | 1.45 102 | 5.99 148 | 0.18 67 | 4.07 133 | 9.25 143 | 0.49 85 | 14.0 129 | 22.9 149 | 1.18 141 | 5.34 131 | 21.4 116 | 0.15 56 | 4.64 115 | 25.2 97 | 0.08 68 | 9.40 140 | 23.6 131 | 0.21 98 |
FlowNetS+ft+v [110] | 115.4 | 1.48 66 | 5.14 62 | 0.02 101 | 4.36 165 | 9.68 162 | 0.78 195 | 1.57 125 | 5.37 116 | 0.26 133 | 3.90 118 | 8.47 97 | 0.81 168 | 13.9 89 | 22.7 106 | 1.23 175 | 4.83 53 | 19.9 52 | 0.24 109 | 4.70 124 | 26.1 143 | 0.12 133 | 9.09 90 | 23.0 90 | 0.21 98 |
Efficient-NL [60] | 115.6 | 1.53 89 | 5.60 89 | 0.01 7 | 2.98 105 | 7.94 98 | 0.16 57 | 2.05 161 | 5.45 124 | 0.56 176 | 3.82 107 | 8.12 83 | 0.42 39 | 13.8 63 | 22.5 61 | 1.18 141 | 5.69 172 | 23.2 174 | 0.32 148 | 4.75 132 | 26.1 143 | 0.11 116 | 9.94 179 | 24.8 174 | 0.22 137 |
MCPFlow_RVC [197] | 116.3 | 2.12 182 | 8.90 183 | 0.02 101 | 2.36 56 | 6.69 71 | 0.09 28 | 1.31 64 | 5.29 108 | 0.13 23 | 3.84 111 | 8.87 122 | 0.51 103 | 14.0 129 | 22.9 149 | 1.02 75 | 5.66 170 | 23.4 178 | 0.28 128 | 4.47 62 | 24.8 69 | 0.09 88 | 13.2 198 | 33.4 198 | 0.39 196 |
Bartels [41] | 116.8 | 1.59 115 | 6.24 136 | 0.03 169 | 3.20 121 | 8.92 134 | 0.31 122 | 1.40 89 | 5.17 98 | 0.25 128 | 4.09 135 | 9.05 133 | 0.86 176 | 14.1 156 | 22.9 149 | 0.97 37 | 5.43 148 | 22.2 150 | 0.25 117 | 4.47 62 | 24.8 69 | 0.10 102 | 9.15 100 | 23.1 100 | 0.20 58 |
EPPM w/o HM [86] | 117.8 | 1.68 146 | 7.02 161 | 0.02 101 | 2.84 91 | 8.08 104 | 0.10 34 | 2.13 170 | 7.82 186 | 0.36 158 | 3.87 113 | 9.12 136 | 0.49 85 | 13.9 89 | 22.7 106 | 1.04 94 | 5.27 117 | 21.6 122 | 0.17 70 | 4.56 94 | 25.2 97 | 0.15 153 | 9.34 131 | 23.6 131 | 0.22 137 |
PBOFVI [189] | 117.8 | 1.81 162 | 7.16 163 | 0.02 101 | 3.76 143 | 9.42 148 | 0.37 141 | 1.80 149 | 5.32 110 | 0.18 67 | 3.77 95 | 8.54 101 | 0.62 137 | 13.9 89 | 22.7 106 | 1.22 169 | 5.07 91 | 20.3 67 | 0.16 65 | 4.85 147 | 26.0 138 | 0.17 164 | 9.07 85 | 23.0 90 | 0.21 98 |
Filter Flow [19] | 118.1 | 1.54 92 | 5.28 72 | 0.01 7 | 4.52 173 | 9.97 168 | 0.35 132 | 1.61 134 | 5.53 128 | 0.20 90 | 4.55 160 | 8.61 107 | 0.46 67 | 14.3 174 | 23.2 172 | 1.08 113 | 5.10 96 | 21.0 98 | 0.21 90 | 4.76 136 | 26.1 143 | 0.11 116 | 9.65 152 | 24.3 157 | 0.20 58 |
Nguyen [33] | 118.8 | 1.55 103 | 5.02 57 | 0.00 1 | 5.69 191 | 10.8 184 | 0.48 174 | 1.63 137 | 6.70 168 | 0.28 144 | 5.35 177 | 10.5 167 | 0.77 163 | 13.8 63 | 22.5 61 | 1.01 60 | 4.99 80 | 20.7 87 | 0.18 75 | 5.44 182 | 28.2 176 | 0.21 175 | 9.08 86 | 22.9 82 | 0.20 58 |
FESL [72] | 118.9 | 1.63 127 | 5.93 115 | 0.02 101 | 2.50 71 | 6.86 79 | 0.14 53 | 1.49 109 | 5.44 122 | 0.26 133 | 3.80 103 | 8.16 86 | 0.50 97 | 14.1 156 | 22.9 149 | 1.21 156 | 5.60 168 | 22.9 168 | 0.40 177 | 4.58 98 | 25.0 84 | 0.08 68 | 9.50 145 | 24.0 151 | 0.22 137 |
Classic+CPF [82] | 119.2 | 1.65 136 | 6.18 135 | 0.02 101 | 2.63 76 | 7.07 82 | 0.17 62 | 1.44 100 | 5.38 118 | 0.23 115 | 3.40 50 | 7.45 52 | 0.42 39 | 14.3 174 | 23.3 176 | 1.21 156 | 5.68 171 | 23.2 174 | 0.31 139 | 4.71 126 | 25.3 107 | 0.10 102 | 9.77 165 | 24.6 168 | 0.22 137 |
Complementary OF [21] | 119.5 | 1.61 120 | 6.47 146 | 0.01 7 | 2.74 85 | 7.75 94 | 0.19 72 | 2.67 185 | 5.71 136 | 0.89 196 | 3.74 90 | 8.76 115 | 0.41 31 | 13.9 89 | 22.7 106 | 1.14 130 | 5.19 110 | 21.4 116 | 0.31 139 | 4.98 158 | 26.9 163 | 0.13 140 | 9.78 167 | 24.8 174 | 0.21 98 |
GraphCuts [14] | 119.7 | 1.90 172 | 6.51 149 | 0.02 101 | 2.96 102 | 7.63 90 | 0.22 89 | 3.79 194 | 5.16 97 | 0.64 182 | 4.49 155 | 9.24 142 | 0.55 116 | 13.9 89 | 22.7 106 | 0.99 43 | 5.04 86 | 20.8 91 | 0.21 90 | 4.53 80 | 25.2 97 | 0.15 153 | 9.88 174 | 24.9 177 | 0.21 98 |
2D-CLG [1] | 120.2 | 1.42 53 | 5.09 58 | 0.01 7 | 4.91 180 | 9.82 167 | 0.48 174 | 2.21 172 | 5.62 131 | 0.57 177 | 5.05 170 | 9.90 159 | 0.80 166 | 13.8 63 | 22.5 61 | 1.09 117 | 5.07 91 | 21.0 98 | 0.42 180 | 4.89 149 | 26.7 158 | 0.13 140 | 9.11 94 | 22.6 61 | 0.20 58 |
TVL1_RVC [175] | 120.2 | 1.54 92 | 4.90 52 | 0.01 7 | 5.65 190 | 11.1 189 | 0.46 169 | 1.54 120 | 5.71 136 | 0.36 158 | 4.83 167 | 9.25 143 | 0.70 154 | 14.0 129 | 22.8 127 | 1.03 87 | 5.05 88 | 20.9 95 | 0.23 101 | 4.92 152 | 26.8 161 | 0.19 169 | 9.04 79 | 22.9 82 | 0.19 39 |
Black & Anandan [4] | 120.5 | 1.63 127 | 5.12 60 | 0.01 7 | 5.17 187 | 10.5 179 | 0.41 151 | 2.30 175 | 6.36 158 | 0.47 171 | 5.20 174 | 9.84 158 | 0.49 85 | 14.0 129 | 22.9 149 | 1.02 75 | 4.88 59 | 20.2 63 | 0.18 75 | 5.10 166 | 27.0 164 | 0.08 68 | 9.23 115 | 23.1 100 | 0.21 98 |
SRR-TVOF-NL [89] | 120.8 | 1.79 160 | 6.72 155 | 0.02 101 | 3.21 122 | 8.72 127 | 0.29 115 | 1.42 96 | 5.34 112 | 0.20 90 | 4.29 143 | 9.00 128 | 0.53 110 | 13.9 89 | 22.8 127 | 1.20 150 | 5.24 114 | 21.5 121 | 0.22 95 | 4.68 122 | 25.1 89 | 0.07 40 | 9.93 178 | 25.0 179 | 0.22 137 |
IAOF [50] | 120.9 | 1.79 160 | 5.85 113 | 0.02 101 | 6.44 196 | 12.4 197 | 0.55 187 | 1.84 154 | 5.77 142 | 0.36 158 | 4.78 165 | 9.12 136 | 0.75 162 | 13.7 47 | 22.4 51 | 1.01 60 | 5.01 83 | 20.7 87 | 0.15 56 | 4.73 129 | 25.7 128 | 0.09 88 | 9.29 124 | 23.4 120 | 0.20 58 |
TV-L1-improved [17] | 121.6 | 1.42 53 | 5.19 66 | 0.01 7 | 4.41 167 | 10.4 176 | 0.40 148 | 2.10 164 | 5.27 107 | 0.50 173 | 3.89 116 | 8.46 96 | 0.52 105 | 14.0 129 | 22.8 127 | 1.00 48 | 5.33 130 | 22.0 141 | 0.25 117 | 4.96 157 | 27.5 172 | 0.23 181 | 9.26 121 | 23.4 120 | 0.21 98 |
Steered-L1 [116] | 122.2 | 1.33 40 | 4.83 48 | 0.02 101 | 2.85 93 | 7.86 97 | 0.32 125 | 2.08 163 | 5.18 101 | 0.64 182 | 4.36 145 | 8.60 105 | 1.06 183 | 14.1 156 | 23.0 160 | 0.97 37 | 5.12 100 | 21.1 105 | 0.34 158 | 4.69 123 | 26.1 143 | 0.12 133 | 9.50 145 | 24.1 152 | 0.22 137 |
LFNet_ROB [145] | 123.0 | 1.82 164 | 7.57 173 | 0.03 169 | 3.04 113 | 8.27 115 | 0.22 89 | 1.49 109 | 6.12 154 | 0.21 99 | 3.99 126 | 9.80 156 | 0.57 123 | 13.8 63 | 22.6 80 | 1.26 193 | 5.51 155 | 22.5 156 | 0.34 158 | 4.54 86 | 25.1 89 | 0.09 88 | 8.94 62 | 22.5 52 | 0.25 180 |
Fusion [6] | 124.4 | 1.46 63 | 5.40 77 | 0.02 101 | 2.70 79 | 6.97 81 | 0.17 62 | 1.30 59 | 4.55 52 | 0.29 149 | 4.32 144 | 8.77 117 | 0.46 67 | 14.3 174 | 23.5 181 | 1.02 75 | 5.93 185 | 24.4 188 | 0.47 186 | 4.83 144 | 26.7 158 | 0.12 133 | 10.4 186 | 26.1 187 | 0.22 137 |
3DFlow [133] | 126.0 | 1.71 152 | 6.28 140 | 0.02 101 | 2.62 75 | 7.42 85 | 0.20 79 | 1.91 158 | 4.91 73 | 0.25 128 | 3.61 69 | 8.10 81 | 0.55 116 | 13.9 89 | 22.7 106 | 1.02 75 | 6.30 195 | 25.3 196 | 0.47 186 | 5.26 176 | 27.2 169 | 0.15 153 | 9.71 160 | 24.5 164 | 0.21 98 |
ResPWCR_ROB [140] | 126.5 | 1.70 149 | 6.74 156 | 0.02 101 | 3.24 126 | 8.87 132 | 0.27 108 | 2.22 173 | 6.11 153 | 0.23 115 | 4.42 149 | 10.6 168 | 0.69 151 | 13.6 39 | 22.2 41 | 1.23 175 | 5.36 137 | 21.7 128 | 0.16 65 | 4.79 138 | 25.7 128 | 0.15 153 | 9.31 126 | 23.5 126 | 0.21 98 |
CNN-flow-warp+ref [115] | 127.9 | 1.31 37 | 4.62 42 | 0.02 101 | 3.65 142 | 9.05 137 | 0.47 171 | 2.07 162 | 6.56 167 | 0.43 166 | 5.51 179 | 9.78 155 | 1.12 186 | 13.9 89 | 22.7 106 | 1.23 175 | 4.96 71 | 20.5 79 | 0.35 164 | 4.90 151 | 27.1 167 | 0.18 168 | 9.04 79 | 22.8 77 | 0.21 98 |
BriefMatch [122] | 128.0 | 1.61 120 | 6.15 133 | 0.03 169 | 2.97 103 | 7.73 93 | 0.61 191 | 2.12 168 | 4.79 61 | 0.58 178 | 4.84 168 | 9.05 133 | 1.68 194 | 13.9 89 | 22.7 106 | 1.08 113 | 5.30 126 | 21.8 134 | 0.24 109 | 4.53 80 | 24.9 79 | 0.14 144 | 9.13 98 | 23.0 90 | 0.28 192 |
Rannacher [23] | 128.0 | 1.49 72 | 5.66 95 | 0.01 7 | 4.49 171 | 10.6 182 | 0.40 148 | 2.19 171 | 5.77 142 | 0.52 175 | 3.79 100 | 8.65 111 | 0.53 110 | 14.0 129 | 22.8 127 | 1.02 75 | 5.29 123 | 21.8 134 | 0.27 122 | 4.95 156 | 27.4 170 | 0.21 175 | 9.26 121 | 23.4 120 | 0.22 137 |
ContinualFlow_ROB [148] | 129.2 | 1.99 175 | 8.31 181 | 0.03 169 | 3.22 125 | 8.92 134 | 0.25 100 | 1.78 146 | 6.97 173 | 0.26 133 | 4.00 128 | 9.83 157 | 0.48 78 | 14.0 129 | 22.9 149 | 1.24 182 | 4.93 65 | 20.4 73 | 0.18 75 | 4.62 109 | 25.1 89 | 0.08 68 | 9.40 140 | 23.8 144 | 0.25 180 |
AugFNG_ROB [139] | 129.3 | 1.87 169 | 7.84 177 | 0.02 101 | 3.57 138 | 9.08 138 | 0.35 132 | 1.85 155 | 8.05 190 | 0.22 107 | 4.52 157 | 11.3 172 | 0.55 116 | 14.2 170 | 23.2 172 | 1.25 190 | 4.89 60 | 20.2 63 | 0.12 45 | 4.92 152 | 26.0 138 | 0.10 102 | 8.88 52 | 22.4 45 | 0.23 163 |
FlowNet2 [120] | 129.7 | 2.65 192 | 10.2 191 | 0.02 101 | 3.21 122 | 8.40 119 | 0.22 89 | 1.75 143 | 6.40 159 | 0.27 140 | 4.43 152 | 11.4 174 | 0.67 148 | 14.1 156 | 23.0 160 | 1.11 122 | 5.17 108 | 21.0 98 | 0.19 81 | 4.65 116 | 25.5 118 | 0.08 68 | 9.10 93 | 23.0 90 | 0.24 173 |
CompactFlow_ROB [155] | 132.2 | 2.02 177 | 8.69 182 | 0.03 169 | 3.10 115 | 8.65 126 | 0.21 85 | 1.77 145 | 7.43 180 | 0.24 121 | 4.62 163 | 11.4 174 | 0.58 128 | 13.9 89 | 22.6 80 | 1.06 104 | 5.36 137 | 22.0 141 | 0.24 109 | 4.83 144 | 26.2 151 | 0.08 68 | 9.20 108 | 23.2 104 | 0.24 173 |
SimpleFlow [49] | 133.0 | 1.60 119 | 6.00 122 | 0.01 7 | 3.50 134 | 8.63 125 | 0.32 125 | 2.53 179 | 6.06 151 | 0.79 187 | 3.42 52 | 7.56 59 | 0.48 78 | 14.0 129 | 22.8 127 | 1.20 150 | 5.77 176 | 23.7 181 | 0.43 183 | 5.01 161 | 28.0 174 | 0.42 192 | 9.68 158 | 24.5 164 | 0.20 58 |
CVENG22+RIC [199] | 133.7 | 1.54 92 | 5.77 106 | 0.02 101 | 3.28 128 | 8.77 129 | 0.20 79 | 1.59 129 | 5.90 146 | 0.22 107 | 4.37 146 | 10.4 165 | 0.61 134 | 14.0 129 | 22.8 127 | 1.24 182 | 5.27 117 | 21.7 128 | 0.27 122 | 4.92 152 | 26.6 155 | 0.16 160 | 9.66 154 | 24.4 158 | 0.23 163 |
LSM_FLOW_RVC [182] | 134.1 | 2.21 185 | 9.43 187 | 0.05 194 | 3.45 133 | 9.33 142 | 0.22 89 | 1.70 142 | 7.32 179 | 0.24 121 | 4.38 147 | 11.1 171 | 0.52 105 | 13.8 63 | 22.6 80 | 1.18 141 | 5.27 117 | 21.6 122 | 0.32 148 | 4.82 141 | 26.0 138 | 0.10 102 | 9.17 102 | 23.0 90 | 0.25 180 |
LocallyOriented [52] | 134.2 | 1.61 120 | 6.13 130 | 0.01 7 | 4.64 176 | 10.9 185 | 0.40 148 | 1.83 151 | 6.44 162 | 0.26 133 | 4.45 154 | 10.2 164 | 0.47 73 | 14.0 129 | 22.8 127 | 1.01 60 | 5.58 166 | 22.6 159 | 0.27 122 | 5.18 172 | 26.8 161 | 0.15 153 | 9.66 154 | 24.4 158 | 0.20 58 |
Horn & Schunck [3] | 134.5 | 1.62 123 | 5.42 79 | 0.01 7 | 5.40 189 | 10.9 185 | 0.44 161 | 2.27 174 | 6.97 173 | 0.45 168 | 6.35 187 | 11.5 177 | 0.65 144 | 14.1 156 | 23.0 160 | 1.06 104 | 4.95 70 | 20.4 73 | 0.17 70 | 5.51 183 | 28.2 176 | 0.14 144 | 9.57 150 | 23.7 141 | 0.18 35 |
TriangleFlow [30] | 135.6 | 1.73 154 | 6.50 147 | 0.02 101 | 3.84 145 | 9.51 154 | 0.31 122 | 1.78 146 | 5.71 136 | 0.27 140 | 4.43 152 | 10.1 162 | 0.57 123 | 13.7 47 | 22.5 61 | 0.98 40 | 5.69 172 | 22.9 168 | 0.23 101 | 5.16 170 | 28.3 179 | 0.21 175 | 10.1 181 | 25.4 181 | 0.21 98 |
2bit-BM-tele [96] | 138.6 | 1.51 77 | 5.13 61 | 0.04 188 | 4.17 158 | 10.2 170 | 0.41 151 | 1.52 117 | 4.90 72 | 0.46 169 | 4.01 130 | 8.64 109 | 0.60 133 | 14.4 180 | 23.3 176 | 1.05 100 | 5.89 180 | 24.1 183 | 0.45 185 | 5.77 189 | 32.3 196 | 0.60 195 | 8.90 58 | 22.5 52 | 0.21 98 |
Shiralkar [42] | 139.2 | 1.85 167 | 7.19 164 | 0.01 7 | 4.31 164 | 9.75 164 | 0.37 141 | 2.10 164 | 7.58 181 | 0.36 158 | 5.54 180 | 11.4 174 | 0.63 139 | 13.8 63 | 22.5 61 | 1.07 108 | 5.46 150 | 22.4 154 | 0.34 158 | 5.32 178 | 27.8 173 | 0.20 174 | 9.36 136 | 23.5 126 | 0.20 58 |
LiteFlowNet [138] | 140.2 | 1.90 172 | 8.16 179 | 0.03 169 | 2.81 88 | 8.01 103 | 0.20 79 | 1.60 132 | 6.95 172 | 0.24 121 | 4.75 164 | 11.8 180 | 0.86 176 | 13.9 89 | 22.7 106 | 1.25 190 | 5.50 154 | 22.1 147 | 0.32 148 | 5.07 165 | 26.6 155 | 0.19 169 | 8.95 67 | 22.6 61 | 0.25 180 |
EPMNet [131] | 140.5 | 2.65 192 | 10.8 194 | 0.03 169 | 3.16 120 | 8.19 112 | 0.25 100 | 1.75 143 | 6.40 159 | 0.27 140 | 5.13 171 | 13.4 191 | 0.65 144 | 14.1 156 | 23.0 160 | 1.11 122 | 5.39 143 | 22.1 147 | 0.23 101 | 4.65 116 | 25.5 118 | 0.08 68 | 9.23 115 | 23.3 111 | 0.25 180 |
Correlation Flow [76] | 140.6 | 1.71 152 | 6.50 147 | 0.02 101 | 4.00 151 | 10.2 170 | 0.36 135 | 1.35 75 | 4.81 62 | 0.19 81 | 3.90 118 | 8.77 117 | 0.50 97 | 14.0 129 | 22.9 149 | 1.05 100 | 6.25 194 | 24.8 193 | 0.43 183 | 5.22 174 | 28.1 175 | 0.19 169 | 9.80 168 | 24.7 171 | 0.23 163 |
TI-DOFE [24] | 141.8 | 1.76 156 | 6.02 123 | 0.01 7 | 6.21 195 | 11.7 195 | 0.51 184 | 1.97 160 | 7.23 177 | 0.28 144 | 6.30 186 | 11.3 172 | 0.85 175 | 14.0 129 | 22.8 127 | 1.02 75 | 4.96 71 | 20.4 73 | 0.15 56 | 5.21 173 | 27.1 167 | 0.15 153 | 9.86 171 | 23.8 144 | 0.26 189 |
SPSA-learn [13] | 142.2 | 1.59 115 | 5.32 73 | 0.01 7 | 4.23 162 | 9.36 145 | 0.42 156 | 2.54 181 | 6.27 156 | 0.80 188 | 5.24 176 | 9.44 147 | 0.73 158 | 14.0 129 | 22.8 127 | 1.03 87 | 5.27 117 | 21.7 128 | 0.31 139 | 5.93 194 | 33.0 197 | 0.86 198 | 10.4 186 | 26.2 190 | 0.20 58 |
IAOF2 [51] | 143.0 | 1.81 162 | 6.46 145 | 0.02 101 | 4.65 177 | 11.3 193 | 0.36 135 | 1.57 125 | 5.79 144 | 0.21 99 | 4.61 162 | 10.0 161 | 0.56 119 | 14.4 180 | 23.5 181 | 1.16 133 | 5.48 153 | 22.6 159 | 0.29 133 | 4.75 132 | 25.6 122 | 0.11 116 | 9.57 150 | 24.1 152 | 0.21 98 |
ROF-ND [105] | 143.0 | 1.73 154 | 5.36 75 | 0.01 7 | 3.43 132 | 9.15 139 | 0.27 108 | 1.59 129 | 5.63 132 | 0.21 99 | 5.50 178 | 12.2 187 | 0.77 163 | 14.0 129 | 22.8 127 | 1.21 156 | 5.96 186 | 24.2 186 | 0.42 180 | 5.51 183 | 28.7 182 | 0.11 116 | 9.90 177 | 24.7 171 | 0.22 137 |
IIOF-NLDP [129] | 143.1 | 1.76 156 | 6.66 153 | 0.02 101 | 3.58 139 | 9.59 157 | 0.28 113 | 1.79 148 | 5.02 84 | 0.24 121 | 4.13 138 | 8.86 121 | 0.63 139 | 13.8 63 | 22.6 80 | 1.05 100 | 6.33 196 | 24.8 193 | 0.52 195 | 5.81 191 | 31.8 195 | 0.63 196 | 9.72 162 | 24.2 156 | 0.22 137 |
StereoFlow [44] | 145.1 | 4.05 198 | 12.8 198 | 0.02 101 | 5.34 188 | 12.0 196 | 0.29 115 | 1.36 77 | 5.65 134 | 0.22 107 | 3.80 103 | 8.17 87 | 0.50 97 | 16.7 197 | 27.3 197 | 1.13 126 | 7.27 198 | 29.7 198 | 0.42 180 | 4.58 98 | 25.5 118 | 0.10 102 | 10.3 182 | 26.1 187 | 0.21 98 |
SegOF [10] | 150.2 | 1.57 111 | 6.05 126 | 0.02 101 | 3.63 140 | 8.91 133 | 0.24 97 | 2.71 186 | 6.79 170 | 0.74 186 | 4.81 166 | 11.7 179 | 0.73 158 | 14.0 129 | 22.8 127 | 1.22 169 | 5.52 157 | 22.7 163 | 0.48 189 | 5.17 171 | 28.7 182 | 0.33 188 | 9.21 109 | 23.2 104 | 0.23 163 |
IRR-PWC_RVC [180] | 150.7 | 2.29 187 | 9.48 188 | 0.04 188 | 3.13 118 | 8.58 121 | 0.25 100 | 1.87 156 | 8.32 191 | 0.24 121 | 5.21 175 | 12.8 189 | 0.52 105 | 14.3 174 | 23.3 176 | 1.30 197 | 5.40 144 | 22.2 150 | 0.23 101 | 4.82 141 | 26.1 143 | 0.08 68 | 9.67 157 | 24.5 164 | 0.23 163 |
OFRF [132] | 150.8 | 2.03 179 | 7.52 171 | 0.03 169 | 4.40 166 | 10.2 170 | 0.41 151 | 1.67 141 | 6.55 165 | 0.17 55 | 4.10 136 | 9.44 147 | 0.50 97 | 14.2 170 | 23.2 172 | 1.16 133 | 5.75 175 | 23.2 174 | 0.24 109 | 5.02 162 | 27.0 164 | 0.11 116 | 10.0 180 | 25.4 181 | 0.22 137 |
ACK-Prior [27] | 153.9 | 1.64 132 | 6.39 144 | 0.02 101 | 2.81 88 | 7.97 100 | 0.19 72 | 2.53 179 | 5.74 140 | 0.63 181 | 4.56 161 | 10.1 162 | 1.09 185 | 14.7 190 | 24.0 191 | 1.27 195 | 6.04 189 | 24.5 191 | 0.29 133 | 5.04 164 | 27.4 170 | 0.10 102 | 11.0 193 | 27.7 194 | 0.22 137 |
SILK [80] | 154.2 | 1.86 168 | 7.35 167 | 0.01 7 | 5.84 192 | 11.2 190 | 0.60 190 | 3.00 189 | 7.69 182 | 0.83 191 | 5.68 182 | 10.6 168 | 0.69 151 | 14.1 156 | 23.0 160 | 1.00 48 | 5.31 129 | 21.3 111 | 0.36 168 | 5.02 162 | 27.0 164 | 0.28 183 | 9.50 145 | 23.5 126 | 0.24 173 |
Dynamic MRF [7] | 157.4 | 1.58 113 | 6.37 143 | 0.02 101 | 3.55 136 | 9.67 160 | 0.27 108 | 2.35 176 | 7.75 185 | 0.50 173 | 5.74 183 | 10.9 170 | 1.06 183 | 14.0 129 | 22.8 127 | 1.23 175 | 5.90 183 | 24.1 183 | 0.51 194 | 5.28 177 | 28.7 182 | 0.34 189 | 9.71 160 | 23.9 149 | 0.21 98 |
Adaptive flow [45] | 158.3 | 2.02 177 | 6.27 139 | 0.03 169 | 5.93 193 | 11.2 190 | 0.55 187 | 1.87 156 | 5.74 140 | 0.37 163 | 5.16 172 | 9.21 141 | 0.73 158 | 14.7 190 | 24.0 191 | 1.04 94 | 5.89 180 | 24.3 187 | 0.37 171 | 4.72 128 | 26.3 152 | 0.14 144 | 9.84 169 | 24.8 174 | 0.18 35 |
Learning Flow [11] | 158.8 | 1.62 123 | 6.12 129 | 0.02 101 | 4.43 168 | 10.4 176 | 0.33 130 | 2.86 187 | 7.92 188 | 0.82 190 | 5.19 173 | 9.72 154 | 0.59 131 | 14.6 187 | 23.8 189 | 1.10 120 | 5.42 146 | 22.4 154 | 0.27 122 | 5.24 175 | 28.3 179 | 0.17 164 | 10.3 182 | 25.4 181 | 0.23 163 |
H+S_RVC [176] | 160.9 | 2.01 176 | 7.81 175 | 0.01 7 | 4.57 175 | 9.19 141 | 0.41 151 | 2.93 188 | 9.46 193 | 0.48 172 | 8.52 195 | 12.1 185 | 0.86 176 | 14.5 184 | 23.4 179 | 1.09 117 | 5.54 162 | 22.6 159 | 0.35 164 | 5.77 189 | 28.8 186 | 0.31 185 | 9.88 174 | 23.6 131 | 0.21 98 |
StereoOF-V1MT [117] | 161.5 | 1.94 174 | 7.40 169 | 0.02 101 | 3.93 149 | 9.53 155 | 0.41 151 | 2.57 182 | 7.29 178 | 0.60 179 | 6.23 185 | 11.5 177 | 0.94 180 | 14.2 170 | 23.0 160 | 1.24 182 | 5.81 178 | 22.7 163 | 0.48 189 | 5.53 186 | 28.2 176 | 0.29 184 | 9.16 101 | 22.7 70 | 0.22 137 |
FOLKI [16] | 162.9 | 1.88 170 | 7.22 166 | 0.02 101 | 6.20 194 | 11.2 190 | 0.86 196 | 2.60 183 | 9.02 192 | 0.64 182 | 7.81 192 | 12.1 185 | 1.70 195 | 14.6 187 | 23.7 186 | 1.06 104 | 5.19 110 | 21.0 98 | 0.24 109 | 5.43 181 | 28.9 187 | 0.32 186 | 9.77 165 | 24.1 152 | 0.21 98 |
NL-TV-NCC [25] | 163.7 | 2.10 181 | 7.63 174 | 0.03 169 | 3.63 140 | 9.77 165 | 0.25 100 | 2.10 164 | 6.55 165 | 0.29 149 | 5.56 181 | 12.2 187 | 0.54 113 | 14.5 184 | 23.5 181 | 1.08 113 | 6.15 190 | 24.4 188 | 0.36 168 | 6.66 198 | 29.8 192 | 0.16 160 | 10.3 182 | 25.8 186 | 0.21 98 |
UnFlow [127] | 164.2 | 2.13 183 | 8.96 184 | 0.03 169 | 4.27 163 | 9.79 166 | 0.42 156 | 2.12 168 | 7.71 183 | 0.35 157 | 4.42 149 | 10.4 165 | 0.67 148 | 14.0 129 | 22.9 149 | 1.16 133 | 5.85 179 | 23.3 177 | 0.47 186 | 4.82 141 | 25.6 122 | 0.16 160 | 11.0 193 | 25.7 185 | 0.33 195 |
SLK [47] | 168.4 | 2.08 180 | 8.23 180 | 0.01 7 | 5.10 186 | 9.38 146 | 0.50 181 | 3.21 190 | 7.73 184 | 0.83 191 | 8.10 194 | 14.2 193 | 1.61 193 | 14.5 184 | 23.7 186 | 1.06 104 | 5.77 176 | 22.5 156 | 0.36 168 | 5.84 192 | 30.6 193 | 0.36 191 | 9.87 172 | 24.4 158 | 0.22 137 |
HCIC-L [97] | 169.6 | 3.37 197 | 10.9 195 | 0.07 196 | 4.98 181 | 10.3 173 | 0.38 146 | 2.44 177 | 8.00 189 | 0.36 158 | 7.09 188 | 13.0 190 | 0.71 155 | 14.9 193 | 24.2 193 | 1.07 108 | 5.99 188 | 24.1 183 | 0.23 101 | 4.74 131 | 26.0 138 | 0.11 116 | 12.3 197 | 30.4 197 | 0.25 180 |
WRT [146] | 170.4 | 1.84 166 | 6.75 158 | 0.03 169 | 4.02 153 | 9.17 140 | 0.37 141 | 3.21 190 | 5.25 105 | 0.84 193 | 4.42 149 | 9.03 130 | 0.84 173 | 14.3 174 | 23.4 179 | 1.08 113 | 6.54 197 | 26.5 197 | 0.54 196 | 6.27 196 | 34.8 198 | 0.84 197 | 10.9 192 | 27.5 193 | 0.27 191 |
WOLF_ROB [144] | 176.3 | 2.64 190 | 9.90 190 | 0.03 169 | 5.04 182 | 10.9 185 | 0.45 164 | 2.66 184 | 6.77 169 | 0.46 169 | 4.88 169 | 12.0 184 | 0.65 144 | 14.4 180 | 23.5 181 | 1.22 169 | 5.89 180 | 23.6 179 | 0.37 171 | 5.89 193 | 29.3 188 | 0.19 169 | 9.87 172 | 24.7 171 | 0.25 180 |
FFV1MT [104] | 176.8 | 2.64 190 | 10.4 193 | 0.03 169 | 4.88 179 | 9.35 143 | 0.52 186 | 4.45 195 | 13.1 197 | 0.71 185 | 7.42 189 | 11.9 182 | 1.22 188 | 14.6 187 | 23.7 186 | 1.09 117 | 5.53 160 | 21.1 105 | 0.33 154 | 6.16 195 | 29.7 191 | 0.35 190 | 10.5 189 | 25.6 184 | 0.26 189 |
PGAM+LK [55] | 182.1 | 2.35 189 | 9.74 189 | 0.05 194 | 5.04 182 | 10.5 179 | 0.66 192 | 3.38 192 | 9.68 194 | 0.84 193 | 7.99 193 | 14.6 195 | 1.24 190 | 14.7 190 | 23.8 189 | 1.10 120 | 5.92 184 | 23.9 182 | 0.35 164 | 5.33 179 | 28.5 181 | 0.17 164 | 9.88 174 | 24.6 168 | 0.32 194 |
Pyramid LK [2] | 183.2 | 2.13 183 | 8.10 178 | 0.04 188 | 7.17 197 | 11.5 194 | 0.99 198 | 6.22 197 | 6.97 173 | 1.21 197 | 13.9 198 | 24.7 198 | 2.97 198 | 15.7 196 | 25.7 196 | 1.11 122 | 5.42 146 | 22.0 141 | 0.30 138 | 5.55 187 | 29.5 190 | 0.52 193 | 11.9 195 | 29.7 196 | 0.54 198 |
Heeger++ [102] | 186.0 | 3.11 196 | 11.9 197 | 0.03 169 | 4.77 178 | 9.65 159 | 0.51 184 | 4.48 196 | 12.0 196 | 0.80 188 | 7.42 189 | 11.9 182 | 1.22 188 | 15.0 194 | 24.5 194 | 1.23 175 | 6.24 192 | 23.0 172 | 0.60 197 | 6.37 197 | 29.4 189 | 0.32 186 | 10.4 186 | 25.1 180 | 0.25 180 |
GroupFlow [9] | 186.6 | 2.80 195 | 11.2 196 | 0.04 188 | 4.49 171 | 10.5 179 | 0.43 158 | 3.45 193 | 9.80 195 | 0.88 195 | 5.90 184 | 13.7 192 | 1.21 187 | 15.1 195 | 24.6 195 | 1.24 182 | 6.24 192 | 25.2 195 | 0.49 192 | 5.51 183 | 28.7 182 | 0.21 175 | 10.6 190 | 26.4 191 | 0.24 173 |
Periodicity [79] | 194.8 | 2.65 192 | 10.3 192 | 0.09 197 | 9.86 198 | 13.0 198 | 0.95 197 | 7.07 198 | 15.7 198 | 2.07 198 | 9.47 196 | 22.6 197 | 1.94 196 | 16.9 198 | 27.6 198 | 1.35 198 | 6.22 191 | 24.5 191 | 0.41 178 | 5.73 188 | 30.9 194 | 0.58 194 | 12.2 196 | 29.3 195 | 0.40 197 |
AVG_FLOW_ROB [137] | 199.0 | 18.5 199 | 43.1 199 | 1.46 199 | 22.0 199 | 25.4 199 | 2.17 199 | 18.9 199 | 25.1 199 | 4.07 199 | 34.3 199 | 52.0 199 | 7.35 199 | 26.2 199 | 39.9 199 | 2.35 199 | 16.3 199 | 52.5 199 | 2.03 199 | 21.5 199 | 44.4 199 | 1.54 199 | 26.6 199 | 42.2 199 | 2.44 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |