Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
A99 normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
EAFI [186] | 1.9 | 1.33 3 | 1.47 1 | 1.38 4 | 1.42 1 | 1.89 1 | 1.31 1 | 1.31 1 | 1.62 1 | 1.41 1 | 2.38 1 | 2.29 1 | 2.64 1 | 2.13 4 | 2.19 7 | 2.13 1 | 1.84 1 | 2.12 2 | 1.86 1 | 1.50 1 | 2.14 3 | 1.49 1 | 1.60 3 | 2.21 3 | 1.30 1 |
SoftsplatAug [190] | 3.7 | 1.31 2 | 1.59 2 | 1.38 4 | 1.51 2 | 2.11 2 | 1.37 2 | 1.36 4 | 1.90 5 | 1.46 3 | 2.43 3 | 2.35 2 | 2.70 4 | 2.11 2 | 2.13 2 | 2.16 3 | 1.89 2 | 2.29 3 | 1.92 8 | 1.54 5 | 2.19 4 | 1.57 11 | 1.59 2 | 2.21 3 | 1.33 9 |
SoftSplat [169] | 4.9 | 1.44 10 | 1.70 7 | 1.50 13 | 1.71 5 | 2.58 6 | 1.44 4 | 1.34 2 | 1.78 3 | 1.44 2 | 2.41 2 | 2.36 3 | 2.67 2 | 2.15 6 | 2.18 5 | 2.15 2 | 1.89 2 | 2.32 4 | 1.90 4 | 1.55 6 | 2.22 7 | 1.56 8 | 1.62 4 | 2.35 7 | 1.32 3 |
DistillNet [184] | 7.5 | 1.39 6 | 1.68 5 | 1.45 9 | 1.59 3 | 2.24 3 | 1.41 3 | 1.40 5 | 1.87 4 | 1.50 5 | 2.45 4 | 2.43 4 | 2.72 5 | 2.15 6 | 2.20 8 | 2.18 5 | 2.00 15 | 3.12 26 | 1.95 12 | 1.56 10 | 2.34 11 | 1.52 4 | 1.73 12 | 2.43 11 | 1.32 3 |
IFRNet [193] | 9.6 | 1.45 11 | 1.65 3 | 1.51 15 | 1.65 4 | 2.32 4 | 1.51 7 | 1.34 2 | 1.68 2 | 1.46 3 | 2.53 6 | 2.46 5 | 2.91 19 | 2.29 21 | 2.34 23 | 2.35 21 | 1.96 11 | 2.32 4 | 1.99 18 | 1.55 6 | 2.27 8 | 1.56 8 | 1.67 9 | 2.29 5 | 1.37 16 |
IDIAL [192] | 11.6 | 1.39 6 | 1.82 8 | 1.41 6 | 2.00 11 | 3.11 30 | 1.48 6 | 1.69 11 | 2.26 9 | 1.66 22 | 2.56 8 | 2.61 12 | 2.76 6 | 2.24 15 | 2.33 21 | 2.28 14 | 1.93 5 | 2.58 9 | 1.91 5 | 1.59 16 | 2.57 27 | 1.54 5 | 1.72 11 | 2.47 12 | 1.32 3 |
SepConv++ [185] | 16.1 | 1.59 21 | 2.16 22 | 1.60 33 | 1.88 8 | 2.75 11 | 1.57 9 | 1.95 21 | 2.52 13 | 1.73 65 | 2.63 14 | 2.88 21 | 2.85 12 | 2.21 12 | 2.26 12 | 2.25 11 | 1.94 8 | 2.97 17 | 1.89 3 | 1.56 10 | 2.54 26 | 1.55 6 | 1.73 12 | 2.64 17 | 1.32 3 |
FGME [158] | 16.9 | 1.28 1 | 1.66 4 | 1.29 1 | 2.16 32 | 2.97 21 | 1.74 108 | 1.79 14 | 2.13 8 | 1.73 65 | 2.54 7 | 2.46 5 | 2.89 16 | 2.09 1 | 2.10 1 | 2.20 7 | 2.00 15 | 2.46 7 | 2.00 19 | 1.55 6 | 2.03 2 | 1.62 20 | 1.65 7 | 2.37 9 | 1.43 29 |
STSR [170] | 17.3 | 1.46 12 | 1.91 14 | 1.48 12 | 1.74 6 | 2.47 5 | 1.46 5 | 1.76 12 | 2.56 15 | 1.60 7 | 2.63 14 | 2.65 14 | 2.97 23 | 2.29 21 | 2.35 25 | 2.32 17 | 2.11 24 | 3.44 28 | 2.06 24 | 1.63 24 | 2.58 28 | 1.63 22 | 1.86 25 | 2.67 20 | 1.38 18 |
STAR-Net [164] | 18.5 | 1.51 15 | 1.82 8 | 1.56 18 | 2.34 64 | 3.45 55 | 1.73 99 | 1.93 20 | 2.37 11 | 1.72 61 | 2.56 8 | 2.59 10 | 2.69 3 | 2.12 3 | 2.15 3 | 2.18 5 | 1.94 8 | 2.82 14 | 1.91 5 | 1.51 2 | 2.37 14 | 1.49 1 | 1.65 7 | 2.36 8 | 1.30 1 |
EDSC [173] | 18.6 | 1.46 12 | 1.96 16 | 1.46 11 | 2.00 11 | 2.94 15 | 1.60 21 | 1.78 13 | 2.63 18 | 1.73 65 | 2.67 20 | 2.92 22 | 2.89 16 | 2.29 21 | 2.33 21 | 2.33 19 | 1.97 12 | 3.10 24 | 1.94 9 | 1.57 12 | 2.31 9 | 1.61 17 | 1.80 16 | 2.73 25 | 1.41 21 |
MV_VFI [183] | 19.6 | 1.58 20 | 2.12 19 | 1.59 22 | 2.04 15 | 2.93 13 | 1.72 94 | 1.68 7 | 2.62 17 | 1.60 7 | 2.63 14 | 2.85 18 | 2.83 8 | 2.25 16 | 2.29 16 | 2.30 15 | 2.04 21 | 3.07 23 | 2.00 19 | 1.61 18 | 2.51 23 | 1.60 15 | 1.84 20 | 2.67 20 | 1.34 10 |
TC-GAN [166] | 19.8 | 1.57 19 | 2.12 19 | 1.59 22 | 2.04 15 | 2.94 15 | 1.72 94 | 1.68 7 | 2.60 16 | 1.60 7 | 2.63 14 | 2.86 19 | 2.83 8 | 2.25 16 | 2.29 16 | 2.30 15 | 2.03 19 | 3.06 21 | 2.00 19 | 1.62 20 | 2.51 23 | 1.60 15 | 1.85 23 | 2.68 22 | 1.34 10 |
BMBC [171] | 19.9 | 1.59 21 | 1.90 12 | 1.60 33 | 1.94 9 | 2.71 10 | 1.73 99 | 2.52 38 | 3.02 26 | 1.90 140 | 2.51 5 | 2.46 5 | 2.80 7 | 2.16 9 | 2.20 8 | 2.17 4 | 1.93 5 | 2.51 8 | 1.95 12 | 1.52 3 | 2.21 6 | 1.51 3 | 1.64 6 | 2.33 6 | 1.32 3 |
DAIN [152] | 22.4 | 1.60 24 | 2.15 21 | 1.62 59 | 2.07 22 | 2.95 18 | 1.73 99 | 1.68 7 | 2.73 21 | 1.60 7 | 2.61 13 | 2.79 16 | 2.83 8 | 2.27 18 | 2.30 18 | 2.32 17 | 2.04 21 | 3.06 21 | 2.00 19 | 1.62 20 | 2.53 25 | 1.59 14 | 1.84 20 | 2.66 19 | 1.34 10 |
AdaCoF [165] | 22.5 | 1.67 39 | 2.20 24 | 1.68 114 | 2.03 14 | 2.86 12 | 1.62 43 | 2.32 26 | 2.72 20 | 1.68 32 | 2.83 40 | 2.97 25 | 2.84 11 | 2.30 24 | 2.31 19 | 2.38 25 | 1.93 5 | 2.66 10 | 1.91 5 | 1.55 6 | 2.31 9 | 1.55 6 | 1.69 10 | 2.41 10 | 1.34 10 |
FeFlow [167] | 25.5 | 1.43 8 | 1.88 11 | 1.45 9 | 2.29 56 | 3.27 39 | 1.75 112 | 1.84 16 | 2.52 13 | 1.87 135 | 2.60 12 | 2.63 13 | 2.85 12 | 2.15 6 | 2.18 5 | 2.20 7 | 1.98 14 | 2.75 12 | 1.96 15 | 1.61 18 | 2.37 14 | 1.61 17 | 1.84 20 | 2.83 28 | 1.41 21 |
MEMC-Net+ [160] | 26.8 | 1.60 24 | 1.97 18 | 1.63 69 | 2.13 28 | 3.04 27 | 1.73 99 | 2.00 22 | 2.78 23 | 1.78 101 | 2.64 18 | 2.59 10 | 2.85 12 | 2.22 14 | 2.26 12 | 2.26 13 | 2.00 15 | 2.88 16 | 1.95 12 | 1.62 20 | 2.75 31 | 1.58 12 | 1.81 17 | 2.56 15 | 1.35 15 |
DAI [168] | 27.1 | 1.63 27 | 1.68 5 | 1.81 167 | 2.37 68 | 3.33 44 | 2.00 150 | 1.41 6 | 1.93 6 | 1.55 6 | 2.57 11 | 2.48 8 | 3.19 50 | 2.17 10 | 2.23 11 | 2.20 7 | 1.94 8 | 2.43 6 | 1.94 9 | 1.53 4 | 2.19 4 | 1.56 8 | 1.79 15 | 2.64 17 | 1.32 3 |
DSepConv [162] | 32.8 | 1.59 21 | 2.27 29 | 1.56 18 | 2.17 34 | 3.11 30 | 1.76 117 | 2.00 22 | 2.68 19 | 1.76 93 | 2.89 76 | 3.19 51 | 2.92 21 | 2.28 20 | 2.31 19 | 2.35 21 | 2.03 19 | 3.19 27 | 1.96 15 | 1.58 14 | 2.48 20 | 1.62 20 | 1.89 30 | 2.89 31 | 1.41 21 |
ProBoost-Net [191] | 32.8 | 1.34 5 | 1.83 10 | 1.32 3 | 2.59 98 | 3.66 76 | 1.71 84 | 1.81 15 | 2.48 12 | 1.73 65 | 2.71 22 | 2.81 17 | 3.07 27 | 2.27 18 | 2.26 12 | 2.44 27 | 2.13 25 | 3.03 20 | 2.12 27 | 1.62 20 | 2.43 18 | 1.68 25 | 1.83 19 | 2.71 24 | 1.47 119 |
CtxSyn [134] | 33.7 | 1.43 8 | 1.95 15 | 1.41 6 | 1.83 7 | 2.65 7 | 1.57 9 | 1.85 17 | 2.31 10 | 1.79 105 | 2.64 18 | 2.67 15 | 2.97 23 | 2.37 29 | 2.37 27 | 2.57 32 | 2.24 29 | 3.01 18 | 2.24 28 | 1.73 57 | 2.35 12 | 1.74 131 | 1.88 29 | 2.82 27 | 1.49 150 |
ADC [161] | 36.2 | 1.70 50 | 2.20 24 | 1.69 126 | 2.13 28 | 2.93 13 | 1.84 128 | 2.54 44 | 3.08 27 | 1.73 65 | 2.92 92 | 3.02 29 | 2.94 22 | 2.32 25 | 2.34 23 | 2.37 24 | 1.97 12 | 2.81 13 | 1.94 9 | 1.58 14 | 2.46 19 | 1.58 12 | 1.87 26 | 2.83 28 | 1.37 16 |
PMMST [112] | 40.3 | 1.66 32 | 2.52 35 | 1.60 33 | 2.26 49 | 3.32 42 | 1.61 31 | 2.48 33 | 3.71 38 | 1.62 11 | 2.80 29 | 3.17 46 | 3.22 68 | 2.50 37 | 2.56 37 | 2.63 40 | 2.45 36 | 4.29 39 | 2.36 56 | 1.71 40 | 3.02 40 | 1.71 44 | 2.32 40 | 3.55 44 | 1.45 67 |
GDCN [172] | 41.9 | 1.52 16 | 2.18 23 | 1.50 13 | 2.68 113 | 3.64 74 | 1.73 99 | 1.87 18 | 2.85 24 | 1.85 131 | 3.13 148 | 2.94 24 | 2.91 19 | 2.33 26 | 2.42 30 | 2.35 21 | 2.14 26 | 3.77 33 | 2.05 23 | 1.63 24 | 2.61 30 | 1.65 23 | 1.85 23 | 2.75 26 | 1.38 18 |
MAF-net [163] | 42.2 | 1.33 3 | 1.96 16 | 1.31 2 | 2.39 72 | 3.45 55 | 1.66 68 | 1.87 18 | 3.23 28 | 1.84 129 | 2.93 101 | 3.02 29 | 3.07 27 | 2.35 27 | 2.39 29 | 2.42 26 | 2.18 28 | 3.53 29 | 2.11 26 | 1.67 27 | 2.60 29 | 1.72 69 | 1.81 17 | 2.60 16 | 1.48 142 |
MDP-Flow2 [68] | 42.2 | 1.63 27 | 2.49 34 | 1.59 22 | 2.18 36 | 3.35 47 | 1.59 19 | 2.48 33 | 3.83 40 | 1.63 12 | 2.80 29 | 3.11 38 | 3.21 61 | 2.49 34 | 2.55 35 | 2.63 40 | 2.72 74 | 6.03 97 | 2.38 68 | 1.70 34 | 3.01 39 | 1.70 33 | 2.35 48 | 3.57 47 | 1.45 67 |
FRUCnet [153] | 42.4 | 2.00 168 | 2.20 24 | 2.08 190 | 2.15 30 | 2.99 22 | 1.89 136 | 2.08 24 | 2.75 22 | 2.00 154 | 2.70 21 | 2.87 20 | 2.88 15 | 2.21 12 | 2.26 12 | 2.25 11 | 2.01 18 | 3.10 24 | 1.96 15 | 1.59 16 | 2.41 17 | 1.61 17 | 1.78 14 | 2.52 14 | 1.41 21 |
MPRN [151] | 43.0 | 1.62 26 | 2.34 32 | 1.60 33 | 2.30 58 | 3.45 55 | 1.72 94 | 2.78 103 | 4.44 61 | 1.79 105 | 2.83 40 | 3.11 38 | 3.04 26 | 2.42 32 | 2.46 31 | 2.55 31 | 2.29 31 | 3.69 32 | 2.25 29 | 1.68 28 | 2.78 32 | 1.69 30 | 1.95 32 | 2.90 32 | 1.41 21 |
GMFlow_RVC [196] | 43.6 | 1.68 41 | 2.98 114 | 1.60 33 | 2.04 15 | 2.99 22 | 1.59 19 | 2.48 33 | 3.50 30 | 1.63 12 | 2.81 33 | 3.14 40 | 3.23 82 | 2.55 52 | 2.66 53 | 2.66 59 | 2.69 70 | 5.19 55 | 2.34 48 | 1.70 34 | 3.24 62 | 1.71 44 | 2.27 37 | 3.44 37 | 1.41 21 |
CoT-AMFlow [174] | 43.9 | 1.66 32 | 2.53 37 | 1.60 33 | 2.20 40 | 3.38 49 | 1.60 21 | 2.55 46 | 4.31 53 | 1.63 12 | 2.80 29 | 3.14 40 | 3.20 52 | 2.51 38 | 2.57 38 | 2.65 50 | 2.72 74 | 5.71 80 | 2.40 82 | 1.70 34 | 2.98 37 | 1.70 33 | 2.38 53 | 3.65 56 | 1.44 35 |
NNF-Local [75] | 47.6 | 1.63 27 | 2.52 35 | 1.59 22 | 2.02 13 | 2.94 15 | 1.58 14 | 2.46 32 | 3.62 33 | 1.63 12 | 2.90 83 | 3.45 98 | 3.20 52 | 2.49 34 | 2.54 34 | 2.62 37 | 2.96 106 | 6.49 113 | 2.43 98 | 1.71 40 | 3.24 62 | 1.72 69 | 2.32 40 | 3.56 45 | 1.43 29 |
OFRI [154] | 50.0 | 1.66 32 | 1.90 12 | 1.72 136 | 2.20 40 | 3.00 24 | 1.89 136 | 1.68 7 | 1.99 7 | 1.73 65 | 2.56 8 | 2.54 9 | 2.89 16 | 2.19 11 | 2.20 8 | 2.33 19 | 2.09 23 | 2.84 15 | 2.09 25 | 2.00 171 | 2.35 12 | 2.00 187 | 1.87 26 | 2.50 13 | 1.78 197 |
CombBMOF [111] | 50.9 | 1.70 50 | 2.61 40 | 1.62 59 | 2.18 36 | 3.34 45 | 1.57 9 | 2.68 73 | 5.20 109 | 1.79 105 | 2.86 58 | 3.28 67 | 3.23 82 | 2.55 52 | 2.67 59 | 2.63 40 | 2.48 40 | 4.54 43 | 2.32 38 | 1.72 47 | 3.06 45 | 1.70 33 | 2.24 35 | 3.39 35 | 1.41 21 |
NN-field [71] | 52.2 | 1.66 32 | 2.68 51 | 1.60 33 | 2.05 20 | 3.00 24 | 1.56 8 | 2.74 97 | 3.66 34 | 1.66 22 | 2.96 110 | 3.72 135 | 3.24 93 | 2.49 34 | 2.53 33 | 2.61 34 | 2.77 86 | 5.87 90 | 2.39 76 | 1.69 30 | 3.08 48 | 1.71 44 | 2.31 39 | 3.56 45 | 1.44 35 |
CyclicGen [149] | 52.4 | 1.94 161 | 2.23 28 | 2.00 185 | 2.39 72 | 2.68 8 | 2.71 193 | 2.40 28 | 3.46 29 | 2.06 160 | 2.89 76 | 2.93 23 | 3.25 99 | 2.35 27 | 2.35 25 | 2.49 28 | 2.14 26 | 2.06 1 | 2.25 29 | 1.57 12 | 2.00 1 | 1.67 24 | 1.49 1 | 1.87 1 | 1.39 20 |
PH-Flow [99] | 54.4 | 1.70 50 | 2.66 48 | 1.63 69 | 2.10 24 | 3.14 32 | 1.60 21 | 2.52 38 | 4.27 51 | 1.67 30 | 2.79 25 | 3.07 33 | 3.14 32 | 2.51 38 | 2.59 42 | 2.62 37 | 3.09 130 | 6.87 140 | 2.47 120 | 1.72 47 | 3.37 80 | 1.72 69 | 2.38 53 | 3.68 61 | 1.44 35 |
RAFT-it+_RVC [198] | 58.6 | 1.65 30 | 2.91 92 | 1.56 18 | 2.04 15 | 3.04 27 | 1.57 9 | 2.53 42 | 4.02 45 | 1.63 12 | 2.81 33 | 3.17 46 | 3.23 82 | 2.52 40 | 2.60 43 | 2.67 65 | 3.82 184 | 6.14 100 | 3.78 198 | 1.70 34 | 3.21 58 | 1.72 69 | 2.43 65 | 3.72 64 | 1.44 35 |
FLAVR [188] | 58.8 | 1.82 134 | 2.20 24 | 1.76 151 | 2.26 49 | 2.70 9 | 2.04 156 | 2.38 27 | 2.99 25 | 2.10 162 | 4.21 189 | 4.68 176 | 3.26 113 | 2.13 4 | 2.17 4 | 2.21 10 | 1.90 4 | 2.70 11 | 1.88 2 | 1.73 57 | 2.48 20 | 1.72 69 | 1.62 4 | 2.20 2 | 1.34 10 |
PRAFlow_RVC [177] | 60.1 | 1.66 32 | 2.66 48 | 1.59 22 | 2.18 36 | 3.27 39 | 1.60 21 | 2.52 38 | 3.83 40 | 1.63 12 | 2.82 38 | 3.14 40 | 3.28 122 | 2.53 47 | 2.61 46 | 2.68 76 | 2.57 47 | 5.10 51 | 2.36 56 | 1.72 47 | 3.31 69 | 1.72 69 | 2.75 161 | 4.50 167 | 1.47 119 |
TOF-M [150] | 60.2 | 1.56 18 | 2.28 30 | 1.53 17 | 2.67 112 | 3.75 89 | 2.07 161 | 2.42 30 | 3.60 32 | 1.96 153 | 2.90 83 | 2.98 26 | 3.19 50 | 2.48 33 | 2.55 35 | 2.61 34 | 2.38 34 | 4.02 35 | 2.29 33 | 1.68 28 | 2.48 20 | 1.76 146 | 2.05 34 | 2.99 34 | 1.53 179 |
nLayers [57] | 61.6 | 1.71 56 | 2.70 55 | 1.63 69 | 2.19 39 | 3.30 41 | 1.61 31 | 2.53 42 | 3.90 43 | 1.66 22 | 2.83 40 | 3.27 63 | 3.18 44 | 2.64 100 | 2.84 106 | 2.72 103 | 2.93 104 | 6.57 121 | 2.48 127 | 1.71 40 | 2.99 38 | 1.72 69 | 2.32 40 | 3.59 50 | 1.44 35 |
MS_RAFT+_RVC [195] | 62.3 | 1.68 41 | 2.67 50 | 1.62 59 | 2.12 26 | 3.20 34 | 1.60 21 | 2.45 31 | 3.66 34 | 1.63 12 | 2.79 25 | 3.00 27 | 3.22 68 | 2.65 108 | 2.87 128 | 2.74 122 | 2.39 35 | 3.82 34 | 2.29 33 | 1.70 34 | 3.36 79 | 1.71 44 | 3.60 192 | 5.79 192 | 1.45 67 |
MS-PFT [159] | 62.6 | 1.55 17 | 2.30 31 | 1.52 16 | 2.28 54 | 3.47 58 | 1.84 128 | 2.69 80 | 3.57 31 | 2.61 178 | 2.85 50 | 3.19 51 | 3.03 25 | 2.38 31 | 2.46 31 | 2.51 29 | 2.35 33 | 3.61 31 | 2.31 36 | 1.80 118 | 3.26 65 | 1.89 178 | 1.99 33 | 2.93 33 | 1.50 165 |
IROF++ [58] | 64.1 | 1.70 50 | 2.63 43 | 1.61 51 | 2.33 62 | 3.53 64 | 1.60 21 | 2.73 92 | 4.75 82 | 1.73 65 | 2.79 25 | 3.07 33 | 3.21 61 | 2.55 52 | 2.70 66 | 2.69 89 | 2.60 50 | 5.43 69 | 2.34 48 | 1.76 86 | 3.48 93 | 1.72 69 | 2.47 75 | 3.95 100 | 1.46 92 |
FMOF [92] | 65.4 | 1.78 110 | 2.84 81 | 1.66 103 | 2.24 45 | 3.35 47 | 1.60 21 | 2.80 107 | 5.55 129 | 1.79 105 | 2.93 101 | 3.50 103 | 3.23 82 | 2.52 40 | 2.61 46 | 2.65 50 | 2.64 59 | 5.11 53 | 2.36 56 | 1.69 30 | 2.89 34 | 1.68 25 | 2.35 48 | 3.66 59 | 1.44 35 |
VCN_RVC [178] | 65.5 | 1.75 83 | 3.42 178 | 1.60 33 | 2.16 32 | 3.23 37 | 1.58 14 | 2.71 82 | 5.12 100 | 1.68 32 | 2.88 73 | 3.35 86 | 3.25 99 | 2.57 63 | 2.70 66 | 2.66 59 | 2.56 46 | 4.73 46 | 2.31 36 | 1.73 57 | 3.09 49 | 1.71 44 | 2.53 95 | 4.08 132 | 1.43 29 |
SuperSlomo [130] | 65.5 | 1.81 126 | 2.35 33 | 1.80 164 | 2.66 111 | 3.61 72 | 2.28 171 | 2.41 29 | 3.73 39 | 1.80 123 | 2.92 92 | 3.06 31 | 3.11 29 | 2.37 29 | 2.37 27 | 2.51 29 | 2.27 30 | 3.01 18 | 2.28 32 | 1.66 26 | 2.40 16 | 1.73 111 | 1.91 31 | 2.83 28 | 1.52 176 |
UnDAF [187] | 66.5 | 1.68 41 | 2.82 75 | 1.60 33 | 2.37 68 | 3.62 73 | 1.61 31 | 2.64 61 | 4.82 86 | 1.68 32 | 2.89 76 | 3.43 94 | 3.25 99 | 2.54 49 | 2.64 49 | 2.63 40 | 2.80 89 | 5.81 85 | 2.42 92 | 1.73 57 | 3.18 55 | 1.73 111 | 2.46 72 | 3.90 93 | 1.44 35 |
RAFT-it [194] | 67.4 | 1.69 48 | 3.11 144 | 1.59 22 | 1.99 10 | 3.00 24 | 1.57 9 | 2.49 37 | 3.83 40 | 1.63 12 | 2.79 25 | 3.07 33 | 3.24 93 | 2.52 40 | 2.58 40 | 2.63 40 | 3.63 179 | 5.81 85 | 3.41 197 | 1.69 30 | 3.04 43 | 1.71 44 | 3.85 193 | 6.14 194 | 1.44 35 |
Layers++ [37] | 67.7 | 1.72 61 | 2.64 44 | 1.65 93 | 2.04 15 | 2.95 18 | 1.61 31 | 2.60 52 | 5.19 106 | 1.68 32 | 2.85 50 | 3.29 71 | 3.24 93 | 2.64 100 | 2.86 124 | 2.71 98 | 3.16 138 | 7.50 166 | 2.41 85 | 1.69 30 | 2.86 33 | 1.68 25 | 2.32 40 | 3.60 53 | 1.45 67 |
NNF-EAC [101] | 68.5 | 1.84 141 | 2.68 51 | 1.72 136 | 2.36 67 | 3.60 71 | 1.61 31 | 2.60 52 | 4.20 48 | 1.68 32 | 2.92 92 | 3.31 76 | 3.30 138 | 2.55 52 | 2.67 59 | 2.63 40 | 2.46 38 | 4.34 41 | 2.34 48 | 1.73 57 | 3.41 86 | 1.73 111 | 2.38 53 | 3.65 56 | 1.45 67 |
RAFT-TF_RVC [179] | 70.5 | 1.68 41 | 3.09 140 | 1.56 18 | 2.12 26 | 3.20 34 | 1.60 21 | 2.59 51 | 4.35 56 | 1.68 32 | 2.82 38 | 3.18 49 | 3.22 68 | 2.52 40 | 2.61 46 | 2.63 40 | 3.60 178 | 5.74 81 | 3.22 196 | 1.71 40 | 3.34 75 | 1.71 44 | 2.89 172 | 4.88 178 | 1.43 29 |
WLIF-Flow [91] | 73.8 | 1.70 50 | 2.64 44 | 1.62 59 | 2.40 76 | 3.73 88 | 1.65 63 | 2.60 52 | 4.43 60 | 1.66 22 | 2.87 67 | 3.14 40 | 3.31 143 | 2.57 63 | 2.70 66 | 2.69 89 | 3.18 141 | 6.96 147 | 2.53 145 | 1.71 40 | 3.09 49 | 1.71 44 | 2.41 63 | 3.76 69 | 1.46 92 |
COFM [59] | 74.2 | 1.72 61 | 2.68 51 | 1.65 93 | 2.31 60 | 3.53 64 | 1.62 43 | 2.58 49 | 4.59 74 | 1.68 32 | 2.81 33 | 3.24 58 | 3.14 32 | 2.54 49 | 2.66 53 | 2.63 40 | 3.29 151 | 7.42 162 | 2.46 116 | 1.74 69 | 3.43 90 | 1.75 137 | 2.37 52 | 3.70 62 | 1.49 150 |
LME [70] | 74.3 | 1.67 39 | 2.55 38 | 1.60 33 | 2.34 64 | 3.54 67 | 1.80 124 | 2.68 73 | 5.37 119 | 1.68 32 | 2.85 50 | 3.35 86 | 3.23 82 | 2.69 154 | 2.92 154 | 2.88 191 | 2.72 74 | 5.65 79 | 2.38 68 | 1.70 34 | 2.93 35 | 1.70 33 | 2.39 60 | 3.67 60 | 1.44 35 |
HAST [107] | 74.4 | 1.69 48 | 2.61 40 | 1.63 69 | 2.17 34 | 3.24 38 | 1.61 31 | 2.83 111 | 5.94 149 | 1.73 65 | 2.77 23 | 3.00 27 | 3.13 30 | 2.60 75 | 2.76 81 | 2.67 65 | 3.25 148 | 7.71 178 | 2.43 98 | 1.74 69 | 3.39 81 | 1.71 44 | 2.54 97 | 4.02 117 | 1.45 67 |
2DHMM-SAS [90] | 76.2 | 1.76 88 | 2.76 63 | 1.63 69 | 2.95 137 | 4.41 141 | 1.67 73 | 2.68 73 | 5.20 109 | 1.68 32 | 2.86 58 | 3.30 74 | 3.16 36 | 2.60 75 | 2.78 89 | 2.73 112 | 2.61 52 | 5.10 51 | 2.33 41 | 1.74 69 | 3.42 88 | 1.72 69 | 2.54 97 | 3.94 98 | 1.44 35 |
SepConv-v1 [125] | 76.3 | 1.49 14 | 2.64 44 | 1.41 6 | 2.52 90 | 3.59 70 | 1.75 112 | 2.25 25 | 4.60 75 | 2.02 157 | 3.21 153 | 3.50 103 | 3.37 168 | 2.52 40 | 2.57 38 | 2.61 34 | 2.30 32 | 3.53 29 | 2.25 29 | 1.80 118 | 3.57 101 | 1.82 168 | 1.87 26 | 2.69 23 | 1.52 176 |
DPOF [18] | 77.8 | 1.80 115 | 3.31 169 | 1.68 114 | 2.11 25 | 3.15 33 | 1.61 31 | 3.18 155 | 4.34 55 | 1.92 146 | 2.91 89 | 3.63 125 | 3.20 52 | 2.55 52 | 2.66 53 | 2.65 50 | 2.66 63 | 5.32 62 | 2.33 41 | 1.74 69 | 3.17 52 | 1.72 69 | 2.47 75 | 3.83 80 | 1.46 92 |
DeepFlow2 [106] | 78.2 | 1.77 102 | 2.84 81 | 1.68 114 | 2.72 119 | 4.23 125 | 1.74 108 | 2.68 73 | 4.82 86 | 1.73 65 | 2.95 107 | 3.32 78 | 3.23 82 | 2.57 63 | 2.67 59 | 2.68 76 | 2.45 36 | 4.04 36 | 2.34 48 | 1.73 57 | 3.22 59 | 1.72 69 | 2.39 60 | 3.65 56 | 1.47 119 |
FlowFields [108] | 78.3 | 1.72 61 | 2.96 108 | 1.61 51 | 2.26 49 | 3.41 51 | 1.62 43 | 2.66 66 | 4.89 89 | 1.68 32 | 2.92 92 | 3.60 119 | 3.23 82 | 2.58 68 | 2.73 73 | 2.70 95 | 2.98 110 | 6.29 106 | 2.47 120 | 1.72 47 | 3.28 66 | 1.72 69 | 2.57 112 | 4.09 135 | 1.44 35 |
JOF [136] | 78.3 | 1.80 115 | 2.82 75 | 1.71 132 | 2.25 48 | 3.43 53 | 1.64 62 | 2.57 47 | 4.41 57 | 1.68 32 | 2.87 67 | 3.20 54 | 3.26 113 | 2.61 81 | 2.77 86 | 2.75 134 | 3.04 117 | 6.50 114 | 2.44 107 | 1.71 40 | 2.94 36 | 1.70 33 | 2.46 72 | 3.85 86 | 1.47 119 |
DeepFlow [85] | 78.5 | 1.76 88 | 2.90 89 | 1.68 114 | 2.78 122 | 4.31 129 | 1.87 134 | 2.71 82 | 4.80 85 | 1.73 65 | 2.99 117 | 3.29 71 | 3.25 99 | 2.58 68 | 2.70 66 | 2.69 89 | 2.50 42 | 4.10 37 | 2.39 76 | 1.71 40 | 3.05 44 | 1.70 33 | 2.38 53 | 3.59 50 | 1.46 92 |
TV-L1-MCT [64] | 79.1 | 1.77 102 | 2.83 78 | 1.65 93 | 2.60 101 | 4.03 109 | 1.63 51 | 2.71 82 | 5.86 145 | 1.70 57 | 2.83 40 | 3.22 57 | 3.20 52 | 2.66 122 | 2.90 143 | 2.71 98 | 2.65 62 | 5.24 57 | 2.38 68 | 1.74 69 | 3.22 59 | 1.72 69 | 2.34 46 | 3.57 47 | 1.46 92 |
ComponentFusion [94] | 79.2 | 1.68 41 | 2.73 58 | 1.60 33 | 2.24 45 | 3.48 60 | 1.58 14 | 2.67 69 | 4.50 67 | 1.73 65 | 2.83 40 | 3.28 67 | 3.16 36 | 2.64 100 | 2.81 95 | 2.67 65 | 2.74 79 | 6.02 95 | 2.38 68 | 1.84 140 | 4.82 160 | 1.74 131 | 2.65 139 | 4.51 168 | 1.45 67 |
ALD-Flow [66] | 79.8 | 1.82 134 | 2.93 100 | 1.70 128 | 2.56 94 | 3.95 103 | 1.71 84 | 2.69 80 | 4.46 62 | 1.73 65 | 2.85 50 | 3.24 58 | 3.22 68 | 2.58 68 | 2.70 66 | 2.74 122 | 2.55 45 | 4.16 38 | 2.42 92 | 1.72 47 | 3.02 40 | 1.71 44 | 2.57 112 | 4.04 122 | 1.46 92 |
Sparse-NonSparse [56] | 80.4 | 1.72 61 | 2.75 62 | 1.63 69 | 2.33 62 | 3.56 69 | 1.61 31 | 2.68 73 | 5.43 123 | 1.68 32 | 2.85 50 | 3.27 63 | 3.16 36 | 2.64 100 | 2.84 106 | 2.72 103 | 3.06 123 | 6.56 118 | 2.45 109 | 1.78 104 | 4.33 144 | 1.71 44 | 2.55 105 | 3.99 108 | 1.44 35 |
PMF [73] | 80.6 | 1.65 30 | 2.62 42 | 1.59 22 | 2.30 58 | 3.47 58 | 1.58 14 | 2.86 121 | 6.90 169 | 1.78 101 | 2.85 50 | 3.27 63 | 3.22 68 | 2.61 81 | 2.77 86 | 2.65 50 | 2.74 79 | 5.28 61 | 2.52 140 | 1.76 86 | 3.87 119 | 1.73 111 | 2.63 136 | 4.29 154 | 1.44 35 |
HCFN [157] | 80.8 | 1.70 50 | 3.03 125 | 1.59 22 | 2.39 72 | 3.68 79 | 1.62 43 | 2.64 61 | 4.53 71 | 1.66 22 | 2.86 58 | 3.29 71 | 3.21 61 | 2.55 52 | 2.66 53 | 2.66 59 | 3.34 157 | 5.97 94 | 3.14 195 | 1.79 108 | 3.82 112 | 1.73 111 | 2.54 97 | 4.08 132 | 1.44 35 |
Aniso. Huber-L1 [22] | 83.0 | 1.81 126 | 2.96 108 | 1.70 128 | 3.33 159 | 4.67 159 | 1.84 128 | 2.83 111 | 4.22 49 | 1.79 105 | 2.89 76 | 3.27 63 | 3.23 82 | 2.58 68 | 2.73 73 | 2.67 65 | 2.58 48 | 4.86 49 | 2.32 38 | 1.73 57 | 3.06 45 | 1.71 44 | 2.36 51 | 3.51 40 | 1.47 119 |
FlowFields+ [128] | 85.8 | 1.71 56 | 2.97 111 | 1.60 33 | 2.22 43 | 3.34 45 | 1.63 51 | 2.66 66 | 5.01 97 | 1.68 32 | 2.91 89 | 3.61 121 | 3.24 93 | 2.65 108 | 2.85 115 | 2.74 122 | 3.12 132 | 7.10 150 | 2.48 127 | 1.72 47 | 3.22 59 | 1.72 69 | 2.57 112 | 4.15 147 | 1.44 35 |
EAI-Flow [147] | 86.3 | 1.81 126 | 3.10 142 | 1.65 93 | 2.53 91 | 3.71 86 | 1.71 84 | 2.80 107 | 5.91 148 | 1.72 61 | 2.87 67 | 3.43 94 | 3.14 32 | 2.59 73 | 2.76 81 | 2.72 103 | 2.67 65 | 5.35 63 | 2.38 68 | 1.80 118 | 3.86 118 | 1.74 131 | 2.32 40 | 3.60 53 | 1.42 28 |
AggregFlow [95] | 86.6 | 1.84 141 | 3.22 158 | 1.70 128 | 2.56 94 | 3.91 99 | 1.74 108 | 2.52 38 | 3.95 44 | 1.63 12 | 2.92 92 | 3.51 106 | 3.25 99 | 2.56 62 | 2.66 53 | 2.68 76 | 2.61 52 | 4.82 47 | 2.42 92 | 1.79 108 | 4.27 136 | 1.73 111 | 2.42 64 | 3.89 92 | 1.45 67 |
AGIF+OF [84] | 86.8 | 1.73 70 | 2.81 72 | 1.61 51 | 2.39 72 | 3.69 82 | 1.63 51 | 2.71 82 | 5.15 104 | 1.73 65 | 2.84 49 | 3.17 46 | 3.18 44 | 2.69 154 | 2.93 159 | 2.77 150 | 3.18 141 | 6.82 137 | 2.43 98 | 1.75 78 | 3.20 57 | 1.68 25 | 2.60 128 | 4.12 139 | 1.43 29 |
SRR-TVOF-NL [89] | 87.3 | 1.82 134 | 3.04 128 | 1.68 114 | 2.69 114 | 4.07 115 | 1.77 119 | 2.60 52 | 4.16 46 | 1.73 65 | 2.83 40 | 3.18 49 | 3.16 36 | 2.66 122 | 2.89 141 | 2.75 134 | 2.70 71 | 5.75 82 | 2.33 41 | 1.73 57 | 3.12 51 | 1.71 44 | 2.58 119 | 4.07 130 | 1.46 92 |
OFLAF [78] | 87.5 | 1.66 32 | 2.60 39 | 1.60 33 | 2.09 23 | 3.08 29 | 1.58 14 | 2.58 49 | 4.23 50 | 1.63 12 | 2.78 24 | 3.09 36 | 3.16 36 | 2.66 122 | 2.88 134 | 2.74 122 | 3.41 169 | 7.61 172 | 2.54 148 | 2.02 173 | 6.45 180 | 1.75 137 | 2.67 149 | 4.21 151 | 1.45 67 |
S2F-IF [121] | 88.0 | 1.71 56 | 2.94 104 | 1.60 33 | 2.20 40 | 3.32 42 | 1.62 43 | 2.65 65 | 5.27 112 | 1.68 32 | 2.89 76 | 3.57 114 | 3.16 36 | 2.65 108 | 2.85 115 | 2.76 146 | 3.04 117 | 6.81 136 | 2.48 127 | 1.75 78 | 3.46 91 | 1.73 111 | 2.58 119 | 4.14 145 | 1.45 67 |
TC/T-Flow [77] | 88.1 | 1.80 115 | 2.89 87 | 1.64 89 | 2.58 96 | 4.01 107 | 1.65 63 | 2.60 52 | 4.17 47 | 1.70 57 | 2.86 58 | 3.21 56 | 3.20 52 | 2.65 108 | 2.84 106 | 2.79 167 | 2.61 52 | 4.93 50 | 2.37 60 | 1.97 167 | 6.08 177 | 1.75 137 | 2.52 88 | 3.86 88 | 1.44 35 |
EPPM w/o HM [86] | 88.5 | 1.66 32 | 2.77 65 | 1.59 22 | 2.42 78 | 3.79 90 | 1.61 31 | 3.37 161 | 10.6 195 | 1.89 138 | 2.90 83 | 3.57 114 | 3.22 68 | 2.55 52 | 2.65 52 | 2.65 50 | 2.77 86 | 5.61 75 | 2.41 85 | 1.80 118 | 4.56 153 | 1.75 137 | 2.54 97 | 3.99 108 | 1.44 35 |
ProbFlowFields [126] | 89.0 | 1.73 70 | 3.11 144 | 1.63 69 | 2.24 45 | 3.43 53 | 1.60 21 | 2.57 47 | 4.52 70 | 1.66 22 | 2.92 92 | 3.61 121 | 3.26 113 | 2.66 122 | 2.87 128 | 2.78 161 | 3.37 163 | 7.50 166 | 2.55 154 | 1.72 47 | 3.31 69 | 1.72 69 | 2.38 53 | 3.76 69 | 1.45 67 |
IROF-TV [53] | 89.2 | 1.79 113 | 2.91 92 | 1.68 114 | 2.44 83 | 3.69 82 | 1.63 51 | 2.81 110 | 5.61 132 | 1.76 93 | 2.85 50 | 3.30 74 | 3.21 61 | 2.65 108 | 2.85 115 | 2.80 174 | 2.80 89 | 6.02 95 | 2.35 53 | 1.76 86 | 3.34 75 | 1.72 69 | 2.38 53 | 3.59 50 | 1.47 119 |
LSM [39] | 89.8 | 1.74 80 | 2.81 72 | 1.63 69 | 2.35 66 | 3.55 68 | 1.61 31 | 2.72 88 | 5.64 135 | 1.68 32 | 2.86 58 | 3.26 62 | 3.18 44 | 2.66 122 | 2.88 134 | 2.74 122 | 3.15 137 | 6.90 142 | 2.45 109 | 1.79 108 | 4.52 151 | 1.71 44 | 2.59 123 | 4.04 122 | 1.44 35 |
Ramp [62] | 89.8 | 1.76 88 | 2.82 75 | 1.66 103 | 2.38 71 | 3.66 76 | 1.63 51 | 2.66 66 | 5.19 106 | 1.67 30 | 2.81 33 | 3.15 45 | 3.15 35 | 2.63 91 | 2.84 106 | 2.73 112 | 3.38 165 | 7.56 171 | 2.53 145 | 1.78 104 | 4.02 126 | 1.70 33 | 2.61 130 | 4.05 125 | 1.45 67 |
CPM-Flow [114] | 90.2 | 1.75 83 | 2.97 111 | 1.63 69 | 2.29 56 | 3.49 62 | 1.65 63 | 2.75 98 | 4.76 83 | 1.68 32 | 3.00 122 | 3.88 148 | 3.28 122 | 2.63 91 | 2.81 95 | 2.75 134 | 2.64 59 | 5.22 56 | 2.41 85 | 1.77 98 | 3.96 122 | 1.72 69 | 2.51 87 | 3.95 100 | 1.47 119 |
DF-Auto [113] | 90.5 | 1.80 115 | 2.81 72 | 1.71 132 | 2.91 132 | 4.40 137 | 2.04 156 | 2.64 61 | 4.85 88 | 1.68 32 | 2.96 110 | 3.51 106 | 3.21 61 | 2.55 52 | 2.64 49 | 2.68 76 | 2.61 52 | 5.24 57 | 2.39 76 | 1.77 98 | 3.67 105 | 1.73 111 | 2.50 84 | 3.88 91 | 1.47 119 |
MDP-Flow [26] | 90.5 | 1.68 41 | 2.77 65 | 1.60 33 | 2.27 52 | 3.53 64 | 1.62 43 | 2.54 44 | 3.70 37 | 1.73 65 | 3.04 133 | 3.73 137 | 3.28 122 | 2.61 81 | 2.78 89 | 2.78 161 | 3.80 183 | 8.39 186 | 2.63 171 | 1.74 69 | 3.25 64 | 1.73 111 | 2.46 72 | 3.84 83 | 1.45 67 |
Brox et al. [5] | 90.7 | 1.77 102 | 3.05 131 | 1.63 69 | 2.69 114 | 4.02 108 | 1.73 99 | 2.86 121 | 5.19 106 | 1.81 128 | 2.92 92 | 3.19 51 | 3.24 93 | 2.58 68 | 2.68 62 | 2.68 76 | 2.96 106 | 6.85 139 | 2.41 85 | 1.78 104 | 3.73 108 | 1.72 69 | 2.32 40 | 3.48 39 | 1.45 67 |
C-RAFT_RVC [181] | 90.8 | 1.83 138 | 3.19 154 | 1.67 109 | 2.42 78 | 3.67 78 | 1.73 99 | 2.79 104 | 5.82 144 | 1.79 105 | 2.86 58 | 3.33 80 | 3.28 122 | 2.52 40 | 2.60 43 | 2.63 40 | 2.75 81 | 5.82 87 | 2.38 68 | 1.72 47 | 3.19 56 | 1.70 33 | 2.73 159 | 4.44 163 | 1.46 92 |
SegFlow [156] | 90.9 | 1.74 80 | 3.00 119 | 1.63 69 | 2.31 60 | 3.50 63 | 1.63 51 | 2.72 88 | 4.99 95 | 1.68 32 | 2.89 76 | 3.51 106 | 3.27 118 | 2.63 91 | 2.83 102 | 2.74 122 | 2.91 103 | 6.53 115 | 2.50 136 | 1.76 86 | 3.74 109 | 1.72 69 | 2.50 84 | 4.01 116 | 1.46 92 |
SVFilterOh [109] | 91.0 | 1.72 61 | 2.71 56 | 1.66 103 | 2.22 43 | 3.41 51 | 1.62 43 | 2.73 92 | 4.73 80 | 1.71 59 | 2.86 58 | 3.14 40 | 3.34 159 | 2.69 154 | 2.89 141 | 2.83 178 | 2.81 93 | 6.16 101 | 2.43 98 | 1.73 57 | 3.02 40 | 1.75 137 | 2.49 78 | 3.94 98 | 1.50 165 |
Classic+NL [31] | 91.3 | 1.80 115 | 2.85 85 | 1.68 114 | 2.43 81 | 3.68 79 | 1.63 51 | 2.64 61 | 5.45 126 | 1.68 32 | 2.86 58 | 3.33 80 | 3.22 68 | 2.64 100 | 2.84 106 | 2.72 103 | 3.05 121 | 6.39 111 | 2.46 116 | 1.78 104 | 4.29 139 | 1.71 44 | 2.57 112 | 4.03 118 | 1.45 67 |
MCPFlow_RVC [197] | 91.5 | 1.76 88 | 2.93 100 | 1.62 59 | 2.15 30 | 3.21 36 | 1.69 80 | 2.61 60 | 4.64 76 | 1.66 22 | 2.85 50 | 3.25 61 | 3.28 122 | 2.57 63 | 2.70 66 | 2.64 49 | 3.34 157 | 7.50 166 | 2.43 98 | 1.74 69 | 3.48 93 | 1.72 69 | 5.14 198 | 7.45 198 | 1.56 185 |
CostFilter [40] | 92.4 | 1.68 41 | 2.78 68 | 1.59 22 | 2.27 52 | 3.38 49 | 1.60 21 | 3.01 142 | 9.85 192 | 1.79 105 | 2.87 67 | 3.33 80 | 3.17 43 | 2.65 108 | 2.83 102 | 2.70 95 | 2.80 89 | 5.62 77 | 2.59 164 | 1.79 108 | 4.12 128 | 1.73 111 | 2.71 154 | 4.46 164 | 1.44 35 |
FC-2Layers-FF [74] | 92.9 | 1.73 70 | 2.80 71 | 1.63 69 | 2.05 20 | 2.95 18 | 1.62 43 | 2.60 52 | 5.12 100 | 1.68 32 | 2.83 40 | 3.32 78 | 3.20 52 | 2.67 139 | 2.90 143 | 2.75 134 | 3.51 175 | 7.68 177 | 2.56 158 | 1.81 127 | 4.87 162 | 1.72 69 | 2.53 95 | 4.00 114 | 1.46 92 |
3DFlow [133] | 92.9 | 1.72 61 | 2.77 65 | 1.61 51 | 2.43 81 | 3.79 90 | 1.63 51 | 2.95 138 | 4.29 52 | 1.73 65 | 2.83 40 | 3.28 67 | 3.25 99 | 2.57 63 | 2.68 62 | 2.72 103 | 3.73 182 | 8.21 185 | 2.65 174 | 1.82 131 | 3.96 122 | 1.73 111 | 2.49 78 | 3.74 67 | 1.46 92 |
CLG-TV [48] | 93.6 | 1.80 115 | 2.95 106 | 1.71 132 | 3.19 151 | 4.55 151 | 1.83 127 | 2.89 128 | 5.00 96 | 1.91 144 | 2.96 110 | 3.35 86 | 3.28 122 | 2.60 75 | 2.75 78 | 2.67 65 | 2.54 43 | 4.63 45 | 2.36 56 | 1.73 57 | 3.17 52 | 1.72 69 | 2.43 65 | 3.61 55 | 1.47 119 |
PGM-C [118] | 93.8 | 1.75 83 | 3.04 128 | 1.63 69 | 2.28 54 | 3.48 60 | 1.63 51 | 2.87 124 | 4.92 93 | 1.68 32 | 2.93 101 | 3.64 127 | 3.25 99 | 2.64 100 | 2.83 102 | 2.75 134 | 2.75 81 | 5.77 83 | 2.41 85 | 1.77 98 | 3.88 120 | 1.71 44 | 2.63 136 | 4.31 155 | 1.46 92 |
SIOF [67] | 93.9 | 1.88 150 | 2.97 111 | 1.72 136 | 3.34 160 | 4.70 164 | 2.11 163 | 2.73 92 | 5.27 112 | 1.79 105 | 2.92 92 | 3.54 111 | 3.22 68 | 2.52 40 | 2.58 40 | 2.66 59 | 2.59 49 | 4.84 48 | 2.37 60 | 1.73 57 | 3.28 66 | 1.72 69 | 2.52 88 | 3.79 72 | 1.48 142 |
RNLOD-Flow [119] | 96.4 | 1.72 61 | 2.73 58 | 1.64 89 | 2.72 119 | 4.21 123 | 1.65 63 | 2.79 104 | 6.73 165 | 1.79 105 | 2.80 29 | 3.06 31 | 3.20 52 | 2.68 143 | 2.93 159 | 2.74 122 | 3.06 123 | 6.61 125 | 2.47 120 | 1.75 78 | 3.39 81 | 1.72 69 | 2.59 123 | 3.98 104 | 1.45 67 |
Second-order prior [8] | 96.4 | 1.81 126 | 2.92 96 | 1.72 136 | 3.18 150 | 4.60 156 | 1.75 112 | 3.27 159 | 6.35 159 | 1.94 149 | 2.92 92 | 3.43 94 | 3.20 52 | 2.60 75 | 2.77 86 | 2.66 59 | 2.63 56 | 5.64 78 | 2.38 68 | 1.74 69 | 3.17 52 | 1.71 44 | 2.49 78 | 3.80 76 | 1.46 92 |
ProFlow_ROB [142] | 96.8 | 1.73 70 | 2.93 100 | 1.63 69 | 2.49 88 | 3.91 99 | 1.68 76 | 2.73 92 | 4.41 57 | 1.68 32 | 2.90 83 | 3.49 102 | 3.25 99 | 2.69 154 | 2.94 162 | 2.76 146 | 2.47 39 | 4.31 40 | 2.33 41 | 1.83 138 | 4.52 151 | 1.72 69 | 2.66 144 | 4.28 153 | 1.47 119 |
CBF [12] | 96.8 | 1.76 88 | 2.79 69 | 1.68 114 | 2.92 133 | 4.29 126 | 1.84 128 | 2.83 111 | 4.32 54 | 1.79 105 | 2.98 114 | 3.28 67 | 3.42 174 | 2.54 49 | 2.60 43 | 2.74 122 | 2.66 63 | 5.39 66 | 2.40 82 | 1.79 108 | 3.33 71 | 1.78 157 | 2.38 53 | 3.53 42 | 1.56 185 |
OAR-Flow [123] | 98.3 | 1.80 115 | 2.95 106 | 1.67 109 | 2.64 105 | 4.11 120 | 1.73 99 | 2.67 69 | 4.50 67 | 1.71 59 | 2.83 40 | 3.20 54 | 3.18 44 | 2.65 108 | 2.85 115 | 2.77 150 | 2.97 108 | 6.36 108 | 2.48 127 | 1.90 152 | 4.47 149 | 1.73 111 | 2.48 77 | 3.80 76 | 1.46 92 |
S2D-Matching [83] | 99.0 | 1.77 102 | 2.91 92 | 1.66 103 | 2.82 124 | 4.29 126 | 1.67 73 | 2.68 73 | 5.38 120 | 1.72 61 | 2.86 58 | 3.24 58 | 3.23 82 | 2.66 122 | 2.87 128 | 2.68 76 | 3.36 162 | 7.27 158 | 2.54 148 | 1.76 86 | 3.33 71 | 1.70 33 | 2.56 109 | 4.03 118 | 1.46 92 |
p-harmonic [29] | 99.4 | 1.73 70 | 2.84 81 | 1.63 69 | 3.30 158 | 4.71 165 | 1.85 133 | 2.84 120 | 5.62 133 | 1.89 138 | 3.09 144 | 3.60 119 | 3.25 99 | 2.62 87 | 2.78 89 | 2.67 65 | 2.73 78 | 5.57 74 | 2.42 92 | 1.76 86 | 3.48 93 | 1.72 69 | 2.43 65 | 3.73 66 | 1.46 92 |
FESL [72] | 99.7 | 1.76 88 | 2.76 63 | 1.64 89 | 2.37 68 | 3.64 74 | 1.61 31 | 2.75 98 | 6.26 155 | 1.76 93 | 2.90 83 | 3.31 76 | 3.23 82 | 2.66 122 | 2.87 128 | 2.75 134 | 3.38 165 | 7.61 172 | 2.55 154 | 1.76 86 | 4.31 143 | 1.69 30 | 2.56 109 | 4.00 114 | 1.44 35 |
PWC-Net_RVC [143] | 99.8 | 1.76 88 | 3.41 177 | 1.60 33 | 2.45 86 | 3.83 93 | 1.61 31 | 2.71 82 | 5.38 120 | 1.73 65 | 2.87 67 | 3.40 90 | 3.22 68 | 2.75 174 | 3.06 175 | 2.80 174 | 3.04 117 | 6.24 105 | 2.48 127 | 1.73 57 | 3.40 83 | 1.71 44 | 2.66 144 | 4.34 159 | 1.44 35 |
ComplOF-FED-GPU [35] | 100.9 | 1.76 88 | 3.10 142 | 1.65 93 | 2.51 89 | 3.88 96 | 1.68 76 | 3.41 162 | 4.48 66 | 2.00 154 | 2.88 73 | 3.34 84 | 3.22 68 | 2.63 91 | 2.81 95 | 2.73 112 | 2.75 81 | 5.56 72 | 2.41 85 | 1.81 127 | 3.69 106 | 1.72 69 | 2.65 139 | 4.09 135 | 1.47 119 |
LDOF [28] | 101.1 | 1.93 157 | 3.01 121 | 1.83 172 | 2.79 123 | 3.86 94 | 2.27 170 | 3.01 142 | 5.20 109 | 1.92 146 | 2.99 117 | 3.56 112 | 3.28 122 | 2.55 52 | 2.64 49 | 2.68 76 | 2.60 50 | 5.11 53 | 2.35 53 | 1.76 86 | 3.55 98 | 1.72 69 | 2.44 69 | 3.74 67 | 1.47 119 |
Classic+CPF [82] | 101.1 | 1.73 70 | 2.74 60 | 1.61 51 | 2.44 83 | 3.69 82 | 1.63 51 | 2.73 92 | 5.55 129 | 1.73 65 | 2.81 33 | 3.10 37 | 3.13 30 | 2.79 176 | 3.10 178 | 2.77 150 | 3.37 163 | 7.37 160 | 2.49 135 | 1.86 144 | 4.62 155 | 1.69 30 | 2.72 156 | 4.42 161 | 1.44 35 |
TCOF [69] | 101.5 | 1.76 88 | 2.74 60 | 1.63 69 | 3.50 176 | 5.03 186 | 1.89 136 | 2.60 52 | 4.72 79 | 1.66 22 | 2.89 76 | 3.33 80 | 3.26 113 | 2.60 75 | 2.76 81 | 2.65 50 | 3.06 123 | 6.77 134 | 2.42 92 | 1.82 131 | 4.62 155 | 1.71 44 | 2.64 138 | 4.06 127 | 1.49 150 |
Efficient-NL [60] | 105.0 | 1.72 61 | 2.65 47 | 1.62 59 | 2.64 105 | 4.05 110 | 1.63 51 | 3.58 168 | 5.43 123 | 2.12 164 | 2.87 67 | 3.40 90 | 3.18 44 | 2.61 81 | 2.80 93 | 2.73 112 | 3.33 154 | 7.51 169 | 2.45 109 | 1.82 131 | 4.50 150 | 1.72 69 | 2.72 156 | 4.13 141 | 1.45 67 |
LFNet_ROB [145] | 105.8 | 1.75 83 | 3.26 164 | 1.62 59 | 2.63 104 | 4.06 114 | 1.71 84 | 2.89 128 | 6.38 161 | 1.76 93 | 2.98 114 | 3.87 147 | 3.16 36 | 2.66 122 | 2.91 151 | 2.69 89 | 3.30 152 | 8.02 184 | 2.45 109 | 1.72 47 | 3.33 71 | 1.72 69 | 2.50 84 | 3.99 108 | 1.45 67 |
CompactFlow_ROB [155] | 106.5 | 1.79 113 | 3.40 175 | 1.65 93 | 2.59 98 | 3.90 98 | 1.94 144 | 3.02 145 | 6.72 164 | 1.73 65 | 3.27 163 | 5.34 185 | 3.30 138 | 2.55 52 | 2.68 62 | 2.67 65 | 2.80 89 | 6.20 103 | 2.34 48 | 1.75 78 | 4.01 125 | 1.71 44 | 2.62 133 | 4.13 141 | 1.44 35 |
MLDP_OF [87] | 107.4 | 1.71 56 | 2.71 56 | 1.62 59 | 2.73 121 | 4.21 123 | 1.66 68 | 2.60 52 | 4.46 62 | 1.68 32 | 3.03 131 | 3.34 84 | 3.39 170 | 2.65 108 | 2.84 106 | 2.75 134 | 3.27 149 | 6.95 145 | 2.68 181 | 1.80 118 | 3.64 104 | 1.77 153 | 2.54 97 | 3.98 104 | 1.50 165 |
TF+OM [98] | 107.5 | 1.78 110 | 2.92 96 | 1.69 126 | 2.42 78 | 3.70 85 | 1.90 140 | 2.86 121 | 5.64 135 | 1.74 92 | 3.03 131 | 3.64 127 | 3.28 122 | 2.64 100 | 2.80 93 | 2.72 103 | 2.76 85 | 5.80 84 | 2.43 98 | 1.82 131 | 3.85 115 | 1.73 111 | 2.49 78 | 3.76 69 | 1.49 150 |
TC-Flow [46] | 110.7 | 1.73 70 | 2.83 78 | 1.65 93 | 2.62 103 | 4.09 118 | 1.71 84 | 2.83 111 | 4.57 73 | 1.73 65 | 3.06 139 | 3.79 141 | 3.34 159 | 2.68 143 | 2.92 154 | 2.79 167 | 2.94 105 | 6.05 98 | 2.52 140 | 1.75 78 | 3.33 71 | 1.72 69 | 2.66 144 | 4.42 161 | 1.46 92 |
FlowNet2 [120] | 111.0 | 2.11 179 | 3.47 180 | 1.80 164 | 2.64 105 | 3.87 95 | 1.90 140 | 2.94 134 | 4.90 90 | 1.80 123 | 2.94 106 | 3.77 140 | 3.28 122 | 2.66 122 | 2.85 115 | 2.71 98 | 2.63 56 | 5.39 66 | 2.37 60 | 1.81 127 | 4.12 128 | 1.72 69 | 2.45 71 | 3.84 83 | 1.46 92 |
Local-TV-L1 [65] | 111.6 | 2.00 168 | 2.99 117 | 1.89 177 | 3.48 170 | 4.69 163 | 2.35 175 | 2.72 88 | 4.41 57 | 1.73 65 | 3.04 133 | 3.43 94 | 3.45 175 | 2.60 75 | 2.76 81 | 2.73 112 | 2.86 98 | 5.94 93 | 2.61 169 | 1.75 78 | 3.40 83 | 1.72 69 | 2.34 46 | 3.54 43 | 1.49 150 |
DMF_ROB [135] | 111.7 | 1.81 126 | 3.05 131 | 1.67 109 | 2.85 128 | 4.38 134 | 1.71 84 | 4.05 176 | 6.93 170 | 2.04 159 | 3.02 127 | 3.61 121 | 3.22 68 | 2.63 91 | 2.82 98 | 2.76 146 | 2.71 73 | 5.53 71 | 2.38 68 | 1.79 108 | 3.51 96 | 1.75 137 | 2.52 88 | 3.98 104 | 1.45 67 |
TriFlow [93] | 113.8 | 1.84 141 | 3.26 164 | 1.70 128 | 3.06 142 | 4.38 134 | 2.11 163 | 2.77 102 | 5.38 120 | 1.73 65 | 2.98 114 | 3.66 133 | 3.20 52 | 2.73 171 | 3.01 172 | 2.77 150 | 2.85 96 | 5.56 72 | 2.39 76 | 1.79 108 | 3.56 99 | 1.72 69 | 2.55 105 | 3.86 88 | 1.45 67 |
ResPWCR_ROB [140] | 113.9 | 1.76 88 | 3.06 134 | 1.64 89 | 2.64 105 | 4.05 110 | 1.71 84 | 2.87 124 | 5.36 118 | 1.73 65 | 3.06 139 | 4.18 162 | 3.30 138 | 2.66 122 | 2.94 162 | 2.77 150 | 3.04 117 | 5.26 60 | 2.85 188 | 1.75 78 | 3.35 78 | 1.71 44 | 2.85 170 | 4.76 174 | 1.44 35 |
Sparse Occlusion [54] | 114.3 | 1.77 102 | 2.92 96 | 1.67 109 | 2.94 135 | 4.54 150 | 1.68 76 | 2.68 73 | 4.50 67 | 1.79 105 | 2.90 83 | 3.45 98 | 3.25 99 | 2.68 143 | 2.90 143 | 2.75 134 | 3.43 172 | 7.64 174 | 2.52 140 | 1.80 118 | 4.18 132 | 1.68 25 | 2.59 123 | 4.06 127 | 1.47 119 |
PBOFVI [189] | 115.6 | 1.80 115 | 3.23 160 | 1.62 59 | 3.12 146 | 4.64 158 | 1.78 121 | 3.04 148 | 5.02 98 | 1.76 93 | 2.99 117 | 3.88 148 | 3.31 143 | 2.63 91 | 2.82 98 | 2.77 150 | 2.67 65 | 5.36 64 | 2.39 76 | 1.90 152 | 5.96 175 | 1.73 111 | 2.54 97 | 4.04 122 | 1.45 67 |
Modified CLG [34] | 116.5 | 1.76 88 | 2.79 69 | 1.72 136 | 3.57 180 | 4.75 169 | 2.43 181 | 3.15 153 | 7.06 172 | 1.95 151 | 3.02 127 | 3.67 134 | 3.25 99 | 2.61 81 | 2.75 78 | 2.68 76 | 3.05 121 | 6.71 131 | 2.48 127 | 1.76 86 | 3.42 88 | 1.72 69 | 2.52 88 | 3.79 72 | 1.47 119 |
EpicFlow [100] | 117.2 | 1.74 80 | 2.98 114 | 1.63 69 | 2.58 96 | 4.07 115 | 1.67 73 | 2.83 111 | 5.04 99 | 1.72 61 | 2.99 117 | 3.82 142 | 3.32 151 | 2.65 108 | 2.85 115 | 2.75 134 | 3.01 113 | 6.56 118 | 2.47 120 | 1.87 147 | 5.16 166 | 1.74 131 | 2.83 169 | 4.62 172 | 1.46 92 |
Classic++ [32] | 118.5 | 1.82 134 | 2.90 89 | 1.72 136 | 2.98 139 | 4.50 147 | 1.74 108 | 2.92 131 | 4.95 94 | 1.79 105 | 3.07 141 | 3.64 127 | 3.27 118 | 2.66 122 | 2.85 115 | 2.68 76 | 3.07 126 | 6.57 121 | 2.56 158 | 1.79 108 | 4.26 134 | 1.72 69 | 2.56 109 | 3.93 96 | 1.48 142 |
FlowNetS+ft+v [110] | 118.8 | 1.89 152 | 3.07 136 | 1.81 167 | 3.48 170 | 4.84 175 | 2.28 171 | 2.80 107 | 4.73 80 | 1.80 123 | 2.93 101 | 3.40 90 | 3.29 134 | 2.67 139 | 2.88 134 | 2.83 178 | 2.67 65 | 5.39 66 | 2.40 82 | 1.85 143 | 4.09 127 | 1.72 69 | 2.49 78 | 3.79 72 | 1.46 92 |
RFlow [88] | 118.9 | 1.77 102 | 2.94 104 | 1.68 114 | 3.27 157 | 4.67 159 | 1.73 99 | 2.88 127 | 7.06 172 | 1.79 105 | 3.04 133 | 3.86 145 | 3.25 99 | 2.63 91 | 2.82 98 | 2.68 76 | 2.84 95 | 6.79 135 | 2.37 60 | 1.80 118 | 4.20 133 | 1.73 111 | 2.66 144 | 4.06 127 | 1.49 150 |
HBM-GC [103] | 119.0 | 1.81 126 | 2.84 81 | 1.74 149 | 2.65 110 | 4.20 122 | 1.70 81 | 2.48 33 | 3.66 34 | 1.68 32 | 3.02 127 | 3.63 125 | 3.32 151 | 2.72 169 | 2.97 166 | 2.86 184 | 4.21 196 | 9.74 195 | 2.66 177 | 1.76 86 | 3.30 68 | 1.74 131 | 2.43 65 | 3.84 83 | 1.50 165 |
ContinualFlow_ROB [148] | 119.1 | 1.83 138 | 3.34 171 | 1.65 93 | 2.64 105 | 3.99 106 | 1.90 140 | 2.91 130 | 5.43 123 | 1.79 105 | 2.96 110 | 3.85 143 | 3.22 68 | 2.80 178 | 3.22 186 | 2.79 167 | 2.64 59 | 5.43 69 | 2.33 41 | 1.77 98 | 4.26 134 | 1.70 33 | 3.25 183 | 5.44 186 | 1.46 92 |
F-TV-L1 [15] | 120.0 | 1.95 163 | 3.21 156 | 1.85 175 | 3.34 160 | 4.63 157 | 1.97 147 | 3.02 145 | 5.30 115 | 2.03 158 | 3.01 125 | 3.56 112 | 3.29 134 | 2.64 100 | 2.84 106 | 2.66 59 | 2.68 69 | 5.36 64 | 2.42 92 | 1.82 131 | 4.37 146 | 1.75 137 | 2.35 48 | 3.51 40 | 1.48 142 |
EPMNet [131] | 121.0 | 2.07 177 | 3.86 188 | 1.75 150 | 2.59 98 | 3.68 79 | 1.87 134 | 2.94 134 | 4.90 90 | 1.80 123 | 3.27 163 | 5.62 186 | 3.31 143 | 2.66 122 | 2.85 115 | 2.71 98 | 2.77 86 | 5.84 89 | 2.37 60 | 1.81 127 | 4.12 128 | 1.72 69 | 2.67 149 | 4.36 160 | 1.44 35 |
FF++_ROB [141] | 122.5 | 1.71 56 | 2.92 96 | 1.60 33 | 2.44 83 | 3.79 90 | 1.65 63 | 2.83 111 | 5.94 149 | 1.77 100 | 3.02 127 | 4.13 160 | 3.32 151 | 2.72 169 | 3.00 170 | 2.76 146 | 3.34 157 | 7.07 149 | 2.75 184 | 1.79 108 | 4.27 136 | 1.73 111 | 2.60 128 | 4.14 145 | 1.47 119 |
AugFNG_ROB [139] | 122.9 | 1.81 126 | 3.07 136 | 1.71 132 | 2.85 128 | 4.16 121 | 2.00 150 | 3.09 150 | 7.33 177 | 1.79 105 | 3.17 151 | 4.83 179 | 3.27 118 | 2.74 173 | 3.02 174 | 2.77 150 | 2.54 43 | 4.50 42 | 2.33 41 | 1.86 144 | 4.30 141 | 1.73 111 | 2.58 119 | 3.98 104 | 1.44 35 |
OFH [38] | 123.9 | 1.81 126 | 2.98 114 | 1.68 114 | 2.92 133 | 4.30 128 | 1.72 94 | 2.96 140 | 5.62 133 | 1.78 101 | 2.88 73 | 3.36 89 | 3.18 44 | 2.66 122 | 2.88 134 | 2.73 112 | 3.01 113 | 6.44 112 | 2.52 140 | 2.05 175 | 5.99 176 | 1.76 146 | 2.85 170 | 4.49 165 | 1.47 119 |
LiteFlowNet [138] | 124.1 | 1.76 88 | 3.26 164 | 1.61 51 | 2.41 77 | 3.72 87 | 1.66 68 | 2.72 88 | 6.18 153 | 1.68 32 | 3.62 180 | 7.15 195 | 3.63 182 | 2.70 163 | 3.00 170 | 2.83 178 | 3.23 146 | 7.17 153 | 2.44 107 | 1.96 165 | 5.81 174 | 1.76 146 | 2.52 88 | 3.91 94 | 1.43 29 |
IAOF [50] | 124.7 | 2.05 175 | 3.24 163 | 1.83 172 | 4.43 196 | 5.50 198 | 2.51 187 | 3.29 160 | 6.36 160 | 1.85 131 | 3.24 158 | 3.48 101 | 3.35 165 | 2.63 91 | 2.82 98 | 2.65 50 | 2.85 96 | 6.36 108 | 2.37 60 | 1.75 78 | 3.74 109 | 1.71 44 | 2.52 88 | 3.85 86 | 1.47 119 |
LSM_FLOW_RVC [182] | 126.1 | 1.93 157 | 4.77 197 | 1.66 103 | 2.84 127 | 4.40 137 | 1.80 124 | 2.92 131 | 7.16 176 | 1.73 65 | 3.05 136 | 4.58 173 | 3.21 61 | 2.65 108 | 2.88 134 | 2.73 112 | 3.07 126 | 6.67 126 | 2.43 98 | 1.76 86 | 3.62 103 | 1.72 69 | 2.77 163 | 4.63 173 | 1.48 142 |
Fusion [6] | 126.4 | 1.78 110 | 3.23 160 | 1.63 69 | 2.54 92 | 3.93 102 | 1.68 76 | 2.75 98 | 4.79 84 | 1.79 105 | 3.15 150 | 4.03 154 | 3.23 82 | 2.67 139 | 2.93 159 | 2.69 89 | 3.57 177 | 7.84 183 | 2.55 154 | 1.87 147 | 4.30 141 | 1.73 111 | 2.71 154 | 4.32 156 | 1.48 142 |
BlockOverlap [61] | 126.5 | 1.98 166 | 3.04 128 | 1.91 180 | 3.37 163 | 4.71 165 | 2.37 177 | 2.79 104 | 4.47 64 | 1.90 140 | 3.17 151 | 3.51 106 | 3.73 186 | 2.63 91 | 2.74 77 | 2.77 150 | 2.88 100 | 6.59 123 | 2.57 161 | 1.77 98 | 3.46 91 | 1.79 160 | 2.29 38 | 3.45 38 | 1.53 179 |
ROF-ND [105] | 126.5 | 1.77 102 | 2.69 54 | 1.63 69 | 2.88 130 | 4.46 145 | 1.70 81 | 2.67 69 | 5.18 105 | 1.73 65 | 3.35 171 | 4.80 178 | 3.33 156 | 2.62 87 | 2.79 92 | 2.75 134 | 3.44 173 | 7.78 181 | 2.52 140 | 1.91 155 | 3.85 115 | 1.80 163 | 3.00 177 | 4.80 176 | 1.47 119 |
Black & Anandan [4] | 127.0 | 2.01 173 | 3.03 125 | 1.86 176 | 3.86 188 | 5.04 189 | 2.25 169 | 4.13 178 | 6.30 157 | 2.49 175 | 3.26 161 | 3.86 145 | 3.24 93 | 2.66 122 | 2.84 106 | 2.72 103 | 2.72 74 | 6.16 101 | 2.35 53 | 1.82 131 | 3.56 99 | 1.72 69 | 2.49 78 | 3.71 63 | 1.47 119 |
ACK-Prior [27] | 127.6 | 1.73 70 | 2.93 100 | 1.61 51 | 2.46 87 | 3.89 97 | 1.66 68 | 4.37 182 | 4.91 92 | 2.75 181 | 3.05 136 | 3.64 127 | 3.34 159 | 2.68 143 | 2.86 124 | 2.79 167 | 3.21 145 | 6.38 110 | 2.57 161 | 1.87 147 | 3.71 107 | 1.81 166 | 2.66 144 | 4.03 118 | 1.54 181 |
AdaConv-v1 [124] | 128.4 | 2.22 187 | 4.18 192 | 2.00 185 | 3.13 147 | 3.92 101 | 2.63 191 | 4.33 181 | 5.53 128 | 3.46 193 | 4.12 188 | 4.92 180 | 4.19 193 | 2.53 47 | 2.66 53 | 2.59 33 | 2.49 41 | 4.58 44 | 2.30 35 | 1.93 159 | 4.96 164 | 1.93 184 | 2.25 36 | 3.42 36 | 1.55 183 |
Ad-TV-NDC [36] | 128.6 | 2.31 191 | 3.15 151 | 2.22 192 | 3.85 187 | 4.86 177 | 2.52 188 | 2.87 124 | 5.55 129 | 1.85 131 | 3.25 159 | 3.57 114 | 3.41 172 | 2.68 143 | 2.86 124 | 2.74 122 | 2.70 71 | 5.61 75 | 2.47 120 | 1.77 98 | 3.34 75 | 1.72 69 | 2.39 60 | 3.58 49 | 1.50 165 |
IIOF-NLDP [129] | 130.0 | 1.72 61 | 2.85 85 | 1.59 22 | 2.90 131 | 4.44 143 | 1.71 84 | 3.11 151 | 4.65 77 | 1.79 105 | 3.01 125 | 3.58 117 | 3.34 159 | 2.65 108 | 2.87 128 | 2.69 89 | 4.06 188 | 8.81 188 | 2.83 186 | 3.36 196 | 14.1 197 | 2.64 196 | 2.91 174 | 4.77 175 | 1.44 35 |
CRTflow [81] | 130.6 | 1.89 152 | 3.09 140 | 1.76 151 | 3.26 156 | 4.84 175 | 1.84 128 | 3.01 142 | 5.81 142 | 2.00 154 | 2.99 117 | 3.45 98 | 3.31 143 | 2.68 143 | 2.91 151 | 2.79 167 | 2.63 56 | 5.25 59 | 2.41 85 | 1.80 118 | 4.29 139 | 1.74 131 | 2.57 112 | 4.05 125 | 1.49 150 |
Occlusion-TV-L1 [63] | 131.5 | 1.80 115 | 2.91 92 | 1.73 147 | 3.41 165 | 5.03 186 | 1.82 126 | 2.83 111 | 5.78 140 | 1.85 131 | 3.23 155 | 4.57 171 | 3.32 151 | 2.59 73 | 2.73 73 | 2.67 65 | 3.14 135 | 7.74 179 | 2.56 158 | 1.91 155 | 3.41 86 | 1.84 169 | 2.59 123 | 4.07 130 | 1.47 119 |
Adaptive [20] | 131.8 | 1.87 148 | 3.11 144 | 1.76 151 | 3.51 177 | 5.03 186 | 1.90 140 | 2.94 134 | 5.14 102 | 1.88 137 | 3.00 122 | 3.65 132 | 3.31 143 | 2.67 139 | 2.88 134 | 2.67 65 | 3.07 126 | 7.11 152 | 2.47 120 | 1.83 138 | 4.28 138 | 1.71 44 | 2.62 133 | 3.99 108 | 1.49 150 |
Steered-L1 [116] | 132.5 | 1.73 70 | 3.05 131 | 1.63 69 | 2.60 101 | 4.05 110 | 1.76 117 | 4.00 174 | 5.96 151 | 2.27 171 | 3.36 172 | 4.13 160 | 3.60 181 | 2.68 143 | 2.90 143 | 2.67 65 | 3.02 116 | 6.70 130 | 2.54 148 | 1.86 144 | 4.13 131 | 1.79 160 | 2.57 112 | 4.08 132 | 1.49 150 |
Correlation Flow [76] | 133.3 | 1.73 70 | 2.89 87 | 1.60 33 | 3.23 154 | 4.83 174 | 1.70 81 | 2.67 69 | 4.47 64 | 1.73 65 | 2.95 107 | 3.50 103 | 3.29 134 | 2.73 171 | 2.92 154 | 2.83 178 | 4.11 191 | 9.07 192 | 2.60 167 | 2.06 176 | 6.41 179 | 1.87 176 | 2.79 166 | 4.33 158 | 1.49 150 |
Filter Flow [19] | 133.7 | 1.93 157 | 3.01 121 | 1.81 167 | 3.49 174 | 4.76 171 | 2.37 177 | 2.93 133 | 5.33 117 | 1.90 140 | 3.25 159 | 3.62 124 | 3.41 172 | 2.62 87 | 2.73 73 | 2.78 161 | 2.83 94 | 6.08 99 | 2.43 98 | 1.84 140 | 3.90 121 | 1.76 146 | 2.57 112 | 3.83 80 | 1.56 185 |
Complementary OF [21] | 135.1 | 1.75 83 | 3.20 155 | 1.61 51 | 2.55 93 | 4.05 110 | 1.66 68 | 5.55 187 | 7.07 174 | 3.02 186 | 2.95 107 | 3.64 127 | 3.25 99 | 2.69 154 | 2.94 162 | 2.75 134 | 3.01 113 | 6.76 133 | 2.48 127 | 2.04 174 | 5.69 172 | 1.75 137 | 3.37 187 | 5.64 191 | 1.47 119 |
GraphCuts [14] | 135.8 | 2.05 175 | 3.55 182 | 1.76 151 | 2.71 117 | 3.98 105 | 2.05 159 | 5.94 190 | 4.70 78 | 2.75 181 | 3.23 155 | 3.92 151 | 3.33 156 | 2.66 122 | 2.85 115 | 2.62 37 | 2.89 101 | 6.59 123 | 2.33 41 | 1.91 155 | 4.44 148 | 1.81 166 | 2.65 139 | 4.10 137 | 1.51 174 |
OFRF [132] | 136.3 | 2.13 181 | 3.23 160 | 1.95 181 | 3.36 162 | 4.72 167 | 2.24 168 | 2.83 111 | 5.75 139 | 1.76 93 | 2.93 101 | 3.42 93 | 3.22 68 | 2.71 167 | 2.99 169 | 2.74 122 | 3.20 143 | 6.53 115 | 2.53 145 | 1.91 155 | 4.34 145 | 1.73 111 | 2.69 152 | 4.32 156 | 1.45 67 |
IRR-PWC_RVC [180] | 136.6 | 2.00 168 | 3.87 189 | 1.72 136 | 2.71 117 | 4.07 115 | 2.00 150 | 3.11 151 | 7.94 183 | 1.76 93 | 3.32 169 | 6.53 194 | 3.21 61 | 2.75 174 | 3.07 176 | 2.86 184 | 2.87 99 | 6.21 104 | 2.39 76 | 1.82 131 | 4.93 163 | 1.71 44 | 3.26 184 | 5.39 183 | 1.44 35 |
HBpMotionGpu [43] | 136.7 | 2.13 181 | 3.48 181 | 1.96 182 | 3.80 186 | 5.07 192 | 2.47 182 | 2.71 82 | 5.28 114 | 1.73 65 | 3.26 161 | 4.60 174 | 3.31 143 | 2.65 108 | 2.86 124 | 2.77 150 | 3.14 135 | 7.55 170 | 2.51 138 | 1.72 47 | 3.06 45 | 1.71 44 | 2.69 152 | 4.18 148 | 1.52 176 |
BriefMatch [122] | 137.0 | 1.84 141 | 2.99 117 | 1.72 136 | 2.70 116 | 4.09 118 | 2.07 161 | 3.54 166 | 4.55 72 | 2.45 173 | 3.65 183 | 4.05 155 | 4.07 191 | 2.62 87 | 2.75 78 | 2.81 176 | 3.35 160 | 6.69 127 | 2.83 186 | 1.79 108 | 3.75 111 | 1.77 153 | 2.58 119 | 3.97 103 | 1.49 150 |
IAOF2 [51] | 137.2 | 2.00 168 | 3.27 167 | 1.78 160 | 3.48 170 | 5.01 184 | 2.11 163 | 2.75 98 | 5.81 142 | 1.78 101 | 3.10 147 | 3.74 139 | 3.30 138 | 2.88 188 | 3.33 192 | 2.72 103 | 3.39 167 | 7.64 174 | 2.45 109 | 1.76 86 | 3.52 97 | 1.70 33 | 2.61 130 | 4.03 118 | 1.47 119 |
2D-CLG [1] | 138.8 | 1.88 150 | 3.00 119 | 1.79 162 | 3.62 183 | 4.68 161 | 2.49 186 | 3.79 171 | 5.67 137 | 2.33 172 | 3.28 165 | 3.72 135 | 3.28 122 | 2.65 108 | 2.83 102 | 2.71 98 | 3.17 139 | 6.91 143 | 2.54 148 | 1.95 163 | 4.57 154 | 1.76 146 | 2.54 97 | 3.81 79 | 1.46 92 |
Nguyen [33] | 139.5 | 2.00 168 | 3.12 147 | 1.89 177 | 3.97 190 | 4.92 179 | 2.47 182 | 3.21 158 | 7.73 180 | 1.94 149 | 3.34 170 | 3.89 150 | 3.32 151 | 2.65 108 | 2.84 106 | 2.67 65 | 2.90 102 | 6.33 107 | 2.37 60 | 1.99 169 | 5.32 169 | 1.80 163 | 2.55 105 | 3.96 102 | 1.46 92 |
CNN-flow-warp+ref [115] | 142.1 | 1.76 88 | 2.83 78 | 1.72 136 | 3.09 145 | 4.53 149 | 1.98 148 | 3.46 164 | 6.73 165 | 2.08 161 | 3.81 186 | 4.73 177 | 3.88 190 | 2.68 143 | 2.90 143 | 2.79 167 | 2.99 111 | 6.56 118 | 2.51 138 | 2.07 177 | 5.42 170 | 1.80 163 | 2.55 105 | 3.93 96 | 1.46 92 |
TriangleFlow [30] | 142.5 | 1.89 152 | 3.12 147 | 1.72 136 | 3.06 142 | 4.50 147 | 1.75 112 | 2.95 138 | 5.78 140 | 1.90 140 | 3.07 141 | 4.02 153 | 3.33 156 | 2.66 122 | 2.88 134 | 2.65 50 | 3.17 139 | 6.69 127 | 2.45 109 | 2.08 178 | 6.91 186 | 1.89 178 | 3.37 187 | 5.58 188 | 1.47 119 |
Horn & Schunck [3] | 142.9 | 1.95 163 | 3.08 138 | 1.78 160 | 3.94 189 | 4.99 181 | 2.37 177 | 4.00 174 | 6.86 168 | 2.68 179 | 3.53 176 | 4.32 166 | 3.28 122 | 2.71 167 | 2.90 143 | 2.73 112 | 2.75 81 | 5.82 87 | 2.37 60 | 1.93 159 | 3.96 122 | 1.77 153 | 2.59 123 | 3.83 80 | 1.49 150 |
Bartels [41] | 144.0 | 1.94 161 | 3.18 153 | 1.84 174 | 2.83 125 | 4.45 144 | 2.00 150 | 2.83 111 | 5.31 116 | 1.91 144 | 3.28 165 | 4.09 159 | 3.69 185 | 2.68 143 | 2.72 72 | 2.95 197 | 3.56 176 | 7.19 155 | 3.04 192 | 1.80 118 | 3.40 83 | 1.89 178 | 2.52 88 | 3.80 76 | 1.60 191 |
NL-TV-NCC [25] | 144.2 | 1.84 141 | 3.01 121 | 1.65 93 | 2.94 135 | 4.56 154 | 1.72 94 | 2.94 134 | 5.90 146 | 1.93 148 | 3.13 148 | 4.05 155 | 3.37 168 | 2.70 163 | 2.76 81 | 2.93 195 | 3.31 153 | 7.44 164 | 2.54 148 | 1.97 167 | 4.81 159 | 1.86 175 | 2.65 139 | 3.92 95 | 1.56 185 |
TI-DOFE [24] | 144.5 | 2.24 189 | 3.17 152 | 2.11 191 | 4.18 195 | 5.05 190 | 2.74 194 | 3.54 166 | 6.74 167 | 2.24 169 | 3.73 184 | 4.23 164 | 3.39 170 | 2.66 122 | 2.87 128 | 2.73 112 | 2.67 65 | 5.90 92 | 2.32 38 | 1.87 147 | 3.85 115 | 1.78 157 | 2.62 133 | 3.72 64 | 1.50 165 |
LocallyOriented [52] | 144.7 | 1.89 152 | 3.06 134 | 1.77 158 | 3.48 170 | 4.81 173 | 2.00 150 | 3.15 153 | 5.90 146 | 1.84 129 | 3.23 155 | 4.57 171 | 3.31 143 | 2.68 143 | 2.90 143 | 2.68 76 | 3.11 131 | 6.53 115 | 2.63 171 | 1.89 151 | 4.77 158 | 1.73 111 | 2.67 149 | 4.13 141 | 1.49 150 |
CVENG22+RIC [199] | 144.9 | 1.80 115 | 3.03 125 | 1.68 114 | 2.83 125 | 4.39 136 | 1.71 84 | 3.07 149 | 6.18 153 | 1.79 105 | 3.28 165 | 5.08 182 | 3.35 165 | 2.69 154 | 2.92 154 | 2.81 176 | 3.13 133 | 6.95 145 | 2.46 116 | 1.93 159 | 5.56 171 | 1.75 137 | 3.36 185 | 5.58 188 | 1.48 142 |
TV-L1-improved [17] | 145.2 | 1.83 138 | 3.02 124 | 1.72 136 | 3.53 179 | 4.99 181 | 1.96 146 | 3.70 169 | 5.14 102 | 2.20 168 | 3.00 122 | 3.58 117 | 3.27 118 | 2.69 154 | 2.92 154 | 2.68 76 | 3.23 146 | 7.48 165 | 2.45 109 | 2.13 181 | 6.96 187 | 1.85 172 | 2.65 139 | 4.10 137 | 1.50 165 |
SimpleFlow [49] | 145.5 | 1.77 102 | 2.96 108 | 1.66 103 | 2.95 137 | 4.32 130 | 1.71 84 | 5.71 188 | 9.23 188 | 2.71 180 | 2.91 89 | 3.51 106 | 3.28 122 | 2.68 143 | 2.90 143 | 2.74 122 | 3.87 186 | 8.55 187 | 2.58 163 | 2.57 192 | 11.2 194 | 2.13 193 | 3.16 182 | 5.29 182 | 1.45 67 |
TVL1_RVC [175] | 148.9 | 2.11 179 | 3.13 149 | 1.98 184 | 3.99 191 | 5.13 195 | 2.48 185 | 3.18 155 | 7.02 171 | 1.95 151 | 3.39 174 | 4.05 155 | 3.34 159 | 2.69 154 | 2.91 151 | 2.72 103 | 2.99 111 | 6.89 141 | 2.43 98 | 1.99 169 | 5.22 168 | 1.77 153 | 2.54 97 | 3.86 88 | 1.46 92 |
HCIC-L [97] | 151.2 | 2.83 197 | 3.95 190 | 2.76 197 | 3.06 142 | 3.97 104 | 2.47 182 | 3.44 163 | 6.45 162 | 2.11 163 | 3.30 168 | 4.19 163 | 3.34 159 | 2.61 81 | 2.68 62 | 2.74 122 | 3.07 126 | 7.18 154 | 2.48 127 | 1.90 152 | 3.84 114 | 1.84 169 | 3.15 180 | 4.61 171 | 1.54 181 |
WRT [146] | 151.4 | 1.76 88 | 2.90 89 | 1.62 59 | 3.16 148 | 4.40 137 | 1.78 121 | 6.36 195 | 5.45 126 | 2.92 183 | 3.09 144 | 3.73 137 | 3.36 167 | 2.79 176 | 3.13 179 | 2.70 95 | 4.13 193 | 9.00 191 | 2.75 184 | 3.95 198 | 15.2 199 | 3.56 197 | 4.37 196 | 7.33 197 | 1.44 35 |
Shiralkar [42] | 152.2 | 1.87 148 | 3.21 156 | 1.68 114 | 3.43 168 | 4.75 169 | 1.77 119 | 3.72 170 | 7.09 175 | 2.13 165 | 3.76 185 | 5.83 187 | 3.29 134 | 2.69 154 | 2.97 166 | 2.65 50 | 3.39 167 | 7.20 156 | 2.55 154 | 2.23 184 | 6.65 183 | 1.78 157 | 3.03 178 | 4.95 180 | 1.44 35 |
Rannacher [23] | 156.4 | 1.85 147 | 3.08 138 | 1.76 151 | 3.59 181 | 5.09 194 | 1.89 136 | 3.88 172 | 5.70 138 | 2.51 176 | 3.05 136 | 3.95 152 | 3.31 143 | 2.70 163 | 2.94 162 | 2.68 76 | 3.28 150 | 7.66 176 | 2.47 120 | 2.10 179 | 6.54 182 | 1.85 172 | 2.79 166 | 4.52 169 | 1.51 174 |
StereoFlow [44] | 157.0 | 2.57 194 | 4.24 194 | 2.04 188 | 3.60 182 | 4.80 172 | 2.29 174 | 2.96 140 | 6.64 163 | 1.80 123 | 3.07 141 | 3.85 143 | 3.26 113 | 3.86 196 | 4.99 196 | 2.79 167 | 4.10 190 | 9.86 196 | 2.59 164 | 1.74 69 | 3.61 102 | 1.72 69 | 2.90 173 | 4.55 170 | 1.49 150 |
StereoOF-V1MT [117] | 159.5 | 1.90 156 | 3.40 175 | 1.67 109 | 3.17 149 | 4.55 151 | 1.78 121 | 4.31 180 | 6.26 155 | 2.51 176 | 4.40 191 | 6.00 191 | 3.74 187 | 2.87 185 | 3.26 188 | 2.83 178 | 3.67 181 | 6.94 144 | 2.88 190 | 2.16 182 | 6.46 181 | 1.96 186 | 2.61 130 | 3.99 108 | 1.44 35 |
SegOF [10] | 160.8 | 1.84 141 | 3.34 171 | 1.73 147 | 3.03 140 | 4.32 130 | 1.98 148 | 5.51 186 | 8.76 186 | 2.92 183 | 3.48 175 | 9.65 196 | 3.25 99 | 2.70 163 | 2.97 166 | 2.75 134 | 3.50 174 | 7.00 148 | 2.67 180 | 2.38 190 | 8.43 192 | 2.03 190 | 2.94 175 | 4.85 177 | 1.45 67 |
UnFlow [127] | 163.9 | 2.03 174 | 3.75 186 | 1.79 162 | 3.22 153 | 4.36 132 | 2.03 155 | 3.49 165 | 8.25 185 | 2.14 167 | 3.09 144 | 4.25 165 | 3.22 68 | 2.88 188 | 3.29 190 | 2.77 150 | 4.11 191 | 9.53 194 | 2.63 171 | 1.95 163 | 4.99 165 | 1.76 146 | 3.52 191 | 5.53 187 | 1.48 142 |
H+S_RVC [176] | 167.1 | 1.96 165 | 3.22 158 | 1.77 158 | 3.46 169 | 4.40 137 | 2.36 176 | 4.47 183 | 7.69 179 | 2.98 185 | 4.23 190 | 4.93 181 | 3.50 179 | 2.87 185 | 3.15 181 | 2.77 150 | 3.35 160 | 7.10 150 | 2.50 136 | 2.18 183 | 5.20 167 | 1.95 185 | 2.78 164 | 4.12 139 | 1.49 150 |
Learning Flow [11] | 168.3 | 1.93 157 | 3.13 149 | 1.76 151 | 3.41 165 | 4.86 177 | 1.94 144 | 6.37 196 | 12.1 197 | 3.16 187 | 3.54 177 | 4.38 169 | 3.49 178 | 2.90 190 | 3.21 185 | 2.90 192 | 3.20 143 | 6.69 127 | 2.54 148 | 2.01 172 | 4.70 157 | 1.85 172 | 2.81 168 | 4.19 149 | 1.57 190 |
Dynamic MRF [7] | 168.5 | 1.80 115 | 3.33 170 | 1.65 93 | 3.04 141 | 4.68 161 | 1.75 112 | 4.08 177 | 7.74 181 | 2.45 173 | 4.01 187 | 6.17 193 | 3.86 188 | 2.80 178 | 3.18 183 | 2.78 161 | 4.14 194 | 8.87 189 | 2.74 183 | 2.29 187 | 7.41 189 | 1.90 183 | 2.94 175 | 4.49 165 | 1.50 165 |
SPSA-learn [13] | 169.2 | 1.98 166 | 3.46 179 | 1.80 164 | 3.51 177 | 4.74 168 | 2.28 171 | 5.42 185 | 10.3 193 | 3.29 189 | 3.58 179 | 4.53 170 | 3.30 138 | 2.82 182 | 3.18 183 | 2.73 112 | 3.33 154 | 7.42 162 | 2.46 116 | 3.48 197 | 13.3 195 | 3.86 198 | 4.29 195 | 6.74 195 | 1.46 92 |
2bit-BM-tele [96] | 170.0 | 2.07 177 | 3.34 171 | 1.96 182 | 3.42 167 | 4.98 180 | 2.14 166 | 3.02 145 | 5.96 151 | 2.13 165 | 3.38 173 | 4.35 167 | 3.68 184 | 2.81 180 | 3.01 172 | 2.92 194 | 4.27 197 | 10.4 197 | 2.89 191 | 3.17 195 | 13.6 196 | 2.63 195 | 2.44 69 | 3.79 72 | 1.61 193 |
Adaptive flow [45] | 172.4 | 2.51 192 | 3.57 183 | 2.34 193 | 4.10 193 | 5.07 192 | 2.88 195 | 3.20 157 | 6.30 157 | 2.25 170 | 3.54 177 | 4.08 158 | 3.63 182 | 2.85 184 | 3.16 182 | 2.78 161 | 4.05 187 | 8.92 190 | 2.60 167 | 1.84 140 | 3.82 112 | 1.84 169 | 2.75 161 | 4.23 152 | 1.55 183 |
WOLF_ROB [144] | 172.5 | 2.28 190 | 4.65 196 | 1.81 167 | 3.68 184 | 4.99 181 | 2.04 156 | 3.90 173 | 9.19 187 | 1.87 135 | 3.21 153 | 4.66 175 | 3.46 176 | 2.87 185 | 3.29 190 | 2.86 184 | 3.83 185 | 7.76 180 | 2.65 174 | 2.11 180 | 6.19 178 | 1.79 160 | 3.12 179 | 5.09 181 | 1.46 92 |
SILK [80] | 175.1 | 2.14 183 | 3.28 168 | 2.00 185 | 4.08 192 | 5.01 184 | 2.63 191 | 6.23 192 | 9.75 190 | 3.32 191 | 3.62 180 | 4.37 168 | 3.48 177 | 2.81 180 | 3.14 180 | 2.78 161 | 3.33 154 | 7.78 181 | 2.85 188 | 1.93 159 | 4.86 161 | 1.87 176 | 2.72 156 | 4.13 141 | 1.50 165 |
FOLKI [16] | 176.2 | 2.67 195 | 3.60 184 | 2.67 196 | 4.14 194 | 5.06 191 | 2.92 196 | 4.29 179 | 9.31 189 | 3.16 187 | 4.76 196 | 5.27 183 | 4.33 196 | 2.91 191 | 3.25 187 | 2.87 189 | 2.97 108 | 5.89 91 | 2.61 169 | 2.23 184 | 5.69 172 | 2.06 192 | 2.74 160 | 3.99 108 | 1.61 193 |
GroupFlow [9] | 176.3 | 2.23 188 | 4.26 195 | 1.89 177 | 3.20 152 | 4.49 146 | 2.21 167 | 6.25 193 | 10.6 195 | 4.16 196 | 3.63 182 | 5.92 188 | 3.56 180 | 3.12 195 | 3.87 195 | 2.86 184 | 4.20 195 | 9.27 193 | 2.66 177 | 2.28 186 | 7.36 188 | 1.76 146 | 3.43 189 | 5.62 190 | 1.44 35 |
Heeger++ [102] | 176.7 | 2.21 186 | 4.19 193 | 1.76 151 | 3.25 155 | 4.37 133 | 2.05 159 | 6.31 194 | 7.77 182 | 3.58 194 | 4.66 193 | 5.96 189 | 4.22 194 | 2.97 193 | 3.40 193 | 2.90 192 | 4.06 188 | 7.41 161 | 3.07 193 | 2.54 191 | 7.66 191 | 1.89 178 | 3.36 185 | 5.43 185 | 1.45 67 |
PGAM+LK [55] | 179.0 | 2.54 193 | 3.85 187 | 2.37 194 | 3.49 174 | 4.59 155 | 2.58 189 | 5.38 184 | 10.4 194 | 3.34 192 | 4.52 192 | 5.29 184 | 4.11 192 | 2.84 183 | 3.09 177 | 2.87 189 | 3.66 180 | 7.21 157 | 2.73 182 | 1.96 165 | 4.38 147 | 1.89 178 | 2.78 164 | 4.19 149 | 1.63 195 |
FFV1MT [104] | 182.2 | 2.16 184 | 4.10 191 | 1.82 171 | 3.40 164 | 4.42 142 | 2.41 180 | 5.77 189 | 9.75 190 | 3.31 190 | 4.66 193 | 5.96 189 | 4.22 194 | 2.93 192 | 3.26 188 | 2.94 196 | 3.42 170 | 6.83 138 | 2.65 174 | 2.66 193 | 7.57 190 | 2.00 187 | 3.46 190 | 5.41 184 | 1.63 195 |
SLK [47] | 183.1 | 2.17 185 | 3.38 174 | 2.06 189 | 3.74 185 | 4.55 151 | 2.59 190 | 6.05 191 | 8.14 184 | 3.70 195 | 4.66 193 | 6.07 192 | 3.86 188 | 3.09 194 | 3.67 194 | 2.83 178 | 3.42 170 | 7.28 159 | 2.66 177 | 2.35 188 | 6.75 184 | 2.03 190 | 3.15 180 | 4.91 179 | 1.56 185 |
Pyramid LK [2] | 186.9 | 2.69 196 | 3.63 185 | 2.65 195 | 4.52 197 | 5.19 196 | 3.28 197 | 9.47 197 | 7.52 178 | 6.37 197 | 10.2 198 | 17.4 197 | 10.8 198 | 4.45 198 | 6.09 198 | 2.86 184 | 3.13 133 | 6.71 131 | 2.59 164 | 2.36 189 | 6.88 185 | 2.02 189 | 4.64 197 | 7.19 196 | 1.60 191 |
Periodicity [79] | 196.7 | 3.05 198 | 6.22 198 | 2.83 198 | 5.00 198 | 5.35 197 | 3.62 198 | 11.4 198 | 14.2 198 | 10.8 198 | 9.29 197 | 17.8 198 | 6.38 197 | 4.38 197 | 5.73 197 | 3.29 198 | 4.39 198 | 10.6 198 | 3.11 194 | 2.85 194 | 11.0 193 | 2.34 194 | 4.04 194 | 6.02 193 | 2.26 198 |
AVG_FLOW_ROB [137] | 199.0 | 10.4 199 | 14.0 199 | 5.91 199 | 8.30 199 | 8.29 199 | 5.76 199 | 16.8 199 | 19.4 199 | 17.9 199 | 15.5 199 | 22.7 199 | 19.8 199 | 6.80 199 | 8.71 199 | 4.04 199 | 11.5 199 | 24.8 199 | 8.66 199 | 5.39 199 | 14.4 198 | 5.01 199 | 7.14 199 | 7.96 199 | 6.21 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |