Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
R5.0 interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
SoftsplatAug [190] | 3.9 | 2.50 1 | 6.34 1 | 0.04 2 | 5.24 1 | 9.54 2 | 0.28 1 | 0.75 1 | 2.81 3 | 0.11 1 | 12.9 3 | 18.1 3 | 2.87 4 | 32.7 2 | 45.7 2 | 2.87 3 | 6.32 4 | 24.8 4 | 0.17 3 | 8.50 11 | 33.7 10 | 0.26 5 | 15.5 4 | 38.0 4 | 0.34 18 |
SoftSplat [169] | 5.6 | 2.65 3 | 7.02 3 | 0.04 2 | 6.02 4 | 11.7 5 | 0.36 3 | 0.76 2 | 2.62 2 | 0.14 3 | 12.4 2 | 17.7 2 | 2.72 3 | 34.8 9 | 48.1 9 | 2.88 4 | 6.77 6 | 26.6 6 | 0.18 4 | 8.47 10 | 34.7 14 | 0.27 9 | 15.7 5 | 38.6 5 | 0.35 19 |
EAFI [186] | 8.1 | 2.71 4 | 7.28 5 | 0.03 1 | 5.40 2 | 8.82 1 | 0.28 1 | 0.96 5 | 2.31 1 | 0.13 2 | 12.2 1 | 16.7 1 | 2.52 1 | 37.2 24 | 52.3 26 | 2.83 2 | 8.02 21 | 31.3 22 | 0.15 1 | 8.85 13 | 35.5 17 | 0.27 9 | 18.3 15 | 44.4 16 | 0.29 4 |
FGME [158] | 11.2 | 2.80 5 | 7.23 4 | 0.05 5 | 7.70 14 | 13.7 11 | 0.91 132 | 1.60 9 | 4.12 10 | 0.27 10 | 14.3 7 | 18.9 5 | 3.96 20 | 31.6 1 | 44.3 1 | 2.80 1 | 5.95 3 | 23.1 3 | 0.26 14 | 7.48 1 | 29.1 1 | 0.23 2 | 14.6 3 | 36.0 3 | 0.29 4 |
SepConv++ [185] | 11.5 | 3.29 18 | 10.0 21 | 0.07 19 | 6.76 7 | 13.3 8 | 0.41 13 | 2.12 17 | 4.53 11 | 0.40 84 | 16.3 19 | 23.0 20 | 3.53 8 | 33.4 4 | 46.2 3 | 2.91 7 | 5.17 1 | 20.4 1 | 0.15 1 | 7.67 3 | 31.3 3 | 0.26 5 | 13.4 1 | 33.3 1 | 0.28 1 |
IFRNet [193] | 11.6 | 2.62 2 | 6.53 2 | 0.07 19 | 6.16 5 | 11.2 4 | 0.71 92 | 0.94 3 | 2.89 5 | 0.17 4 | 13.6 4 | 18.8 4 | 4.05 22 | 34.9 11 | 48.6 12 | 3.39 21 | 7.01 8 | 27.5 8 | 0.22 7 | 8.36 9 | 33.7 10 | 0.22 1 | 17.2 10 | 41.8 8 | 0.30 7 |
EDSC [173] | 14.8 | 3.16 13 | 9.09 15 | 0.06 10 | 7.15 10 | 14.0 13 | 0.76 102 | 1.96 15 | 4.59 12 | 0.34 43 | 16.0 17 | 22.5 18 | 3.59 10 | 34.6 7 | 47.6 5 | 3.26 17 | 6.93 7 | 27.4 7 | 0.22 7 | 7.76 4 | 31.6 4 | 0.24 3 | 17.1 8 | 41.8 8 | 0.28 1 |
BMBC [171] | 16.4 | 3.50 24 | 8.86 13 | 0.04 2 | 7.12 9 | 13.4 9 | 0.41 13 | 4.49 32 | 9.79 31 | 0.38 74 | 14.7 9 | 20.3 8 | 3.29 7 | 34.6 7 | 48.0 8 | 3.23 16 | 7.05 9 | 27.6 9 | 0.33 22 | 9.04 15 | 35.0 15 | 0.37 24 | 15.9 6 | 39.1 6 | 0.40 25 |
DistillNet [184] | 17.6 | 2.82 7 | 7.62 7 | 0.05 5 | 5.96 3 | 10.9 3 | 0.54 53 | 0.94 3 | 2.91 6 | 0.19 5 | 13.7 5 | 19.9 7 | 2.94 5 | 34.9 11 | 48.8 14 | 3.00 9 | 8.16 23 | 31.9 23 | 0.29 17 | 10.1 103 | 38.5 25 | 0.34 21 | 19.3 20 | 46.4 22 | 0.40 25 |
AdaCoF [165] | 19.9 | 3.54 26 | 10.4 26 | 0.07 19 | 7.54 12 | 14.3 15 | 0.64 79 | 2.86 26 | 5.93 22 | 0.37 69 | 17.0 22 | 23.3 22 | 3.75 15 | 37.9 26 | 51.6 24 | 3.57 25 | 6.42 5 | 25.3 5 | 0.18 4 | 7.91 7 | 32.6 7 | 0.24 3 | 16.0 7 | 39.4 7 | 0.29 4 |
ProBoost-Net [191] | 22.8 | 3.00 9 | 8.54 10 | 0.06 10 | 8.75 47 | 15.9 31 | 1.05 158 | 1.93 12 | 4.90 16 | 0.19 5 | 16.0 17 | 21.6 13 | 4.98 30 | 37.1 22 | 50.9 23 | 3.77 26 | 7.84 16 | 30.3 17 | 0.42 25 | 8.21 8 | 33.5 9 | 0.28 13 | 18.1 11 | 44.0 12 | 0.30 7 |
TC-GAN [166] | 23.0 | 3.27 16 | 10.0 21 | 0.07 19 | 7.97 18 | 15.3 23 | 1.01 147 | 1.94 13 | 4.87 15 | 0.33 34 | 15.5 13 | 22.3 14 | 3.56 9 | 35.3 16 | 49.0 15 | 3.18 13 | 7.85 17 | 30.7 18 | 0.30 18 | 9.41 21 | 38.2 21 | 0.28 13 | 19.5 22 | 47.1 25 | 0.31 11 |
MV_VFI [183] | 23.1 | 3.26 15 | 9.99 20 | 0.07 19 | 7.90 17 | 15.1 21 | 1.01 147 | 1.95 14 | 5.00 17 | 0.32 29 | 15.6 15 | 22.4 16 | 3.59 10 | 35.4 18 | 49.1 16 | 3.20 14 | 7.86 19 | 30.7 18 | 0.32 19 | 9.40 19 | 38.2 21 | 0.27 9 | 19.5 22 | 47.1 25 | 0.32 15 |
DSepConv [162] | 23.4 | 3.54 26 | 10.6 28 | 0.07 19 | 8.36 32 | 15.4 25 | 0.95 142 | 2.48 22 | 5.57 20 | 0.32 29 | 18.0 46 | 24.2 26 | 3.91 19 | 34.8 9 | 47.9 6 | 3.40 22 | 7.13 12 | 28.0 11 | 0.26 14 | 7.79 5 | 31.8 5 | 0.27 9 | 18.1 11 | 44.1 13 | 0.31 11 |
DAIN [152] | 23.5 | 3.36 20 | 10.3 24 | 0.06 10 | 8.05 20 | 15.2 22 | 1.00 145 | 1.92 11 | 5.22 18 | 0.33 34 | 15.5 13 | 22.3 14 | 3.63 12 | 35.4 18 | 49.1 16 | 3.27 18 | 7.85 17 | 30.7 18 | 0.32 19 | 9.40 19 | 38.3 24 | 0.28 13 | 19.5 22 | 47.1 25 | 0.31 11 |
STAR-Net [164] | 26.2 | 2.81 6 | 7.50 6 | 0.05 5 | 7.89 16 | 14.8 18 | 0.67 85 | 2.63 24 | 3.49 9 | 0.42 93 | 15.1 11 | 21.3 11 | 2.66 2 | 33.2 3 | 46.5 4 | 2.89 6 | 7.74 15 | 30.0 16 | 0.22 7 | 12.1 186 | 35.2 16 | 0.41 30 | 19.1 19 | 44.8 17 | 0.39 23 |
STSR [170] | 26.9 | 3.19 14 | 9.43 16 | 0.05 5 | 6.49 6 | 12.0 6 | 0.83 116 | 2.34 21 | 5.98 24 | 0.39 79 | 14.5 8 | 20.6 9 | 4.11 23 | 40.2 29 | 55.5 29 | 3.53 24 | 8.92 29 | 34.8 30 | 0.39 23 | 9.69 33 | 39.4 29 | 0.31 18 | 20.0 28 | 48.5 29 | 0.33 17 |
MAF-net [163] | 27.1 | 2.92 8 | 8.49 9 | 0.06 10 | 8.09 22 | 15.4 25 | 1.02 151 | 2.12 17 | 5.68 21 | 0.37 69 | 16.3 19 | 22.4 16 | 4.94 29 | 39.6 28 | 54.0 28 | 3.79 27 | 8.35 25 | 32.3 25 | 0.44 26 | 8.53 12 | 34.6 13 | 0.30 17 | 18.9 18 | 46.1 20 | 0.32 15 |
FRUCnet [153] | 27.7 | 3.63 28 | 10.4 26 | 0.09 29 | 7.97 18 | 14.6 16 | 0.90 130 | 2.48 22 | 6.05 25 | 0.51 126 | 18.1 55 | 24.7 27 | 3.76 16 | 35.2 15 | 48.7 13 | 2.88 4 | 7.06 10 | 27.7 10 | 0.32 19 | 9.00 14 | 33.4 8 | 0.32 19 | 18.2 13 | 44.3 15 | 0.30 7 |
ADC [161] | 30.5 | 4.18 33 | 12.4 33 | 0.09 29 | 8.29 31 | 14.9 19 | 0.83 116 | 3.92 31 | 7.64 28 | 0.40 84 | 18.9 119 | 25.4 30 | 4.04 21 | 37.1 22 | 50.6 22 | 3.48 23 | 7.11 11 | 28.0 11 | 0.23 11 | 7.88 6 | 32.5 6 | 0.26 5 | 18.5 16 | 45.1 18 | 0.30 7 |
MEMC-Net+ [160] | 30.8 | 3.38 21 | 9.77 17 | 0.06 10 | 8.14 23 | 14.9 19 | 1.03 154 | 2.33 20 | 5.37 19 | 0.47 115 | 17.0 22 | 22.8 19 | 3.73 14 | 37.3 25 | 51.6 24 | 3.20 14 | 8.64 27 | 33.4 27 | 0.26 14 | 9.79 50 | 38.2 21 | 0.29 16 | 19.5 22 | 47.5 28 | 0.35 19 |
GDCN [172] | 32.3 | 3.35 19 | 10.3 24 | 0.06 10 | 10.0 111 | 17.8 61 | 0.86 123 | 1.87 10 | 4.70 13 | 0.55 137 | 18.1 55 | 23.0 20 | 3.87 18 | 35.0 13 | 48.4 11 | 3.38 20 | 7.51 14 | 29.5 14 | 0.40 24 | 9.10 16 | 34.2 12 | 0.34 21 | 17.1 8 | 42.4 10 | 0.31 11 |
DAI [168] | 35.3 | 3.27 16 | 8.01 8 | 0.55 191 | 8.25 27 | 14.7 17 | 1.66 190 | 1.06 6 | 3.37 7 | 0.30 21 | 13.8 6 | 19.0 6 | 4.69 26 | 38.6 27 | 53.2 27 | 3.04 11 | 8.51 26 | 33.0 26 | 0.24 13 | 10.0 88 | 37.6 20 | 0.32 19 | 19.5 22 | 46.9 24 | 0.39 23 |
IDIAL [192] | 35.8 | 3.05 10 | 8.64 11 | 0.05 5 | 7.42 11 | 14.1 14 | 0.73 96 | 1.56 8 | 3.48 8 | 0.34 43 | 15.7 16 | 21.5 12 | 3.19 6 | 34.3 5 | 47.9 6 | 3.16 12 | 8.15 22 | 31.2 21 | 0.21 6 | 12.1 186 | 36.4 18 | 0.55 144 | 19.4 21 | 45.4 19 | 0.54 160 |
OFRI [154] | 35.9 | 3.15 12 | 8.69 12 | 0.09 29 | 7.77 15 | 13.9 12 | 0.98 144 | 1.45 7 | 2.88 4 | 0.33 34 | 14.9 10 | 20.8 10 | 3.70 13 | 35.3 16 | 49.1 16 | 3.31 19 | 8.88 28 | 33.4 27 | 0.44 26 | 15.2 198 | 39.3 28 | 0.50 118 | 20.4 31 | 46.6 23 | 0.43 29 |
CyclicGen [149] | 37.9 | 3.50 24 | 9.95 18 | 0.13 38 | 7.67 13 | 12.9 7 | 1.52 188 | 3.74 29 | 10.6 32 | 0.48 120 | 19.1 133 | 25.7 31 | 5.85 162 | 36.7 21 | 49.3 19 | 3.80 28 | 5.69 2 | 21.5 2 | 0.50 28 | 7.53 2 | 30.4 2 | 0.26 5 | 13.5 2 | 33.4 2 | 0.28 1 |
FeFlow [167] | 37.9 | 3.10 11 | 8.86 13 | 0.06 10 | 8.07 21 | 15.6 28 | 1.13 163 | 2.03 16 | 4.86 14 | 0.36 62 | 16.5 21 | 23.3 22 | 3.78 17 | 34.4 6 | 48.3 10 | 3.03 10 | 8.34 24 | 32.2 24 | 0.23 11 | 11.6 177 | 36.7 19 | 0.51 128 | 19.5 22 | 46.2 21 | 0.48 60 |
CtxSyn [134] | 42.2 | 3.42 23 | 9.96 19 | 0.08 26 | 6.79 8 | 13.5 10 | 0.50 47 | 2.17 19 | 5.94 23 | 0.43 99 | 15.1 11 | 23.3 22 | 4.57 24 | 42.2 34 | 56.7 34 | 4.54 33 | 10.0 34 | 36.5 33 | 0.63 30 | 13.5 194 | 44.0 160 | 0.40 28 | 21.1 39 | 49.2 33 | 0.43 29 |
PMMST [112] | 44.2 | 4.93 35 | 13.9 35 | 0.13 38 | 8.97 63 | 17.1 44 | 0.43 21 | 6.00 45 | 13.4 37 | 0.27 10 | 17.6 26 | 26.2 38 | 5.24 56 | 43.0 48 | 57.7 42 | 5.17 55 | 10.3 37 | 39.1 41 | 0.87 50 | 9.75 42 | 41.0 50 | 0.44 51 | 21.5 71 | 51.9 81 | 0.47 45 |
MDP-Flow2 [68] | 45.1 | 4.89 34 | 14.4 36 | 0.12 36 | 8.58 38 | 16.9 41 | 0.39 9 | 5.95 40 | 13.6 39 | 0.28 13 | 17.7 29 | 26.7 47 | 5.32 75 | 42.9 40 | 57.6 38 | 5.13 49 | 10.6 56 | 40.1 63 | 0.92 62 | 9.75 42 | 41.0 50 | 0.43 41 | 21.6 85 | 51.9 81 | 0.46 39 |
SepConv-v1 [125] | 46.2 | 3.41 22 | 11.0 29 | 0.08 26 | 8.39 33 | 16.7 39 | 1.04 156 | 2.81 25 | 7.63 27 | 0.74 162 | 18.0 46 | 25.2 29 | 5.82 159 | 42.9 40 | 57.4 35 | 4.74 35 | 9.03 30 | 34.1 29 | 0.60 29 | 9.34 18 | 38.6 26 | 0.42 34 | 20.1 30 | 48.6 31 | 0.35 19 |
SuperSlomo [130] | 47.0 | 3.75 29 | 10.1 23 | 0.19 110 | 8.96 62 | 16.5 35 | 1.31 174 | 3.32 28 | 8.42 29 | 0.29 19 | 17.7 29 | 24.1 25 | 5.32 75 | 41.4 30 | 55.9 30 | 4.24 30 | 9.50 32 | 35.3 32 | 0.67 31 | 10.8 157 | 40.3 33 | 0.37 24 | 20.4 31 | 48.7 32 | 0.42 27 |
CoT-AMFlow [174] | 47.6 | 4.96 37 | 14.7 42 | 0.13 38 | 8.63 39 | 17.1 44 | 0.40 11 | 6.04 50 | 13.8 41 | 0.28 13 | 17.6 26 | 26.2 38 | 5.20 43 | 43.1 60 | 57.7 42 | 5.19 61 | 10.7 64 | 40.4 81 | 0.96 81 | 9.80 54 | 41.1 56 | 0.42 34 | 21.5 71 | 51.8 72 | 0.47 45 |
NNF-Local [75] | 50.3 | 5.11 47 | 15.7 60 | 0.11 32 | 8.18 25 | 15.8 30 | 0.39 9 | 6.01 48 | 13.5 38 | 0.27 10 | 18.3 70 | 28.3 92 | 5.29 67 | 43.0 48 | 57.6 38 | 5.11 47 | 10.8 84 | 40.9 102 | 1.01 93 | 9.67 32 | 40.7 40 | 0.46 71 | 21.2 41 | 51.2 45 | 0.46 39 |
NN-field [71] | 50.4 | 5.14 52 | 16.1 84 | 0.13 38 | 8.21 26 | 15.7 29 | 0.38 8 | 6.39 86 | 13.6 39 | 0.30 21 | 18.4 76 | 28.7 112 | 5.33 80 | 42.9 40 | 57.6 38 | 5.08 44 | 10.7 64 | 40.2 69 | 0.94 71 | 9.62 27 | 40.5 36 | 0.44 51 | 21.2 41 | 51.2 45 | 0.45 32 |
MPRN [151] | 55.4 | 4.10 32 | 11.9 31 | 0.06 10 | 9.67 96 | 16.8 40 | 0.78 106 | 7.31 164 | 18.6 172 | 0.47 115 | 18.0 46 | 25.8 32 | 4.76 27 | 41.6 32 | 56.1 31 | 4.34 32 | 9.29 31 | 34.9 31 | 0.68 32 | 10.3 124 | 40.9 45 | 0.34 21 | 20.0 28 | 48.5 29 | 0.36 22 |
Layers++ [37] | 56.0 | 5.25 71 | 15.9 68 | 0.17 86 | 8.27 28 | 15.5 27 | 0.37 5 | 6.16 62 | 14.3 50 | 0.38 74 | 18.0 46 | 26.9 52 | 5.32 75 | 43.1 60 | 57.9 58 | 5.24 80 | 10.7 64 | 40.6 94 | 0.97 86 | 9.70 35 | 40.7 40 | 0.39 26 | 21.3 49 | 51.3 49 | 0.48 60 |
GMFlow_RVC [196] | 56.9 | 5.25 71 | 17.2 132 | 0.12 36 | 8.72 44 | 17.7 58 | 0.37 5 | 6.07 52 | 13.8 41 | 0.28 13 | 17.9 38 | 27.5 67 | 5.26 61 | 43.3 97 | 58.0 75 | 5.24 80 | 10.7 64 | 40.8 100 | 0.82 40 | 9.78 48 | 41.2 60 | 0.43 41 | 21.3 49 | 51.5 54 | 0.46 39 |
TOF-M [150] | 57.8 | 3.92 30 | 11.5 30 | 0.08 26 | 8.90 57 | 17.4 50 | 1.19 168 | 3.87 30 | 8.82 30 | 0.52 131 | 17.9 38 | 25.1 28 | 5.20 43 | 42.1 33 | 56.6 33 | 4.68 34 | 10.0 34 | 36.7 34 | 0.69 34 | 12.8 193 | 41.1 56 | 0.47 91 | 21.8 114 | 50.8 39 | 0.45 32 |
MS_RAFT+_RVC [195] | 58.1 | 5.21 66 | 16.4 97 | 0.13 38 | 8.81 50 | 18.1 68 | 0.42 17 | 5.80 36 | 13.2 35 | 0.26 8 | 17.6 26 | 26.0 36 | 5.05 32 | 43.3 97 | 57.9 58 | 5.43 152 | 10.3 37 | 38.9 38 | 0.68 32 | 9.50 22 | 40.0 30 | 0.44 51 | 21.6 85 | 52.6 124 | 0.54 160 |
PH-Flow [99] | 59.4 | 5.32 86 | 16.4 97 | 0.16 75 | 8.28 29 | 15.9 31 | 0.44 24 | 6.12 58 | 13.9 45 | 0.33 34 | 17.5 24 | 25.8 32 | 5.15 40 | 42.8 38 | 57.5 36 | 5.03 41 | 11.0 114 | 41.6 138 | 1.09 121 | 9.71 36 | 41.0 50 | 0.46 71 | 21.3 49 | 51.4 52 | 0.50 105 |
nLayers [57] | 62.1 | 5.26 75 | 15.8 65 | 0.16 75 | 8.54 36 | 16.6 37 | 0.45 28 | 5.89 37 | 13.1 34 | 0.30 21 | 18.1 55 | 27.1 57 | 5.35 87 | 43.3 97 | 58.0 75 | 5.36 122 | 10.8 84 | 40.9 102 | 1.11 125 | 9.65 31 | 40.1 31 | 0.48 100 | 21.2 41 | 51.1 43 | 0.45 32 |
COFM [59] | 62.4 | 5.08 45 | 15.1 45 | 0.19 110 | 8.86 53 | 17.4 50 | 0.48 38 | 6.37 82 | 14.2 49 | 0.40 84 | 17.7 29 | 26.2 38 | 5.11 33 | 42.9 40 | 57.8 47 | 5.02 40 | 10.9 98 | 41.6 138 | 1.11 125 | 9.24 17 | 38.8 27 | 0.50 118 | 21.5 71 | 51.9 81 | 0.46 39 |
Sparse-NonSparse [56] | 62.9 | 5.31 85 | 16.3 95 | 0.17 86 | 8.74 45 | 17.2 49 | 0.48 38 | 6.19 63 | 14.7 63 | 0.34 43 | 17.9 38 | 26.3 41 | 5.23 53 | 43.1 60 | 57.8 47 | 5.25 86 | 11.0 114 | 41.2 115 | 1.04 102 | 9.71 36 | 40.9 45 | 0.46 71 | 21.2 41 | 51.3 49 | 0.47 45 |
IROF++ [58] | 64.7 | 5.37 99 | 16.8 116 | 0.14 48 | 8.87 55 | 17.4 50 | 0.45 28 | 6.41 93 | 14.6 60 | 0.43 99 | 17.5 24 | 25.8 32 | 5.22 48 | 42.9 40 | 57.8 47 | 5.19 61 | 10.5 46 | 39.4 48 | 0.87 50 | 10.0 88 | 42.4 110 | 0.47 91 | 21.4 61 | 51.5 54 | 0.50 105 |
TV-L1-MCT [64] | 65.9 | 5.74 158 | 18.1 159 | 0.18 101 | 9.50 87 | 19.1 85 | 0.58 62 | 5.73 34 | 14.5 57 | 0.38 74 | 17.8 34 | 26.0 36 | 5.28 65 | 43.0 48 | 57.9 58 | 5.22 73 | 10.4 40 | 39.1 41 | 0.94 71 | 9.78 48 | 41.1 56 | 0.44 51 | 21.2 41 | 51.1 43 | 0.48 60 |
HAST [107] | 66.7 | 5.12 49 | 15.2 47 | 0.16 75 | 8.74 45 | 17.1 44 | 0.43 21 | 6.62 122 | 15.3 90 | 0.39 79 | 17.7 29 | 26.4 43 | 4.98 30 | 43.0 48 | 58.0 75 | 5.05 42 | 11.0 114 | 41.4 125 | 1.06 110 | 9.53 23 | 40.4 34 | 0.42 34 | 22.0 140 | 52.8 137 | 0.47 45 |
ComponentFusion [94] | 67.9 | 5.15 53 | 16.1 84 | 0.14 48 | 8.86 53 | 17.9 64 | 0.41 13 | 6.38 83 | 15.4 91 | 0.33 34 | 17.8 34 | 27.0 55 | 5.15 40 | 43.2 85 | 58.0 75 | 5.24 80 | 10.6 56 | 39.8 52 | 0.94 71 | 10.0 88 | 42.7 130 | 0.57 153 | 21.5 71 | 51.8 72 | 0.47 45 |
ProbFlowFields [126] | 68.8 | 5.03 40 | 15.6 58 | 0.17 86 | 8.55 37 | 17.1 44 | 0.41 13 | 6.00 45 | 14.4 53 | 0.32 29 | 18.1 55 | 27.1 57 | 5.38 95 | 43.3 97 | 58.1 97 | 5.49 170 | 10.9 98 | 41.2 115 | 1.20 144 | 9.61 26 | 40.7 40 | 0.47 91 | 21.0 38 | 50.8 39 | 0.49 84 |
FMOF [92] | 69.0 | 5.62 143 | 17.2 132 | 0.21 123 | 8.71 43 | 17.0 42 | 0.44 24 | 6.38 83 | 14.7 63 | 0.46 110 | 18.6 91 | 28.0 77 | 5.31 72 | 43.1 60 | 57.9 58 | 5.15 52 | 10.8 84 | 40.5 89 | 0.87 50 | 9.60 25 | 40.4 34 | 0.40 28 | 21.5 71 | 51.7 63 | 0.46 39 |
MS-PFT [159] | 71.4 | 3.98 31 | 12.0 32 | 0.07 19 | 9.28 78 | 16.4 34 | 0.86 123 | 3.12 27 | 7.20 26 | 0.98 173 | 22.4 184 | 32.6 183 | 4.80 28 | 36.3 20 | 50.4 21 | 4.00 29 | 7.91 20 | 29.9 15 | 0.77 36 | 15.0 197 | 41.7 77 | 0.86 184 | 18.6 17 | 44.1 13 | 0.53 146 |
RAFT-it+_RVC [198] | 72.9 | 5.19 59 | 17.0 124 | 0.11 32 | 8.66 41 | 17.5 55 | 0.37 5 | 6.14 59 | 15.1 82 | 0.26 8 | 18.1 55 | 28.0 77 | 5.18 42 | 43.3 97 | 58.0 75 | 5.28 100 | 13.2 196 | 42.0 152 | 4.13 198 | 9.69 33 | 40.9 45 | 0.45 61 | 20.7 34 | 50.2 35 | 0.49 84 |
VCN_RVC [178] | 73.5 | 5.47 118 | 18.2 162 | 0.15 58 | 8.99 65 | 18.3 73 | 0.44 24 | 6.54 104 | 17.0 141 | 0.35 56 | 18.2 65 | 28.5 102 | 5.35 87 | 43.1 60 | 57.9 58 | 5.20 65 | 10.7 64 | 40.4 81 | 0.80 38 | 9.97 84 | 41.7 77 | 0.44 51 | 20.9 35 | 50.5 36 | 0.48 60 |
2DHMM-SAS [90] | 73.6 | 5.62 143 | 17.6 150 | 0.18 101 | 10.1 114 | 19.7 104 | 0.64 79 | 5.73 34 | 14.4 53 | 0.37 69 | 17.7 29 | 25.9 35 | 5.30 69 | 43.0 48 | 57.8 47 | 5.26 90 | 10.7 64 | 40.0 61 | 0.82 40 | 9.83 57 | 41.3 63 | 0.48 100 | 21.6 85 | 52.0 86 | 0.47 45 |
RAFT-it [194] | 73.7 | 5.16 54 | 16.5 101 | 0.14 48 | 8.47 35 | 17.0 42 | 0.36 3 | 5.98 43 | 14.0 46 | 0.25 7 | 17.9 38 | 27.5 67 | 5.12 36 | 43.3 97 | 57.9 58 | 5.22 73 | 13.1 195 | 40.4 81 | 3.83 197 | 9.62 27 | 40.6 37 | 0.41 30 | 22.3 164 | 53.8 169 | 0.51 120 |
RAFT-TF_RVC [179] | 73.7 | 5.24 70 | 17.0 124 | 0.11 32 | 8.75 47 | 17.8 61 | 0.42 17 | 6.09 54 | 14.5 57 | 0.34 43 | 18.3 70 | 28.6 109 | 5.33 80 | 43.4 120 | 58.1 97 | 5.25 86 | 13.0 194 | 40.4 81 | 3.31 196 | 9.63 29 | 40.7 40 | 0.41 30 | 20.9 35 | 50.6 37 | 0.48 60 |
CombBMOF [111] | 74.2 | 5.46 115 | 16.2 93 | 0.22 135 | 8.89 56 | 18.0 66 | 0.45 28 | 6.29 70 | 14.7 63 | 0.40 84 | 18.5 86 | 28.0 77 | 5.24 56 | 43.0 48 | 57.7 42 | 5.08 44 | 10.8 84 | 40.2 69 | 0.82 40 | 11.7 181 | 42.9 138 | 0.47 91 | 21.2 41 | 50.9 41 | 0.45 32 |
LSM [39] | 74.8 | 5.49 121 | 17.4 143 | 0.18 101 | 8.93 59 | 17.7 58 | 0.48 38 | 6.32 75 | 15.4 91 | 0.35 56 | 18.1 55 | 27.1 57 | 5.22 48 | 43.1 60 | 57.9 58 | 5.28 100 | 11.0 114 | 41.3 121 | 1.03 100 | 9.72 39 | 40.9 45 | 0.46 71 | 21.4 61 | 51.7 63 | 0.48 60 |
Ramp [62] | 76.7 | 5.46 115 | 17.1 129 | 0.18 101 | 8.84 51 | 17.4 50 | 0.58 62 | 6.14 59 | 14.7 63 | 0.34 43 | 17.8 34 | 26.4 43 | 5.23 53 | 43.2 85 | 58.0 75 | 5.27 95 | 11.2 140 | 42.0 152 | 1.15 134 | 9.72 39 | 40.9 45 | 0.42 34 | 21.6 85 | 52.1 93 | 0.48 60 |
NNF-EAC [101] | 77.6 | 5.52 125 | 15.7 60 | 0.34 177 | 9.27 77 | 18.1 68 | 0.48 38 | 6.53 103 | 13.8 41 | 0.40 84 | 18.2 65 | 27.0 55 | 5.71 148 | 43.0 48 | 57.7 42 | 5.11 47 | 10.4 40 | 39.1 41 | 0.83 44 | 9.89 66 | 41.6 73 | 0.52 134 | 21.7 100 | 52.2 102 | 0.49 84 |
DeepFlow [85] | 78.2 | 5.06 44 | 14.6 38 | 0.19 110 | 9.80 103 | 19.5 93 | 0.75 101 | 6.45 96 | 16.6 129 | 0.35 56 | 18.7 102 | 27.6 69 | 5.41 104 | 43.4 120 | 58.0 75 | 5.37 125 | 10.3 37 | 38.3 36 | 0.99 88 | 9.83 57 | 41.8 83 | 0.43 41 | 21.3 49 | 51.6 61 | 0.48 60 |
LME [70] | 78.3 | 5.13 51 | 15.8 65 | 0.14 48 | 9.15 73 | 18.4 80 | 0.51 48 | 6.32 75 | 15.7 99 | 0.34 43 | 17.9 38 | 27.1 57 | 5.34 83 | 43.8 176 | 58.8 174 | 5.79 190 | 10.8 84 | 41.2 115 | 0.93 66 | 9.86 62 | 41.3 63 | 0.43 41 | 21.3 49 | 51.5 54 | 0.47 45 |
DeepFlow2 [106] | 78.5 | 5.16 54 | 14.9 44 | 0.21 123 | 9.81 104 | 19.7 104 | 0.65 82 | 6.38 83 | 16.3 117 | 0.34 43 | 18.6 91 | 28.1 83 | 5.29 67 | 43.4 120 | 58.0 75 | 5.37 125 | 10.2 36 | 38.4 37 | 0.85 47 | 9.96 82 | 42.1 100 | 0.44 51 | 21.4 61 | 51.8 72 | 0.49 84 |
PRAFlow_RVC [177] | 78.6 | 5.29 80 | 16.9 120 | 0.11 32 | 9.02 69 | 18.2 71 | 0.48 38 | 5.95 40 | 13.8 41 | 0.29 19 | 18.6 91 | 28.9 122 | 5.50 125 | 43.3 97 | 58.0 75 | 5.39 133 | 10.4 40 | 39.2 44 | 0.87 50 | 9.71 36 | 41.2 60 | 0.46 71 | 22.1 149 | 52.6 124 | 0.54 160 |
PGM-C [118] | 78.7 | 5.18 58 | 16.0 76 | 0.15 58 | 8.97 63 | 18.2 71 | 0.46 35 | 6.51 99 | 16.4 123 | 0.33 34 | 18.4 76 | 28.5 102 | 5.36 91 | 43.4 120 | 58.1 97 | 5.40 141 | 10.7 64 | 40.5 89 | 0.96 81 | 9.92 70 | 41.9 87 | 0.45 61 | 21.4 61 | 51.8 72 | 0.48 60 |
FlowFields+ [128] | 79.1 | 5.23 69 | 16.6 107 | 0.15 58 | 8.91 58 | 18.3 73 | 0.45 28 | 6.28 69 | 15.9 103 | 0.34 43 | 18.2 65 | 28.1 83 | 5.34 83 | 43.4 120 | 58.2 111 | 5.35 118 | 10.9 98 | 41.6 138 | 1.10 123 | 9.79 50 | 41.5 68 | 0.46 71 | 21.3 49 | 51.5 54 | 0.48 60 |
WLIF-Flow [91] | 79.3 | 5.25 71 | 16.0 76 | 0.15 58 | 9.14 72 | 18.1 68 | 0.59 68 | 6.29 70 | 14.3 50 | 0.34 43 | 17.9 38 | 26.3 41 | 5.65 143 | 43.1 60 | 57.9 58 | 5.26 90 | 11.2 140 | 41.9 151 | 1.22 150 | 9.82 56 | 41.3 63 | 0.44 51 | 21.7 100 | 52.2 102 | 0.49 84 |
HCFN [157] | 79.7 | 5.11 47 | 16.0 76 | 0.15 58 | 9.40 85 | 19.6 99 | 0.48 38 | 6.30 74 | 15.5 95 | 0.36 62 | 18.0 46 | 27.6 69 | 5.26 61 | 43.0 48 | 57.8 47 | 5.17 55 | 12.5 191 | 40.5 89 | 3.11 195 | 10.0 88 | 42.1 100 | 0.49 106 | 21.4 61 | 51.7 63 | 0.48 60 |
EAI-Flow [147] | 80.1 | 5.33 93 | 15.9 68 | 0.17 86 | 9.73 101 | 19.6 99 | 0.71 92 | 6.61 116 | 16.3 117 | 0.36 62 | 18.3 70 | 28.1 83 | 5.11 33 | 43.1 60 | 57.9 58 | 5.31 104 | 10.7 64 | 39.9 57 | 0.98 87 | 10.1 103 | 42.7 130 | 0.51 128 | 21.1 39 | 50.9 41 | 0.44 31 |
Classic+NL [31] | 80.5 | 5.56 133 | 17.4 143 | 0.22 135 | 8.99 65 | 17.6 57 | 0.54 53 | 6.02 49 | 14.7 63 | 0.36 62 | 18.1 55 | 26.8 48 | 5.41 104 | 43.1 60 | 58.0 75 | 5.23 77 | 11.1 135 | 41.5 131 | 1.06 110 | 9.72 39 | 41.0 50 | 0.46 71 | 21.6 85 | 52.0 86 | 0.47 45 |
FlowFields [108] | 80.7 | 5.22 67 | 16.5 101 | 0.16 75 | 8.95 60 | 18.3 73 | 0.42 17 | 6.29 70 | 15.9 103 | 0.35 56 | 18.4 76 | 28.5 102 | 5.41 104 | 43.4 120 | 58.1 97 | 5.33 108 | 10.9 98 | 41.3 121 | 1.08 116 | 9.79 50 | 41.5 68 | 0.45 61 | 21.3 49 | 51.6 61 | 0.49 84 |
JOF [136] | 81.6 | 5.53 129 | 16.9 120 | 0.21 123 | 8.65 40 | 16.6 37 | 0.48 38 | 6.08 53 | 14.0 46 | 0.34 43 | 18.1 55 | 26.8 48 | 5.59 135 | 43.4 120 | 58.2 111 | 5.45 160 | 11.1 135 | 41.4 125 | 1.04 102 | 9.64 30 | 40.6 37 | 0.43 41 | 21.6 85 | 52.0 86 | 0.48 60 |
FC-2Layers-FF [74] | 82.3 | 5.40 104 | 17.0 124 | 0.17 86 | 8.15 24 | 15.3 23 | 0.42 17 | 6.14 59 | 14.9 71 | 0.35 56 | 18.1 55 | 27.2 62 | 5.31 72 | 43.3 97 | 58.2 111 | 5.36 122 | 11.2 140 | 42.2 157 | 1.20 144 | 9.75 42 | 41.0 50 | 0.49 106 | 21.7 100 | 52.1 93 | 0.48 60 |
SegFlow [156] | 82.6 | 5.19 59 | 16.1 84 | 0.15 58 | 9.01 68 | 18.4 80 | 0.48 38 | 6.40 89 | 16.0 107 | 0.30 21 | 18.3 70 | 28.3 92 | 5.37 93 | 43.3 97 | 58.1 97 | 5.41 145 | 10.8 84 | 41.0 108 | 1.14 131 | 10.0 88 | 42.4 110 | 0.46 71 | 21.4 61 | 51.8 72 | 0.48 60 |
S2F-IF [121] | 82.7 | 5.22 67 | 16.5 101 | 0.15 58 | 8.84 51 | 18.0 66 | 0.44 24 | 6.27 68 | 15.7 99 | 0.33 34 | 18.3 70 | 28.3 92 | 5.14 39 | 43.4 120 | 58.2 111 | 5.41 145 | 11.0 114 | 41.5 131 | 1.11 125 | 9.91 69 | 41.9 87 | 0.47 91 | 21.3 49 | 51.5 54 | 0.51 120 |
OFLAF [78] | 83.0 | 5.16 54 | 15.9 68 | 0.14 48 | 8.28 29 | 16.1 33 | 0.40 11 | 6.34 80 | 14.9 71 | 0.30 21 | 18.0 46 | 27.3 63 | 5.11 33 | 43.3 97 | 58.1 97 | 5.39 133 | 11.2 140 | 42.4 159 | 1.21 147 | 10.1 103 | 42.4 110 | 0.60 161 | 21.9 131 | 52.6 124 | 0.45 32 |
DF-Auto [113] | 83.3 | 5.03 40 | 13.8 34 | 0.17 86 | 10.2 117 | 19.3 89 | 0.79 108 | 6.09 54 | 14.4 53 | 0.34 43 | 18.7 102 | 28.1 83 | 5.24 56 | 43.2 85 | 57.9 58 | 5.31 104 | 10.4 40 | 39.3 45 | 0.93 66 | 10.1 103 | 42.3 106 | 0.49 106 | 21.9 131 | 52.9 144 | 0.53 146 |
AGIF+OF [84] | 83.4 | 5.60 139 | 17.4 143 | 0.15 58 | 8.95 60 | 17.7 58 | 0.59 68 | 6.20 65 | 14.5 57 | 0.43 99 | 17.9 38 | 26.6 46 | 5.22 48 | 43.4 120 | 58.3 135 | 5.38 131 | 11.1 135 | 42.0 152 | 1.01 93 | 9.87 65 | 40.7 40 | 0.42 34 | 21.5 71 | 52.0 86 | 0.48 60 |
MDP-Flow [26] | 84.7 | 5.03 40 | 15.4 49 | 0.14 48 | 8.68 42 | 17.4 50 | 0.47 36 | 5.97 42 | 14.3 50 | 0.32 29 | 18.9 119 | 28.5 102 | 5.50 125 | 43.2 85 | 58.0 75 | 5.39 133 | 11.2 140 | 42.6 162 | 1.31 161 | 10.3 124 | 43.1 145 | 0.49 106 | 21.4 61 | 51.7 63 | 0.47 45 |
FLAVR [188] | 86.1 | 7.34 193 | 18.1 159 | 0.06 10 | 12.1 170 | 17.5 55 | 0.85 120 | 4.63 33 | 11.8 33 | 0.63 153 | 31.2 197 | 41.5 196 | 4.66 25 | 35.1 14 | 49.5 20 | 2.95 8 | 7.41 13 | 29.1 13 | 0.22 7 | 13.9 195 | 41.6 73 | 0.69 172 | 18.2 13 | 42.5 11 | 0.60 184 |
S2D-Matching [83] | 86.4 | 5.56 133 | 17.3 137 | 0.18 101 | 9.96 109 | 19.9 109 | 0.66 84 | 5.99 44 | 14.7 63 | 0.41 91 | 17.9 38 | 26.4 43 | 5.40 101 | 43.2 85 | 58.0 75 | 5.17 55 | 11.2 140 | 42.0 152 | 1.17 139 | 9.93 74 | 41.1 56 | 0.43 41 | 21.5 71 | 51.8 72 | 0.48 60 |
TF+OM [98] | 88.5 | 4.98 38 | 14.6 38 | 0.20 116 | 9.03 70 | 17.9 64 | 0.55 56 | 6.29 70 | 16.2 112 | 0.39 79 | 18.5 86 | 28.0 77 | 5.50 125 | 43.3 97 | 58.1 97 | 5.47 165 | 10.6 56 | 39.8 52 | 1.03 100 | 9.86 62 | 42.0 93 | 0.51 128 | 21.7 100 | 52.3 107 | 0.52 136 |
ALD-Flow [66] | 88.6 | 5.37 99 | 16.1 84 | 0.23 143 | 9.53 88 | 19.2 88 | 0.57 60 | 6.51 99 | 16.7 133 | 0.34 43 | 18.2 65 | 27.9 73 | 5.32 75 | 43.4 120 | 58.3 135 | 5.46 163 | 10.7 64 | 39.9 57 | 0.99 88 | 9.76 47 | 41.2 60 | 0.44 51 | 21.8 114 | 52.7 133 | 0.47 45 |
CPM-Flow [114] | 88.8 | 5.20 65 | 16.1 84 | 0.16 75 | 8.99 65 | 18.3 73 | 0.47 36 | 6.42 94 | 16.0 107 | 0.30 21 | 18.8 110 | 29.2 137 | 5.43 111 | 43.4 120 | 58.2 111 | 5.44 158 | 10.6 56 | 40.1 63 | 1.02 95 | 10.0 88 | 42.6 122 | 0.45 61 | 21.4 61 | 51.8 72 | 0.53 146 |
ProFlow_ROB [142] | 89.0 | 5.09 46 | 15.4 49 | 0.17 86 | 9.40 85 | 19.3 89 | 0.55 56 | 6.34 80 | 15.4 91 | 0.33 34 | 18.4 76 | 28.7 112 | 5.39 99 | 43.5 148 | 58.3 135 | 5.41 145 | 10.4 40 | 39.3 45 | 0.79 37 | 10.2 116 | 42.9 138 | 0.49 106 | 21.8 114 | 52.6 124 | 0.49 84 |
Brox et al. [5] | 89.1 | 5.33 93 | 15.4 49 | 0.19 110 | 10.2 117 | 20.1 113 | 0.64 79 | 6.61 116 | 17.2 145 | 0.46 110 | 18.7 102 | 28.2 88 | 5.21 45 | 43.4 120 | 58.1 97 | 5.27 95 | 10.7 64 | 40.1 63 | 0.99 88 | 9.90 68 | 42.0 93 | 0.45 61 | 21.6 85 | 52.1 93 | 0.47 45 |
DMF_ROB [135] | 89.8 | 5.30 83 | 15.8 65 | 0.20 116 | 10.2 117 | 20.5 121 | 0.73 96 | 7.26 160 | 18.0 163 | 0.75 163 | 18.9 119 | 28.8 117 | 5.40 101 | 43.1 60 | 57.9 58 | 5.34 114 | 10.5 46 | 39.8 52 | 0.92 62 | 9.98 86 | 41.5 68 | 0.43 41 | 21.3 49 | 51.4 52 | 0.47 45 |
SVFilterOh [109] | 89.9 | 5.32 86 | 15.7 60 | 0.21 123 | 8.78 49 | 17.1 44 | 0.49 46 | 6.40 89 | 14.6 60 | 0.38 74 | 18.4 76 | 27.1 57 | 5.80 157 | 43.8 176 | 58.6 166 | 5.65 184 | 10.9 98 | 41.0 108 | 1.04 102 | 9.54 24 | 40.1 31 | 0.43 41 | 21.7 100 | 52.2 102 | 0.50 105 |
AggregFlow [95] | 90.0 | 5.64 146 | 17.2 132 | 0.22 135 | 9.81 104 | 19.5 93 | 0.59 68 | 6.11 57 | 14.4 53 | 0.28 13 | 18.9 119 | 29.0 127 | 5.30 69 | 43.4 120 | 58.2 111 | 5.33 108 | 10.7 64 | 40.2 69 | 0.96 81 | 9.89 66 | 41.7 77 | 0.50 118 | 21.4 61 | 51.7 63 | 0.50 105 |
UnDAF [187] | 92.6 | 5.32 86 | 17.0 124 | 0.17 86 | 9.37 82 | 19.1 85 | 0.45 28 | 6.70 126 | 17.8 160 | 0.34 43 | 19.1 133 | 31.2 175 | 5.44 114 | 43.1 60 | 57.8 47 | 5.15 52 | 10.8 84 | 41.0 108 | 1.02 95 | 9.92 70 | 41.7 77 | 0.47 91 | 21.8 114 | 52.5 122 | 0.48 60 |
RNLOD-Flow [119] | 92.6 | 5.32 86 | 16.6 107 | 0.16 75 | 9.70 98 | 19.6 99 | 0.60 72 | 6.57 109 | 15.5 95 | 0.51 126 | 18.2 65 | 27.4 64 | 5.22 48 | 43.1 60 | 58.0 75 | 5.28 100 | 11.0 114 | 41.4 125 | 1.08 116 | 9.85 60 | 41.3 63 | 0.50 118 | 21.9 131 | 52.7 133 | 0.49 84 |
Second-order prior [8] | 93.1 | 5.29 80 | 15.3 48 | 0.27 160 | 10.8 139 | 21.1 134 | 0.78 106 | 7.14 152 | 17.8 160 | 0.62 152 | 18.6 91 | 28.3 92 | 5.21 45 | 42.9 40 | 57.7 42 | 5.16 54 | 10.5 46 | 39.6 50 | 0.93 66 | 10.2 116 | 42.8 135 | 0.44 51 | 21.6 85 | 52.3 107 | 0.49 84 |
IROF-TV [53] | 93.8 | 5.35 98 | 16.6 107 | 0.21 123 | 9.10 71 | 17.8 61 | 0.57 60 | 6.61 116 | 16.8 135 | 0.44 103 | 17.8 34 | 26.9 52 | 5.37 93 | 43.5 148 | 58.4 150 | 5.50 173 | 10.5 46 | 40.1 63 | 0.90 59 | 9.98 86 | 42.2 103 | 0.46 71 | 21.6 85 | 52.1 93 | 0.51 120 |
DPOF [18] | 94.3 | 5.51 124 | 17.9 157 | 0.22 135 | 8.45 34 | 16.5 35 | 0.43 21 | 6.87 135 | 15.1 82 | 0.59 145 | 18.9 119 | 29.5 143 | 5.43 111 | 42.9 40 | 57.8 47 | 5.05 42 | 11.0 114 | 40.9 102 | 0.84 46 | 10.3 124 | 42.5 118 | 0.45 61 | 21.9 131 | 52.8 137 | 0.48 60 |
TC-Flow [46] | 96.8 | 5.19 59 | 15.9 68 | 0.21 123 | 9.57 89 | 19.6 99 | 0.63 75 | 6.78 132 | 17.0 141 | 0.36 62 | 18.1 55 | 27.4 64 | 5.61 139 | 43.3 97 | 58.2 111 | 5.46 163 | 11.0 114 | 41.6 138 | 1.18 140 | 9.93 74 | 41.7 77 | 0.45 61 | 21.5 71 | 52.0 86 | 0.49 84 |
OAR-Flow [123] | 97.5 | 5.28 78 | 15.5 53 | 0.18 101 | 9.71 100 | 19.5 93 | 0.67 85 | 6.43 95 | 16.3 117 | 0.28 13 | 18.0 46 | 27.6 69 | 5.23 53 | 43.5 148 | 58.4 150 | 5.48 168 | 10.9 98 | 41.3 121 | 1.13 130 | 10.2 116 | 42.9 138 | 0.51 128 | 21.7 100 | 52.3 107 | 0.45 32 |
Aniso. Huber-L1 [22] | 98.5 | 5.41 106 | 16.0 76 | 0.23 143 | 11.2 150 | 21.1 134 | 0.90 130 | 6.72 127 | 15.4 91 | 0.46 110 | 18.5 86 | 28.1 83 | 5.39 99 | 43.0 48 | 57.8 47 | 5.23 77 | 10.5 46 | 40.1 63 | 0.81 39 | 10.2 116 | 42.6 122 | 0.46 71 | 21.9 131 | 52.7 133 | 0.52 136 |
EpicFlow [100] | 98.9 | 5.19 59 | 16.1 84 | 0.15 58 | 9.60 90 | 19.8 108 | 0.58 62 | 6.40 89 | 16.4 123 | 0.35 56 | 18.6 91 | 29.1 135 | 5.47 120 | 43.4 120 | 58.2 111 | 5.42 150 | 10.8 84 | 41.2 115 | 1.08 116 | 10.1 103 | 42.5 118 | 0.54 141 | 21.5 71 | 52.0 86 | 0.49 84 |
ComplOF-FED-GPU [35] | 99.2 | 5.30 83 | 16.1 84 | 0.19 110 | 9.39 83 | 19.3 89 | 0.58 62 | 7.21 156 | 16.9 138 | 0.66 156 | 18.4 76 | 28.6 109 | 5.32 75 | 43.1 60 | 58.0 75 | 5.27 95 | 10.8 84 | 40.9 102 | 0.99 88 | 10.1 103 | 42.8 135 | 0.47 91 | 21.8 114 | 52.3 107 | 0.50 105 |
PBOFVI [189] | 99.8 | 5.84 163 | 19.0 173 | 0.15 58 | 10.5 131 | 20.8 127 | 0.86 123 | 6.54 104 | 14.9 71 | 0.37 69 | 18.4 76 | 28.3 92 | 5.49 123 | 43.3 97 | 58.1 97 | 5.43 152 | 10.7 64 | 39.8 52 | 0.89 57 | 10.3 124 | 42.3 106 | 0.55 144 | 21.2 41 | 51.2 45 | 0.50 105 |
FF++_ROB [141] | 99.9 | 5.19 59 | 16.1 84 | 0.13 38 | 9.36 81 | 19.0 83 | 0.51 48 | 6.52 102 | 16.2 112 | 0.46 110 | 18.6 91 | 28.8 117 | 5.41 104 | 43.4 120 | 58.2 111 | 5.44 158 | 11.3 149 | 41.2 115 | 1.71 185 | 9.85 60 | 41.8 83 | 0.49 106 | 21.3 49 | 51.5 54 | 0.57 179 |
FESL [72] | 100.4 | 5.65 149 | 17.3 137 | 0.17 86 | 9.18 74 | 18.3 73 | 0.55 56 | 6.22 66 | 15.0 78 | 0.44 103 | 18.8 110 | 28.4 97 | 5.38 95 | 43.4 120 | 58.2 111 | 5.41 145 | 11.3 149 | 42.8 166 | 1.19 142 | 9.92 70 | 41.5 68 | 0.42 34 | 21.8 114 | 52.3 107 | 0.48 60 |
Classic+CPF [82] | 101.3 | 5.59 138 | 17.3 137 | 0.16 75 | 9.22 75 | 18.3 73 | 0.58 62 | 6.00 45 | 14.9 71 | 0.40 84 | 18.0 46 | 26.8 48 | 5.22 48 | 43.5 148 | 58.5 159 | 5.38 131 | 11.4 156 | 43.0 175 | 1.15 134 | 10.1 103 | 41.9 87 | 0.45 61 | 22.0 140 | 53.1 152 | 0.49 84 |
PMF [73] | 102.1 | 5.32 86 | 16.6 107 | 0.14 48 | 9.67 96 | 19.9 109 | 0.45 28 | 6.89 141 | 18.2 167 | 0.49 122 | 18.4 76 | 27.9 73 | 5.21 45 | 43.5 148 | 58.4 150 | 5.22 73 | 11.0 114 | 40.5 89 | 1.27 157 | 9.86 62 | 41.8 83 | 0.46 71 | 22.1 149 | 53.1 152 | 0.50 105 |
Local-TV-L1 [65] | 104.0 | 5.29 80 | 14.6 38 | 0.35 179 | 11.5 158 | 21.1 134 | 1.23 169 | 6.39 86 | 14.9 71 | 0.37 69 | 19.0 127 | 27.9 73 | 6.64 179 | 43.3 97 | 58.3 135 | 5.33 108 | 10.9 98 | 39.0 39 | 1.58 184 | 9.79 50 | 41.6 73 | 0.48 100 | 21.3 49 | 51.5 54 | 0.53 146 |
RFlow [88] | 104.0 | 5.19 59 | 16.1 84 | 0.23 143 | 10.8 139 | 21.2 138 | 0.85 120 | 6.59 114 | 16.0 107 | 0.51 126 | 18.8 110 | 28.8 117 | 5.47 120 | 43.1 60 | 58.0 75 | 5.21 71 | 10.5 46 | 40.0 61 | 0.93 66 | 10.0 88 | 42.6 122 | 0.49 106 | 22.1 149 | 53.2 155 | 0.51 120 |
PWC-Net_RVC [143] | 105.0 | 5.47 118 | 18.4 167 | 0.13 38 | 9.99 110 | 20.9 130 | 0.53 51 | 6.74 128 | 17.5 154 | 0.41 91 | 18.3 70 | 28.8 117 | 5.25 60 | 43.5 148 | 58.3 135 | 5.45 160 | 11.2 140 | 41.0 108 | 1.22 150 | 9.93 74 | 41.8 83 | 0.46 71 | 21.3 49 | 51.3 49 | 0.51 120 |
TriFlow [93] | 105.9 | 5.42 107 | 17.0 124 | 0.24 149 | 10.9 142 | 21.2 138 | 0.91 132 | 6.61 116 | 16.8 135 | 0.36 62 | 18.9 119 | 29.0 127 | 5.28 65 | 43.2 85 | 58.2 111 | 5.37 125 | 11.0 114 | 40.9 102 | 0.95 76 | 9.96 82 | 41.7 77 | 0.49 106 | 21.7 100 | 52.2 102 | 0.47 45 |
EPPM w/o HM [86] | 106.1 | 5.34 96 | 17.3 137 | 0.13 38 | 9.73 101 | 20.1 113 | 0.53 51 | 7.33 167 | 18.7 175 | 0.63 153 | 18.5 86 | 29.1 135 | 5.33 80 | 43.1 60 | 58.0 75 | 5.20 65 | 11.0 114 | 41.4 125 | 0.96 81 | 10.3 124 | 42.3 106 | 0.56 149 | 21.8 114 | 52.4 118 | 0.49 84 |
Classic++ [32] | 106.5 | 5.33 93 | 16.0 76 | 0.28 161 | 10.2 117 | 20.3 117 | 0.69 89 | 6.87 135 | 16.6 129 | 0.50 123 | 18.7 102 | 27.7 72 | 5.64 141 | 43.2 85 | 58.0 75 | 5.26 90 | 11.0 114 | 40.7 97 | 1.34 164 | 9.93 74 | 41.9 87 | 0.47 91 | 21.7 100 | 52.4 118 | 0.50 105 |
CLG-TV [48] | 106.5 | 5.32 86 | 15.7 60 | 0.26 157 | 11.0 147 | 21.2 138 | 0.83 116 | 6.75 130 | 16.6 129 | 0.56 139 | 18.9 119 | 28.4 97 | 5.50 125 | 43.3 97 | 58.1 97 | 5.25 86 | 10.5 46 | 39.8 52 | 0.87 50 | 10.1 103 | 42.5 118 | 0.44 51 | 22.0 140 | 53.1 152 | 0.51 120 |
SIOF [67] | 106.9 | 5.64 146 | 16.5 101 | 0.28 161 | 11.3 152 | 21.6 151 | 0.91 132 | 6.32 75 | 15.9 103 | 0.42 93 | 18.7 102 | 28.4 97 | 5.36 91 | 43.0 48 | 57.9 58 | 5.17 55 | 10.7 64 | 40.2 69 | 0.95 76 | 10.1 103 | 42.4 110 | 0.50 118 | 22.2 159 | 53.2 155 | 0.53 146 |
Efficient-NL [60] | 108.0 | 5.54 131 | 17.1 129 | 0.16 75 | 9.60 90 | 18.9 82 | 0.56 59 | 6.99 147 | 15.1 82 | 0.75 163 | 18.8 110 | 28.2 88 | 5.26 61 | 43.1 60 | 57.9 58 | 5.25 86 | 11.6 162 | 43.4 184 | 1.04 102 | 10.1 103 | 42.5 118 | 0.48 100 | 22.6 172 | 53.8 169 | 0.48 60 |
CostFilter [40] | 108.8 | 5.44 109 | 17.7 152 | 0.13 38 | 9.64 93 | 20.1 113 | 0.45 28 | 6.96 145 | 19.1 178 | 0.47 115 | 18.5 86 | 28.9 122 | 5.13 38 | 43.6 165 | 58.5 159 | 5.32 107 | 11.1 135 | 40.5 89 | 1.48 176 | 9.94 79 | 42.1 100 | 0.45 61 | 21.8 114 | 52.6 124 | 0.49 84 |
LDOF [28] | 108.8 | 5.53 129 | 15.6 58 | 0.32 173 | 11.1 149 | 20.3 117 | 1.45 186 | 6.89 141 | 17.3 147 | 0.59 145 | 19.0 127 | 28.9 122 | 5.63 140 | 43.4 120 | 58.2 111 | 5.40 141 | 10.4 40 | 39.0 39 | 0.83 44 | 9.92 70 | 42.4 110 | 0.46 71 | 21.6 85 | 52.3 107 | 0.46 39 |
ContinualFlow_ROB [148] | 108.8 | 5.85 164 | 19.2 175 | 0.16 75 | 10.4 126 | 21.5 146 | 0.82 112 | 7.31 164 | 18.8 177 | 0.51 126 | 18.7 102 | 29.7 148 | 5.52 130 | 43.1 60 | 58.1 97 | 5.33 108 | 10.5 46 | 40.3 74 | 0.86 48 | 9.97 84 | 41.6 73 | 0.43 41 | 21.5 71 | 52.1 93 | 0.55 172 |
C-RAFT_RVC [181] | 109.2 | 6.28 177 | 20.0 179 | 0.17 86 | 10.1 114 | 21.0 132 | 0.69 89 | 6.78 132 | 16.5 127 | 0.50 123 | 19.2 138 | 30.3 156 | 5.49 123 | 43.2 85 | 57.9 58 | 5.20 65 | 11.0 114 | 41.7 145 | 0.94 71 | 10.0 88 | 42.2 103 | 0.41 30 | 21.6 85 | 51.9 81 | 0.51 120 |
Complementary OF [21] | 109.4 | 5.28 78 | 16.7 113 | 0.15 58 | 9.39 83 | 19.5 93 | 0.58 62 | 7.53 172 | 16.3 117 | 1.10 183 | 18.7 102 | 29.0 127 | 5.35 87 | 43.2 85 | 58.2 111 | 5.26 90 | 10.9 98 | 41.2 115 | 1.16 137 | 10.3 124 | 43.4 153 | 0.55 144 | 21.5 71 | 52.2 102 | 0.51 120 |
F-TV-L1 [15] | 109.6 | 5.56 133 | 16.0 76 | 0.36 183 | 11.4 156 | 21.5 146 | 0.94 138 | 6.88 138 | 17.0 141 | 0.66 156 | 18.7 102 | 27.9 73 | 5.79 156 | 42.6 35 | 57.8 47 | 5.01 39 | 10.6 56 | 39.3 45 | 1.02 95 | 10.0 88 | 41.9 87 | 0.55 144 | 22.0 140 | 52.8 137 | 0.51 120 |
OFH [38] | 109.9 | 5.49 121 | 16.6 107 | 0.25 153 | 10.3 123 | 20.2 116 | 0.77 104 | 6.88 138 | 17.8 160 | 0.36 62 | 18.4 76 | 28.9 122 | 5.24 56 | 43.1 60 | 58.0 75 | 5.26 90 | 10.9 98 | 41.5 131 | 1.18 140 | 10.3 124 | 43.0 142 | 0.58 156 | 21.6 85 | 52.1 93 | 0.50 105 |
p-harmonic [29] | 110.0 | 5.17 57 | 15.5 53 | 0.16 75 | 11.2 150 | 21.4 144 | 0.94 138 | 6.55 106 | 17.4 152 | 0.55 137 | 19.2 138 | 28.6 109 | 5.45 117 | 43.3 97 | 58.2 111 | 5.27 95 | 10.7 64 | 40.2 69 | 1.04 102 | 10.4 134 | 43.4 153 | 0.50 118 | 21.8 114 | 52.6 124 | 0.49 84 |
HBM-GC [103] | 110.0 | 5.52 125 | 17.1 129 | 0.22 135 | 9.64 93 | 19.3 89 | 0.59 68 | 5.93 39 | 13.2 35 | 0.31 28 | 18.8 110 | 28.0 77 | 5.83 161 | 44.3 188 | 59.2 181 | 5.71 186 | 11.5 159 | 43.3 182 | 1.32 162 | 9.75 42 | 40.6 37 | 0.39 26 | 22.0 140 | 52.9 144 | 0.50 105 |
TC/T-Flow [77] | 110.8 | 5.73 156 | 17.3 137 | 0.22 135 | 9.66 95 | 19.7 104 | 0.63 75 | 6.24 67 | 14.9 71 | 0.32 29 | 18.6 91 | 28.7 112 | 5.38 95 | 43.5 148 | 58.4 150 | 5.50 173 | 11.0 114 | 41.4 125 | 0.89 57 | 10.2 116 | 43.0 142 | 0.58 156 | 21.9 131 | 53.0 149 | 0.45 32 |
CBF [12] | 111.3 | 4.98 38 | 14.8 43 | 0.18 101 | 10.2 117 | 19.9 109 | 0.71 92 | 6.63 124 | 15.2 87 | 0.42 93 | 19.0 127 | 28.5 102 | 6.39 175 | 43.4 120 | 58.3 135 | 5.49 170 | 10.7 64 | 40.4 81 | 0.95 76 | 10.1 103 | 42.6 122 | 0.50 118 | 22.3 164 | 53.5 165 | 0.53 146 |
LFNet_ROB [145] | 111.7 | 5.45 112 | 17.6 150 | 0.13 38 | 10.4 126 | 21.2 138 | 0.73 96 | 6.75 130 | 18.1 165 | 0.47 115 | 18.4 76 | 28.7 112 | 5.27 64 | 43.1 60 | 58.0 75 | 5.20 65 | 11.1 135 | 41.8 148 | 1.10 123 | 10.4 134 | 42.7 130 | 0.50 118 | 21.7 100 | 52.0 86 | 0.60 184 |
Steered-L1 [116] | 112.1 | 5.12 49 | 16.0 76 | 0.17 86 | 9.62 92 | 19.5 93 | 0.88 127 | 7.15 153 | 15.6 97 | 1.00 175 | 19.4 148 | 28.5 102 | 6.39 175 | 43.5 148 | 58.5 159 | 5.19 61 | 10.8 84 | 40.8 100 | 1.20 144 | 9.95 81 | 42.6 122 | 0.52 134 | 21.7 100 | 52.6 124 | 0.48 60 |
GraphCuts [14] | 112.8 | 5.98 170 | 17.5 148 | 0.24 149 | 10.0 111 | 19.5 93 | 0.76 102 | 8.24 185 | 14.6 60 | 1.06 178 | 19.7 154 | 29.0 127 | 5.69 146 | 42.9 40 | 57.9 58 | 4.97 37 | 10.5 46 | 40.3 74 | 0.87 50 | 10.0 88 | 42.4 110 | 0.58 156 | 22.1 149 | 53.2 155 | 0.51 120 |
MLDP_OF [87] | 113.2 | 5.44 109 | 17.2 132 | 0.17 86 | 9.84 106 | 19.9 109 | 0.62 74 | 6.19 63 | 14.8 69 | 0.28 13 | 18.6 91 | 27.4 64 | 5.71 148 | 43.3 97 | 58.2 111 | 5.34 114 | 11.9 172 | 43.3 182 | 1.57 183 | 10.4 134 | 42.6 122 | 0.56 149 | 21.7 100 | 52.3 107 | 0.59 182 |
AdaConv-v1 [124] | 113.5 | 6.72 185 | 21.8 190 | 0.25 153 | 12.8 177 | 22.4 170 | 1.80 193 | 8.18 184 | 18.4 169 | 1.46 192 | 24.3 190 | 34.7 192 | 7.39 187 | 41.5 31 | 56.1 31 | 4.28 31 | 9.57 33 | 36.9 35 | 0.71 35 | 9.75 42 | 41.0 50 | 0.60 161 | 20.5 33 | 49.7 34 | 0.42 27 |
SRR-TVOF-NL [89] | 114.8 | 5.70 154 | 16.9 120 | 0.23 143 | 10.3 123 | 21.0 132 | 0.88 127 | 6.57 109 | 16.1 110 | 0.39 79 | 19.2 138 | 28.7 112 | 5.12 36 | 43.2 85 | 58.3 135 | 5.27 95 | 10.8 84 | 40.9 102 | 0.86 48 | 10.6 150 | 42.3 106 | 0.46 71 | 22.5 168 | 53.8 169 | 0.54 160 |
BlockOverlap [61] | 115.6 | 5.34 96 | 14.6 38 | 0.41 188 | 11.4 156 | 20.6 122 | 1.42 182 | 6.49 97 | 14.1 48 | 0.61 150 | 18.9 119 | 26.9 52 | 7.34 186 | 44.2 186 | 58.9 177 | 5.91 192 | 11.0 114 | 39.9 57 | 1.39 171 | 9.81 55 | 41.3 63 | 0.46 71 | 21.5 71 | 51.7 63 | 0.51 120 |
Sparse Occlusion [54] | 116.3 | 5.43 108 | 16.8 116 | 0.23 143 | 10.3 123 | 20.8 127 | 0.63 75 | 6.51 99 | 15.0 78 | 0.44 103 | 19.0 127 | 29.0 127 | 5.42 109 | 43.4 120 | 58.2 111 | 5.41 145 | 11.3 149 | 42.9 173 | 1.14 131 | 10.1 103 | 42.2 103 | 0.42 34 | 22.1 149 | 53.2 155 | 0.49 84 |
CRTflow [81] | 117.7 | 5.48 120 | 16.5 101 | 0.34 177 | 10.7 137 | 20.7 124 | 0.86 123 | 7.25 159 | 18.6 172 | 0.60 149 | 18.8 110 | 28.8 117 | 5.98 167 | 43.4 120 | 58.2 111 | 5.43 152 | 10.7 64 | 40.4 81 | 0.95 76 | 9.93 74 | 42.0 93 | 0.49 106 | 21.7 100 | 52.3 107 | 0.49 84 |
LiteFlowNet [138] | 118.8 | 5.61 140 | 18.9 172 | 0.15 58 | 9.94 108 | 20.9 130 | 0.65 82 | 6.33 79 | 17.5 154 | 0.39 79 | 19.2 138 | 30.9 169 | 5.94 166 | 43.1 60 | 57.9 58 | 5.36 122 | 11.3 149 | 42.2 157 | 1.06 110 | 10.7 153 | 43.5 155 | 0.62 165 | 21.2 41 | 51.2 45 | 0.54 160 |
MCPFlow_RVC [197] | 119.1 | 6.00 171 | 19.9 178 | 0.15 58 | 9.24 76 | 19.0 83 | 0.51 48 | 6.57 109 | 16.2 112 | 0.33 34 | 18.8 110 | 29.0 127 | 5.43 111 | 43.7 174 | 58.6 166 | 5.24 80 | 11.2 140 | 42.8 166 | 1.00 92 | 10.0 88 | 42.0 93 | 0.45 61 | 23.4 189 | 57.0 197 | 0.80 196 |
AugFNG_ROB [139] | 120.1 | 5.68 152 | 18.7 169 | 0.15 58 | 10.9 142 | 21.8 155 | 0.93 136 | 7.28 161 | 20.6 189 | 0.48 120 | 19.3 144 | 30.7 162 | 5.40 101 | 43.6 165 | 58.6 166 | 5.47 165 | 10.6 56 | 40.1 63 | 0.82 40 | 10.5 146 | 43.0 142 | 0.50 118 | 20.9 35 | 50.7 38 | 0.48 60 |
SimpleFlow [49] | 120.2 | 5.52 125 | 17.5 148 | 0.18 101 | 10.2 117 | 19.7 104 | 0.73 96 | 7.32 166 | 15.8 101 | 1.05 177 | 18.0 46 | 26.8 48 | 5.44 114 | 43.3 97 | 58.1 97 | 5.33 108 | 11.3 149 | 42.9 173 | 1.22 150 | 10.3 124 | 44.6 169 | 1.04 192 | 21.8 114 | 52.6 124 | 0.47 45 |
IAOF [50] | 121.3 | 5.97 169 | 16.8 116 | 0.29 166 | 14.1 192 | 24.8 192 | 1.41 181 | 6.05 51 | 16.2 112 | 0.61 150 | 20.1 162 | 29.5 143 | 5.47 120 | 43.0 48 | 57.8 47 | 5.19 61 | 10.7 64 | 40.3 74 | 0.94 71 | 10.4 134 | 43.3 150 | 0.46 71 | 22.0 140 | 52.8 137 | 0.54 160 |
FlowNet2 [120] | 121.4 | 6.90 187 | 21.5 189 | 0.25 153 | 10.6 135 | 20.7 124 | 0.82 112 | 7.10 150 | 17.3 147 | 0.54 133 | 19.4 148 | 31.8 178 | 5.57 134 | 43.4 120 | 58.3 135 | 5.39 133 | 10.7 64 | 40.3 74 | 0.90 59 | 10.0 88 | 42.0 93 | 0.46 71 | 21.6 85 | 51.9 81 | 0.51 120 |
Modified CLG [34] | 123.3 | 5.05 43 | 15.1 45 | 0.19 110 | 12.3 173 | 22.2 164 | 1.30 173 | 6.81 134 | 18.3 168 | 0.66 156 | 19.3 144 | 29.7 148 | 5.34 83 | 43.4 120 | 58.2 111 | 5.29 103 | 10.8 84 | 40.6 94 | 1.15 134 | 10.2 116 | 43.6 156 | 0.47 91 | 21.9 131 | 52.7 133 | 0.53 146 |
CompactFlow_ROB [155] | 124.2 | 5.67 151 | 19.0 173 | 0.14 48 | 10.4 126 | 21.6 151 | 0.77 104 | 7.21 156 | 19.2 179 | 0.46 110 | 19.3 144 | 31.0 171 | 5.65 143 | 43.2 85 | 58.0 75 | 5.24 80 | 11.0 114 | 41.8 148 | 0.87 50 | 10.6 150 | 43.3 150 | 0.49 106 | 21.8 114 | 52.3 107 | 0.53 146 |
FlowNetS+ft+v [110] | 124.7 | 5.40 104 | 15.5 53 | 0.29 166 | 11.7 164 | 21.7 153 | 1.62 189 | 6.88 138 | 17.1 144 | 0.56 139 | 19.0 127 | 29.2 137 | 5.73 152 | 43.5 148 | 58.4 150 | 5.56 179 | 10.5 46 | 39.9 57 | 0.95 76 | 10.1 103 | 42.9 138 | 0.52 134 | 21.8 114 | 52.5 122 | 0.48 60 |
LSM_FLOW_RVC [182] | 125.2 | 5.96 168 | 20.1 181 | 0.18 101 | 10.9 142 | 22.7 172 | 0.79 108 | 6.87 135 | 18.6 172 | 0.44 103 | 19.1 133 | 30.6 159 | 5.35 87 | 43.1 60 | 57.9 58 | 5.20 65 | 10.9 98 | 41.1 114 | 1.07 115 | 10.7 153 | 43.2 147 | 0.53 138 | 21.8 114 | 52.1 93 | 0.61 188 |
Occlusion-TV-L1 [63] | 125.6 | 5.32 86 | 16.2 93 | 0.28 161 | 11.3 152 | 21.9 158 | 0.96 143 | 6.60 115 | 16.9 138 | 0.58 143 | 19.1 133 | 28.9 122 | 5.72 150 | 43.4 120 | 58.2 111 | 5.24 80 | 10.9 98 | 40.3 74 | 1.26 156 | 10.9 161 | 42.6 122 | 0.81 182 | 21.8 114 | 52.4 118 | 0.49 84 |
EPMNet [131] | 126.8 | 6.85 186 | 22.5 191 | 0.21 123 | 10.5 131 | 20.3 117 | 0.84 119 | 7.10 150 | 17.3 147 | 0.54 133 | 19.9 155 | 33.4 188 | 5.56 133 | 43.4 120 | 58.3 135 | 5.39 133 | 11.0 114 | 41.6 138 | 0.92 62 | 10.0 88 | 42.0 93 | 0.46 71 | 21.6 85 | 51.8 72 | 0.54 160 |
Shiralkar [42] | 127.0 | 5.73 156 | 18.1 159 | 0.21 123 | 11.6 160 | 22.0 160 | 0.88 127 | 6.74 128 | 19.9 183 | 0.73 161 | 20.3 166 | 30.1 154 | 5.46 119 | 42.6 35 | 57.5 36 | 4.99 38 | 11.3 149 | 41.5 131 | 1.35 165 | 11.0 164 | 44.9 172 | 0.67 168 | 21.5 71 | 51.7 63 | 0.48 60 |
TCOF [69] | 127.1 | 5.56 133 | 16.8 116 | 0.17 86 | 11.8 165 | 22.1 162 | 1.02 151 | 6.09 54 | 15.0 78 | 0.30 21 | 19.0 127 | 29.4 141 | 5.67 145 | 43.4 120 | 58.3 135 | 5.17 55 | 11.4 156 | 43.1 178 | 1.02 95 | 11.0 164 | 43.9 159 | 0.48 100 | 23.1 184 | 55.1 189 | 0.52 136 |
HBpMotionGpu [43] | 127.1 | 5.80 160 | 16.3 95 | 0.42 189 | 13.1 180 | 23.8 183 | 1.34 176 | 6.32 75 | 14.9 71 | 0.38 74 | 19.9 155 | 30.4 158 | 5.80 157 | 43.1 60 | 58.3 135 | 5.39 133 | 11.3 149 | 41.0 108 | 1.21 147 | 9.94 79 | 41.9 87 | 0.43 41 | 22.1 149 | 52.9 144 | 0.53 146 |
3DFlow [133] | 128.4 | 5.58 137 | 17.4 143 | 0.16 75 | 9.35 80 | 19.1 85 | 0.61 73 | 6.93 144 | 15.0 78 | 0.44 103 | 18.6 91 | 28.4 97 | 5.54 132 | 43.4 120 | 58.2 111 | 5.40 141 | 12.1 179 | 44.7 196 | 1.35 165 | 11.3 171 | 44.6 169 | 0.57 153 | 22.4 166 | 53.7 168 | 0.50 105 |
Fusion [6] | 128.6 | 5.37 99 | 16.9 120 | 0.21 123 | 9.33 79 | 18.3 73 | 0.54 53 | 6.39 86 | 15.1 82 | 0.54 133 | 20.0 160 | 29.8 150 | 5.41 104 | 43.5 148 | 59.2 181 | 5.14 50 | 11.5 159 | 43.7 187 | 1.21 147 | 10.5 146 | 44.1 162 | 0.52 134 | 23.1 184 | 55.4 190 | 0.52 136 |
CNN-flow-warp+ref [115] | 129.0 | 4.95 36 | 14.4 36 | 0.22 135 | 10.9 142 | 21.2 138 | 1.23 169 | 7.43 169 | 18.0 163 | 0.79 166 | 20.9 176 | 29.8 150 | 6.84 182 | 43.5 148 | 58.3 135 | 5.57 180 | 10.7 64 | 40.3 74 | 1.22 150 | 10.3 124 | 44.4 167 | 0.67 168 | 21.6 85 | 52.1 93 | 0.47 45 |
Adaptive [20] | 129.0 | 5.50 123 | 16.7 113 | 0.30 168 | 11.8 165 | 22.2 164 | 1.02 151 | 6.58 113 | 16.5 127 | 0.53 132 | 18.6 91 | 28.0 77 | 5.60 138 | 43.5 148 | 58.3 135 | 5.21 71 | 11.0 114 | 41.3 121 | 1.09 121 | 10.4 134 | 42.8 135 | 0.46 71 | 22.2 159 | 53.5 165 | 0.54 160 |
BriefMatch [122] | 130.8 | 5.45 112 | 16.5 101 | 0.31 172 | 9.84 106 | 19.6 99 | 1.43 183 | 7.55 174 | 15.6 97 | 1.08 180 | 20.3 166 | 29.2 137 | 7.97 194 | 43.3 97 | 58.3 135 | 5.43 152 | 12.0 176 | 41.5 131 | 2.37 191 | 9.84 59 | 41.5 68 | 0.56 149 | 21.4 61 | 51.7 63 | 0.52 136 |
ResPWCR_ROB [140] | 130.9 | 5.54 131 | 17.8 154 | 0.20 116 | 10.6 135 | 21.5 146 | 0.80 111 | 7.77 178 | 17.7 159 | 0.44 103 | 19.4 148 | 30.7 162 | 5.93 163 | 42.7 37 | 57.6 38 | 5.10 46 | 12.4 188 | 41.7 145 | 2.49 192 | 10.9 161 | 42.7 130 | 0.58 156 | 21.7 100 | 52.3 107 | 0.52 136 |
Nguyen [33] | 132.6 | 5.63 145 | 15.9 68 | 0.23 143 | 13.8 186 | 23.8 183 | 1.37 178 | 6.89 141 | 18.7 175 | 0.59 145 | 20.8 175 | 30.8 166 | 5.44 114 | 43.1 60 | 58.1 97 | 5.14 50 | 10.6 56 | 40.4 81 | 0.93 66 | 11.9 183 | 45.9 179 | 0.73 178 | 22.0 140 | 52.8 137 | 0.52 136 |
CVENG22+RIC [199] | 133.0 | 5.44 109 | 16.7 113 | 0.22 135 | 10.1 114 | 20.6 122 | 0.63 75 | 6.62 122 | 17.4 152 | 0.44 103 | 19.3 144 | 30.6 159 | 5.59 135 | 43.5 148 | 58.4 150 | 5.51 176 | 11.0 114 | 41.7 145 | 1.06 110 | 10.4 134 | 43.8 158 | 0.56 149 | 21.9 131 | 53.0 149 | 0.53 146 |
2D-CLG [1] | 135.5 | 5.27 77 | 15.7 60 | 0.21 123 | 13.1 180 | 22.8 173 | 1.37 178 | 7.29 162 | 17.3 147 | 0.94 172 | 20.3 166 | 30.2 155 | 5.34 83 | 43.5 148 | 58.4 150 | 5.37 125 | 10.8 84 | 40.7 97 | 1.22 150 | 10.5 146 | 44.3 165 | 0.59 160 | 22.0 140 | 52.3 107 | 0.50 105 |
TV-L1-improved [17] | 135.6 | 5.26 75 | 16.0 76 | 0.28 161 | 11.6 160 | 22.0 160 | 1.06 159 | 7.21 156 | 16.3 117 | 0.79 166 | 18.8 110 | 28.5 102 | 5.70 147 | 43.5 148 | 58.5 159 | 5.22 73 | 11.0 114 | 41.5 131 | 1.05 108 | 10.4 134 | 44.6 169 | 0.74 180 | 22.1 149 | 53.2 155 | 0.53 146 |
IIOF-NLDP [129] | 135.9 | 5.65 149 | 17.8 154 | 0.15 58 | 10.5 131 | 21.5 146 | 0.72 95 | 6.98 146 | 15.2 87 | 0.42 93 | 19.5 151 | 29.3 140 | 6.15 171 | 43.1 60 | 58.0 75 | 5.20 65 | 12.2 183 | 44.1 190 | 1.54 180 | 11.9 183 | 49.2 195 | 1.34 196 | 22.2 159 | 53.0 149 | 0.50 105 |
IRR-PWC_RVC [180] | 135.9 | 6.21 175 | 20.0 179 | 0.20 116 | 10.4 126 | 21.3 143 | 0.85 120 | 7.49 171 | 20.5 188 | 0.47 115 | 20.1 162 | 32.1 179 | 5.45 117 | 43.6 165 | 58.6 166 | 5.53 177 | 10.9 98 | 41.5 131 | 0.96 81 | 10.4 134 | 43.1 145 | 0.46 71 | 21.7 100 | 52.4 118 | 0.49 84 |
SPSA-learn [13] | 136.1 | 5.45 112 | 15.4 49 | 0.25 153 | 11.6 160 | 21.4 144 | 1.15 165 | 7.65 176 | 16.6 129 | 1.26 187 | 20.1 162 | 28.2 88 | 5.30 69 | 43.3 97 | 58.2 111 | 5.42 150 | 10.9 98 | 41.0 108 | 1.14 131 | 11.6 177 | 50.4 197 | 1.71 198 | 22.2 159 | 53.3 163 | 0.49 84 |
SegOF [10] | 136.5 | 5.25 71 | 15.9 68 | 0.20 116 | 10.9 142 | 20.8 127 | 0.82 112 | 8.07 183 | 18.4 169 | 1.18 185 | 20.0 160 | 32.3 180 | 5.52 130 | 43.3 97 | 58.2 111 | 5.35 118 | 11.4 156 | 43.1 178 | 1.38 170 | 10.7 153 | 46.3 180 | 0.96 190 | 21.5 71 | 51.7 63 | 0.53 146 |
TriangleFlow [30] | 138.5 | 5.85 164 | 18.2 162 | 0.26 157 | 11.0 147 | 21.8 155 | 0.79 108 | 7.17 154 | 16.3 117 | 0.58 143 | 19.6 153 | 30.7 162 | 5.74 153 | 42.8 38 | 57.8 47 | 4.95 36 | 11.6 162 | 42.8 166 | 1.05 108 | 10.8 157 | 45.8 177 | 0.73 178 | 22.8 178 | 54.3 182 | 0.51 120 |
Black & Anandan [4] | 140.0 | 5.71 155 | 15.5 53 | 0.35 179 | 12.7 176 | 22.3 168 | 1.12 161 | 7.89 179 | 18.1 165 | 1.06 178 | 20.5 173 | 30.3 156 | 5.42 109 | 43.6 165 | 58.6 166 | 5.35 118 | 10.6 56 | 39.7 51 | 0.91 61 | 10.9 161 | 44.1 162 | 0.50 118 | 22.2 159 | 52.9 144 | 0.53 146 |
Rannacher [23] | 140.2 | 5.39 102 | 16.6 107 | 0.30 168 | 11.6 160 | 22.2 164 | 1.01 147 | 7.17 154 | 16.9 138 | 0.92 171 | 18.6 91 | 28.4 97 | 5.74 153 | 43.6 165 | 58.5 159 | 5.33 108 | 11.0 114 | 41.6 138 | 1.11 125 | 10.4 134 | 44.3 165 | 0.72 177 | 21.9 131 | 52.8 137 | 0.54 160 |
ROF-ND [105] | 140.2 | 6.15 173 | 16.4 97 | 0.14 48 | 10.4 126 | 21.1 134 | 0.70 91 | 7.09 149 | 15.9 103 | 0.40 84 | 20.7 174 | 32.9 185 | 5.82 159 | 43.4 120 | 58.2 111 | 5.37 125 | 11.6 162 | 43.4 184 | 1.16 137 | 11.6 177 | 46.4 181 | 0.55 144 | 22.6 172 | 53.8 169 | 0.54 160 |
TVL1_RVC [175] | 140.2 | 5.69 153 | 15.5 53 | 0.35 179 | 13.7 185 | 23.9 185 | 1.38 180 | 6.66 125 | 17.5 154 | 0.67 159 | 20.4 171 | 29.6 145 | 5.50 125 | 43.6 165 | 58.5 159 | 5.43 152 | 10.8 84 | 40.3 74 | 1.08 116 | 10.5 146 | 44.4 167 | 0.65 166 | 21.8 114 | 52.6 124 | 0.49 84 |
OFRF [132] | 142.8 | 6.29 178 | 18.2 162 | 0.38 185 | 11.8 165 | 22.3 168 | 1.17 167 | 6.61 116 | 17.3 147 | 0.43 99 | 19.2 138 | 29.4 141 | 5.31 72 | 43.4 120 | 58.4 150 | 5.35 118 | 11.7 168 | 42.8 166 | 1.28 158 | 10.4 134 | 43.2 147 | 0.49 106 | 22.0 140 | 53.3 163 | 0.51 120 |
Ad-TV-NDC [36] | 143.2 | 6.08 172 | 15.9 68 | 0.60 192 | 13.0 178 | 22.8 173 | 1.36 177 | 6.55 106 | 16.4 123 | 0.56 139 | 20.9 176 | 30.6 159 | 6.29 173 | 44.1 182 | 59.0 179 | 5.43 152 | 10.7 64 | 39.4 48 | 1.11 125 | 10.4 134 | 43.3 150 | 0.51 128 | 22.1 149 | 52.9 144 | 0.53 146 |
IAOF2 [51] | 144.6 | 6.17 174 | 18.3 166 | 0.30 168 | 12.0 168 | 23.3 180 | 0.93 136 | 5.90 38 | 16.1 110 | 0.42 93 | 20.4 171 | 31.2 175 | 5.75 155 | 43.7 174 | 58.9 177 | 5.39 133 | 11.2 140 | 42.0 152 | 1.08 116 | 10.3 124 | 42.7 130 | 0.48 100 | 22.7 175 | 54.2 179 | 0.52 136 |
Correlation Flow [76] | 144.8 | 5.61 140 | 17.8 154 | 0.15 58 | 10.8 139 | 21.7 153 | 0.82 112 | 6.40 89 | 14.8 69 | 0.42 93 | 19.1 133 | 29.0 127 | 6.04 169 | 43.9 178 | 58.6 166 | 6.05 194 | 12.0 176 | 43.9 188 | 1.29 160 | 11.0 164 | 45.3 174 | 0.70 174 | 22.5 168 | 54.1 177 | 0.51 120 |
Filter Flow [19] | 146.5 | 5.64 146 | 16.4 97 | 0.32 173 | 12.2 172 | 22.2 164 | 1.08 160 | 6.61 116 | 16.2 112 | 0.57 142 | 20.3 166 | 29.0 127 | 6.32 174 | 44.1 182 | 59.1 180 | 5.74 188 | 10.9 98 | 40.7 97 | 1.04 102 | 10.2 116 | 43.2 147 | 0.54 141 | 22.7 175 | 54.3 182 | 0.54 160 |
Bartels [41] | 147.9 | 5.52 125 | 17.2 132 | 0.40 187 | 10.0 111 | 20.7 124 | 0.94 138 | 6.50 98 | 15.8 101 | 0.54 133 | 19.9 155 | 30.0 153 | 7.79 191 | 44.8 192 | 59.2 181 | 6.72 197 | 12.8 193 | 42.4 159 | 3.06 194 | 10.0 88 | 42.0 93 | 0.54 141 | 22.1 149 | 53.2 155 | 0.54 160 |
Dynamic MRF [7] | 150.0 | 5.39 102 | 17.4 143 | 0.20 116 | 10.5 131 | 21.8 155 | 0.74 100 | 7.60 175 | 20.3 187 | 0.99 174 | 21.3 179 | 31.1 173 | 7.06 184 | 43.0 48 | 58.1 97 | 5.34 114 | 11.6 162 | 43.0 175 | 1.49 177 | 10.7 153 | 45.8 177 | 0.85 183 | 22.5 168 | 53.2 155 | 0.55 172 |
LocallyOriented [52] | 150.2 | 5.79 159 | 17.9 157 | 0.26 157 | 12.1 170 | 23.2 177 | 1.01 147 | 7.05 148 | 17.6 157 | 0.51 126 | 19.9 155 | 30.9 169 | 5.72 150 | 43.3 97 | 58.2 111 | 5.23 77 | 11.9 172 | 42.6 162 | 1.52 179 | 10.8 157 | 44.0 160 | 0.53 138 | 22.5 168 | 54.0 175 | 0.52 136 |
ACK-Prior [27] | 153.0 | 5.46 115 | 17.7 152 | 0.15 58 | 9.70 98 | 20.3 117 | 0.67 85 | 7.76 177 | 16.4 123 | 1.08 180 | 19.9 155 | 31.0 171 | 6.01 168 | 44.7 191 | 59.6 188 | 5.78 189 | 12.1 179 | 44.2 192 | 1.33 163 | 10.6 150 | 44.2 164 | 0.53 138 | 23.4 189 | 56.1 194 | 0.52 136 |
StereoOF-V1MT [117] | 154.0 | 5.94 167 | 18.8 171 | 0.20 116 | 11.3 152 | 22.6 171 | 0.94 138 | 7.95 180 | 19.6 181 | 1.00 175 | 21.6 180 | 30.7 162 | 6.76 180 | 43.3 97 | 58.3 135 | 5.37 125 | 12.1 179 | 42.6 162 | 1.82 188 | 11.6 177 | 46.7 184 | 0.90 186 | 21.8 114 | 51.8 72 | 0.50 105 |
StereoFlow [44] | 156.7 | 10.4 198 | 27.1 198 | 0.35 179 | 16.3 197 | 28.4 198 | 1.03 154 | 6.55 106 | 16.8 135 | 0.50 123 | 18.8 110 | 28.2 88 | 5.38 95 | 45.7 197 | 62.1 197 | 5.58 181 | 13.6 197 | 50.3 198 | 1.28 158 | 10.0 88 | 42.4 110 | 0.49 106 | 23.0 180 | 55.5 191 | 0.56 177 |
TI-DOFE [24] | 156.9 | 6.39 179 | 18.7 169 | 0.36 183 | 14.8 193 | 25.5 195 | 1.66 190 | 7.45 170 | 20.2 185 | 0.78 165 | 22.8 187 | 32.5 182 | 6.04 169 | 43.2 85 | 58.4 150 | 5.17 55 | 10.9 98 | 40.4 81 | 0.92 62 | 11.2 169 | 45.6 176 | 0.65 166 | 23.2 186 | 54.2 179 | 0.65 191 |
2bit-BM-tele [96] | 157.4 | 5.61 140 | 15.9 68 | 0.50 190 | 11.5 158 | 21.9 158 | 1.04 156 | 6.57 109 | 15.1 82 | 0.79 166 | 20.1 162 | 29.8 150 | 7.50 188 | 44.8 192 | 59.6 188 | 6.26 195 | 12.2 183 | 42.8 166 | 2.11 190 | 11.2 169 | 49.2 195 | 1.26 194 | 21.8 114 | 52.1 93 | 0.55 172 |
UnFlow [127] | 157.9 | 6.39 179 | 20.9 183 | 0.21 123 | 13.0 178 | 24.4 191 | 1.15 165 | 8.06 182 | 21.1 190 | 0.82 169 | 19.2 138 | 29.6 145 | 5.64 141 | 43.1 60 | 58.0 75 | 5.40 141 | 11.8 170 | 42.8 166 | 1.36 168 | 11.0 164 | 42.4 110 | 0.70 174 | 24.3 197 | 54.8 187 | 0.70 193 |
Horn & Schunck [3] | 158.5 | 5.81 161 | 17.3 137 | 0.21 123 | 13.1 180 | 23.5 181 | 1.26 172 | 8.03 181 | 19.7 182 | 1.08 180 | 22.6 185 | 32.7 184 | 5.59 135 | 43.6 165 | 58.7 172 | 5.39 133 | 10.9 98 | 40.6 94 | 1.02 95 | 11.7 181 | 46.5 182 | 0.60 161 | 22.8 178 | 53.9 173 | 0.55 172 |
WRT [146] | 161.5 | 5.83 162 | 18.2 162 | 0.17 86 | 11.3 152 | 21.5 146 | 0.92 135 | 8.29 186 | 15.2 87 | 1.12 184 | 19.5 151 | 29.6 145 | 5.93 163 | 43.6 165 | 58.7 172 | 5.31 104 | 12.4 188 | 45.8 197 | 1.43 174 | 12.1 186 | 51.8 198 | 1.66 197 | 22.6 172 | 54.6 185 | 0.58 180 |
WOLF_ROB [144] | 170.9 | 6.71 184 | 21.0 184 | 0.32 173 | 12.5 174 | 23.2 177 | 1.12 161 | 7.54 173 | 17.6 157 | 0.65 155 | 20.3 166 | 33.1 187 | 6.43 177 | 43.6 165 | 58.8 174 | 5.47 165 | 11.9 172 | 42.8 166 | 1.56 181 | 12.1 186 | 46.5 182 | 0.71 176 | 22.1 149 | 52.8 137 | 0.58 180 |
NL-TV-NCC [25] | 172.6 | 6.44 181 | 20.3 182 | 0.24 149 | 10.7 137 | 22.1 162 | 0.68 88 | 7.38 168 | 17.2 145 | 0.59 145 | 22.2 183 | 34.7 192 | 6.82 181 | 45.5 196 | 60.2 195 | 6.68 196 | 12.3 187 | 44.6 194 | 1.19 142 | 14.4 196 | 48.1 192 | 0.67 168 | 24.0 196 | 56.4 195 | 0.55 172 |
Adaptive flow [45] | 173.6 | 7.18 191 | 19.2 175 | 0.69 193 | 15.0 194 | 25.0 193 | 2.11 195 | 7.29 162 | 16.7 133 | 0.87 170 | 22.6 185 | 31.3 177 | 7.85 193 | 44.8 192 | 60.2 195 | 5.63 183 | 11.7 168 | 43.4 184 | 1.36 168 | 10.4 134 | 43.7 157 | 0.57 153 | 23.0 180 | 54.7 186 | 0.50 105 |
HCIC-L [97] | 173.8 | 8.84 197 | 25.2 196 | 1.06 197 | 14.0 190 | 24.1 188 | 1.43 183 | 9.42 192 | 19.3 180 | 0.69 160 | 24.3 190 | 34.1 190 | 6.48 178 | 45.1 195 | 60.1 193 | 5.86 191 | 12.1 179 | 44.1 190 | 1.06 110 | 10.2 116 | 42.6 122 | 0.51 128 | 23.6 192 | 56.0 193 | 0.51 120 |
SILK [80] | 174.0 | 6.21 175 | 19.3 177 | 0.39 186 | 13.8 186 | 24.0 186 | 1.73 192 | 8.85 189 | 20.2 185 | 1.41 189 | 21.8 181 | 31.1 173 | 7.10 185 | 43.5 148 | 58.5 159 | 5.45 160 | 11.9 172 | 41.4 125 | 2.03 189 | 10.8 157 | 45.5 175 | 0.77 181 | 22.4 166 | 53.2 155 | 0.60 184 |
H+S_RVC [176] | 175.8 | 6.49 182 | 21.0 184 | 0.14 48 | 13.5 183 | 23.2 177 | 1.23 169 | 9.69 194 | 25.4 195 | 1.25 186 | 26.6 196 | 32.3 180 | 6.22 172 | 43.9 178 | 59.3 185 | 5.49 170 | 11.8 170 | 43.0 175 | 1.23 155 | 12.3 191 | 47.9 191 | 0.92 188 | 23.8 195 | 53.9 173 | 0.59 182 |
Learning Flow [11] | 177.5 | 5.91 166 | 18.6 168 | 0.30 168 | 12.0 168 | 22.9 175 | 1.00 145 | 8.30 187 | 20.0 184 | 1.33 188 | 21.9 182 | 32.9 185 | 6.94 183 | 44.5 190 | 59.7 191 | 5.97 193 | 11.5 159 | 42.6 162 | 1.35 165 | 11.3 171 | 46.8 185 | 0.69 172 | 23.7 193 | 55.9 192 | 0.62 189 |
GroupFlow [9] | 178.7 | 7.04 189 | 22.5 191 | 0.28 161 | 12.5 174 | 24.0 186 | 1.13 163 | 9.10 190 | 22.0 192 | 1.45 190 | 21.0 178 | 33.6 189 | 5.93 163 | 44.1 182 | 59.3 185 | 5.50 173 | 12.2 183 | 44.4 193 | 1.42 173 | 11.1 168 | 45.2 173 | 0.61 164 | 22.7 175 | 54.1 177 | 0.56 177 |
SLK [47] | 180.1 | 6.55 183 | 21.1 187 | 0.32 173 | 13.5 183 | 23.1 176 | 1.44 185 | 9.16 191 | 21.2 191 | 1.49 194 | 24.9 192 | 34.2 191 | 7.81 192 | 43.5 148 | 58.8 174 | 5.34 114 | 12.2 183 | 43.1 178 | 1.45 175 | 11.9 183 | 48.9 194 | 0.96 190 | 23.0 180 | 54.0 175 | 0.64 190 |
Heeger++ [102] | 182.4 | 7.79 195 | 25.2 196 | 0.17 86 | 13.9 189 | 24.2 189 | 1.33 175 | 11.8 196 | 28.7 197 | 1.49 194 | 23.4 188 | 30.8 166 | 7.63 189 | 44.4 189 | 59.9 192 | 5.62 182 | 12.6 192 | 43.1 178 | 1.77 187 | 12.6 192 | 46.9 186 | 0.87 185 | 23.2 186 | 53.5 165 | 0.60 184 |
FFV1MT [104] | 182.8 | 6.93 188 | 22.8 193 | 0.24 149 | 14.0 190 | 23.5 181 | 1.48 187 | 11.2 195 | 27.7 196 | 1.52 196 | 23.4 188 | 30.8 166 | 7.63 189 | 44.0 180 | 59.2 181 | 5.69 185 | 12.0 176 | 41.6 138 | 1.56 181 | 12.1 186 | 47.3 189 | 0.95 189 | 23.4 189 | 54.2 179 | 0.79 195 |
FOLKI [16] | 186.2 | 7.10 190 | 21.1 187 | 0.94 196 | 15.3 195 | 25.5 195 | 2.28 196 | 8.49 188 | 22.2 193 | 1.47 193 | 26.3 194 | 35.2 194 | 10.6 197 | 44.0 180 | 59.6 188 | 5.54 178 | 11.6 162 | 41.8 148 | 1.49 177 | 11.4 174 | 47.7 190 | 0.90 186 | 23.3 188 | 54.9 188 | 0.67 192 |
Pyramid LK [2] | 187.6 | 7.19 192 | 21.0 184 | 0.93 195 | 16.2 196 | 25.1 194 | 2.91 197 | 14.0 197 | 18.5 171 | 2.57 197 | 32.5 198 | 46.2 198 | 13.7 198 | 44.2 186 | 60.1 193 | 5.48 168 | 11.6 162 | 42.5 161 | 1.40 172 | 11.4 174 | 47.2 188 | 1.28 195 | 23.7 193 | 56.7 196 | 1.08 197 |
PGAM+LK [55] | 188.4 | 7.51 194 | 23.5 195 | 0.73 194 | 13.8 186 | 24.2 189 | 1.92 194 | 9.44 193 | 22.7 194 | 1.45 190 | 26.4 195 | 36.9 195 | 10.5 196 | 44.1 182 | 59.5 187 | 5.72 187 | 12.4 188 | 44.0 189 | 1.75 186 | 11.3 171 | 47.0 187 | 0.68 171 | 23.0 180 | 54.5 184 | 0.76 194 |
Periodicity [79] | 195.5 | 8.05 196 | 23.2 194 | 1.34 198 | 20.5 198 | 27.4 197 | 3.39 198 | 15.2 198 | 30.5 198 | 4.22 198 | 26.2 193 | 43.5 197 | 9.47 195 | 46.4 198 | 62.7 198 | 6.92 198 | 13.7 198 | 44.6 194 | 2.88 193 | 11.4 174 | 48.3 193 | 1.18 193 | 25.7 198 | 59.2 198 | 1.29 198 |
AVG_FLOW_ROB [137] | 199.0 | 30.2 199 | 60.4 199 | 6.56 199 | 42.6 199 | 49.8 199 | 9.03 199 | 34.7 199 | 42.2 199 | 9.09 199 | 57.3 199 | 72.3 199 | 20.9 199 | 51.6 199 | 69.0 199 | 7.96 199 | 25.2 199 | 71.8 199 | 4.67 199 | 39.2 199 | 64.3 199 | 3.36 199 | 43.7 199 | 66.4 199 | 8.60 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |