Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
SD interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
SoftsplatAug [190] | 3.1 | 4.89 3 | 5.93 3 | 1.39 2 | 5.09 2 | 6.39 2 | 2.41 2 | 8.86 4 | 8.88 2 | 5.01 3 | 6.62 2 | 8.45 2 | 5.09 4 | 14.8 2 | 16.7 2 | 7.59 4 | 10.1 2 | 14.2 2 | 4.86 8 | 16.1 2 | 24.7 2 | 6.38 10 | 14.0 2 | 17.6 2 | 6.39 5 |
IFRNet [193] | 6.7 | 4.88 2 | 5.99 4 | 1.49 7 | 5.57 4 | 7.06 4 | 3.38 42 | 7.09 1 | 8.69 1 | 4.53 2 | 6.93 4 | 8.83 4 | 5.89 8 | 15.6 3 | 17.7 3 | 8.10 12 | 11.8 7 | 16.7 7 | 4.80 5 | 16.5 5 | 25.3 5 | 6.35 5 | 14.8 5 | 18.6 5 | 6.63 16 |
SoftSplat [169] | 9.0 | 4.71 1 | 5.71 2 | 1.42 5 | 5.82 5 | 7.42 7 | 2.98 26 | 9.56 6 | 9.45 6 | 6.82 15 | 6.69 3 | 8.59 3 | 5.07 3 | 18.5 16 | 21.0 16 | 7.63 5 | 10.9 5 | 15.4 5 | 5.18 33 | 16.7 6 | 25.6 6 | 6.69 24 | 15.1 7 | 19.0 7 | 6.17 4 |
EAFI [186] | 9.1 | 5.02 4 | 6.49 5 | 1.24 1 | 5.04 1 | 6.23 1 | 2.39 1 | 8.17 2 | 11.6 17 | 5.84 7 | 6.50 1 | 8.17 1 | 4.77 1 | 20.0 22 | 22.7 22 | 8.16 16 | 13.6 19 | 19.3 19 | 5.03 21 | 18.3 15 | 28.0 15 | 6.33 2 | 14.3 3 | 17.9 3 | 6.69 19 |
BMBC [171] | 15.4 | 5.17 6 | 6.57 6 | 1.56 8 | 6.16 9 | 7.86 12 | 3.58 48 | 12.7 16 | 11.7 18 | 9.83 49 | 8.17 8 | 10.6 8 | 6.27 14 | 16.9 9 | 19.2 10 | 8.14 15 | 10.4 3 | 14.7 3 | 5.03 21 | 18.0 14 | 27.5 14 | 6.24 1 | 15.2 8 | 19.1 8 | 8.10 62 |
FGME [158] | 16.1 | 5.49 11 | 7.87 12 | 1.40 3 | 6.88 21 | 8.20 19 | 4.52 99 | 11.2 8 | 12.4 25 | 7.41 19 | 7.30 6 | 9.16 6 | 7.71 26 | 16.3 5 | 18.4 5 | 9.05 32 | 12.4 12 | 17.7 12 | 4.89 10 | 16.2 3 | 24.9 4 | 6.38 10 | 15.5 9 | 19.5 9 | 6.70 21 |
SepConv++ [185] | 17.5 | 6.61 24 | 10.1 26 | 1.61 13 | 6.11 7 | 7.85 11 | 2.41 2 | 14.7 56 | 10.7 12 | 13.5 106 | 8.52 10 | 11.2 14 | 6.34 16 | 16.9 9 | 19.1 9 | 8.18 17 | 10.6 4 | 15.0 4 | 4.87 9 | 17.0 7 | 26.1 7 | 6.33 2 | 17.2 23 | 21.7 24 | 6.51 9 |
DistillNet [184] | 18.5 | 5.05 5 | 6.97 8 | 2.46 153 | 5.26 3 | 6.62 3 | 3.10 34 | 9.11 5 | 9.58 7 | 5.74 5 | 7.14 5 | 9.02 5 | 6.04 10 | 16.6 7 | 18.7 6 | 8.98 31 | 12.6 13 | 17.8 13 | 5.17 32 | 17.3 9 | 26.4 9 | 7.34 40 | 15.8 11 | 19.9 11 | 6.69 19 |
STAR-Net [164] | 19.2 | 5.30 8 | 7.45 10 | 1.40 3 | 7.21 23 | 9.10 32 | 3.88 63 | 12.8 18 | 13.2 31 | 8.32 30 | 8.94 12 | 10.8 12 | 5.65 5 | 16.6 7 | 18.9 8 | 7.90 8 | 13.9 22 | 19.7 22 | 5.02 20 | 21.2 34 | 32.5 34 | 6.59 21 | 16.7 19 | 21.0 19 | 5.33 1 |
FLAVR [188] | 19.2 | 5.99 15 | 8.35 13 | 1.60 12 | 6.18 10 | 7.45 8 | 3.48 44 | 12.9 20 | 10.8 14 | 9.41 45 | 14.8 91 | 17.0 45 | 8.82 54 | 14.5 1 | 16.4 1 | 7.27 2 | 13.7 20 | 19.4 21 | 4.34 1 | 16.3 4 | 24.8 3 | 6.82 28 | 14.3 3 | 18.0 4 | 6.14 3 |
AdaCoF [165] | 22.2 | 6.28 17 | 9.48 23 | 2.43 148 | 6.15 8 | 7.83 10 | 3.49 45 | 13.8 42 | 9.26 3 | 10.4 57 | 9.55 16 | 11.3 15 | 6.22 11 | 19.4 20 | 22.0 20 | 8.11 13 | 10.9 5 | 15.4 5 | 4.92 12 | 18.5 16 | 28.4 16 | 6.36 6 | 15.0 6 | 18.9 6 | 6.59 13 |
IDIAL [192] | 24.3 | 5.95 14 | 8.38 14 | 4.03 174 | 6.55 13 | 8.37 21 | 4.03 74 | 11.8 10 | 9.42 5 | 5.75 6 | 9.26 14 | 11.6 18 | 7.79 31 | 23.0 34 | 26.1 34 | 7.11 1 | 11.9 8 | 16.9 8 | 4.69 3 | 18.8 17 | 28.9 17 | 6.59 21 | 17.1 22 | 21.5 22 | 6.12 2 |
CyclicGen [149] | 28.0 | 5.21 7 | 5.40 1 | 4.82 187 | 6.70 17 | 7.19 5 | 6.53 179 | 8.79 3 | 10.2 9 | 7.42 20 | 10.2 21 | 10.7 9 | 11.3 112 | 18.5 16 | 21.0 16 | 7.91 10 | 7.38 1 | 10.4 1 | 4.92 12 | 13.6 1 | 20.8 1 | 6.46 15 | 10.5 1 | 13.2 1 | 6.74 27 |
EDSC [173] | 29.6 | 6.50 22 | 9.34 21 | 4.62 185 | 6.34 11 | 8.04 14 | 4.17 84 | 11.9 11 | 12.1 20 | 6.77 13 | 8.83 11 | 11.1 13 | 8.90 58 | 20.1 23 | 22.8 24 | 8.41 23 | 15.6 33 | 22.2 35 | 4.95 14 | 17.1 8 | 26.2 8 | 6.37 8 | 18.2 33 | 22.9 33 | 6.45 6 |
FRUCnet [153] | 30.6 | 7.39 33 | 10.7 31 | 5.61 194 | 6.60 14 | 8.27 20 | 4.37 93 | 12.6 14 | 12.4 25 | 9.21 40 | 9.30 15 | 11.7 20 | 9.37 69 | 18.2 15 | 20.6 15 | 7.68 6 | 12.2 9 | 17.3 9 | 4.96 16 | 17.6 10 | 26.9 10 | 6.89 29 | 15.9 12 | 19.9 11 | 6.73 24 |
MS-PFT [159] | 30.8 | 6.84 27 | 10.3 28 | 2.20 136 | 7.23 25 | 9.20 34 | 4.24 87 | 12.5 13 | 13.7 34 | 7.81 25 | 8.95 13 | 11.5 16 | 6.31 15 | 18.5 16 | 21.0 16 | 9.24 34 | 12.9 17 | 18.3 17 | 4.98 19 | 19.4 22 | 29.7 24 | 7.28 35 | 17.8 29 | 22.4 31 | 6.74 27 |
DSepConv [162] | 31.8 | 6.88 28 | 10.3 28 | 4.01 173 | 6.65 15 | 8.37 21 | 4.68 106 | 13.0 22 | 11.9 19 | 7.98 27 | 10.7 22 | 12.5 27 | 9.29 67 | 17.3 14 | 19.6 14 | 8.34 19 | 12.6 13 | 17.9 15 | 4.95 14 | 17.8 11 | 27.3 11 | 6.37 8 | 17.7 27 | 22.2 27 | 6.82 34 |
GDCN [172] | 31.8 | 5.89 13 | 8.80 17 | 1.46 6 | 7.53 40 | 9.15 33 | 4.14 80 | 13.2 26 | 14.4 36 | 8.69 33 | 12.8 40 | 12.4 26 | 9.09 61 | 27.4 76 | 31.1 76 | 8.38 20 | 12.6 13 | 17.8 13 | 5.14 30 | 17.9 13 | 27.4 13 | 6.46 15 | 17.8 29 | 22.3 28 | 6.74 27 |
CtxSyn [134] | 32.1 | 5.47 9 | 7.82 11 | 2.18 133 | 5.98 6 | 7.57 9 | 3.23 38 | 19.2 134 | 10.6 11 | 17.0 140 | 7.49 7 | 9.86 7 | 5.67 6 | 20.6 25 | 23.3 25 | 8.83 30 | 12.8 16 | 18.0 16 | 4.72 4 | 19.4 22 | 29.6 22 | 6.47 17 | 16.8 20 | 21.0 19 | 7.43 43 |
MPRN [151] | 32.1 | 6.90 29 | 10.7 31 | 1.78 66 | 7.67 50 | 8.95 27 | 4.37 93 | 10.2 7 | 12.1 20 | 4.23 1 | 11.0 29 | 14.1 32 | 7.77 28 | 20.8 28 | 23.5 28 | 8.13 14 | 14.1 24 | 19.9 24 | 5.38 36 | 20.8 30 | 31.7 30 | 7.28 35 | 18.1 32 | 22.7 32 | 7.62 45 |
ADC [161] | 34.2 | 6.60 23 | 9.73 24 | 4.20 179 | 6.40 12 | 8.08 17 | 4.08 77 | 15.1 63 | 10.7 12 | 10.6 63 | 10.9 26 | 12.1 23 | 8.34 42 | 20.6 25 | 23.4 26 | 8.39 21 | 14.2 26 | 20.1 27 | 4.97 17 | 19.1 19 | 29.3 19 | 6.45 14 | 17.7 27 | 22.3 28 | 6.54 10 |
SuperSlomo [130] | 38.9 | 7.27 32 | 10.8 33 | 4.59 183 | 7.40 33 | 9.09 30 | 5.23 136 | 11.7 9 | 11.2 16 | 6.26 9 | 11.1 31 | 12.9 30 | 10.9 102 | 21.1 29 | 23.9 29 | 8.02 11 | 14.2 26 | 20.0 26 | 4.85 7 | 19.9 27 | 30.4 26 | 6.69 24 | 17.4 25 | 21.8 25 | 6.97 35 |
STSR [170] | 39.2 | 6.06 16 | 8.60 16 | 3.79 169 | 8.01 80 | 7.20 6 | 10.4 196 | 13.1 24 | 10.8 14 | 11.4 75 | 8.49 9 | 10.7 9 | 8.73 51 | 20.7 27 | 23.4 26 | 7.52 3 | 15.1 32 | 21.3 32 | 5.34 35 | 20.1 28 | 30.7 28 | 7.22 34 | 15.7 10 | 19.7 10 | 6.56 12 |
MAF-net [163] | 39.4 | 6.90 29 | 9.87 25 | 5.38 192 | 7.49 37 | 8.96 28 | 5.64 165 | 12.6 14 | 13.0 30 | 8.75 35 | 10.7 22 | 12.5 27 | 8.27 40 | 21.4 30 | 24.3 30 | 8.67 29 | 14.8 31 | 20.9 30 | 5.10 26 | 20.9 31 | 32.1 31 | 6.42 12 | 16.6 17 | 20.8 17 | 6.66 17 |
TOF-M [150] | 41.3 | 6.83 26 | 10.1 26 | 3.40 168 | 7.55 41 | 9.25 36 | 5.28 137 | 13.2 26 | 10.1 8 | 10.7 65 | 10.7 22 | 13.0 31 | 9.18 64 | 22.7 31 | 25.7 31 | 8.66 28 | 13.7 20 | 19.3 19 | 5.12 28 | 21.0 32 | 32.1 31 | 6.49 18 | 19.6 35 | 24.6 35 | 6.79 33 |
ProBoost-Net [191] | 41.6 | 6.97 31 | 10.3 28 | 4.55 182 | 7.73 54 | 9.23 35 | 5.83 169 | 13.5 33 | 10.3 10 | 10.9 67 | 9.65 17 | 12.2 24 | 9.39 70 | 19.8 21 | 22.4 21 | 8.48 25 | 14.5 28 | 20.6 29 | 4.97 17 | 19.8 26 | 30.5 27 | 6.43 13 | 17.8 29 | 22.3 28 | 6.61 14 |
OFRI [154] | 42.7 | 5.75 12 | 6.90 7 | 5.06 189 | 8.11 91 | 8.48 23 | 9.61 191 | 13.4 30 | 13.5 32 | 9.12 38 | 11.0 29 | 12.3 25 | 13.7 168 | 16.5 6 | 18.7 6 | 7.90 8 | 16.3 44 | 23.2 45 | 4.90 11 | 18.9 18 | 28.9 17 | 6.34 4 | 15.9 12 | 19.9 11 | 6.50 8 |
FeFlow [167] | 43.3 | 6.81 25 | 8.52 15 | 6.23 196 | 8.28 107 | 8.62 25 | 9.28 188 | 12.3 12 | 9.39 4 | 9.93 50 | 10.9 26 | 11.7 20 | 12.8 162 | 15.8 4 | 17.8 4 | 8.46 24 | 12.3 10 | 17.4 10 | 4.56 2 | 17.8 11 | 27.3 11 | 6.72 26 | 18.6 34 | 23.4 34 | 7.07 40 |
DAI [168] | 44.6 | 5.47 9 | 7.37 9 | 3.86 171 | 7.29 28 | 8.64 26 | 5.37 148 | 13.4 30 | 16.0 55 | 9.34 44 | 10.8 25 | 10.7 9 | 14.9 182 | 20.1 23 | 22.7 22 | 8.32 18 | 17.0 57 | 24.1 60 | 5.06 25 | 20.1 28 | 30.8 29 | 6.36 6 | 16.9 21 | 21.1 21 | 6.73 24 |
DAIN [152] | 44.8 | 6.45 21 | 9.46 22 | 4.07 175 | 6.69 16 | 8.09 18 | 6.20 175 | 16.0 77 | 12.2 24 | 13.6 108 | 9.77 20 | 11.7 20 | 10.3 86 | 16.9 9 | 19.2 10 | 8.65 27 | 13.9 22 | 19.8 23 | 5.10 26 | 19.2 20 | 29.4 20 | 8.11 100 | 16.3 14 | 20.5 14 | 6.74 27 |
MV_VFI [183] | 46.5 | 6.36 19 | 9.24 19 | 4.10 176 | 6.79 19 | 8.02 13 | 6.72 182 | 17.0 101 | 12.5 27 | 14.5 119 | 9.73 19 | 11.6 18 | 10.3 86 | 16.9 9 | 19.2 10 | 8.54 26 | 14.7 30 | 20.9 30 | 5.04 23 | 19.3 21 | 29.5 21 | 7.94 88 | 16.5 15 | 20.7 15 | 6.76 31 |
TC-GAN [166] | 46.7 | 6.31 18 | 9.15 18 | 4.14 177 | 6.80 20 | 8.05 15 | 6.66 180 | 17.1 106 | 12.5 27 | 14.5 119 | 9.69 18 | 11.5 16 | 10.3 86 | 17.0 13 | 19.2 10 | 8.40 22 | 14.5 28 | 20.5 28 | 5.05 24 | 19.4 22 | 29.6 22 | 7.95 90 | 16.5 15 | 20.7 15 | 6.77 32 |
MEMC-Net+ [160] | 52.2 | 6.44 20 | 9.31 20 | 4.42 181 | 8.18 98 | 8.07 16 | 9.92 193 | 14.7 56 | 12.1 20 | 13.3 102 | 10.9 26 | 12.6 29 | 12.4 156 | 18.8 19 | 21.3 19 | 9.95 37 | 12.3 10 | 17.4 10 | 4.83 6 | 19.6 25 | 29.9 25 | 8.66 114 | 16.6 17 | 20.8 17 | 7.01 37 |
MDP-Flow2 [68] | 55.3 | 8.94 64 | 13.9 61 | 1.56 8 | 7.36 31 | 9.57 43 | 2.68 7 | 15.9 75 | 20.5 126 | 16.3 136 | 13.4 49 | 18.2 64 | 8.87 57 | 24.1 40 | 27.3 40 | 12.1 55 | 17.6 66 | 25.0 72 | 6.01 60 | 22.8 45 | 34.9 46 | 7.11 31 | 20.9 51 | 26.2 51 | 7.78 49 |
CBF [12] | 57.2 | 8.02 35 | 12.4 35 | 1.75 53 | 8.18 98 | 10.3 78 | 4.84 119 | 13.2 26 | 15.5 49 | 9.17 39 | 11.5 32 | 15.0 34 | 7.94 34 | 22.8 32 | 25.8 32 | 12.2 74 | 16.2 42 | 22.9 43 | 6.24 86 | 23.4 59 | 35.8 59 | 8.06 99 | 21.2 60 | 26.7 62 | 8.24 94 |
PMMST [112] | 57.4 | 8.93 60 | 14.0 68 | 1.57 10 | 7.21 23 | 9.34 37 | 2.66 5 | 14.1 48 | 16.2 61 | 11.0 69 | 15.6 122 | 21.2 133 | 14.7 178 | 24.1 40 | 27.3 40 | 12.1 55 | 16.3 44 | 23.0 44 | 5.91 49 | 22.6 42 | 34.5 42 | 7.52 53 | 19.9 38 | 25.0 38 | 8.18 78 |
CoT-AMFlow [174] | 61.4 | 8.90 58 | 14.0 68 | 1.64 18 | 7.56 43 | 9.84 53 | 2.60 4 | 16.3 85 | 20.2 123 | 14.8 124 | 13.3 45 | 18.0 59 | 8.86 56 | 24.1 40 | 27.3 40 | 12.1 55 | 17.9 79 | 25.4 81 | 6.03 62 | 22.9 46 | 35.1 49 | 7.09 30 | 20.7 46 | 26.0 47 | 8.55 162 |
SepConv-v1 [125] | 62.3 | 8.19 37 | 12.5 36 | 5.08 190 | 7.89 65 | 9.09 30 | 8.08 187 | 20.8 151 | 12.1 20 | 18.4 154 | 12.5 38 | 14.8 33 | 11.7 136 | 23.5 35 | 26.6 35 | 9.13 33 | 14.1 24 | 19.9 24 | 5.12 28 | 21.1 33 | 32.2 33 | 8.37 107 | 17.2 23 | 21.5 22 | 6.71 22 |
DeepFlow [85] | 63.4 | 8.76 49 | 13.7 52 | 1.59 11 | 8.08 88 | 10.4 89 | 4.72 108 | 13.8 42 | 18.1 89 | 7.83 26 | 12.1 33 | 15.2 35 | 8.41 44 | 28.8 110 | 32.7 110 | 12.1 55 | 17.0 57 | 24.1 60 | 5.99 57 | 21.6 36 | 33.0 37 | 7.45 46 | 23.0 117 | 28.9 119 | 7.80 51 |
DeepFlow2 [106] | 68.8 | 8.59 44 | 13.4 45 | 1.64 18 | 8.06 86 | 10.4 89 | 4.45 96 | 13.8 42 | 18.6 94 | 8.12 29 | 12.4 35 | 16.1 37 | 10.6 93 | 28.5 104 | 32.3 103 | 12.3 85 | 16.7 49 | 23.6 49 | 5.92 51 | 23.0 51 | 35.0 47 | 7.49 49 | 22.6 98 | 28.4 99 | 8.47 157 |
AdaConv-v1 [124] | 73.2 | 9.51 101 | 14.1 76 | 4.99 188 | 9.04 145 | 9.51 42 | 9.70 192 | 18.8 132 | 13.8 35 | 18.3 153 | 14.5 80 | 16.5 42 | 15.2 184 | 25.9 57 | 29.4 57 | 7.81 7 | 13.1 18 | 18.4 18 | 5.63 40 | 21.4 35 | 32.7 35 | 7.45 46 | 17.4 25 | 21.8 25 | 6.73 24 |
CLG-TV [48] | 73.5 | 8.34 41 | 12.9 40 | 1.98 112 | 8.74 130 | 10.8 120 | 4.75 115 | 14.0 46 | 16.0 55 | 9.23 41 | 12.4 35 | 16.1 37 | 9.95 79 | 29.7 138 | 33.7 138 | 12.0 50 | 16.8 50 | 23.9 53 | 5.46 37 | 22.2 38 | 32.9 36 | 8.02 94 | 21.8 77 | 27.4 78 | 8.33 124 |
SIOF [67] | 73.9 | 8.78 51 | 13.5 47 | 1.80 75 | 8.97 141 | 11.2 147 | 4.51 98 | 16.7 94 | 23.2 153 | 11.6 78 | 13.2 43 | 17.7 53 | 9.61 75 | 23.7 37 | 26.8 37 | 11.8 41 | 17.8 73 | 25.2 76 | 5.98 56 | 23.4 59 | 35.9 63 | 7.33 39 | 22.1 82 | 27.8 85 | 8.15 71 |
Aniso. Huber-L1 [22] | 75.0 | 8.22 38 | 12.7 38 | 1.84 88 | 9.12 156 | 11.1 142 | 5.11 129 | 13.6 37 | 16.3 63 | 7.58 23 | 12.2 34 | 16.1 37 | 9.16 63 | 29.8 144 | 33.8 143 | 12.7 97 | 16.9 53 | 23.9 53 | 5.57 39 | 23.2 55 | 35.5 55 | 7.30 37 | 21.8 77 | 27.4 78 | 8.32 122 |
NN-field [71] | 76.2 | 9.03 72 | 14.1 76 | 1.74 48 | 7.01 22 | 9.05 29 | 2.74 13 | 18.3 126 | 19.1 102 | 12.6 94 | 16.8 151 | 22.7 157 | 15.8 186 | 24.2 43 | 27.5 44 | 12.1 55 | 17.8 73 | 25.1 74 | 6.07 68 | 23.1 52 | 35.4 53 | 7.69 68 | 20.6 43 | 25.9 44 | 8.36 136 |
LME [70] | 76.5 | 8.97 66 | 14.0 68 | 1.62 15 | 8.07 87 | 10.5 98 | 3.69 53 | 16.9 97 | 17.7 80 | 9.29 43 | 14.5 80 | 19.6 94 | 9.68 76 | 29.2 129 | 33.1 129 | 15.3 151 | 18.1 84 | 25.7 86 | 6.15 77 | 22.7 43 | 34.7 43 | 7.37 42 | 21.0 54 | 26.4 56 | 8.20 85 |
CombBMOF [111] | 77.0 | 9.74 117 | 14.3 86 | 3.85 170 | 7.82 59 | 10.2 69 | 3.81 60 | 16.2 82 | 19.1 102 | 12.8 96 | 13.8 58 | 18.5 69 | 10.2 84 | 26.5 59 | 30.0 59 | 12.2 74 | 17.8 73 | 25.2 76 | 6.09 73 | 23.1 52 | 35.2 52 | 7.64 63 | 21.3 63 | 26.7 62 | 8.21 90 |
MDP-Flow [26] | 78.3 | 8.27 39 | 12.8 39 | 1.74 48 | 7.26 27 | 9.42 38 | 3.90 64 | 17.2 107 | 16.1 60 | 15.0 127 | 13.6 53 | 18.0 59 | 10.9 102 | 28.8 110 | 32.7 110 | 15.3 151 | 17.9 79 | 25.2 76 | 7.36 151 | 23.6 67 | 36.1 67 | 12.2 163 | 20.6 43 | 25.9 44 | 8.07 56 |
IROF-TV [53] | 78.5 | 8.93 60 | 13.9 61 | 1.82 83 | 8.15 95 | 10.6 103 | 4.01 71 | 13.9 45 | 17.6 77 | 8.70 34 | 13.3 45 | 18.0 59 | 9.04 60 | 28.5 104 | 32.3 103 | 15.3 151 | 18.5 100 | 26.2 102 | 6.57 118 | 24.7 93 | 37.8 95 | 6.81 27 | 22.2 87 | 28.0 90 | 6.71 22 |
ALD-Flow [66] | 78.6 | 10.4 142 | 16.0 139 | 1.76 56 | 7.99 76 | 10.3 78 | 3.78 58 | 14.1 48 | 19.3 109 | 6.64 11 | 16.1 138 | 21.9 146 | 5.92 9 | 26.5 59 | 30.0 59 | 14.0 114 | 16.9 53 | 23.9 53 | 6.23 85 | 22.5 41 | 34.4 41 | 7.50 51 | 23.2 128 | 29.2 133 | 8.09 59 |
NNF-Local [75] | 78.7 | 8.84 54 | 13.8 54 | 1.61 13 | 7.25 26 | 9.44 39 | 2.76 15 | 14.6 54 | 19.3 109 | 14.5 119 | 16.0 136 | 21.6 142 | 15.8 186 | 24.2 43 | 27.5 44 | 12.2 74 | 18.4 94 | 26.0 97 | 6.42 108 | 24.2 78 | 37.1 82 | 9.54 133 | 20.3 41 | 25.4 41 | 8.27 106 |
p-harmonic [29] | 78.7 | 8.89 57 | 13.9 61 | 1.68 25 | 8.86 135 | 10.9 127 | 5.20 135 | 13.4 30 | 17.5 76 | 6.45 10 | 13.7 56 | 17.9 58 | 10.0 81 | 28.9 115 | 32.8 116 | 12.8 98 | 17.6 66 | 24.9 68 | 6.53 117 | 22.9 46 | 35.0 47 | 8.88 115 | 22.5 93 | 28.3 95 | 8.10 62 |
Second-order prior [8] | 79.5 | 8.06 36 | 12.5 36 | 1.93 101 | 8.80 131 | 11.0 132 | 4.80 118 | 12.8 18 | 16.2 61 | 7.51 22 | 12.6 39 | 16.7 43 | 6.25 13 | 28.9 115 | 32.8 116 | 12.2 74 | 18.1 84 | 25.7 86 | 6.10 74 | 23.3 56 | 35.5 55 | 9.35 129 | 22.7 104 | 28.6 110 | 8.45 155 |
OAR-Flow [123] | 79.5 | 9.14 81 | 14.0 68 | 1.71 36 | 7.90 67 | 10.1 60 | 4.04 75 | 14.3 51 | 18.8 97 | 5.59 4 | 16.6 147 | 22.6 153 | 6.23 12 | 27.7 86 | 31.4 85 | 15.3 151 | 15.9 38 | 22.4 38 | 6.89 132 | 24.2 78 | 36.4 71 | 7.80 78 | 22.9 114 | 28.8 116 | 8.15 71 |
WLIF-Flow [91] | 79.6 | 8.64 45 | 13.4 45 | 1.69 29 | 7.89 65 | 10.2 69 | 3.94 66 | 17.0 101 | 22.0 137 | 14.5 119 | 13.7 56 | 18.4 67 | 11.5 124 | 26.7 62 | 30.3 62 | 12.3 85 | 19.8 152 | 28.0 153 | 8.12 175 | 22.4 40 | 34.2 40 | 7.58 59 | 21.1 58 | 26.4 56 | 7.62 45 |
Ad-TV-NDC [36] | 81.4 | 9.09 77 | 13.8 54 | 2.24 141 | 9.50 176 | 11.1 142 | 6.94 183 | 14.2 50 | 15.4 48 | 6.85 16 | 14.5 80 | 18.6 70 | 9.51 72 | 27.4 76 | 31.1 76 | 12.3 85 | 18.2 89 | 25.8 93 | 6.40 105 | 22.9 46 | 34.7 43 | 7.43 43 | 20.6 43 | 25.8 43 | 8.26 103 |
GMFlow_RVC [196] | 82.8 | 10.2 136 | 16.0 139 | 1.83 86 | 7.58 44 | 9.82 52 | 2.78 17 | 13.3 29 | 17.7 80 | 11.4 75 | 15.3 108 | 20.7 121 | 11.1 107 | 27.7 86 | 31.5 88 | 11.8 41 | 19.2 133 | 27.2 135 | 5.90 48 | 23.7 69 | 36.4 71 | 7.62 61 | 21.8 77 | 27.4 78 | 8.27 106 |
DF-Auto [113] | 84.2 | 9.30 93 | 14.4 95 | 1.99 113 | 8.37 112 | 10.6 103 | 4.99 123 | 15.5 71 | 22.3 139 | 8.88 36 | 13.3 45 | 17.6 52 | 9.86 78 | 25.7 54 | 29.1 54 | 13.9 113 | 18.1 84 | 25.7 86 | 5.96 55 | 25.2 103 | 38.6 109 | 10.8 153 | 20.7 46 | 25.9 44 | 8.09 59 |
IROF++ [58] | 84.7 | 8.58 43 | 13.3 43 | 1.68 25 | 7.99 76 | 10.4 89 | 3.84 61 | 17.3 109 | 18.5 92 | 12.5 91 | 12.4 35 | 16.7 43 | 9.15 62 | 28.4 103 | 32.3 103 | 15.3 151 | 19.5 143 | 27.6 144 | 6.06 66 | 23.3 56 | 35.6 57 | 8.55 112 | 23.4 137 | 29.4 142 | 7.79 50 |
Brox et al. [5] | 84.8 | 9.33 95 | 14.7 101 | 1.62 15 | 7.86 63 | 10.1 60 | 4.14 80 | 15.9 75 | 16.0 55 | 10.4 57 | 13.5 52 | 17.7 53 | 8.77 53 | 26.8 63 | 30.4 63 | 11.9 44 | 19.1 127 | 27.0 128 | 9.52 191 | 28.6 167 | 43.6 165 | 23.0 197 | 19.9 38 | 25.0 38 | 8.05 55 |
RAFT-it+_RVC [198] | 85.5 | 12.8 180 | 20.3 180 | 1.64 18 | 7.62 48 | 9.89 56 | 2.95 25 | 12.9 20 | 15.3 46 | 7.13 17 | 16.8 151 | 22.7 157 | 11.0 104 | 24.0 39 | 27.2 39 | 12.0 50 | 19.0 123 | 26.8 122 | 8.90 187 | 22.7 43 | 34.8 45 | 9.44 130 | 21.0 54 | 26.3 54 | 8.56 164 |
SegFlow [156] | 86.4 | 10.1 131 | 15.9 136 | 1.67 23 | 7.58 44 | 9.88 55 | 3.06 32 | 14.8 58 | 15.0 42 | 6.71 12 | 17.3 161 | 23.6 169 | 13.1 165 | 27.7 86 | 31.4 85 | 15.3 151 | 15.8 36 | 22.3 37 | 6.18 80 | 22.9 46 | 35.1 49 | 8.62 113 | 23.1 121 | 29.0 123 | 8.31 118 |
Modified CLG [34] | 87.3 | 7.87 34 | 12.2 34 | 1.68 25 | 8.96 139 | 10.7 115 | 5.94 173 | 16.8 95 | 16.7 65 | 15.9 134 | 13.3 45 | 16.4 41 | 12.6 160 | 27.6 82 | 31.3 82 | 11.9 44 | 18.8 114 | 26.6 115 | 6.50 114 | 22.3 39 | 34.0 39 | 7.67 65 | 22.2 87 | 27.9 87 | 8.64 167 |
NNF-EAC [101] | 87.6 | 9.00 69 | 14.0 68 | 1.99 113 | 7.79 57 | 10.2 69 | 2.85 20 | 17.5 115 | 25.1 172 | 19.2 158 | 15.4 114 | 20.6 116 | 11.6 130 | 29.9 148 | 33.9 148 | 12.1 55 | 16.5 46 | 23.4 46 | 5.99 57 | 22.9 46 | 35.1 49 | 7.51 52 | 20.9 51 | 26.2 51 | 8.42 152 |
UnDAF [187] | 90.6 | 10.3 138 | 16.2 142 | 2.94 161 | 8.10 90 | 10.6 103 | 2.74 13 | 16.9 97 | 22.9 149 | 17.3 146 | 16.4 142 | 22.0 148 | 8.13 38 | 25.3 52 | 28.7 52 | 12.1 55 | 17.6 66 | 24.9 68 | 6.10 74 | 23.3 56 | 35.6 57 | 7.30 37 | 21.0 54 | 26.4 56 | 9.46 180 |
Local-TV-L1 [65] | 91.0 | 8.65 46 | 13.3 43 | 1.90 97 | 9.07 150 | 11.0 132 | 5.04 127 | 13.1 24 | 15.3 46 | 8.62 32 | 12.8 40 | 17.0 45 | 7.89 33 | 30.8 180 | 35.0 181 | 15.5 186 | 18.4 94 | 26.0 97 | 6.98 136 | 23.9 75 | 36.5 76 | 7.66 64 | 21.4 66 | 26.9 67 | 8.40 148 |
HCFN [157] | 91.2 | 9.82 124 | 15.4 126 | 1.74 48 | 7.71 52 | 10.1 60 | 3.24 39 | 14.8 58 | 17.1 70 | 9.77 48 | 15.2 104 | 20.6 116 | 10.8 98 | 28.1 98 | 31.9 100 | 12.1 55 | 18.0 82 | 25.4 81 | 6.40 105 | 26.0 126 | 39.7 130 | 7.69 68 | 23.1 121 | 29.0 123 | 8.48 158 |
JOF [136] | 92.3 | 9.04 73 | 14.1 76 | 1.81 80 | 7.55 41 | 9.71 50 | 5.06 128 | 15.1 63 | 16.7 65 | 12.0 80 | 14.4 76 | 19.4 89 | 11.4 118 | 29.2 129 | 33.2 131 | 15.4 178 | 19.8 152 | 28.0 153 | 6.36 101 | 23.4 59 | 35.8 59 | 7.68 67 | 21.4 66 | 26.8 66 | 8.30 115 |
F-TV-L1 [15] | 92.4 | 10.4 142 | 16.2 142 | 1.94 104 | 9.02 143 | 11.2 147 | 4.72 108 | 14.6 54 | 16.7 65 | 11.0 69 | 14.2 67 | 18.9 79 | 10.3 86 | 27.5 79 | 31.2 80 | 12.3 85 | 16.0 39 | 22.6 39 | 6.38 102 | 23.9 75 | 36.6 78 | 9.23 124 | 21.3 63 | 26.7 62 | 10.2 185 |
PH-Flow [99] | 92.9 | 9.30 93 | 14.3 86 | 1.70 33 | 7.70 51 | 10.1 60 | 2.82 19 | 14.9 62 | 20.6 129 | 14.8 124 | 14.3 71 | 19.4 89 | 11.5 124 | 25.0 50 | 28.3 49 | 12.2 74 | 21.6 190 | 30.7 191 | 9.38 190 | 25.0 100 | 38.3 102 | 7.76 75 | 22.6 98 | 28.4 99 | 8.15 71 |
FMOF [92] | 93.6 | 9.22 88 | 13.9 61 | 1.96 108 | 7.58 44 | 9.87 54 | 2.87 21 | 19.5 138 | 22.4 140 | 17.7 148 | 15.3 108 | 20.6 116 | 12.5 159 | 24.5 47 | 27.7 46 | 13.7 108 | 19.3 137 | 27.3 138 | 6.05 64 | 24.6 91 | 37.7 93 | 6.64 23 | 23.4 137 | 29.4 142 | 6.98 36 |
VCN_RVC [178] | 95.3 | 14.1 188 | 22.5 191 | 1.93 101 | 7.72 53 | 10.1 60 | 3.17 36 | 15.6 73 | 19.7 113 | 11.0 69 | 22.0 186 | 29.9 187 | 10.2 84 | 27.1 68 | 30.7 68 | 12.1 55 | 17.6 66 | 25.0 72 | 5.84 42 | 24.3 83 | 37.1 82 | 7.57 57 | 22.1 82 | 27.7 83 | 11.2 188 |
Filter Flow [19] | 95.8 | 9.35 97 | 14.5 97 | 1.79 70 | 9.19 158 | 11.1 142 | 5.50 157 | 17.6 119 | 16.8 69 | 12.2 84 | 14.0 63 | 18.0 59 | 11.3 112 | 24.6 48 | 27.9 48 | 12.2 74 | 18.4 94 | 26.0 97 | 7.54 157 | 24.8 94 | 37.9 97 | 7.77 76 | 21.5 69 | 27.0 70 | 8.40 148 |
DMF_ROB [135] | 95.8 | 9.66 109 | 15.1 113 | 1.75 53 | 8.12 93 | 10.3 78 | 4.86 120 | 17.2 107 | 22.7 146 | 11.7 79 | 14.5 80 | 19.3 85 | 9.60 73 | 27.3 73 | 31.0 73 | 15.3 151 | 17.9 79 | 25.4 81 | 8.26 178 | 23.5 64 | 35.9 63 | 6.49 18 | 23.2 128 | 29.2 133 | 8.32 122 |
PRAFlow_RVC [177] | 96.0 | 10.6 146 | 16.6 148 | 1.85 90 | 7.46 36 | 9.61 45 | 3.14 35 | 16.1 79 | 20.9 130 | 15.5 133 | 15.2 104 | 20.6 116 | 6.66 17 | 23.8 38 | 26.9 38 | 12.1 55 | 18.9 118 | 26.8 122 | 6.70 122 | 23.8 70 | 36.5 76 | 14.0 174 | 24.0 166 | 30.2 167 | 8.18 78 |
C-RAFT_RVC [181] | 96.1 | 13.0 182 | 20.5 182 | 2.43 148 | 7.97 75 | 10.3 78 | 3.53 46 | 16.1 79 | 19.7 113 | 12.3 87 | 15.5 118 | 21.0 129 | 12.2 148 | 24.9 49 | 28.3 49 | 11.8 41 | 18.3 93 | 25.9 95 | 6.05 64 | 24.8 94 | 37.9 97 | 9.19 123 | 21.1 58 | 26.5 60 | 8.25 99 |
Sparse Occlusion [54] | 97.6 | 9.75 118 | 15.2 116 | 2.05 120 | 8.71 128 | 11.2 147 | 4.19 85 | 13.5 33 | 15.9 54 | 7.80 24 | 14.6 86 | 19.7 101 | 7.51 24 | 30.4 162 | 34.5 163 | 15.3 151 | 16.1 40 | 22.7 40 | 6.27 92 | 26.9 141 | 41.1 143 | 7.45 46 | 23.2 128 | 29.2 133 | 8.12 68 |
TC/T-Flow [77] | 98.1 | 9.42 99 | 14.6 100 | 2.39 147 | 8.67 127 | 11.2 147 | 4.00 69 | 13.6 37 | 16.0 55 | 8.03 28 | 17.5 165 | 23.5 168 | 10.8 98 | 27.3 73 | 31.0 73 | 15.3 151 | 17.4 64 | 24.6 64 | 5.89 47 | 25.8 121 | 37.8 95 | 9.59 135 | 22.8 108 | 28.7 114 | 8.13 69 |
CRTflow [81] | 98.5 | 8.75 48 | 13.6 49 | 2.04 117 | 9.27 163 | 11.5 170 | 5.28 137 | 16.2 82 | 22.5 142 | 9.27 42 | 12.8 40 | 17.0 45 | 11.5 124 | 27.0 66 | 30.6 66 | 15.3 151 | 17.6 66 | 24.9 68 | 6.06 66 | 27.8 151 | 42.7 154 | 7.62 61 | 23.4 137 | 29.4 142 | 8.16 76 |
RAFT-it [194] | 99.2 | 12.3 173 | 19.5 173 | 1.80 75 | 7.30 29 | 9.44 39 | 2.73 11 | 13.6 37 | 17.6 77 | 11.2 74 | 16.7 149 | 22.6 153 | 16.0 190 | 24.2 43 | 27.4 43 | 12.0 50 | 18.5 100 | 26.2 102 | 6.41 107 | 23.1 52 | 35.4 53 | 9.26 126 | 24.5 179 | 30.6 178 | 8.67 168 |
CPM-Flow [114] | 99.6 | 9.82 124 | 15.4 126 | 1.69 29 | 7.60 47 | 9.90 57 | 3.04 29 | 15.6 73 | 15.7 52 | 7.43 21 | 16.9 154 | 23.0 163 | 12.0 142 | 27.6 82 | 31.3 82 | 15.3 151 | 18.5 100 | 26.2 102 | 7.13 144 | 23.4 59 | 35.8 59 | 9.99 142 | 23.8 155 | 29.9 157 | 8.37 140 |
COFM [59] | 99.8 | 8.95 65 | 13.8 54 | 1.90 97 | 7.42 34 | 9.61 45 | 3.19 37 | 15.3 68 | 22.1 138 | 16.3 136 | 15.4 114 | 20.9 126 | 14.6 174 | 26.8 63 | 30.4 63 | 12.2 74 | 21.4 186 | 30.3 186 | 6.26 91 | 26.3 130 | 40.4 133 | 10.4 149 | 20.8 48 | 26.1 48 | 8.36 136 |
CNN-flow-warp+ref [115] | 99.9 | 8.33 40 | 13.0 41 | 2.06 122 | 8.26 106 | 10.3 78 | 5.85 170 | 18.3 126 | 22.7 146 | 11.1 72 | 13.6 53 | 16.0 36 | 11.1 107 | 29.1 127 | 33.0 126 | 15.3 151 | 15.7 35 | 22.1 34 | 6.96 135 | 28.2 157 | 43.1 158 | 7.67 65 | 21.8 77 | 27.3 76 | 8.49 159 |
ComplOF-FED-GPU [35] | 100.0 | 9.91 129 | 15.5 129 | 1.77 63 | 7.74 55 | 10.1 60 | 4.25 89 | 19.8 143 | 17.7 80 | 17.0 140 | 15.3 108 | 20.7 121 | 11.8 137 | 28.2 102 | 32.0 102 | 14.5 120 | 16.2 42 | 22.8 42 | 5.95 54 | 26.2 129 | 39.6 129 | 9.25 125 | 22.7 104 | 28.4 99 | 8.25 99 |
PMF [73] | 100.5 | 9.35 97 | 14.5 97 | 1.77 63 | 7.80 58 | 10.1 60 | 2.68 7 | 24.0 172 | 28.7 185 | 22.5 180 | 15.3 108 | 20.6 116 | 11.6 130 | 25.7 54 | 29.2 55 | 12.1 55 | 19.1 127 | 27.0 128 | 5.92 51 | 27.6 148 | 42.4 151 | 9.09 120 | 23.1 121 | 29.0 123 | 6.47 7 |
2DHMM-SAS [90] | 100.8 | 8.83 53 | 13.6 49 | 1.76 56 | 8.88 137 | 11.3 155 | 4.29 90 | 17.5 115 | 20.9 130 | 12.5 91 | 14.5 80 | 19.6 94 | 11.3 112 | 30.1 153 | 34.1 152 | 15.1 136 | 17.6 66 | 24.9 68 | 5.84 42 | 25.2 103 | 38.7 111 | 8.23 104 | 23.1 121 | 29.1 126 | 8.16 76 |
RAFT-TF_RVC [179] | 100.8 | 12.3 173 | 19.5 173 | 2.22 137 | 7.37 32 | 9.58 44 | 2.80 18 | 13.5 33 | 17.7 80 | 10.6 63 | 15.7 128 | 21.2 133 | 8.56 45 | 24.4 46 | 27.7 46 | 12.1 55 | 20.0 156 | 28.2 156 | 7.59 162 | 26.4 131 | 40.6 138 | 9.12 121 | 22.5 93 | 28.3 95 | 8.55 162 |
TC-Flow [46] | 101.1 | 10.9 152 | 17.1 154 | 1.71 36 | 8.86 135 | 11.6 173 | 4.00 69 | 13.0 22 | 16.0 55 | 6.24 8 | 15.6 122 | 21.1 130 | 8.58 46 | 27.9 90 | 31.7 92 | 15.1 136 | 18.7 110 | 26.4 111 | 6.72 123 | 24.6 91 | 37.6 91 | 7.95 90 | 23.4 137 | 29.4 142 | 8.28 111 |
OFLAF [78] | 101.8 | 9.70 112 | 15.0 110 | 1.69 29 | 7.94 72 | 10.4 89 | 2.73 11 | 14.3 51 | 15.0 42 | 10.2 53 | 13.8 58 | 18.6 70 | 8.40 43 | 30.0 150 | 34.0 150 | 15.4 178 | 17.0 57 | 23.9 53 | 6.73 124 | 30.1 182 | 46.1 182 | 13.9 172 | 23.4 137 | 29.3 138 | 9.45 179 |
LDOF [28] | 102.2 | 8.85 55 | 13.8 54 | 2.04 117 | 10.2 193 | 9.70 49 | 10.8 198 | 17.0 101 | 20.4 125 | 12.0 80 | 13.4 49 | 17.4 50 | 12.3 153 | 22.9 33 | 26.0 33 | 11.9 44 | 18.9 118 | 26.7 118 | 6.27 92 | 30.1 182 | 46.3 184 | 16.0 178 | 19.7 36 | 24.7 36 | 8.89 175 |
Horn & Schunck [3] | 102.4 | 8.92 59 | 13.6 49 | 1.73 41 | 9.79 186 | 11.4 160 | 6.31 177 | 24.1 173 | 18.7 95 | 18.6 156 | 15.8 132 | 19.4 89 | 11.1 107 | 28.0 93 | 31.8 94 | 10.4 38 | 17.8 73 | 25.2 76 | 5.54 38 | 25.3 108 | 38.4 105 | 9.70 138 | 22.1 82 | 27.7 83 | 8.27 106 |
ProFlow_ROB [142] | 102.5 | 9.82 124 | 15.5 129 | 1.71 36 | 8.15 95 | 10.6 103 | 3.63 50 | 15.4 70 | 12.7 29 | 8.98 37 | 19.8 181 | 26.9 182 | 7.99 35 | 29.0 125 | 33.0 126 | 15.3 151 | 15.6 33 | 22.0 33 | 5.16 31 | 26.4 131 | 40.3 132 | 7.90 86 | 24.4 176 | 30.5 175 | 11.5 190 |
Black & Anandan [4] | 102.7 | 9.24 90 | 14.1 76 | 1.95 106 | 9.65 183 | 11.4 160 | 5.28 137 | 28.3 182 | 24.2 162 | 20.2 168 | 14.8 91 | 18.7 74 | 10.5 91 | 27.7 86 | 31.5 88 | 9.57 36 | 19.0 123 | 27.0 128 | 6.35 99 | 24.2 78 | 36.7 79 | 8.42 108 | 21.0 54 | 26.3 54 | 6.55 11 |
2D-CLG [1] | 103.1 | 8.51 42 | 13.2 42 | 1.76 56 | 8.84 134 | 10.4 89 | 5.71 167 | 19.4 137 | 15.6 51 | 15.0 127 | 14.2 67 | 16.3 40 | 14.0 170 | 31.1 187 | 35.3 187 | 20.9 198 | 16.1 40 | 22.7 40 | 6.34 97 | 27.7 150 | 42.3 149 | 8.19 103 | 21.4 66 | 26.9 67 | 8.13 69 |
FlowNetS+ft+v [110] | 103.1 | 9.02 71 | 14.1 76 | 2.07 126 | 10.0 191 | 11.0 132 | 9.60 190 | 16.3 85 | 14.4 36 | 13.5 106 | 13.8 58 | 17.7 53 | 13.3 166 | 29.7 138 | 33.8 143 | 15.3 151 | 16.8 50 | 23.8 51 | 6.25 89 | 27.8 151 | 42.6 152 | 7.83 82 | 20.4 42 | 25.5 42 | 8.24 94 |
PGM-C [118] | 103.4 | 9.70 112 | 15.2 116 | 1.69 29 | 7.84 62 | 10.2 69 | 3.70 54 | 21.2 154 | 17.2 72 | 12.3 87 | 17.4 162 | 23.6 169 | 8.69 48 | 28.0 93 | 31.8 94 | 15.3 151 | 16.6 47 | 23.4 46 | 6.17 78 | 26.4 131 | 40.5 137 | 8.04 96 | 24.3 172 | 30.5 175 | 8.34 127 |
MLDP_OF [87] | 103.5 | 9.06 74 | 14.1 76 | 1.83 86 | 8.81 132 | 11.3 155 | 4.78 117 | 14.0 46 | 17.6 77 | 8.56 31 | 15.5 118 | 20.3 112 | 15.8 186 | 29.7 138 | 33.7 138 | 13.6 104 | 19.1 127 | 27.0 128 | 5.86 45 | 23.8 70 | 36.3 69 | 8.15 102 | 23.2 128 | 29.1 126 | 8.25 99 |
EpicFlow [100] | 103.8 | 9.69 111 | 15.2 116 | 1.67 23 | 7.90 67 | 10.2 69 | 4.37 93 | 16.0 77 | 14.5 38 | 9.75 47 | 19.1 177 | 25.8 180 | 12.3 153 | 27.9 90 | 31.6 90 | 15.3 151 | 16.9 53 | 23.9 53 | 6.21 84 | 24.9 97 | 38.0 99 | 10.3 147 | 24.6 180 | 30.9 181 | 8.30 115 |
Fusion [6] | 104.9 | 8.82 52 | 13.8 54 | 2.62 155 | 7.96 73 | 10.1 60 | 4.47 97 | 16.5 89 | 13.6 33 | 17.3 146 | 14.0 63 | 18.1 63 | 9.97 80 | 29.8 144 | 33.8 143 | 12.8 98 | 19.4 139 | 27.4 139 | 10.1 194 | 26.4 131 | 40.4 133 | 8.14 101 | 21.7 73 | 27.2 74 | 10.1 184 |
LFNet_ROB [145] | 105.0 | 11.6 162 | 18.2 165 | 2.58 154 | 8.05 84 | 10.4 89 | 4.02 73 | 17.8 121 | 26.6 177 | 11.5 77 | 13.2 43 | 17.8 56 | 7.21 22 | 26.9 65 | 30.5 65 | 14.8 127 | 21.1 179 | 29.9 180 | 7.31 149 | 23.5 64 | 35.9 63 | 11.3 156 | 22.4 91 | 28.2 93 | 8.11 66 |
TV-L1-MCT [64] | 105.5 | 9.18 84 | 14.2 83 | 1.78 66 | 8.53 119 | 11.1 142 | 3.70 54 | 17.7 120 | 23.3 156 | 13.6 108 | 14.4 76 | 19.5 93 | 11.6 130 | 30.5 169 | 34.6 167 | 13.8 110 | 18.1 84 | 25.7 86 | 6.02 61 | 25.8 121 | 39.5 125 | 15.0 176 | 21.7 73 | 27.3 76 | 7.99 53 |
AGIF+OF [84] | 105.5 | 9.07 75 | 14.0 68 | 1.78 66 | 7.93 71 | 10.3 78 | 3.78 58 | 14.4 53 | 17.8 84 | 12.4 89 | 14.9 95 | 20.2 109 | 11.4 118 | 28.9 115 | 32.8 116 | 15.3 151 | 20.0 156 | 28.3 157 | 6.98 136 | 25.5 111 | 39.0 114 | 7.74 73 | 23.9 162 | 30.1 166 | 8.28 111 |
EAI-Flow [147] | 105.5 | 11.1 155 | 15.4 126 | 6.27 197 | 8.02 82 | 10.2 69 | 4.70 107 | 16.9 97 | 20.1 122 | 15.0 127 | 14.8 91 | 19.8 103 | 4.86 2 | 29.2 129 | 33.1 129 | 14.8 127 | 16.6 47 | 23.5 48 | 5.99 57 | 23.8 70 | 36.4 71 | 20.9 193 | 22.6 98 | 28.4 99 | 11.1 187 |
Bartels [41] | 106.3 | 12.7 177 | 20.1 179 | 2.13 132 | 8.52 118 | 11.0 132 | 4.96 122 | 13.5 33 | 14.5 38 | 10.2 53 | 14.4 76 | 18.9 79 | 10.8 98 | 23.5 35 | 26.6 35 | 12.9 101 | 19.0 123 | 26.9 125 | 6.94 134 | 24.5 86 | 37.5 89 | 19.7 190 | 23.4 137 | 29.4 142 | 8.31 118 |
S2F-IF [121] | 106.4 | 10.3 138 | 16.3 145 | 1.79 70 | 7.83 61 | 10.2 69 | 2.90 23 | 17.0 101 | 20.0 120 | 13.9 114 | 16.1 138 | 21.6 142 | 6.69 18 | 29.2 129 | 33.2 131 | 15.3 151 | 16.8 50 | 23.7 50 | 6.34 97 | 24.9 97 | 38.2 100 | 10.7 151 | 23.9 162 | 30.0 164 | 8.35 133 |
MS_RAFT+_RVC [195] | 108.3 | 9.79 121 | 15.2 116 | 4.60 184 | 7.50 38 | 9.77 51 | 2.91 24 | 15.2 66 | 19.5 111 | 14.3 117 | 14.7 90 | 19.6 94 | 12.9 164 | 28.1 98 | 31.8 94 | 15.2 145 | 17.3 62 | 24.5 63 | 5.94 53 | 25.1 101 | 38.5 107 | 12.3 164 | 24.9 185 | 31.2 186 | 8.57 165 |
HAST [107] | 108.8 | 8.87 56 | 13.8 54 | 1.76 56 | 7.34 30 | 9.50 41 | 2.70 9 | 28.8 184 | 28.6 184 | 24.0 185 | 14.9 95 | 20.2 109 | 7.68 25 | 28.9 115 | 32.8 116 | 12.1 55 | 21.3 185 | 30.2 185 | 7.57 159 | 28.6 167 | 43.9 168 | 7.55 56 | 22.8 108 | 28.7 114 | 8.43 154 |
OFH [38] | 108.8 | 9.54 103 | 15.0 110 | 1.74 48 | 8.49 117 | 10.6 103 | 5.13 130 | 18.1 124 | 24.9 170 | 10.4 57 | 17.4 162 | 23.7 172 | 5.72 7 | 28.7 108 | 32.5 106 | 14.6 123 | 17.6 66 | 24.8 66 | 5.85 44 | 26.0 126 | 39.2 119 | 10.2 145 | 22.7 104 | 28.5 107 | 14.1 195 |
nLayers [57] | 109.1 | 9.15 82 | 14.3 86 | 1.76 56 | 7.42 34 | 9.62 47 | 3.57 47 | 27.8 180 | 29.9 188 | 25.8 190 | 15.9 134 | 21.5 140 | 11.9 138 | 30.2 155 | 34.3 157 | 14.7 126 | 20.3 165 | 28.8 166 | 6.45 111 | 23.5 64 | 36.0 66 | 7.87 84 | 21.6 70 | 27.1 71 | 8.10 62 |
TCOF [69] | 109.7 | 9.34 96 | 14.3 86 | 1.89 93 | 9.50 176 | 11.7 180 | 5.42 150 | 16.2 82 | 21.7 135 | 10.3 55 | 13.8 58 | 18.6 70 | 9.45 71 | 30.4 162 | 34.6 167 | 13.6 104 | 18.2 89 | 25.7 86 | 6.20 83 | 28.5 164 | 43.5 164 | 7.54 54 | 22.9 114 | 28.8 116 | 8.18 78 |
BlockOverlap [61] | 110.0 | 9.09 77 | 14.3 86 | 2.04 117 | 8.96 139 | 10.9 127 | 5.37 148 | 18.1 124 | 15.5 49 | 18.0 151 | 14.2 67 | 17.2 48 | 14.0 170 | 28.9 115 | 32.8 116 | 13.8 110 | 18.8 114 | 26.7 118 | 7.92 169 | 24.8 94 | 37.2 84 | 21.0 194 | 20.0 40 | 25.1 40 | 8.38 142 |
Layers++ [37] | 110.0 | 8.93 60 | 14.0 68 | 1.76 56 | 6.74 18 | 8.61 24 | 2.71 10 | 18.3 126 | 25.8 175 | 19.3 159 | 15.3 108 | 20.8 124 | 11.3 112 | 33.1 195 | 37.6 195 | 19.8 195 | 21.6 190 | 30.6 190 | 8.73 184 | 24.4 84 | 37.4 87 | 7.81 80 | 21.6 70 | 27.1 71 | 8.09 59 |
MCPFlow_RVC [197] | 111.0 | 12.1 170 | 18.9 170 | 1.97 110 | 7.99 76 | 10.4 89 | 3.04 29 | 16.1 79 | 23.4 158 | 10.5 61 | 15.3 108 | 20.7 121 | 10.7 97 | 26.2 58 | 29.7 58 | 11.9 44 | 21.7 192 | 30.8 192 | 6.42 108 | 23.4 59 | 35.8 59 | 7.94 88 | 24.9 185 | 30.9 181 | 8.73 171 |
FlowFields [108] | 111.8 | 9.98 130 | 15.7 132 | 2.08 128 | 7.96 73 | 10.4 89 | 3.62 49 | 23.1 165 | 23.2 153 | 20.3 170 | 16.0 136 | 21.5 140 | 7.08 21 | 27.0 66 | 30.6 66 | 14.2 116 | 19.2 133 | 27.1 133 | 6.08 72 | 24.4 84 | 37.4 87 | 10.2 145 | 23.2 128 | 29.2 133 | 8.35 133 |
DPOF [18] | 112.1 | 11.0 153 | 17.4 158 | 3.88 172 | 7.78 56 | 10.2 69 | 3.01 27 | 18.7 130 | 18.1 89 | 18.4 154 | 16.5 144 | 22.4 150 | 14.6 174 | 28.8 110 | 32.7 110 | 12.1 55 | 18.9 118 | 26.7 118 | 6.18 80 | 25.2 103 | 38.4 105 | 7.59 60 | 23.6 150 | 29.6 150 | 8.07 56 |
Classic++ [32] | 112.4 | 9.48 100 | 14.9 105 | 1.80 75 | 8.59 122 | 11.0 132 | 4.61 102 | 13.7 41 | 15.0 42 | 9.57 46 | 14.4 76 | 19.0 81 | 8.76 52 | 29.9 148 | 33.9 148 | 13.6 104 | 20.2 163 | 28.7 164 | 6.87 131 | 27.4 145 | 42.0 145 | 9.63 137 | 23.8 155 | 29.9 157 | 8.34 127 |
HBM-GC [103] | 113.6 | 9.25 91 | 14.5 97 | 1.81 80 | 9.08 152 | 11.9 189 | 3.75 57 | 17.3 109 | 18.7 95 | 17.9 149 | 14.3 71 | 19.2 83 | 8.85 55 | 30.0 150 | 34.0 150 | 15.5 186 | 21.5 187 | 30.4 187 | 8.27 179 | 27.4 145 | 42.1 148 | 7.15 32 | 20.8 48 | 26.1 48 | 7.05 39 |
NL-TV-NCC [25] | 113.7 | 9.19 86 | 14.3 86 | 2.18 133 | 9.02 143 | 11.6 173 | 4.13 79 | 14.8 58 | 16.7 65 | 10.9 67 | 20.8 182 | 28.1 183 | 8.19 39 | 26.5 59 | 30.0 59 | 13.1 102 | 18.9 118 | 26.7 118 | 6.43 110 | 26.6 137 | 40.4 133 | 15.1 177 | 23.7 154 | 29.7 154 | 8.29 114 |
SRR-TVOF-NL [89] | 114.0 | 9.65 107 | 14.8 102 | 1.82 83 | 8.21 103 | 10.6 103 | 4.76 116 | 22.7 163 | 28.1 182 | 21.9 175 | 15.6 122 | 20.9 126 | 9.18 64 | 28.9 115 | 32.8 116 | 15.3 151 | 20.7 174 | 29.3 174 | 5.91 49 | 24.5 86 | 37.6 91 | 6.56 20 | 22.5 93 | 28.2 93 | 8.34 127 |
H+S_RVC [176] | 115.1 | 9.25 91 | 14.2 83 | 1.72 39 | 8.58 121 | 10.1 60 | 5.62 162 | 17.8 121 | 18.4 91 | 12.9 98 | 14.3 71 | 17.5 51 | 9.60 73 | 30.2 155 | 34.3 157 | 15.6 188 | 19.7 149 | 27.8 148 | 7.04 140 | 25.9 125 | 39.5 125 | 10.3 147 | 22.9 114 | 28.6 110 | 8.39 143 |
Complementary OF [21] | 115.3 | 11.4 161 | 18.1 164 | 1.70 33 | 9.23 161 | 12.1 191 | 4.19 85 | 31.6 189 | 19.0 101 | 23.6 182 | 19.5 180 | 26.5 181 | 6.72 19 | 28.1 98 | 31.8 94 | 14.6 123 | 17.3 62 | 24.4 62 | 6.38 102 | 26.1 128 | 39.0 114 | 8.92 117 | 22.3 89 | 27.9 87 | 7.57 44 |
Nguyen [33] | 115.4 | 9.83 127 | 15.2 116 | 1.73 41 | 9.59 181 | 11.0 132 | 5.65 166 | 15.3 68 | 20.5 126 | 10.3 55 | 14.6 86 | 18.8 75 | 12.1 144 | 28.8 110 | 32.7 110 | 12.2 74 | 19.4 139 | 27.4 139 | 8.01 173 | 29.7 177 | 45.5 177 | 8.29 106 | 21.2 60 | 26.6 61 | 8.34 127 |
LSM_FLOW_RVC [182] | 116.2 | 13.7 186 | 21.2 186 | 4.18 178 | 8.57 120 | 11.0 132 | 3.98 68 | 19.5 138 | 25.2 174 | 13.3 102 | 24.7 190 | 33.6 192 | 8.11 37 | 27.6 82 | 31.4 85 | 15.1 136 | 17.0 57 | 24.0 59 | 6.52 116 | 25.5 111 | 39.1 117 | 7.44 44 | 22.5 93 | 28.3 95 | 8.23 92 |
FESL [72] | 116.6 | 9.09 77 | 13.9 61 | 1.74 48 | 7.90 67 | 10.3 78 | 3.35 41 | 16.5 89 | 21.9 136 | 12.0 80 | 15.1 102 | 20.3 112 | 11.4 118 | 30.8 180 | 35.0 181 | 15.4 178 | 19.6 145 | 27.8 148 | 6.48 112 | 27.8 151 | 42.6 152 | 7.75 74 | 23.9 162 | 30.0 164 | 8.39 143 |
CompactFlow_ROB [155] | 116.7 | 12.7 177 | 20.0 178 | 2.28 142 | 8.24 105 | 10.7 115 | 4.14 80 | 19.8 143 | 22.5 142 | 14.5 119 | 27.5 197 | 36.7 198 | 7.77 28 | 27.6 82 | 31.3 82 | 12.1 55 | 19.8 152 | 28.0 153 | 6.19 82 | 27.4 145 | 42.0 145 | 7.16 33 | 22.0 81 | 27.6 81 | 8.20 85 |
ProbFlowFields [126] | 116.8 | 10.1 131 | 16.0 139 | 1.78 66 | 8.04 83 | 10.5 98 | 3.08 33 | 25.8 179 | 28.8 186 | 24.3 186 | 14.5 80 | 19.6 94 | 11.4 118 | 27.2 71 | 30.9 72 | 15.3 151 | 17.4 64 | 24.6 64 | 8.78 185 | 27.3 144 | 42.0 145 | 18.8 188 | 22.4 91 | 28.1 91 | 8.39 143 |
Efficient-NL [60] | 116.9 | 8.71 47 | 13.5 47 | 1.68 25 | 8.66 126 | 11.2 147 | 3.65 51 | 22.5 159 | 20.0 120 | 19.9 164 | 14.3 71 | 19.3 85 | 11.0 104 | 30.5 169 | 34.7 174 | 15.0 131 | 20.1 159 | 28.4 159 | 6.27 92 | 28.5 164 | 43.7 166 | 8.92 117 | 23.8 155 | 29.9 157 | 6.66 17 |
PWC-Net_RVC [143] | 117.8 | 11.7 164 | 18.2 165 | 2.05 120 | 8.35 111 | 10.9 127 | 3.91 65 | 13.6 37 | 17.4 75 | 6.79 14 | 18.8 173 | 25.6 179 | 8.72 50 | 30.5 169 | 34.6 167 | 15.1 136 | 19.4 139 | 27.4 139 | 5.68 41 | 23.6 67 | 36.2 68 | 7.95 90 | 24.2 169 | 30.4 171 | 11.5 190 |
FlowFields+ [128] | 118.7 | 9.67 110 | 15.2 116 | 3.33 167 | 7.86 63 | 10.3 78 | 3.02 28 | 23.3 167 | 24.6 167 | 20.8 171 | 17.0 156 | 23.0 163 | 6.91 20 | 27.3 73 | 31.0 73 | 15.4 178 | 19.0 123 | 26.9 125 | 6.24 86 | 25.3 108 | 38.8 112 | 13.1 167 | 23.2 128 | 29.1 126 | 8.39 143 |
AggregFlow [95] | 118.8 | 12.9 181 | 20.3 180 | 1.75 53 | 8.34 110 | 10.8 120 | 4.14 80 | 20.0 145 | 24.4 165 | 19.5 163 | 16.5 144 | 22.3 149 | 12.2 148 | 25.2 51 | 28.6 51 | 12.2 74 | 16.9 53 | 23.9 53 | 6.60 119 | 29.0 174 | 43.9 168 | 16.7 181 | 23.0 117 | 28.9 119 | 8.03 54 |
RNLOD-Flow [119] | 119.6 | 8.93 60 | 13.8 54 | 1.65 21 | 8.48 116 | 11.0 132 | 4.06 76 | 16.3 85 | 23.2 153 | 12.8 96 | 14.1 65 | 19.1 82 | 11.1 107 | 29.7 138 | 33.7 138 | 15.6 188 | 20.3 165 | 28.7 164 | 8.92 188 | 25.7 115 | 39.4 123 | 16.4 180 | 24.2 169 | 30.4 171 | 8.20 85 |
StereoOF-V1MT [117] | 119.8 | 11.1 155 | 17.3 156 | 1.73 41 | 8.61 123 | 10.6 103 | 5.28 137 | 23.4 169 | 17.3 73 | 17.1 144 | 16.6 147 | 19.9 105 | 12.3 153 | 27.4 76 | 31.1 76 | 15.0 131 | 17.0 57 | 23.8 51 | 6.80 129 | 30.2 184 | 46.2 183 | 12.3 164 | 21.6 70 | 26.9 67 | 9.58 181 |
TI-DOFE [24] | 120.4 | 9.80 122 | 15.2 116 | 2.80 159 | 9.94 189 | 11.4 160 | 5.62 162 | 15.5 71 | 15.7 52 | 10.5 61 | 17.0 156 | 21.7 144 | 10.6 93 | 27.1 68 | 30.8 70 | 12.1 55 | 20.9 177 | 29.6 178 | 6.99 138 | 24.0 77 | 36.3 69 | 8.92 117 | 24.3 172 | 28.1 91 | 12.5 193 |
Occlusion-TV-L1 [63] | 120.8 | 10.1 131 | 15.9 136 | 2.43 148 | 9.36 167 | 11.8 186 | 5.01 126 | 12.7 16 | 14.7 40 | 7.22 18 | 17.0 156 | 22.7 157 | 11.4 118 | 28.6 106 | 32.5 106 | 12.0 50 | 18.7 110 | 26.5 114 | 7.48 155 | 25.2 103 | 37.7 93 | 10.0 143 | 24.3 172 | 30.3 170 | 9.33 177 |
Sparse-NonSparse [56] | 120.8 | 9.18 84 | 14.3 86 | 1.73 41 | 8.14 94 | 10.6 103 | 3.31 40 | 16.6 92 | 22.9 149 | 13.8 113 | 14.8 91 | 19.8 103 | 11.3 112 | 30.5 169 | 34.6 167 | 15.0 131 | 20.1 159 | 28.5 162 | 7.48 155 | 28.5 164 | 43.7 166 | 9.49 131 | 23.5 147 | 29.5 147 | 8.24 94 |
FlowNet2 [120] | 120.9 | 15.6 194 | 23.6 194 | 1.96 108 | 9.34 166 | 12.1 191 | 4.72 108 | 17.3 109 | 19.2 107 | 13.0 100 | 17.1 159 | 23.1 165 | 10.1 82 | 28.0 93 | 31.8 94 | 12.3 85 | 18.6 104 | 26.3 107 | 6.35 99 | 26.7 138 | 40.8 141 | 8.04 96 | 21.7 73 | 27.2 74 | 8.30 115 |
ACK-Prior [27] | 121.0 | 9.81 123 | 15.1 113 | 2.07 126 | 8.01 80 | 10.4 89 | 3.86 62 | 25.1 176 | 19.1 102 | 22.0 177 | 15.1 102 | 20.1 107 | 10.1 82 | 30.4 162 | 34.4 161 | 15.4 178 | 19.1 127 | 26.9 125 | 7.57 159 | 25.8 121 | 39.3 120 | 19.5 189 | 22.3 89 | 27.9 87 | 7.73 47 |
LSM [39] | 121.5 | 9.10 80 | 14.2 83 | 1.73 41 | 8.33 108 | 10.9 127 | 3.40 43 | 16.6 92 | 22.7 146 | 12.2 84 | 15.0 101 | 20.3 112 | 11.0 104 | 30.5 169 | 34.7 174 | 15.1 136 | 20.7 174 | 29.4 175 | 6.17 78 | 28.1 156 | 43.0 157 | 11.5 158 | 23.8 155 | 29.9 157 | 8.27 106 |
Classic+CPF [82] | 122.0 | 9.07 75 | 14.0 68 | 1.80 75 | 8.09 89 | 10.5 98 | 3.71 56 | 17.0 101 | 21.5 133 | 12.9 98 | 13.9 62 | 18.8 75 | 11.4 118 | 30.7 178 | 34.9 179 | 15.4 178 | 21.2 182 | 30.0 183 | 7.73 167 | 28.2 157 | 43.2 160 | 7.80 78 | 24.7 182 | 31.0 183 | 7.89 52 |
ResPWCR_ROB [140] | 122.0 | 11.2 160 | 17.7 160 | 1.95 106 | 8.98 142 | 11.7 180 | 4.11 78 | 15.2 66 | 17.3 73 | 10.0 51 | 23.1 188 | 31.2 190 | 10.5 91 | 30.5 169 | 34.6 167 | 14.2 116 | 20.3 165 | 28.8 166 | 5.27 34 | 23.8 70 | 36.4 71 | 7.54 54 | 25.4 190 | 31.9 194 | 7.76 48 |
TriFlow [93] | 123.0 | 13.1 183 | 20.8 183 | 2.06 122 | 9.53 179 | 12.2 193 | 5.29 144 | 16.5 89 | 18.5 92 | 10.1 52 | 17.2 160 | 22.8 160 | 7.74 27 | 27.9 90 | 31.6 90 | 15.1 136 | 19.4 139 | 27.4 139 | 6.07 68 | 24.5 86 | 37.2 84 | 10.9 154 | 23.8 155 | 29.8 156 | 8.15 71 |
3DFlow [133] | 123.2 | 9.65 107 | 14.9 105 | 1.89 93 | 7.82 59 | 10.0 59 | 4.94 121 | 16.9 97 | 19.9 118 | 13.7 111 | 16.5 144 | 22.4 150 | 15.8 186 | 29.3 134 | 33.2 131 | 12.5 92 | 18.4 94 | 25.9 95 | 8.56 182 | 27.2 142 | 41.4 144 | 10.1 144 | 23.4 137 | 29.3 138 | 8.87 173 |
PBOFVI [189] | 123.2 | 9.77 120 | 15.2 116 | 1.79 70 | 9.44 172 | 11.9 189 | 5.45 154 | 18.3 126 | 23.9 160 | 13.6 108 | 14.9 95 | 20.1 107 | 11.5 124 | 30.1 153 | 34.2 154 | 15.2 145 | 18.2 89 | 25.7 86 | 6.03 62 | 25.7 115 | 38.5 107 | 9.59 135 | 23.0 117 | 28.8 116 | 8.36 136 |
TVL1_RVC [175] | 123.6 | 10.6 146 | 16.6 148 | 1.87 92 | 9.87 187 | 11.6 173 | 5.57 158 | 21.5 156 | 19.8 117 | 15.9 134 | 15.2 104 | 19.6 94 | 11.6 130 | 27.1 68 | 30.7 68 | 12.1 55 | 19.2 133 | 27.2 135 | 7.16 145 | 28.2 157 | 42.8 155 | 13.2 169 | 20.9 51 | 26.2 51 | 8.37 140 |
CostFilter [40] | 123.6 | 10.8 151 | 17.0 153 | 1.80 75 | 7.90 67 | 10.3 78 | 2.66 5 | 24.6 175 | 27.7 181 | 21.9 175 | 18.7 172 | 25.4 177 | 13.7 168 | 27.5 79 | 31.1 76 | 12.6 94 | 18.2 89 | 25.8 93 | 5.87 46 | 28.9 172 | 44.2 173 | 9.34 128 | 24.4 176 | 30.7 179 | 8.20 85 |
TF+OM [98] | 123.7 | 11.8 166 | 18.7 168 | 3.19 164 | 8.23 104 | 10.8 120 | 4.54 100 | 15.1 63 | 19.7 113 | 10.4 57 | 16.3 141 | 21.9 146 | 7.87 32 | 28.9 115 | 32.8 116 | 19.1 194 | 18.6 104 | 26.3 107 | 6.68 121 | 26.5 136 | 40.7 139 | 11.5 158 | 23.8 155 | 29.9 157 | 8.23 92 |
CVENG22+RIC [199] | 124.4 | 9.21 87 | 14.4 95 | 1.77 63 | 8.33 108 | 10.6 103 | 4.33 91 | 20.5 148 | 19.1 102 | 12.5 91 | 17.9 168 | 24.0 173 | 12.2 148 | 30.2 155 | 34.2 154 | 15.3 151 | 20.0 156 | 28.4 159 | 6.07 68 | 25.7 115 | 39.3 120 | 8.47 109 | 24.3 172 | 30.4 171 | 8.18 78 |
FFV1MT [104] | 124.5 | 11.6 162 | 17.7 160 | 2.19 135 | 9.20 159 | 10.9 127 | 5.96 174 | 22.6 160 | 30.3 189 | 16.3 136 | 15.5 118 | 18.8 75 | 12.4 156 | 27.5 79 | 31.2 80 | 11.6 40 | 18.6 104 | 25.7 86 | 7.42 154 | 27.2 142 | 40.7 139 | 8.88 115 | 21.2 60 | 26.4 56 | 9.73 182 |
Ramp [62] | 125.1 | 9.22 88 | 14.3 86 | 1.73 41 | 8.19 100 | 10.7 115 | 4.24 87 | 21.9 158 | 28.8 186 | 21.1 174 | 14.2 67 | 19.2 83 | 11.6 130 | 30.6 176 | 34.8 177 | 14.8 127 | 20.4 169 | 29.0 172 | 7.40 152 | 28.0 155 | 42.9 156 | 7.57 57 | 23.0 117 | 28.9 119 | 8.28 111 |
AugFNG_ROB [139] | 125.3 | 12.1 170 | 19.0 171 | 1.94 104 | 8.44 115 | 10.6 103 | 5.42 150 | 17.3 109 | 23.9 160 | 10.8 66 | 26.2 194 | 34.7 193 | 11.5 124 | 31.6 190 | 35.9 190 | 15.3 151 | 18.7 110 | 26.4 111 | 6.38 102 | 24.9 97 | 38.2 100 | 7.91 87 | 19.8 37 | 24.8 37 | 8.36 136 |
IAOF2 [51] | 126.2 | 10.7 150 | 16.6 148 | 2.36 145 | 9.40 168 | 11.6 173 | 5.33 145 | 17.4 114 | 18.0 86 | 12.4 89 | 14.1 65 | 18.2 64 | 9.32 68 | 30.3 161 | 34.4 161 | 14.0 114 | 20.5 173 | 29.1 173 | 8.20 176 | 25.2 103 | 38.3 102 | 8.49 110 | 23.1 121 | 29.1 126 | 8.24 94 |
SVFilterOh [109] | 127.0 | 10.5 145 | 16.4 146 | 1.97 110 | 7.65 49 | 9.98 58 | 3.05 31 | 28.0 181 | 30.4 190 | 25.4 188 | 15.6 122 | 21.2 133 | 14.7 178 | 28.9 115 | 32.7 110 | 15.4 178 | 20.1 159 | 28.4 159 | 6.61 120 | 25.8 121 | 39.5 125 | 7.84 83 | 22.5 93 | 28.3 95 | 8.49 159 |
TV-L1-improved [17] | 127.5 | 9.53 102 | 14.9 105 | 1.99 113 | 9.46 173 | 11.7 180 | 5.17 132 | 22.6 160 | 14.8 41 | 20.1 167 | 13.4 49 | 17.8 56 | 8.05 36 | 30.2 155 | 34.3 157 | 11.9 44 | 19.6 145 | 27.7 145 | 8.09 174 | 29.9 180 | 45.8 180 | 9.73 139 | 23.4 137 | 29.3 138 | 8.42 152 |
Adaptive [20] | 127.6 | 11.0 153 | 17.3 156 | 1.89 93 | 9.41 170 | 11.6 173 | 5.19 134 | 14.8 58 | 17.1 70 | 11.1 72 | 15.7 128 | 21.1 130 | 12.1 144 | 31.1 187 | 35.3 187 | 12.0 50 | 18.8 114 | 26.6 115 | 8.00 172 | 27.8 151 | 42.3 149 | 8.01 93 | 22.6 98 | 28.4 99 | 8.63 166 |
EPMNet [131] | 127.7 | 16.1 196 | 24.7 196 | 2.22 137 | 9.04 145 | 11.7 180 | 4.55 101 | 17.3 109 | 19.2 107 | 13.0 100 | 26.7 196 | 36.3 197 | 12.1 144 | 28.0 93 | 31.8 94 | 12.3 85 | 18.4 94 | 26.0 97 | 6.25 89 | 26.7 138 | 40.8 141 | 8.04 96 | 22.6 98 | 28.4 99 | 8.35 133 |
Classic+NL [31] | 128.2 | 8.97 66 | 13.9 61 | 1.79 70 | 8.11 91 | 10.5 98 | 4.01 71 | 20.8 151 | 28.3 183 | 19.9 164 | 14.3 71 | 19.3 85 | 11.5 124 | 30.7 178 | 34.8 177 | 14.6 123 | 20.3 165 | 28.8 166 | 7.40 152 | 28.3 160 | 43.4 162 | 11.9 162 | 23.5 147 | 29.6 150 | 8.25 99 |
Dynamic MRF [7] | 128.4 | 10.1 131 | 15.9 136 | 1.81 80 | 8.42 114 | 10.8 120 | 4.73 112 | 19.5 138 | 19.1 102 | 12.2 84 | 15.6 122 | 19.3 85 | 12.8 162 | 27.2 71 | 30.8 70 | 15.2 145 | 18.6 104 | 26.3 107 | 7.28 148 | 28.8 171 | 44.1 172 | 12.4 166 | 24.6 180 | 30.7 179 | 9.73 182 |
TriangleFlow [30] | 128.6 | 9.59 105 | 14.8 102 | 2.06 122 | 9.07 150 | 11.4 160 | 5.47 155 | 19.2 134 | 20.2 123 | 13.9 114 | 13.6 53 | 18.2 64 | 8.31 41 | 30.0 150 | 34.1 152 | 9.31 35 | 17.8 73 | 25.2 76 | 7.56 158 | 30.8 186 | 47.2 186 | 13.9 172 | 25.5 193 | 31.9 194 | 11.3 189 |
Heeger++ [102] | 128.9 | 14.5 190 | 21.7 188 | 4.63 186 | 9.50 176 | 11.0 132 | 5.73 168 | 25.4 178 | 23.5 159 | 14.4 118 | 15.5 118 | 18.8 75 | 12.4 156 | 28.7 108 | 32.5 106 | 15.2 145 | 15.8 36 | 22.2 35 | 6.73 124 | 27.6 148 | 39.8 131 | 9.28 127 | 22.1 82 | 27.6 81 | 8.34 127 |
IAOF [50] | 129.4 | 11.1 155 | 16.6 148 | 5.32 191 | 10.6 195 | 12.3 195 | 5.87 171 | 23.3 167 | 24.2 162 | 19.4 160 | 15.4 114 | 19.7 101 | 12.0 142 | 28.9 115 | 32.8 116 | 12.1 55 | 18.8 114 | 26.6 115 | 7.26 147 | 25.6 114 | 39.1 117 | 7.35 41 | 22.1 82 | 27.8 85 | 8.26 103 |
ROF-ND [105] | 129.6 | 9.00 69 | 13.9 61 | 1.62 15 | 9.53 179 | 10.8 120 | 10.7 197 | 16.4 88 | 22.9 149 | 12.7 95 | 18.3 170 | 24.1 174 | 11.9 138 | 29.4 136 | 33.3 136 | 15.2 145 | 18.6 104 | 26.2 102 | 7.60 163 | 24.5 86 | 37.3 86 | 13.2 169 | 24.4 176 | 30.5 175 | 9.33 177 |
Steered-L1 [116] | 129.6 | 8.76 49 | 13.7 52 | 1.82 83 | 8.00 79 | 10.3 78 | 4.72 108 | 31.9 190 | 33.2 196 | 29.2 195 | 17.4 162 | 22.8 160 | 14.1 172 | 29.5 137 | 33.5 137 | 14.2 116 | 19.7 149 | 27.9 151 | 6.28 96 | 26.4 131 | 40.4 133 | 18.7 187 | 23.8 155 | 29.9 157 | 7.04 38 |
FOLKI [16] | 130.1 | 10.6 146 | 16.5 147 | 2.43 148 | 9.94 189 | 11.2 147 | 6.70 181 | 19.6 141 | 21.6 134 | 19.9 164 | 18.3 170 | 19.4 89 | 17.3 192 | 28.0 93 | 31.7 92 | 13.6 104 | 19.1 127 | 27.1 133 | 10.9 196 | 24.2 78 | 36.9 80 | 17.3 184 | 21.3 63 | 26.7 62 | 8.10 62 |
LocallyOriented [52] | 130.5 | 10.1 131 | 15.7 132 | 1.79 70 | 9.46 173 | 11.6 173 | 5.28 137 | 23.1 165 | 24.2 162 | 20.9 173 | 19.3 179 | 23.2 166 | 7.35 23 | 30.4 162 | 34.6 167 | 12.6 94 | 18.9 118 | 26.8 122 | 6.27 92 | 25.7 115 | 38.6 109 | 7.89 85 | 23.6 150 | 29.6 150 | 8.19 83 |
FF++_ROB [141] | 130.6 | 10.6 146 | 16.7 152 | 1.70 33 | 8.19 100 | 10.6 103 | 3.67 52 | 21.6 157 | 22.6 144 | 17.0 140 | 19.0 175 | 25.5 178 | 14.9 182 | 28.9 115 | 32.8 116 | 15.4 178 | 19.3 137 | 27.4 139 | 6.24 86 | 25.7 115 | 39.5 125 | 11.8 161 | 23.5 147 | 29.5 147 | 8.27 106 |
SILK [80] | 131.7 | 9.72 116 | 15.1 113 | 2.69 156 | 10.2 193 | 11.4 160 | 7.82 186 | 39.2 198 | 32.9 195 | 28.5 194 | 14.6 86 | 18.4 67 | 9.73 77 | 29.0 125 | 32.9 125 | 10.4 38 | 21.2 182 | 30.0 183 | 7.00 139 | 24.5 86 | 37.5 89 | 8.03 95 | 23.1 121 | 28.9 119 | 8.31 118 |
GraphCuts [14] | 134.5 | 11.7 164 | 17.8 162 | 2.02 116 | 8.15 95 | 10.5 98 | 4.65 104 | 25.3 177 | 15.2 45 | 19.4 160 | 14.9 95 | 19.6 94 | 11.9 138 | 29.8 144 | 33.8 143 | 17.8 192 | 19.6 145 | 27.8 148 | 6.50 114 | 28.6 167 | 43.9 168 | 11.1 155 | 24.0 166 | 30.2 167 | 8.15 71 |
S2D-Matching [83] | 134.7 | 9.57 104 | 14.9 105 | 1.76 56 | 8.37 112 | 10.8 120 | 4.36 92 | 20.1 147 | 24.9 170 | 18.2 152 | 15.7 128 | 21.3 138 | 15.7 185 | 28.8 110 | 32.7 110 | 14.5 120 | 21.5 187 | 30.4 187 | 11.0 197 | 25.7 115 | 39.3 120 | 11.5 158 | 23.1 121 | 29.1 126 | 8.75 172 |
ContinualFlow_ROB [148] | 135.2 | 12.2 172 | 19.3 172 | 2.23 139 | 8.71 128 | 11.3 155 | 4.73 112 | 17.5 115 | 19.9 118 | 13.3 102 | 22.6 187 | 30.7 189 | 8.65 47 | 32.4 193 | 36.8 194 | 15.3 151 | 18.5 100 | 26.2 102 | 6.12 76 | 28.6 167 | 43.9 168 | 8.50 111 | 22.7 104 | 28.4 99 | 8.39 143 |
BriefMatch [122] | 135.4 | 9.89 128 | 15.5 129 | 2.11 130 | 8.05 84 | 10.2 69 | 5.90 172 | 23.5 170 | 18.0 86 | 22.7 181 | 18.2 169 | 18.6 70 | 18.7 195 | 28.1 98 | 31.9 100 | 13.8 110 | 19.5 143 | 27.7 145 | 7.05 142 | 26.7 138 | 39.4 123 | 21.6 195 | 23.4 137 | 29.3 138 | 14.3 197 |
RFlow [88] | 135.5 | 9.71 114 | 15.2 116 | 1.91 100 | 9.06 148 | 11.2 147 | 5.42 150 | 22.8 164 | 22.6 144 | 17.9 149 | 15.8 132 | 21.2 133 | 12.7 161 | 29.2 129 | 33.2 131 | 11.9 44 | 19.2 133 | 27.2 135 | 7.63 164 | 28.9 172 | 44.4 174 | 7.73 71 | 23.4 137 | 29.5 147 | 8.46 156 |
ComponentFusion [94] | 135.5 | 12.3 173 | 19.5 173 | 1.66 22 | 8.65 125 | 11.4 160 | 2.88 22 | 19.7 142 | 21.0 132 | 15.1 130 | 15.4 114 | 20.9 126 | 14.4 173 | 29.7 138 | 33.7 138 | 14.5 120 | 18.6 104 | 26.3 107 | 7.67 165 | 31.9 188 | 49.0 190 | 20.5 191 | 24.2 169 | 30.4 171 | 8.18 78 |
Learning Flow [11] | 136.2 | 8.99 68 | 14.1 76 | 1.85 90 | 9.10 154 | 11.3 155 | 4.99 123 | 40.2 199 | 42.5 199 | 31.6 199 | 14.9 95 | 17.2 48 | 12.2 148 | 30.8 180 | 35.0 181 | 15.1 136 | 18.7 110 | 26.4 111 | 7.58 161 | 25.1 101 | 38.3 102 | 11.4 157 | 25.5 193 | 31.7 190 | 8.24 94 |
Adaptive flow [45] | 136.9 | 10.3 138 | 14.8 102 | 2.37 146 | 9.87 187 | 11.5 170 | 5.57 158 | 18.0 123 | 17.9 85 | 17.1 144 | 16.4 142 | 20.0 106 | 14.8 180 | 32.3 192 | 36.7 192 | 16.6 190 | 21.1 179 | 29.8 179 | 8.41 180 | 23.8 70 | 36.4 71 | 13.1 167 | 21.7 73 | 27.1 71 | 7.17 41 |
FC-2Layers-FF [74] | 137.4 | 9.71 114 | 14.9 105 | 2.11 130 | 7.51 39 | 9.66 48 | 4.67 105 | 20.5 148 | 25.1 172 | 20.2 168 | 15.6 122 | 21.1 130 | 11.9 138 | 30.5 169 | 34.6 167 | 15.3 151 | 20.8 176 | 29.4 175 | 7.31 149 | 29.7 177 | 45.6 179 | 9.76 140 | 23.6 150 | 29.7 154 | 8.22 91 |
SLK [47] | 138.0 | 9.63 106 | 15.0 110 | 1.90 97 | 9.14 157 | 10.3 78 | 5.63 164 | 34.7 192 | 19.7 113 | 22.4 179 | 18.9 174 | 24.2 175 | 20.4 197 | 29.8 144 | 33.8 143 | 12.2 74 | 18.1 84 | 25.5 85 | 6.93 133 | 31.9 188 | 48.8 188 | 9.12 121 | 22.8 108 | 28.5 107 | 14.2 196 |
Shiralkar [42] | 138.2 | 12.0 169 | 18.8 169 | 1.72 39 | 9.11 155 | 11.1 142 | 5.14 131 | 21.2 154 | 16.6 64 | 13.7 111 | 19.2 178 | 24.3 176 | 10.6 93 | 29.7 138 | 33.7 138 | 12.8 98 | 18.0 82 | 25.4 81 | 7.19 146 | 29.4 175 | 44.9 175 | 10.4 149 | 25.1 189 | 31.5 189 | 9.03 176 |
EPPM w/o HM [86] | 139.0 | 10.4 142 | 16.2 142 | 2.97 162 | 8.62 124 | 11.3 155 | 2.76 15 | 29.0 185 | 27.4 179 | 22.2 178 | 16.8 151 | 22.6 153 | 10.8 98 | 25.8 56 | 29.2 55 | 12.1 55 | 20.2 163 | 28.6 163 | 6.49 113 | 29.8 179 | 45.8 180 | 18.0 185 | 24.0 166 | 30.2 167 | 8.72 170 |
UnFlow [127] | 140.8 | 13.4 184 | 21.2 186 | 2.71 158 | 8.81 132 | 10.7 115 | 6.35 178 | 18.7 130 | 18.9 98 | 14.8 124 | 14.6 86 | 19.6 94 | 7.77 28 | 31.8 191 | 36.1 191 | 15.0 131 | 22.2 194 | 31.4 194 | 7.79 168 | 24.2 78 | 37.0 81 | 7.49 49 | 28.1 198 | 33.7 199 | 11.6 192 |
Correlation Flow [76] | 141.0 | 9.75 118 | 15.3 125 | 1.84 88 | 9.28 164 | 11.6 173 | 5.17 132 | 17.5 115 | 18.9 98 | 15.2 131 | 16.1 138 | 21.7 144 | 11.3 112 | 30.2 155 | 34.3 157 | 12.5 92 | 21.2 182 | 29.9 180 | 8.24 177 | 31.3 187 | 47.8 187 | 9.82 141 | 24.9 185 | 31.3 188 | 6.61 14 |
HBpMotionGpu [43] | 145.1 | 12.7 177 | 19.5 173 | 2.69 156 | 9.65 183 | 11.7 180 | 5.48 156 | 20.0 145 | 23.3 156 | 17.0 140 | 17.6 166 | 23.4 167 | 10.6 93 | 30.8 180 | 35.0 181 | 25.1 199 | 20.4 169 | 28.9 171 | 7.95 170 | 22.0 37 | 33.7 38 | 7.44 44 | 23.2 128 | 29.1 126 | 8.40 148 |
LiteFlowNet [138] | 145.5 | 12.6 176 | 19.7 177 | 2.06 122 | 8.19 100 | 10.7 115 | 3.96 67 | 20.8 151 | 26.3 176 | 15.4 132 | 26.2 194 | 35.0 195 | 12.2 148 | 30.9 186 | 35.0 181 | 14.9 130 | 20.4 169 | 28.8 166 | 6.74 127 | 28.3 160 | 43.1 158 | 7.70 70 | 22.8 108 | 28.6 110 | 8.87 173 |
2bit-BM-tele [96] | 146.7 | 11.1 155 | 17.2 155 | 2.34 143 | 9.40 168 | 11.7 180 | 5.36 147 | 28.5 183 | 37.1 197 | 31.0 197 | 15.7 128 | 20.8 124 | 9.18 64 | 28.6 106 | 32.5 106 | 15.0 131 | 22.0 193 | 31.1 193 | 9.53 192 | 39.1 199 | 59.9 199 | 26.9 199 | 20.8 48 | 26.1 48 | 8.11 66 |
PGAM+LK [55] | 147.6 | 11.9 168 | 18.0 163 | 7.26 198 | 9.48 175 | 10.8 120 | 7.62 184 | 31.5 188 | 39.9 198 | 31.4 198 | 19.0 175 | 23.6 169 | 16.3 191 | 29.1 127 | 33.0 126 | 12.6 94 | 18.4 94 | 26.0 97 | 6.80 129 | 25.5 111 | 39.0 114 | 14.8 175 | 22.6 98 | 28.4 99 | 8.41 151 |
Rannacher [23] | 148.1 | 11.1 155 | 17.5 159 | 1.89 93 | 9.59 181 | 11.8 186 | 5.28 137 | 24.3 174 | 18.0 86 | 20.8 171 | 15.9 134 | 21.2 133 | 11.6 130 | 30.4 162 | 34.5 163 | 12.3 85 | 19.7 149 | 27.9 151 | 7.98 171 | 29.6 176 | 45.3 176 | 9.57 134 | 24.7 182 | 31.0 183 | 8.19 83 |
OFRF [132] | 148.7 | 13.6 185 | 21.1 185 | 2.23 139 | 9.25 162 | 11.4 160 | 5.60 160 | 19.2 134 | 19.5 111 | 14.1 116 | 16.9 154 | 22.8 160 | 14.6 174 | 30.8 180 | 34.9 179 | 14.4 119 | 19.6 145 | 27.7 145 | 6.07 68 | 28.3 160 | 43.4 162 | 7.78 77 | 24.7 182 | 31.1 185 | 8.34 127 |
StereoFlow [44] | 148.8 | 14.9 191 | 22.2 190 | 3.28 165 | 10.0 191 | 12.7 197 | 4.99 123 | 16.8 95 | 18.9 98 | 12.1 83 | 15.2 104 | 20.4 115 | 10.4 90 | 33.4 196 | 37.9 196 | 20.8 196 | 23.8 196 | 33.5 196 | 8.41 180 | 25.3 108 | 38.8 112 | 7.81 80 | 23.6 150 | 29.6 150 | 8.67 168 |
IRR-PWC_RVC [180] | 149.4 | 15.4 193 | 24.1 195 | 2.44 152 | 9.31 165 | 12.2 193 | 4.74 114 | 19.0 133 | 22.9 149 | 13.4 105 | 29.5 198 | 39.3 199 | 8.93 59 | 30.4 162 | 34.5 163 | 15.3 151 | 21.1 179 | 29.9 180 | 6.75 128 | 28.3 160 | 43.2 160 | 7.73 71 | 22.8 108 | 28.5 107 | 8.50 161 |
SimpleFlow [49] | 151.2 | 9.15 82 | 14.3 86 | 1.73 41 | 9.05 147 | 11.4 160 | 5.35 146 | 36.0 196 | 32.6 194 | 29.4 196 | 14.9 95 | 20.2 109 | 11.2 111 | 30.6 176 | 34.7 174 | 15.1 136 | 22.6 195 | 32.0 195 | 9.11 189 | 34.7 193 | 53.2 194 | 13.8 171 | 23.9 162 | 29.9 157 | 8.33 124 |
SPSA-learn [13] | 153.7 | 15.1 192 | 22.9 192 | 1.93 101 | 9.08 152 | 11.0 132 | 5.42 150 | 33.0 191 | 24.8 168 | 23.8 184 | 17.6 166 | 22.4 150 | 12.1 144 | 29.3 134 | 33.2 131 | 15.1 136 | 17.8 73 | 25.1 74 | 6.73 124 | 37.7 195 | 57.7 196 | 25.5 198 | 25.4 190 | 31.8 191 | 8.33 124 |
SegOF [10] | 154.1 | 11.8 166 | 18.2 165 | 5.53 193 | 8.88 137 | 11.4 160 | 4.62 103 | 31.1 187 | 20.5 126 | 23.7 183 | 25.8 192 | 34.8 194 | 18.2 194 | 30.2 155 | 34.2 154 | 15.3 151 | 19.1 127 | 27.0 128 | 7.08 143 | 32.5 191 | 49.7 191 | 16.8 182 | 22.8 108 | 28.6 110 | 8.08 58 |
HCIC-L [97] | 160.2 | 14.3 189 | 20.9 184 | 2.86 160 | 11.2 196 | 13.3 198 | 7.62 184 | 23.9 171 | 31.6 192 | 25.6 189 | 21.0 183 | 28.2 184 | 14.8 180 | 25.6 53 | 29.0 53 | 12.2 74 | 24.0 197 | 33.9 197 | 10.5 195 | 30.5 185 | 46.8 185 | 18.5 186 | 23.3 135 | 29.2 133 | 7.37 42 |
IIOF-NLDP [129] | 161.5 | 10.2 136 | 15.8 134 | 2.10 129 | 9.06 148 | 11.2 147 | 5.60 160 | 20.6 150 | 24.8 168 | 16.9 139 | 16.7 149 | 22.6 153 | 14.6 174 | 30.4 162 | 34.5 163 | 20.8 196 | 20.4 169 | 28.8 166 | 8.81 186 | 37.7 195 | 57.6 195 | 16.8 182 | 24.9 185 | 31.2 186 | 8.26 103 |
WOLF_ROB [144] | 161.7 | 16.7 197 | 24.7 196 | 3.17 163 | 9.76 185 | 11.8 186 | 5.28 137 | 22.6 160 | 24.5 166 | 19.4 160 | 21.5 185 | 28.4 185 | 8.71 49 | 30.8 180 | 35.0 181 | 15.2 145 | 20.1 159 | 28.3 157 | 7.04 140 | 32.0 190 | 48.8 188 | 8.28 105 | 25.4 190 | 31.8 191 | 8.20 85 |
WRT [146] | 169.2 | 10.3 138 | 15.8 134 | 2.35 144 | 9.41 170 | 10.6 103 | 9.35 189 | 35.2 194 | 27.6 180 | 26.8 191 | 21.2 184 | 21.4 139 | 13.6 167 | 31.3 189 | 35.6 189 | 13.7 108 | 21.5 187 | 30.4 187 | 8.56 182 | 39.0 198 | 59.6 198 | 16.0 178 | 26.1 196 | 32.6 197 | 8.31 118 |
GroupFlow [9] | 170.8 | 15.6 194 | 23.3 193 | 3.31 166 | 9.20 159 | 11.4 160 | 6.26 176 | 30.9 186 | 22.4 140 | 18.9 157 | 25.4 191 | 30.0 188 | 21.2 198 | 32.4 193 | 36.7 192 | 15.3 151 | 20.9 177 | 29.4 175 | 7.71 166 | 29.9 180 | 45.5 177 | 9.50 132 | 23.3 135 | 29.1 126 | 10.6 186 |
Pyramid LK [2] | 178.5 | 14.0 187 | 21.7 188 | 4.34 180 | 13.7 197 | 11.5 170 | 9.94 194 | 37.6 197 | 26.8 178 | 24.6 187 | 25.9 193 | 29.3 186 | 18.7 195 | 35.0 197 | 39.7 197 | 13.3 103 | 19.9 155 | 24.8 66 | 9.57 193 | 33.3 192 | 51.1 192 | 10.7 151 | 26.0 195 | 32.4 196 | 13.0 194 |
Periodicity [79] | 195.7 | 18.1 198 | 27.0 198 | 6.22 195 | 17.4 198 | 12.4 196 | 10.2 195 | 35.2 194 | 30.7 191 | 27.8 192 | 24.1 189 | 31.6 191 | 17.5 193 | 37.6 199 | 42.6 199 | 18.8 193 | 27.7 198 | 39.3 198 | 11.2 198 | 38.6 197 | 58.9 197 | 22.9 196 | 27.3 197 | 33.2 198 | 14.3 197 |
AVG_FLOW_ROB [137] | 196.6 | 31.2 199 | 31.0 199 | 11.6 199 | 19.8 199 | 21.4 199 | 12.0 199 | 34.9 193 | 32.0 193 | 28.1 193 | 31.2 199 | 36.2 196 | 23.9 199 | 36.4 198 | 41.0 198 | 16.9 191 | 39.5 199 | 55.0 199 | 16.9 199 | 36.8 194 | 52.3 193 | 20.8 192 | 30.2 199 | 31.8 191 | 15.5 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |