Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
R2.5 interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
SoftsplatAug [190] | 4.8 | 7.52 1 | 20.8 1 | 0.72 2 | 17.0 1 | 25.2 2 | 1.54 2 | 3.53 1 | 10.6 3 | 0.64 3 | 54.4 4 | 60.3 4 | 34.6 5 | 72.3 2 | 82.0 2 | 31.2 5 | 29.2 3 | 55.2 4 | 18.5 6 | 31.7 26 | 59.7 14 | 3.90 8 | 35.2 7 | 71.4 6 | 2.15 4 |
SoftSplat [169] | 4.9 | 8.60 3 | 23.7 4 | 1.22 12 | 18.0 3 | 27.0 3 | 1.73 3 | 3.66 2 | 10.3 2 | 0.59 1 | 53.3 2 | 59.3 2 | 33.7 2 | 73.6 5 | 83.2 7 | 31.5 6 | 29.5 4 | 56.5 6 | 18.4 5 | 30.8 8 | 60.0 16 | 3.83 3 | 35.2 7 | 71.9 8 | 2.07 3 |
EAFI [186] | 6.7 | 8.16 2 | 22.3 2 | 0.84 5 | 17.7 2 | 24.6 1 | 1.43 1 | 4.46 5 | 9.75 1 | 0.60 2 | 52.6 1 | 57.9 1 | 33.0 1 | 74.5 16 | 84.7 23 | 29.9 1 | 31.1 13 | 60.4 17 | 18.3 3 | 31.3 12 | 59.3 12 | 3.84 4 | 36.8 15 | 74.1 15 | 2.19 6 |
IFRNet [193] | 9.4 | 8.96 6 | 23.3 3 | 1.29 14 | 18.9 4 | 27.3 4 | 2.39 7 | 3.98 3 | 11.1 4 | 0.66 4 | 55.3 6 | 60.5 6 | 37.8 17 | 74.5 16 | 84.1 17 | 35.0 19 | 30.8 10 | 57.2 9 | 20.0 21 | 31.1 9 | 59.2 11 | 3.84 4 | 36.0 11 | 72.8 10 | 2.34 11 |
SepConv++ [185] | 9.5 | 10.9 18 | 30.2 20 | 1.67 34 | 20.6 10 | 31.1 11 | 2.66 23 | 6.24 12 | 15.6 11 | 1.39 13 | 57.3 16 | 63.0 15 | 36.6 14 | 73.2 4 | 82.5 3 | 32.6 11 | 27.6 1 | 51.0 1 | 17.8 2 | 29.5 1 | 55.7 3 | 3.68 1 | 31.7 1 | 66.0 1 | 1.90 1 |
EDSC [173] | 13.2 | 10.1 13 | 28.2 15 | 1.11 9 | 20.5 8 | 31.0 9 | 2.77 49 | 7.15 16 | 16.0 14 | 1.44 19 | 57.3 16 | 63.0 15 | 37.3 16 | 73.8 10 | 83.1 5 | 34.3 18 | 30.2 6 | 56.9 8 | 19.2 13 | 30.1 5 | 56.4 5 | 4.16 16 | 35.2 7 | 71.8 7 | 2.55 18 |
FGME [158] | 15.5 | 8.82 5 | 23.7 4 | 0.69 1 | 21.6 13 | 30.8 7 | 3.50 133 | 8.22 21 | 16.0 14 | 1.51 33 | 57.2 15 | 61.4 8 | 40.0 25 | 72.2 1 | 81.7 1 | 32.2 9 | 30.6 8 | 53.5 2 | 21.1 24 | 30.7 7 | 54.6 1 | 4.26 18 | 33.3 3 | 68.0 3 | 2.54 17 |
DistillNet [184] | 20.4 | 9.46 8 | 26.7 8 | 1.01 6 | 19.5 6 | 29.3 6 | 2.01 4 | 4.11 4 | 11.6 5 | 0.78 5 | 54.2 3 | 60.4 5 | 34.1 3 | 73.6 5 | 83.6 10 | 30.8 2 | 31.5 15 | 61.2 23 | 18.8 9 | 34.1 180 | 63.2 30 | 3.87 7 | 39.5 106 | 77.0 25 | 2.43 15 |
AdaCoF [165] | 21.6 | 11.9 25 | 31.3 26 | 2.21 136 | 21.9 14 | 32.2 16 | 2.99 87 | 10.7 26 | 19.7 24 | 1.47 26 | 57.0 14 | 62.4 11 | 36.3 12 | 76.0 26 | 84.7 23 | 37.2 25 | 29.1 2 | 55.3 5 | 18.3 3 | 29.6 2 | 56.1 4 | 3.71 2 | 33.7 4 | 70.4 4 | 2.02 2 |
STSR [170] | 22.7 | 9.47 9 | 27.4 11 | 1.22 12 | 19.4 5 | 29.2 5 | 2.25 5 | 8.48 22 | 18.7 22 | 1.28 11 | 55.7 7 | 61.4 8 | 37.9 18 | 76.7 28 | 86.2 29 | 36.1 23 | 32.9 24 | 62.4 27 | 21.0 23 | 33.2 156 | 62.4 24 | 4.27 19 | 37.5 16 | 77.0 25 | 2.48 16 |
DSepConv [162] | 22.9 | 10.9 18 | 30.0 19 | 1.48 16 | 23.3 23 | 34.3 25 | 3.74 139 | 9.22 24 | 18.6 21 | 1.56 46 | 58.8 22 | 64.3 22 | 38.2 20 | 74.2 12 | 83.3 8 | 35.8 22 | 30.6 8 | 56.8 7 | 19.8 19 | 30.4 6 | 56.4 5 | 4.36 22 | 36.3 12 | 73.3 12 | 2.69 22 |
TC-GAN [166] | 26.2 | 10.8 17 | 30.3 21 | 1.87 87 | 22.7 20 | 34.3 25 | 3.38 123 | 6.03 10 | 15.8 12 | 1.16 8 | 56.2 12 | 62.8 14 | 35.5 8 | 74.3 13 | 83.9 14 | 33.5 13 | 31.5 15 | 60.4 17 | 19.5 16 | 32.1 85 | 62.6 27 | 3.97 13 | 38.6 24 | 77.2 27 | 2.31 7 |
MV_VFI [183] | 26.3 | 10.9 18 | 30.4 23 | 1.86 81 | 22.7 20 | 34.2 24 | 3.39 124 | 6.05 11 | 15.8 12 | 1.15 7 | 56.1 11 | 62.7 13 | 35.5 8 | 74.3 13 | 83.9 14 | 33.7 15 | 31.6 18 | 60.3 16 | 19.7 18 | 32.1 85 | 62.5 26 | 3.96 11 | 38.7 28 | 77.3 29 | 2.31 7 |
DAIN [152] | 28.2 | 11.1 22 | 30.7 24 | 2.01 110 | 23.2 22 | 34.6 27 | 3.46 132 | 6.24 12 | 16.0 14 | 1.19 9 | 56.0 10 | 63.0 15 | 35.4 7 | 74.5 16 | 84.0 16 | 34.1 17 | 31.5 15 | 60.4 17 | 19.6 17 | 32.0 70 | 62.4 24 | 3.96 11 | 38.7 28 | 77.3 29 | 2.38 14 |
BMBC [171] | 28.3 | 11.6 23 | 28.6 16 | 1.73 53 | 22.5 18 | 31.6 14 | 3.44 130 | 17.4 34 | 27.0 31 | 2.50 166 | 55.7 7 | 61.0 7 | 35.8 10 | 73.6 5 | 83.1 5 | 31.5 6 | 30.4 7 | 57.8 11 | 19.0 10 | 32.1 85 | 59.4 13 | 3.90 8 | 34.7 5 | 71.0 5 | 2.34 11 |
ProBoost-Net [191] | 29.2 | 9.66 10 | 27.3 10 | 0.79 3 | 22.4 16 | 32.4 17 | 3.10 101 | 7.83 19 | 16.9 20 | 1.45 22 | 58.9 28 | 63.7 19 | 42.3 114 | 75.7 23 | 84.5 20 | 38.9 27 | 33.8 27 | 60.1 15 | 23.2 27 | 31.2 10 | 58.2 8 | 4.76 105 | 36.6 13 | 73.2 11 | 2.98 35 |
IDIAL [192] | 29.6 | 10.4 16 | 28.9 17 | 1.03 7 | 22.2 15 | 31.9 15 | 2.27 6 | 5.36 7 | 13.0 9 | 1.25 10 | 56.5 13 | 62.4 11 | 35.3 6 | 73.6 5 | 83.5 9 | 32.2 9 | 32.0 20 | 60.7 22 | 18.7 8 | 38.4 193 | 62.2 21 | 4.33 21 | 42.6 193 | 76.4 20 | 3.07 58 |
STAR-Net [164] | 30.8 | 10.2 15 | 27.0 9 | 1.62 26 | 22.4 16 | 31.0 9 | 3.18 109 | 6.65 14 | 11.8 6 | 1.35 12 | 55.9 9 | 61.8 10 | 34.3 4 | 72.8 3 | 82.8 4 | 30.8 2 | 31.2 14 | 59.3 14 | 18.6 7 | 38.9 195 | 61.0 17 | 4.00 14 | 42.1 190 | 75.9 19 | 2.61 20 |
GDCN [172] | 31.3 | 11.0 21 | 30.8 25 | 1.29 14 | 25.8 109 | 36.7 52 | 3.33 118 | 5.80 9 | 14.9 10 | 1.67 75 | 58.8 22 | 64.0 20 | 36.6 14 | 74.5 16 | 83.8 13 | 35.7 21 | 31.6 18 | 59.1 13 | 20.6 22 | 32.2 107 | 59.7 14 | 4.23 17 | 35.0 6 | 72.2 9 | 2.31 7 |
MEMC-Net+ [160] | 34.9 | 12.4 28 | 32.3 31 | 2.16 125 | 24.1 26 | 34.1 22 | 3.39 124 | 7.37 17 | 16.6 19 | 1.59 54 | 57.6 19 | 63.0 15 | 35.8 10 | 75.4 21 | 84.9 25 | 33.9 16 | 32.2 21 | 62.7 30 | 19.2 13 | 32.6 136 | 62.2 21 | 3.92 10 | 38.3 20 | 77.2 27 | 2.31 7 |
DAI [168] | 35.3 | 10.1 13 | 25.7 7 | 2.27 141 | 21.1 12 | 30.8 7 | 3.41 128 | 4.76 6 | 12.0 7 | 1.10 6 | 54.4 4 | 59.8 3 | 36.4 13 | 75.8 25 | 85.4 27 | 32.6 11 | 32.3 22 | 61.8 25 | 19.3 15 | 34.3 183 | 61.5 18 | 4.00 14 | 39.7 123 | 76.4 20 | 2.55 18 |
ADC [161] | 35.9 | 13.4 37 | 34.4 32 | 2.33 145 | 24.4 33 | 34.6 27 | 4.50 155 | 12.7 28 | 22.5 27 | 1.73 86 | 59.8 104 | 65.4 28 | 38.1 19 | 75.6 22 | 84.5 20 | 36.4 24 | 30.1 5 | 57.2 9 | 19.1 11 | 29.7 3 | 56.6 7 | 3.84 4 | 35.9 10 | 74.0 13 | 2.36 13 |
MAF-net [163] | 36.6 | 8.73 4 | 25.0 6 | 0.81 4 | 20.9 11 | 31.1 11 | 2.87 70 | 6.82 15 | 16.4 18 | 1.74 93 | 59.1 41 | 64.6 23 | 42.5 134 | 76.9 29 | 85.6 28 | 38.9 27 | 33.7 26 | 60.6 21 | 22.8 26 | 31.5 14 | 58.6 9 | 4.90 143 | 36.7 14 | 74.0 13 | 3.19 98 |
NNF-Local [75] | 41.5 | 13.4 37 | 36.1 42 | 1.56 19 | 24.2 27 | 35.7 34 | 2.60 13 | 18.4 54 | 30.4 37 | 1.43 16 | 59.2 48 | 68.4 91 | 41.6 48 | 79.1 45 | 87.3 38 | 43.1 59 | 36.4 49 | 66.6 53 | 25.0 60 | 31.7 26 | 63.5 37 | 4.66 44 | 38.9 36 | 78.4 43 | 3.01 41 |
PH-Flow [99] | 44.7 | 13.7 59 | 37.1 73 | 1.77 60 | 24.3 30 | 35.5 33 | 2.58 10 | 18.5 59 | 30.6 41 | 1.54 40 | 58.8 22 | 66.8 33 | 41.6 48 | 79.0 38 | 87.2 36 | 42.9 44 | 36.3 39 | 67.1 102 | 24.6 39 | 31.6 15 | 63.7 47 | 4.64 35 | 39.0 43 | 78.6 53 | 3.10 73 |
NN-field [71] | 46.0 | 13.5 43 | 36.9 66 | 1.67 34 | 24.2 27 | 35.4 32 | 2.54 8 | 18.7 76 | 30.6 41 | 1.52 36 | 59.3 63 | 68.5 96 | 41.7 57 | 79.1 45 | 87.3 38 | 43.2 78 | 36.4 49 | 66.2 38 | 25.0 60 | 31.6 15 | 63.6 40 | 4.64 35 | 38.9 36 | 78.1 38 | 3.05 52 |
MS_RAFT+_RVC [195] | 46.6 | 13.6 52 | 36.3 49 | 1.85 76 | 24.8 55 | 37.7 69 | 2.68 25 | 18.4 54 | 30.4 37 | 1.45 22 | 59.0 36 | 67.4 45 | 41.5 40 | 79.3 98 | 87.3 38 | 43.5 123 | 36.3 39 | 65.9 37 | 24.9 49 | 31.4 13 | 62.8 28 | 4.66 44 | 38.6 24 | 78.3 41 | 2.85 25 |
MDP-Flow2 [68] | 47.7 | 13.3 33 | 35.1 35 | 1.62 26 | 24.6 41 | 36.5 43 | 2.63 19 | 18.5 59 | 30.5 39 | 1.42 15 | 59.0 36 | 67.8 60 | 41.4 30 | 79.1 45 | 87.3 38 | 43.4 106 | 36.5 56 | 66.4 44 | 25.0 60 | 32.0 70 | 63.9 55 | 4.64 35 | 39.3 77 | 78.7 60 | 3.08 63 |
CoT-AMFlow [174] | 49.0 | 13.3 33 | 35.0 33 | 1.63 31 | 24.6 41 | 36.5 43 | 2.66 23 | 18.6 70 | 30.9 48 | 1.43 16 | 58.9 28 | 67.5 50 | 41.4 30 | 79.2 68 | 87.3 38 | 43.5 123 | 36.5 56 | 66.6 53 | 25.0 60 | 31.9 54 | 63.8 49 | 4.63 30 | 39.2 68 | 78.8 67 | 3.08 63 |
PMMST [112] | 49.2 | 13.4 37 | 35.0 33 | 1.70 44 | 25.1 68 | 37.1 59 | 2.73 35 | 18.5 59 | 30.5 39 | 1.39 13 | 58.9 28 | 67.4 45 | 41.5 40 | 79.2 68 | 87.4 48 | 43.4 106 | 36.3 39 | 66.2 38 | 24.9 49 | 31.8 39 | 63.8 49 | 4.67 49 | 39.2 68 | 78.7 60 | 3.09 69 |
COFM [59] | 50.0 | 13.6 52 | 36.0 40 | 1.89 90 | 24.6 41 | 36.4 41 | 2.71 31 | 18.5 59 | 30.3 35 | 1.59 54 | 58.8 22 | 66.8 33 | 41.1 28 | 79.0 38 | 87.4 48 | 42.6 38 | 35.8 32 | 67.2 112 | 24.1 29 | 31.2 10 | 61.6 19 | 4.89 141 | 38.5 22 | 78.1 38 | 3.34 146 |
FeFlow [167] | 50.8 | 9.85 12 | 27.9 13 | 1.17 11 | 22.5 18 | 33.7 20 | 3.61 135 | 7.73 18 | 16.2 17 | 1.94 124 | 58.5 20 | 64.7 24 | 38.2 20 | 73.6 5 | 83.6 10 | 32.1 8 | 33.0 25 | 62.0 26 | 19.9 20 | 37.0 190 | 62.1 20 | 4.86 136 | 41.1 180 | 76.7 23 | 3.33 144 |
Layers++ [37] | 51.2 | 14.0 95 | 37.5 85 | 1.91 94 | 24.3 30 | 35.3 31 | 2.75 40 | 18.3 52 | 31.0 53 | 1.56 46 | 59.2 48 | 67.5 50 | 41.7 57 | 79.2 68 | 87.4 48 | 43.1 59 | 36.4 49 | 66.5 50 | 25.0 60 | 31.6 15 | 63.2 30 | 4.60 25 | 38.7 28 | 77.7 35 | 3.12 80 |
AGIF+OF [84] | 52.2 | 13.9 86 | 37.5 85 | 1.67 34 | 24.6 41 | 36.5 43 | 2.68 25 | 18.1 47 | 31.0 53 | 1.61 62 | 58.9 28 | 66.9 35 | 41.4 30 | 79.2 68 | 87.5 82 | 43.1 59 | 36.6 69 | 67.2 112 | 25.0 60 | 31.8 39 | 63.6 40 | 4.60 25 | 39.0 43 | 78.6 53 | 2.98 35 |
HAST [107] | 53.2 | 13.7 59 | 36.2 47 | 1.93 101 | 24.7 50 | 37.0 57 | 2.77 49 | 18.8 79 | 32.2 84 | 1.66 74 | 59.1 41 | 67.9 68 | 41.4 30 | 79.0 38 | 87.4 48 | 42.6 38 | 36.3 39 | 66.9 78 | 24.6 39 | 31.6 15 | 63.3 33 | 4.71 68 | 39.0 43 | 78.4 43 | 3.06 55 |
nLayers [57] | 53.4 | 13.9 86 | 36.7 61 | 1.85 76 | 24.5 36 | 36.1 38 | 2.76 43 | 17.7 38 | 30.0 34 | 1.44 19 | 59.2 48 | 67.6 53 | 41.6 48 | 79.3 98 | 87.5 82 | 43.3 88 | 36.4 49 | 66.8 71 | 25.1 78 | 31.7 26 | 63.2 30 | 4.72 75 | 38.7 28 | 77.6 33 | 3.03 44 |
Sparse-NonSparse [56] | 53.5 | 13.8 74 | 37.3 78 | 1.81 65 | 24.4 33 | 36.0 37 | 2.61 14 | 18.0 45 | 31.2 59 | 1.52 36 | 59.0 36 | 67.1 40 | 42.0 87 | 79.2 68 | 87.4 48 | 43.1 59 | 36.7 90 | 66.7 60 | 25.3 110 | 31.7 26 | 63.6 40 | 4.63 30 | 38.9 36 | 78.5 50 | 3.08 63 |
FRUCnet [153] | 57.0 | 14.5 142 | 31.5 29 | 5.94 192 | 24.5 36 | 34.1 22 | 5.10 170 | 10.4 25 | 20.2 25 | 2.68 171 | 61.6 176 | 66.9 35 | 39.4 23 | 74.3 13 | 83.7 12 | 33.5 13 | 30.8 10 | 58.8 12 | 19.1 11 | 33.3 160 | 58.8 10 | 4.44 23 | 37.7 18 | 74.6 16 | 2.74 23 |
CyclicGen [149] | 57.4 | 13.7 59 | 31.4 28 | 4.62 187 | 26.2 124 | 34.0 21 | 12.3 197 | 13.8 30 | 27.5 32 | 2.63 170 | 61.2 168 | 65.1 25 | 44.0 172 | 76.0 26 | 84.3 19 | 39.2 29 | 32.3 22 | 53.7 3 | 24.3 32 | 29.7 3 | 55.6 2 | 4.29 20 | 31.7 1 | 66.4 2 | 2.16 5 |
ProbFlowFields [126] | 57.6 | 13.5 43 | 36.6 55 | 1.82 68 | 24.4 33 | 36.4 41 | 2.68 25 | 18.5 59 | 31.2 59 | 1.49 30 | 59.2 48 | 67.2 41 | 42.1 93 | 79.3 98 | 87.5 82 | 43.6 145 | 36.5 56 | 67.0 89 | 25.2 90 | 31.6 15 | 63.5 37 | 4.64 35 | 39.0 43 | 78.4 43 | 3.06 55 |
2DHMM-SAS [90] | 58.6 | 14.1 105 | 38.9 137 | 1.82 68 | 25.5 93 | 38.0 78 | 2.77 49 | 17.2 32 | 30.9 48 | 1.56 46 | 58.9 28 | 66.5 30 | 41.7 57 | 79.1 45 | 87.4 48 | 42.9 44 | 36.5 56 | 66.6 53 | 24.9 49 | 31.7 26 | 63.9 55 | 4.68 57 | 39.2 68 | 79.0 76 | 3.07 58 |
OFLAF [78] | 58.8 | 13.5 43 | 36.1 42 | 1.62 26 | 24.3 30 | 35.8 35 | 2.62 18 | 18.7 76 | 31.5 68 | 1.47 26 | 59.1 41 | 67.8 60 | 41.2 29 | 79.3 98 | 87.4 48 | 43.4 106 | 36.6 69 | 67.4 129 | 25.0 60 | 31.9 54 | 64.3 69 | 4.79 115 | 38.9 36 | 78.7 60 | 3.10 73 |
LSM [39] | 59.3 | 13.9 86 | 38.0 105 | 1.78 62 | 24.6 41 | 36.5 43 | 2.61 14 | 18.1 47 | 32.0 78 | 1.55 44 | 59.2 48 | 67.6 53 | 42.1 93 | 79.2 68 | 87.4 48 | 43.1 59 | 36.7 90 | 66.9 78 | 25.3 110 | 31.7 26 | 63.6 40 | 4.65 43 | 38.9 36 | 78.6 53 | 3.07 58 |
FMOF [92] | 61.1 | 14.2 115 | 38.6 122 | 1.91 94 | 24.5 36 | 36.2 39 | 2.70 30 | 18.4 54 | 31.2 59 | 1.77 100 | 59.5 77 | 68.0 72 | 41.5 40 | 79.2 68 | 87.4 48 | 43.1 59 | 36.6 69 | 66.8 71 | 25.0 60 | 31.6 15 | 63.3 33 | 4.61 28 | 39.1 55 | 78.4 43 | 3.11 79 |
SepConv-v1 [125] | 62.2 | 9.23 7 | 28.0 14 | 1.08 8 | 20.5 8 | 32.4 17 | 3.35 119 | 8.95 23 | 20.5 26 | 2.08 138 | 60.8 155 | 66.9 35 | 44.2 174 | 79.1 45 | 87.1 34 | 43.2 78 | 35.6 30 | 62.4 27 | 25.1 78 | 32.2 107 | 62.3 23 | 5.34 178 | 37.6 17 | 76.4 20 | 3.28 133 |
CombBMOF [111] | 63.3 | 13.6 52 | 36.4 52 | 1.71 47 | 24.5 36 | 36.9 55 | 2.58 10 | 18.1 47 | 31.5 68 | 1.81 109 | 59.5 77 | 68.2 79 | 41.6 48 | 79.1 45 | 87.3 38 | 43.0 51 | 36.8 104 | 66.5 50 | 25.0 60 | 33.9 176 | 65.2 131 | 4.68 57 | 39.1 55 | 78.4 43 | 2.92 29 |
ComponentFusion [94] | 63.6 | 13.4 37 | 36.1 42 | 1.72 51 | 24.6 41 | 36.8 53 | 2.57 9 | 18.9 89 | 32.9 99 | 1.69 78 | 59.1 41 | 67.8 60 | 41.4 30 | 79.2 68 | 87.4 48 | 43.6 145 | 36.5 56 | 66.3 40 | 25.1 78 | 32.0 70 | 64.8 98 | 4.76 105 | 39.1 55 | 78.7 60 | 3.10 73 |
MPRN [151] | 64.3 | 12.4 28 | 32.0 30 | 1.81 65 | 26.3 127 | 36.9 55 | 3.69 136 | 21.6 187 | 37.6 182 | 2.47 164 | 58.8 22 | 65.1 25 | 40.0 25 | 78.3 30 | 86.6 30 | 41.3 30 | 35.8 32 | 63.1 31 | 24.8 46 | 32.8 145 | 63.8 49 | 4.48 24 | 38.5 22 | 78.0 37 | 2.68 21 |
IROF++ [58] | 64.4 | 13.8 74 | 37.8 97 | 1.72 51 | 24.6 41 | 36.6 49 | 2.61 14 | 18.6 70 | 31.3 64 | 1.64 70 | 58.8 22 | 66.7 32 | 41.8 67 | 79.0 38 | 87.3 38 | 42.7 41 | 36.5 56 | 66.6 53 | 25.0 60 | 32.0 70 | 65.0 109 | 4.74 92 | 39.5 106 | 79.2 94 | 3.30 137 |
GMFlow_RVC [196] | 65.1 | 13.3 33 | 36.7 61 | 1.71 47 | 24.8 55 | 37.8 70 | 2.71 31 | 18.5 59 | 31.2 59 | 1.46 24 | 59.2 48 | 68.6 108 | 41.9 74 | 79.4 141 | 87.5 82 | 43.5 123 | 36.3 39 | 66.6 53 | 24.7 44 | 32.1 85 | 64.4 80 | 4.75 99 | 39.1 55 | 78.7 60 | 2.94 32 |
RAFT-it [194] | 65.1 | 13.2 31 | 35.7 36 | 1.61 21 | 24.5 36 | 36.8 53 | 2.58 10 | 18.5 59 | 31.0 53 | 1.46 24 | 59.2 48 | 68.3 86 | 41.5 40 | 79.3 98 | 87.5 82 | 43.4 106 | 41.3 193 | 66.6 53 | 31.9 194 | 31.7 26 | 63.6 40 | 4.69 60 | 39.4 92 | 79.2 94 | 2.91 28 |
OFRI [154] | 66.2 | 11.9 25 | 29.6 18 | 2.70 160 | 24.0 25 | 33.6 19 | 4.57 160 | 5.54 8 | 12.5 8 | 1.52 36 | 57.5 18 | 64.0 20 | 38.7 22 | 74.6 20 | 84.2 18 | 35.1 20 | 34.0 28 | 62.6 29 | 21.3 25 | 43.5 198 | 65.4 137 | 5.73 191 | 43.3 196 | 76.7 23 | 3.87 184 |
Ramp [62] | 66.9 | 14.1 105 | 38.7 127 | 1.92 99 | 24.6 41 | 36.6 49 | 2.69 28 | 17.9 42 | 31.0 53 | 1.47 26 | 58.9 28 | 67.0 39 | 41.9 74 | 79.2 68 | 87.5 82 | 43.1 59 | 37.0 124 | 67.4 129 | 25.5 127 | 31.6 15 | 63.5 37 | 4.63 30 | 39.1 55 | 78.9 71 | 3.19 98 |
S2F-IF [121] | 68.6 | 13.5 43 | 36.6 55 | 1.70 44 | 24.9 61 | 37.9 74 | 2.77 49 | 18.8 79 | 32.7 95 | 1.54 40 | 59.1 41 | 67.7 57 | 41.6 48 | 79.3 98 | 87.5 82 | 43.3 88 | 36.5 56 | 67.1 102 | 25.0 60 | 31.9 54 | 64.7 93 | 4.74 92 | 39.3 77 | 79.1 86 | 3.10 73 |
RAFT-it+_RVC [198] | 68.8 | 13.1 30 | 35.7 36 | 1.54 17 | 24.8 55 | 37.8 70 | 2.61 14 | 18.8 79 | 32.5 92 | 1.48 29 | 59.2 48 | 68.6 108 | 41.4 30 | 79.3 98 | 87.5 82 | 43.4 106 | 39.6 187 | 67.5 138 | 29.5 190 | 31.7 26 | 64.0 62 | 4.72 75 | 38.4 21 | 77.5 32 | 2.86 26 |
PRAFlow_RVC [177] | 69.2 | 13.5 43 | 36.3 49 | 1.61 21 | 24.9 61 | 37.6 66 | 2.73 35 | 18.4 54 | 31.2 59 | 1.43 16 | 59.5 77 | 68.8 123 | 42.4 127 | 79.3 98 | 87.4 48 | 43.5 123 | 36.4 49 | 65.8 36 | 25.2 90 | 31.6 15 | 63.9 55 | 4.73 81 | 40.0 143 | 79.4 111 | 3.13 82 |
TV-L1-MCT [64] | 69.6 | 14.5 142 | 39.7 163 | 1.86 81 | 25.2 73 | 37.8 70 | 2.78 53 | 17.3 33 | 31.1 58 | 1.59 54 | 58.9 28 | 66.6 31 | 41.6 48 | 79.1 45 | 87.4 48 | 42.9 44 | 36.8 104 | 66.4 44 | 25.6 134 | 31.8 39 | 64.0 62 | 4.73 81 | 39.1 55 | 79.0 76 | 3.20 105 |
RAFT-TF_RVC [179] | 69.8 | 13.3 33 | 36.2 47 | 1.54 17 | 24.7 50 | 37.5 65 | 2.74 39 | 18.6 70 | 31.8 72 | 1.59 54 | 59.5 77 | 69.0 134 | 41.9 74 | 79.3 98 | 87.5 82 | 43.3 88 | 41.7 194 | 66.9 78 | 31.8 193 | 31.7 26 | 63.8 49 | 4.66 44 | 38.7 28 | 77.9 36 | 2.90 27 |
FlowFields+ [128] | 70.8 | 13.5 43 | 37.0 70 | 1.69 43 | 25.0 65 | 38.2 86 | 2.78 53 | 18.9 89 | 33.3 111 | 1.55 44 | 59.1 41 | 67.6 53 | 41.9 74 | 79.3 98 | 87.5 82 | 43.3 88 | 36.6 69 | 67.2 112 | 25.1 78 | 31.8 39 | 64.5 84 | 4.67 49 | 39.3 77 | 79.2 94 | 3.07 58 |
VCN_RVC [178] | 71.1 | 13.7 59 | 37.7 95 | 1.68 39 | 25.1 68 | 38.2 86 | 2.69 28 | 19.1 111 | 35.1 156 | 1.64 70 | 59.3 63 | 68.5 96 | 42.2 106 | 79.1 45 | 87.4 48 | 43.0 51 | 36.3 39 | 66.7 60 | 24.5 36 | 32.3 116 | 64.8 98 | 4.77 110 | 39.0 43 | 78.5 50 | 2.95 33 |
RNLOD-Flow [119] | 71.5 | 13.9 86 | 37.9 102 | 1.86 81 | 25.2 73 | 37.9 74 | 2.78 53 | 19.0 97 | 32.1 80 | 1.78 102 | 59.2 48 | 67.8 60 | 41.5 40 | 79.1 45 | 87.4 48 | 43.1 59 | 36.7 90 | 66.8 71 | 25.2 90 | 31.9 54 | 64.2 66 | 4.75 99 | 39.2 68 | 79.0 76 | 3.06 55 |
FC-2Layers-FF [74] | 71.6 | 14.0 95 | 38.6 122 | 1.84 72 | 24.2 27 | 35.1 29 | 2.82 63 | 17.9 42 | 31.3 64 | 1.51 33 | 59.3 63 | 67.7 57 | 42.1 93 | 79.3 98 | 87.6 127 | 43.3 88 | 36.7 90 | 67.4 129 | 25.3 110 | 31.6 15 | 63.6 40 | 4.67 49 | 39.1 55 | 78.7 60 | 3.19 98 |
Classic+NL [31] | 71.8 | 14.2 115 | 38.8 131 | 1.98 105 | 24.6 41 | 36.5 43 | 2.65 21 | 17.7 38 | 30.9 48 | 1.51 33 | 59.2 48 | 67.5 50 | 42.2 106 | 79.2 68 | 87.5 82 | 43.3 88 | 37.0 124 | 67.1 102 | 25.5 127 | 31.7 26 | 63.6 40 | 4.67 49 | 39.2 68 | 79.0 76 | 3.18 95 |
CtxSyn [134] | 72.8 | 9.68 11 | 27.4 11 | 1.15 10 | 20.4 7 | 31.4 13 | 2.64 20 | 8.05 20 | 19.1 23 | 1.57 51 | 58.6 21 | 65.2 27 | 42.5 134 | 79.0 38 | 87.1 34 | 43.0 51 | 37.9 163 | 65.3 34 | 25.7 145 | 38.4 193 | 67.7 174 | 5.17 167 | 42.3 191 | 78.4 43 | 3.48 167 |
Classic+CPF [82] | 73.1 | 14.1 105 | 38.3 116 | 1.74 55 | 24.9 61 | 37.1 59 | 2.73 35 | 17.6 37 | 31.4 66 | 1.60 60 | 59.0 36 | 67.3 43 | 41.4 30 | 79.3 98 | 87.6 127 | 43.3 88 | 36.9 112 | 67.9 160 | 25.2 90 | 31.9 54 | 64.3 69 | 4.64 35 | 39.3 77 | 79.2 94 | 3.04 47 |
FlowFields [108] | 74.1 | 13.6 52 | 37.1 73 | 1.74 55 | 25.0 65 | 38.1 79 | 2.75 40 | 18.8 79 | 33.2 108 | 1.53 39 | 59.4 71 | 68.0 72 | 42.3 114 | 79.3 98 | 87.5 82 | 43.2 78 | 36.5 56 | 67.0 89 | 25.0 60 | 31.8 39 | 64.7 93 | 4.69 60 | 39.4 92 | 79.3 103 | 3.13 82 |
EAI-Flow [147] | 75.4 | 13.7 59 | 36.3 49 | 1.91 94 | 25.7 106 | 39.1 111 | 3.01 89 | 19.0 97 | 33.4 113 | 1.67 75 | 58.9 28 | 67.2 41 | 41.4 30 | 79.2 68 | 87.3 38 | 43.0 51 | 36.9 112 | 66.7 60 | 25.2 90 | 32.0 70 | 65.0 109 | 4.78 112 | 39.3 77 | 79.1 86 | 3.03 44 |
HCFN [157] | 76.7 | 13.2 31 | 35.8 39 | 1.61 21 | 25.2 73 | 38.7 102 | 2.73 35 | 18.8 79 | 33.0 103 | 1.59 54 | 59.3 63 | 68.1 78 | 42.3 114 | 79.1 45 | 87.4 48 | 42.9 44 | 40.0 190 | 66.8 71 | 29.9 191 | 32.2 107 | 64.9 105 | 4.74 92 | 39.1 55 | 78.6 53 | 3.04 47 |
NNF-EAC [101] | 77.3 | 14.2 115 | 37.3 78 | 2.09 120 | 25.3 81 | 37.6 66 | 2.76 43 | 18.9 89 | 30.6 41 | 1.61 62 | 59.8 104 | 68.5 96 | 43.3 163 | 79.1 45 | 87.3 38 | 43.1 59 | 36.5 56 | 66.5 50 | 25.0 60 | 32.1 85 | 64.3 69 | 4.73 81 | 39.4 92 | 79.0 76 | 3.14 86 |
LME [70] | 77.8 | 13.5 43 | 36.1 42 | 1.62 26 | 25.3 81 | 37.8 70 | 3.44 130 | 19.0 97 | 32.8 97 | 1.63 68 | 59.0 36 | 67.8 60 | 41.5 40 | 79.7 182 | 87.9 176 | 44.4 181 | 36.5 56 | 67.0 89 | 24.9 49 | 32.0 70 | 64.2 66 | 4.66 44 | 39.0 43 | 78.6 53 | 3.09 69 |
S2D-Matching [83] | 78.3 | 14.2 115 | 38.9 137 | 1.96 102 | 25.3 81 | 37.9 74 | 2.76 43 | 17.5 35 | 31.0 53 | 1.60 60 | 59.3 63 | 67.4 45 | 42.8 145 | 79.2 68 | 87.5 82 | 43.2 78 | 36.9 112 | 67.3 122 | 25.4 121 | 31.8 39 | 63.8 49 | 4.64 35 | 39.1 55 | 78.6 53 | 3.21 112 |
WLIF-Flow [91] | 78.6 | 13.8 74 | 37.4 82 | 1.73 53 | 24.9 61 | 37.1 59 | 2.81 60 | 18.5 59 | 30.9 48 | 1.49 30 | 59.4 71 | 67.8 60 | 42.5 134 | 79.2 68 | 87.4 48 | 43.8 172 | 37.2 139 | 67.5 138 | 25.9 152 | 31.8 39 | 63.9 55 | 4.64 35 | 39.4 92 | 78.9 71 | 3.14 86 |
FESL [72] | 81.2 | 14.4 137 | 39.1 144 | 1.83 70 | 25.0 65 | 37.4 63 | 2.76 43 | 18.2 51 | 31.6 70 | 1.70 80 | 59.7 91 | 68.5 96 | 41.7 57 | 79.3 98 | 87.6 127 | 43.3 88 | 36.9 112 | 67.9 160 | 25.2 90 | 31.8 39 | 63.8 49 | 4.61 28 | 39.3 77 | 78.8 67 | 3.04 47 |
JOF [136] | 83.6 | 14.4 137 | 39.1 144 | 2.17 126 | 24.7 50 | 36.3 40 | 2.87 70 | 18.1 47 | 30.6 41 | 1.54 40 | 59.7 91 | 67.9 68 | 43.2 161 | 79.3 98 | 87.5 82 | 43.6 145 | 36.9 112 | 67.0 89 | 25.4 121 | 31.6 15 | 63.4 36 | 4.66 44 | 39.1 55 | 78.7 60 | 3.29 134 |
FF++_ROB [141] | 83.8 | 13.5 43 | 36.6 55 | 1.68 39 | 25.4 90 | 38.6 99 | 2.89 74 | 19.1 111 | 33.5 115 | 1.74 93 | 59.3 63 | 68.0 72 | 41.8 67 | 79.3 98 | 87.5 82 | 43.4 106 | 37.1 131 | 66.9 78 | 25.9 152 | 31.7 26 | 64.3 69 | 4.73 81 | 39.3 77 | 79.1 86 | 3.20 105 |
UnDAF [187] | 84.2 | 13.6 52 | 36.9 66 | 1.67 34 | 25.2 73 | 38.1 79 | 2.72 34 | 19.2 123 | 35.0 152 | 1.54 40 | 60.0 122 | 70.9 183 | 42.0 87 | 79.2 68 | 87.4 48 | 43.4 106 | 36.6 69 | 67.0 89 | 25.1 78 | 32.1 85 | 64.5 84 | 4.75 99 | 39.4 92 | 79.1 86 | 3.10 73 |
PGM-C [118] | 86.2 | 13.8 74 | 37.7 95 | 1.85 76 | 25.1 68 | 38.1 79 | 2.90 75 | 19.1 111 | 33.6 116 | 1.59 54 | 59.3 63 | 68.2 79 | 41.9 74 | 79.3 98 | 87.5 82 | 43.5 123 | 36.6 69 | 67.2 112 | 25.2 90 | 31.9 54 | 64.8 98 | 4.67 49 | 39.5 106 | 79.4 111 | 3.22 114 |
PMF [73] | 87.0 | 13.7 59 | 37.1 73 | 1.66 33 | 25.5 93 | 39.3 115 | 2.71 31 | 19.0 97 | 34.9 149 | 1.74 93 | 59.4 71 | 68.4 91 | 41.8 67 | 79.4 141 | 87.6 127 | 43.3 88 | 37.3 143 | 66.9 78 | 26.2 162 | 31.9 54 | 64.3 69 | 4.73 81 | 39.3 77 | 78.8 67 | 2.93 30 |
PBOFVI [189] | 87.7 | 14.3 129 | 39.6 161 | 1.75 58 | 26.0 115 | 39.1 111 | 3.08 96 | 18.8 79 | 31.6 70 | 1.73 86 | 59.3 63 | 68.3 86 | 41.7 57 | 79.3 98 | 87.5 82 | 43.7 162 | 36.6 69 | 66.3 40 | 25.2 90 | 32.5 131 | 64.7 93 | 4.74 92 | 38.8 33 | 78.3 41 | 3.08 63 |
MDP-Flow [26] | 88.0 | 13.4 37 | 36.1 42 | 1.67 34 | 24.8 55 | 37.2 62 | 2.79 57 | 18.8 79 | 32.0 78 | 1.70 80 | 59.8 104 | 68.9 129 | 42.1 93 | 79.3 98 | 87.6 127 | 43.5 123 | 36.7 90 | 67.7 150 | 25.2 90 | 32.5 131 | 65.5 143 | 4.77 110 | 39.1 55 | 79.0 76 | 3.09 69 |
SegFlow [156] | 89.1 | 13.7 59 | 37.6 89 | 1.86 81 | 25.1 68 | 38.2 86 | 2.90 75 | 19.0 97 | 33.2 108 | 1.62 66 | 59.2 48 | 67.9 68 | 41.9 74 | 79.3 98 | 87.5 82 | 43.5 123 | 36.7 90 | 67.4 129 | 25.4 121 | 31.9 54 | 65.0 109 | 4.70 66 | 39.5 106 | 79.5 122 | 3.23 120 |
Efficient-NL [60] | 89.4 | 14.3 129 | 38.7 127 | 1.77 60 | 25.2 73 | 37.6 66 | 2.76 43 | 19.0 97 | 31.8 72 | 2.08 138 | 59.8 104 | 68.7 116 | 41.4 30 | 79.1 45 | 87.4 48 | 43.0 51 | 36.9 112 | 68.4 176 | 24.6 39 | 32.1 85 | 64.7 93 | 4.69 60 | 40.1 151 | 79.8 144 | 3.14 86 |
SVFilterOh [109] | 90.0 | 14.1 105 | 37.3 78 | 1.96 102 | 24.7 50 | 36.6 49 | 2.87 70 | 18.3 52 | 30.8 46 | 1.63 68 | 59.9 116 | 68.5 96 | 43.1 160 | 79.5 173 | 87.7 155 | 44.5 183 | 36.6 69 | 66.7 60 | 25.3 110 | 31.6 15 | 62.8 28 | 5.05 158 | 38.6 24 | 78.2 40 | 3.37 153 |
TC-Flow [46] | 90.8 | 13.7 59 | 36.9 66 | 1.91 94 | 25.3 81 | 38.5 96 | 3.05 94 | 19.3 132 | 34.1 134 | 1.73 86 | 59.2 48 | 67.8 60 | 42.2 106 | 79.3 98 | 87.5 82 | 43.5 123 | 37.1 131 | 68.0 164 | 25.6 134 | 31.9 54 | 64.3 69 | 4.71 68 | 39.0 43 | 79.0 76 | 3.13 82 |
MS-PFT [159] | 92.3 | 13.7 59 | 36.6 55 | 1.56 19 | 28.1 171 | 38.1 79 | 4.52 158 | 11.2 27 | 23.0 28 | 3.22 186 | 64.4 188 | 73.4 192 | 41.6 48 | 75.7 23 | 85.3 26 | 38.3 26 | 35.3 29 | 61.3 24 | 25.2 90 | 40.9 196 | 67.8 176 | 6.03 194 | 39.0 43 | 74.8 17 | 3.45 162 |
AggregFlow [95] | 92.8 | 14.5 142 | 38.3 116 | 2.20 134 | 25.7 106 | 38.5 96 | 3.23 112 | 18.6 70 | 30.8 46 | 1.44 19 | 59.7 91 | 68.4 91 | 41.7 57 | 79.4 141 | 87.6 127 | 43.8 172 | 37.5 149 | 66.9 78 | 26.4 167 | 31.8 39 | 64.2 66 | 4.70 66 | 38.9 36 | 78.4 43 | 3.08 63 |
DMF_ROB [135] | 93.2 | 13.9 86 | 37.0 70 | 1.98 105 | 25.8 109 | 39.0 108 | 2.96 80 | 19.8 165 | 35.0 152 | 2.12 144 | 59.7 91 | 68.2 79 | 41.9 74 | 79.3 98 | 87.4 48 | 43.7 162 | 36.3 39 | 66.4 44 | 25.0 60 | 32.1 85 | 64.4 80 | 4.93 146 | 39.2 68 | 79.1 86 | 3.07 58 |
IROF-TV [53] | 93.4 | 14.0 95 | 38.1 107 | 1.99 107 | 24.7 50 | 36.5 43 | 2.65 21 | 19.1 111 | 34.2 136 | 1.78 102 | 59.1 41 | 67.4 45 | 42.4 127 | 79.4 141 | 87.7 155 | 43.6 145 | 36.0 34 | 66.4 44 | 24.4 33 | 32.1 85 | 64.6 89 | 4.75 99 | 39.8 133 | 79.9 150 | 3.35 149 |
Second-order prior [8] | 93.7 | 14.0 95 | 37.1 73 | 2.11 121 | 26.2 124 | 39.3 115 | 2.93 78 | 19.4 140 | 35.1 156 | 2.16 150 | 59.4 71 | 67.8 60 | 41.8 67 | 79.1 45 | 87.3 38 | 43.1 59 | 36.5 56 | 66.7 60 | 25.0 60 | 32.3 116 | 65.4 137 | 4.74 92 | 39.5 106 | 79.6 132 | 3.19 98 |
SuperSlomo [130] | 93.7 | 12.3 27 | 30.3 21 | 2.92 171 | 24.8 55 | 35.2 30 | 6.60 185 | 13.6 29 | 25.5 30 | 2.01 133 | 60.5 147 | 65.5 29 | 43.9 170 | 78.3 30 | 86.6 30 | 41.9 32 | 37.4 147 | 64.3 32 | 26.4 167 | 35.3 189 | 63.9 55 | 5.33 177 | 40.3 160 | 77.6 33 | 3.51 170 |
EPPM w/o HM [86] | 93.9 | 13.4 37 | 36.6 55 | 1.61 21 | 25.5 93 | 39.3 115 | 2.76 43 | 19.4 140 | 35.7 167 | 1.99 132 | 59.6 84 | 69.3 144 | 41.9 74 | 79.2 68 | 87.4 48 | 43.1 59 | 37.0 124 | 67.5 138 | 25.3 110 | 32.8 145 | 65.0 109 | 4.85 133 | 39.4 92 | 79.0 76 | 3.04 47 |
PWC-Net_RVC [143] | 94.4 | 13.7 59 | 38.1 107 | 1.70 44 | 25.8 109 | 39.7 128 | 2.83 65 | 19.3 132 | 35.0 152 | 1.75 97 | 59.4 71 | 69.1 141 | 42.1 93 | 79.3 98 | 87.6 127 | 43.4 106 | 37.0 124 | 66.7 60 | 25.5 127 | 32.0 70 | 64.4 80 | 4.74 92 | 39.3 77 | 78.9 71 | 2.98 35 |
DeepFlow2 [106] | 94.7 | 13.9 86 | 36.6 55 | 2.07 118 | 25.6 101 | 38.4 92 | 3.08 96 | 19.1 111 | 33.6 116 | 1.70 80 | 59.6 84 | 68.5 96 | 41.9 74 | 79.4 141 | 87.5 82 | 43.7 162 | 36.7 90 | 66.3 40 | 25.4 121 | 31.9 54 | 64.7 93 | 4.67 49 | 39.4 92 | 79.4 111 | 3.26 129 |
CPM-Flow [114] | 94.9 | 13.8 74 | 37.8 97 | 1.87 87 | 25.1 68 | 38.2 86 | 2.93 78 | 19.0 97 | 33.4 113 | 1.61 62 | 59.6 84 | 68.7 116 | 42.1 93 | 79.3 98 | 87.5 82 | 43.5 123 | 36.8 104 | 66.9 78 | 25.5 127 | 32.0 70 | 65.2 131 | 4.68 57 | 39.5 106 | 79.5 122 | 3.25 125 |
TF+OM [98] | 95.5 | 13.7 59 | 36.5 53 | 2.17 126 | 25.2 73 | 37.4 63 | 3.76 140 | 17.9 42 | 32.7 95 | 1.76 99 | 59.8 104 | 68.5 96 | 42.3 114 | 79.3 98 | 87.5 82 | 43.7 162 | 36.9 112 | 66.7 60 | 25.7 145 | 31.8 39 | 64.3 69 | 4.79 115 | 39.3 77 | 79.3 103 | 3.47 166 |
ProFlow_ROB [142] | 95.7 | 13.6 52 | 36.5 53 | 1.85 76 | 25.3 81 | 38.4 92 | 2.96 80 | 18.9 89 | 32.9 99 | 1.62 66 | 59.7 91 | 69.6 162 | 42.5 134 | 79.4 141 | 87.6 127 | 43.4 106 | 36.6 69 | 66.7 60 | 25.1 78 | 32.1 85 | 65.1 120 | 4.71 68 | 39.7 123 | 79.7 140 | 3.20 105 |
LiteFlowNet [138] | 96.6 | 13.8 74 | 38.6 122 | 1.68 39 | 26.0 115 | 40.1 140 | 2.84 66 | 19.2 123 | 35.3 163 | 1.64 70 | 59.8 104 | 69.4 150 | 42.3 114 | 79.1 45 | 87.4 48 | 42.9 44 | 36.6 69 | 67.6 145 | 24.4 33 | 32.9 149 | 65.8 150 | 4.81 125 | 39.6 116 | 78.9 71 | 3.03 44 |
TriFlow [93] | 96.8 | 14.2 115 | 39.0 141 | 2.20 134 | 26.6 134 | 39.3 115 | 4.59 161 | 19.0 97 | 33.7 119 | 1.71 85 | 59.9 116 | 68.7 116 | 41.4 30 | 79.2 68 | 87.5 82 | 43.5 123 | 36.7 90 | 67.1 102 | 25.2 90 | 31.8 39 | 63.9 55 | 4.69 60 | 39.1 55 | 79.0 76 | 3.23 120 |
EpicFlow [100] | 96.9 | 13.8 74 | 37.6 89 | 1.87 87 | 25.5 93 | 38.9 105 | 2.96 80 | 18.9 89 | 33.7 119 | 1.64 70 | 59.5 77 | 68.5 96 | 42.3 114 | 79.4 141 | 87.6 127 | 43.5 123 | 36.5 56 | 67.5 138 | 24.9 49 | 32.0 70 | 65.1 120 | 4.74 92 | 39.4 92 | 79.4 111 | 3.22 114 |
SRR-TVOF-NL [89] | 97.2 | 14.2 115 | 37.6 89 | 2.07 118 | 26.1 120 | 39.8 132 | 3.30 116 | 19.4 140 | 33.9 127 | 1.82 111 | 59.8 104 | 68.6 108 | 41.0 27 | 79.1 45 | 87.5 82 | 42.9 44 | 36.0 34 | 66.9 78 | 24.1 29 | 32.9 149 | 64.8 98 | 4.81 125 | 39.6 116 | 79.4 111 | 3.22 114 |
DeepFlow [85] | 97.2 | 13.7 59 | 35.7 36 | 2.03 113 | 25.6 101 | 38.2 86 | 3.30 116 | 19.2 123 | 33.9 127 | 1.74 93 | 59.7 91 | 68.0 72 | 42.2 106 | 79.4 141 | 87.5 82 | 43.7 162 | 37.3 143 | 66.4 44 | 26.2 162 | 31.8 39 | 64.8 98 | 4.63 30 | 39.3 77 | 79.3 103 | 3.26 129 |
SimpleFlow [49] | 97.3 | 14.1 105 | 38.9 137 | 1.92 99 | 25.5 93 | 37.9 74 | 2.85 68 | 19.0 97 | 32.3 86 | 2.26 155 | 59.2 48 | 67.3 43 | 42.4 127 | 79.2 68 | 87.5 82 | 43.2 78 | 36.7 90 | 67.6 145 | 25.1 78 | 32.0 70 | 66.1 160 | 5.29 173 | 39.3 77 | 79.2 94 | 3.15 89 |
CostFilter [40] | 98.7 | 13.6 52 | 37.4 82 | 1.63 31 | 25.5 93 | 39.7 128 | 2.75 40 | 19.0 97 | 36.0 170 | 1.79 104 | 59.4 71 | 68.8 123 | 42.0 87 | 79.4 141 | 87.6 127 | 43.7 162 | 38.6 174 | 67.1 102 | 28.1 184 | 31.9 54 | 64.6 89 | 4.81 125 | 39.0 43 | 78.5 50 | 3.00 39 |
OFH [38] | 99.0 | 14.1 105 | 38.2 113 | 2.03 113 | 25.6 101 | 38.4 92 | 3.01 89 | 19.4 140 | 35.1 156 | 1.79 104 | 59.5 77 | 68.8 123 | 42.3 114 | 79.1 45 | 87.4 48 | 43.1 59 | 36.7 90 | 67.6 145 | 25.2 90 | 32.1 85 | 65.1 120 | 4.79 115 | 39.2 68 | 79.2 94 | 3.15 89 |
Complementary OF [21] | 99.4 | 13.7 59 | 37.8 97 | 1.71 47 | 25.2 73 | 38.6 99 | 2.81 60 | 19.8 165 | 33.7 119 | 2.38 160 | 59.9 116 | 69.2 143 | 42.8 145 | 79.2 68 | 87.5 82 | 43.1 59 | 36.6 69 | 67.4 129 | 25.2 90 | 32.3 116 | 65.4 137 | 4.79 115 | 38.8 33 | 78.9 71 | 3.29 134 |
Aniso. Huber-L1 [22] | 99.4 | 14.3 129 | 38.5 120 | 2.17 126 | 26.6 134 | 39.5 124 | 3.21 111 | 19.2 123 | 32.5 92 | 1.83 113 | 59.7 91 | 68.7 116 | 41.9 74 | 79.2 68 | 87.4 48 | 43.2 78 | 36.3 39 | 67.1 102 | 24.6 39 | 32.2 107 | 64.9 105 | 4.71 68 | 39.7 123 | 79.6 132 | 3.24 124 |
DPOF [18] | 100.0 | 14.2 115 | 39.1 144 | 2.19 133 | 24.8 55 | 37.0 57 | 2.80 58 | 19.3 132 | 31.9 74 | 2.01 133 | 60.2 137 | 69.5 157 | 42.3 114 | 79.1 45 | 87.4 48 | 43.1 59 | 36.7 90 | 67.1 102 | 24.6 39 | 32.4 125 | 65.3 135 | 4.81 125 | 39.5 106 | 79.5 122 | 3.18 95 |
RFlow [88] | 100.0 | 13.8 74 | 37.8 97 | 2.02 111 | 26.0 115 | 39.1 111 | 2.85 68 | 19.0 97 | 33.1 106 | 1.86 115 | 59.7 91 | 68.4 91 | 42.2 106 | 79.2 68 | 87.6 127 | 43.4 106 | 36.1 38 | 66.8 71 | 24.5 36 | 32.2 107 | 65.1 120 | 4.82 132 | 39.7 123 | 79.8 144 | 3.34 146 |
TC/T-Flow [77] | 100.7 | 14.3 129 | 38.8 131 | 1.84 72 | 25.3 81 | 38.6 99 | 2.81 60 | 18.9 89 | 32.4 91 | 1.58 52 | 59.9 116 | 69.5 157 | 42.1 93 | 79.3 98 | 87.5 82 | 43.5 123 | 37.1 131 | 68.0 164 | 25.2 90 | 32.1 85 | 65.2 131 | 4.81 125 | 39.2 68 | 79.4 111 | 3.00 39 |
OAR-Flow [123] | 101.0 | 14.0 95 | 36.9 66 | 2.05 117 | 25.3 81 | 38.1 79 | 3.11 102 | 19.1 111 | 34.0 133 | 1.70 80 | 59.2 48 | 68.6 108 | 41.9 74 | 79.4 141 | 87.6 127 | 43.5 123 | 36.9 112 | 67.8 154 | 25.3 110 | 32.0 70 | 65.1 120 | 4.75 99 | 39.3 77 | 79.3 103 | 3.18 95 |
Sparse Occlusion [54] | 101.6 | 14.2 115 | 38.6 122 | 1.99 107 | 25.8 109 | 39.2 114 | 2.78 53 | 19.3 132 | 32.3 86 | 1.80 107 | 59.8 104 | 68.8 123 | 41.7 57 | 79.3 98 | 87.5 82 | 43.2 78 | 37.1 131 | 68.4 176 | 25.3 110 | 32.1 85 | 64.4 80 | 4.60 25 | 39.7 123 | 79.6 132 | 3.15 89 |
TOF-M [150] | 101.8 | 11.7 24 | 31.3 26 | 1.68 39 | 23.9 24 | 35.8 35 | 5.13 173 | 14.0 31 | 25.4 29 | 2.53 167 | 60.9 157 | 66.9 35 | 43.8 167 | 78.9 34 | 87.0 33 | 43.4 106 | 38.3 169 | 65.3 34 | 26.7 172 | 37.9 192 | 65.0 109 | 5.51 184 | 43.2 194 | 79.5 122 | 3.94 187 |
Brox et al. [5] | 102.0 | 14.0 95 | 37.4 82 | 1.90 92 | 26.4 129 | 40.1 140 | 3.08 96 | 19.3 132 | 35.0 152 | 1.97 128 | 59.7 91 | 68.2 79 | 41.7 57 | 79.4 141 | 87.6 127 | 43.6 145 | 36.6 69 | 66.9 78 | 25.1 78 | 31.9 54 | 64.8 98 | 4.73 81 | 39.4 92 | 79.5 122 | 3.15 89 |
ContinualFlow_ROB [148] | 102.3 | 14.6 148 | 40.3 170 | 2.11 121 | 26.6 134 | 40.8 156 | 3.96 144 | 19.8 165 | 36.5 178 | 1.98 129 | 59.6 84 | 69.0 134 | 42.3 114 | 79.2 68 | 87.5 82 | 43.4 106 | 36.0 34 | 66.8 71 | 24.4 33 | 31.9 54 | 64.3 69 | 4.64 35 | 39.2 68 | 79.4 111 | 3.04 47 |
ComplOF-FED-GPU [35] | 103.3 | 14.0 95 | 38.0 105 | 1.91 94 | 25.3 81 | 38.5 96 | 2.90 75 | 20.2 173 | 34.6 144 | 2.16 150 | 59.5 77 | 68.5 96 | 42.5 134 | 79.2 68 | 87.4 48 | 43.2 78 | 36.6 69 | 67.4 129 | 25.0 60 | 32.2 107 | 65.4 137 | 4.75 99 | 39.7 123 | 79.8 144 | 3.19 98 |
LFNet_ROB [145] | 104.0 | 13.8 74 | 37.5 85 | 1.80 63 | 27.0 148 | 41.7 170 | 3.08 96 | 19.6 152 | 35.5 164 | 1.87 117 | 59.2 48 | 67.4 45 | 41.7 57 | 79.1 45 | 87.4 48 | 42.8 43 | 36.8 104 | 67.3 122 | 24.8 46 | 33.2 156 | 65.7 149 | 4.79 115 | 40.4 166 | 80.0 155 | 3.26 129 |
GraphCuts [14] | 104.3 | 15.1 163 | 39.3 151 | 2.68 158 | 26.4 129 | 39.4 122 | 4.50 155 | 19.2 123 | 30.7 45 | 2.69 172 | 60.7 153 | 68.6 108 | 42.8 145 | 79.0 38 | 87.4 48 | 42.5 36 | 35.6 30 | 66.7 60 | 23.7 28 | 32.0 70 | 65.0 109 | 5.04 157 | 39.0 43 | 79.2 94 | 3.48 167 |
Fusion [6] | 105.4 | 13.8 74 | 38.4 119 | 1.84 72 | 25.3 81 | 38.1 79 | 2.88 73 | 19.1 111 | 32.2 84 | 1.90 121 | 60.9 157 | 69.8 163 | 41.8 67 | 79.1 45 | 87.9 176 | 42.1 33 | 36.0 34 | 67.8 154 | 24.1 29 | 32.7 142 | 66.3 165 | 4.88 140 | 39.5 106 | 80.4 175 | 3.26 129 |
Classic++ [32] | 105.5 | 14.0 95 | 38.1 107 | 2.17 126 | 25.7 106 | 38.8 103 | 2.96 80 | 19.3 132 | 33.9 127 | 1.93 123 | 59.7 91 | 67.9 68 | 42.8 145 | 79.2 68 | 87.5 82 | 43.3 88 | 37.4 147 | 67.0 89 | 26.6 171 | 31.8 39 | 64.3 69 | 4.78 112 | 39.4 92 | 79.5 122 | 3.36 150 |
DF-Auto [113] | 106.5 | 14.2 115 | 36.7 61 | 2.25 139 | 26.5 132 | 39.0 108 | 4.23 149 | 18.8 79 | 31.4 66 | 1.58 52 | 60.1 131 | 69.3 144 | 41.6 48 | 79.3 98 | 87.5 82 | 43.6 145 | 36.6 69 | 67.0 89 | 25.1 78 | 32.3 116 | 65.1 120 | 4.81 125 | 39.9 135 | 80.1 162 | 3.22 114 |
Steered-L1 [116] | 107.0 | 13.7 59 | 37.5 85 | 1.84 72 | 25.5 93 | 38.9 105 | 3.17 108 | 19.7 160 | 33.1 106 | 2.40 161 | 60.2 137 | 68.5 96 | 42.8 145 | 79.4 141 | 87.7 155 | 43.5 123 | 36.6 69 | 67.0 89 | 25.6 134 | 31.8 39 | 64.6 89 | 4.96 151 | 38.6 24 | 79.0 76 | 3.36 150 |
ALD-Flow [66] | 107.5 | 14.1 105 | 37.9 102 | 2.17 126 | 25.4 90 | 38.4 92 | 3.14 104 | 19.1 111 | 33.9 127 | 1.73 86 | 59.6 84 | 69.0 134 | 42.6 142 | 79.4 141 | 87.6 127 | 43.6 145 | 37.0 124 | 67.5 138 | 25.6 134 | 31.7 26 | 64.0 62 | 4.69 60 | 39.4 92 | 79.5 122 | 3.20 105 |
p-harmonic [29] | 108.0 | 13.5 43 | 36.7 61 | 1.85 76 | 26.7 143 | 39.9 136 | 3.25 114 | 19.4 140 | 35.2 159 | 2.10 141 | 60.1 131 | 68.7 116 | 42.2 106 | 79.3 98 | 87.5 82 | 43.3 88 | 36.7 90 | 66.7 60 | 25.3 110 | 32.6 136 | 65.8 150 | 4.76 105 | 39.4 92 | 79.5 122 | 3.17 93 |
FLAVR [188] | 109.7 | 20.7 193 | 45.4 192 | 3.14 176 | 37.4 197 | 46.1 194 | 7.59 190 | 17.5 35 | 30.9 48 | 2.93 179 | 68.5 197 | 76.1 196 | 39.7 24 | 74.0 11 | 84.5 20 | 31.0 4 | 30.8 10 | 60.4 17 | 17.7 1 | 41.4 197 | 69.9 194 | 4.86 136 | 40.6 174 | 75.3 18 | 2.93 30 |
Shiralkar [42] | 111.8 | 14.2 115 | 39.0 141 | 2.02 111 | 26.8 144 | 40.3 146 | 2.98 84 | 18.5 59 | 38.0 187 | 2.48 165 | 60.1 131 | 67.7 57 | 41.8 67 | 78.8 33 | 87.2 36 | 42.3 35 | 37.7 156 | 67.2 112 | 26.2 162 | 33.2 156 | 67.1 170 | 4.94 148 | 39.4 92 | 79.3 103 | 3.10 73 |
AugFNG_ROB [139] | 112.4 | 14.6 148 | 39.7 163 | 2.31 143 | 27.3 158 | 41.3 163 | 4.30 153 | 19.5 147 | 37.8 184 | 1.92 122 | 59.8 104 | 68.8 123 | 42.1 93 | 79.4 141 | 87.7 155 | 43.3 88 | 36.3 39 | 66.4 44 | 24.9 49 | 32.7 142 | 65.6 147 | 4.73 81 | 38.8 33 | 78.6 53 | 2.84 24 |
HBM-GC [103] | 114.9 | 14.7 152 | 39.4 156 | 2.41 151 | 25.4 90 | 38.1 79 | 3.07 95 | 18.0 45 | 29.8 33 | 1.56 46 | 59.8 104 | 68.2 79 | 42.8 145 | 80.1 188 | 88.0 182 | 45.9 192 | 37.5 149 | 68.2 172 | 26.1 160 | 31.9 54 | 63.3 33 | 4.99 153 | 39.3 77 | 79.1 86 | 3.30 137 |
C-RAFT_RVC [181] | 114.9 | 15.1 163 | 41.1 175 | 2.13 123 | 26.4 129 | 40.6 154 | 3.40 126 | 19.3 132 | 34.1 134 | 1.85 114 | 60.0 122 | 69.9 165 | 42.3 114 | 79.3 98 | 87.5 82 | 43.4 106 | 36.6 69 | 67.1 102 | 24.9 49 | 32.1 85 | 64.9 105 | 4.69 60 | 39.9 135 | 79.4 111 | 3.20 105 |
FlowNet2 [120] | 115.8 | 15.9 178 | 41.4 177 | 2.76 162 | 27.1 150 | 40.2 143 | 4.29 151 | 19.6 152 | 34.3 138 | 1.88 118 | 60.0 122 | 70.2 170 | 42.0 87 | 79.4 141 | 87.7 155 | 43.3 88 | 36.4 49 | 66.3 40 | 24.9 49 | 32.1 85 | 64.5 84 | 4.71 68 | 39.6 116 | 79.2 94 | 3.08 63 |
CLG-TV [48] | 116.9 | 14.3 129 | 38.8 131 | 2.17 126 | 26.6 134 | 39.8 132 | 3.24 113 | 19.5 147 | 33.9 127 | 2.11 143 | 60.0 122 | 69.0 134 | 42.4 127 | 79.3 98 | 87.6 127 | 43.5 123 | 36.6 69 | 66.9 78 | 25.1 78 | 32.1 85 | 65.1 120 | 4.71 68 | 39.9 135 | 80.0 155 | 3.20 105 |
MCPFlow_RVC [197] | 117.3 | 14.3 129 | 39.2 148 | 1.80 63 | 25.9 114 | 39.5 124 | 3.19 110 | 19.0 97 | 33.7 119 | 1.56 46 | 59.7 91 | 68.7 116 | 41.8 67 | 79.5 173 | 87.8 173 | 43.7 162 | 36.7 90 | 68.0 164 | 25.0 60 | 32.4 125 | 65.1 120 | 4.76 105 | 39.5 106 | 80.2 169 | 3.33 144 |
MLDP_OF [87] | 117.4 | 13.9 86 | 38.1 107 | 1.81 65 | 25.6 101 | 38.9 105 | 2.80 58 | 18.8 79 | 32.3 86 | 1.61 62 | 59.6 84 | 68.3 86 | 42.3 114 | 79.3 98 | 87.6 127 | 43.9 175 | 39.6 187 | 68.7 182 | 28.5 186 | 33.0 154 | 65.3 135 | 5.09 161 | 39.6 116 | 79.2 94 | 3.51 170 |
SIOF [67] | 117.8 | 14.7 152 | 39.5 159 | 2.23 138 | 27.1 150 | 40.3 146 | 4.25 150 | 19.1 111 | 32.9 99 | 1.82 111 | 59.8 104 | 68.6 108 | 42.1 93 | 79.1 45 | 87.4 48 | 43.0 51 | 37.1 131 | 67.1 102 | 25.5 127 | 32.4 125 | 64.9 105 | 4.79 115 | 40.1 151 | 79.9 150 | 3.40 157 |
EPMNet [131] | 117.9 | 15.7 176 | 42.3 181 | 2.55 154 | 26.9 145 | 39.5 124 | 4.05 146 | 19.6 152 | 34.3 138 | 1.88 118 | 60.1 131 | 70.4 176 | 42.0 87 | 79.4 141 | 87.7 155 | 43.3 88 | 36.5 56 | 66.9 78 | 24.9 49 | 32.1 85 | 64.5 84 | 4.71 68 | 40.0 143 | 79.3 103 | 3.05 52 |
Local-TV-L1 [65] | 121.2 | 14.9 157 | 37.3 78 | 3.21 177 | 27.3 158 | 39.5 124 | 4.67 162 | 18.9 89 | 32.3 86 | 1.70 80 | 61.3 170 | 68.6 108 | 47.1 190 | 79.3 98 | 87.6 127 | 43.6 145 | 39.0 179 | 66.7 60 | 28.9 188 | 31.7 26 | 64.3 69 | 4.79 115 | 39.3 77 | 79.1 86 | 3.41 160 |
F-TV-L1 [15] | 121.8 | 15.0 158 | 39.3 151 | 2.88 169 | 27.2 154 | 40.2 143 | 3.69 136 | 19.2 123 | 34.5 143 | 2.19 152 | 59.7 91 | 68.4 91 | 42.8 145 | 78.9 34 | 87.4 48 | 42.7 41 | 37.3 143 | 67.0 89 | 25.6 134 | 32.1 85 | 64.5 84 | 4.89 141 | 40.1 151 | 80.0 155 | 3.42 161 |
IAOF [50] | 122.1 | 15.5 172 | 39.2 148 | 2.93 173 | 29.4 177 | 43.0 179 | 5.18 174 | 17.8 40 | 33.0 103 | 2.04 136 | 60.8 155 | 68.9 129 | 42.2 106 | 79.2 68 | 87.4 48 | 43.3 88 | 36.8 104 | 67.2 112 | 25.1 78 | 32.7 142 | 65.6 147 | 4.67 49 | 40.0 143 | 80.0 155 | 3.20 105 |
3DFlow [133] | 122.2 | 14.1 105 | 38.7 127 | 1.71 47 | 25.2 73 | 38.2 86 | 2.84 66 | 19.0 97 | 32.3 86 | 1.69 78 | 59.9 116 | 69.0 134 | 42.4 127 | 79.6 177 | 87.6 127 | 45.1 188 | 37.7 156 | 69.2 189 | 25.4 121 | 33.7 171 | 66.7 167 | 4.86 136 | 39.9 135 | 79.8 144 | 3.12 80 |
OFRF [132] | 122.2 | 16.1 180 | 39.8 165 | 3.51 181 | 27.6 162 | 40.2 143 | 4.76 164 | 18.4 54 | 34.3 138 | 1.75 97 | 60.4 142 | 68.9 129 | 43.0 157 | 79.2 68 | 87.5 82 | 43.1 59 | 38.1 165 | 68.1 169 | 26.4 167 | 32.2 107 | 65.0 109 | 4.79 115 | 39.0 43 | 79.1 86 | 3.05 52 |
TCOF [69] | 122.5 | 14.4 137 | 39.3 151 | 1.83 70 | 27.3 158 | 40.9 159 | 3.35 119 | 18.7 76 | 32.1 80 | 1.50 32 | 60.2 137 | 70.2 170 | 42.1 93 | 79.3 98 | 87.6 127 | 43.2 78 | 36.9 112 | 68.5 178 | 24.8 46 | 33.3 160 | 65.8 150 | 4.72 75 | 41.2 181 | 81.4 188 | 3.46 164 |
LSM_FLOW_RVC [182] | 123.7 | 14.5 142 | 40.7 173 | 2.04 115 | 27.2 154 | 42.6 175 | 3.51 134 | 19.5 147 | 36.2 173 | 1.73 86 | 59.7 91 | 69.3 144 | 41.7 57 | 79.2 68 | 87.4 48 | 43.1 59 | 37.0 124 | 67.3 122 | 24.9 49 | 33.4 163 | 66.0 157 | 4.81 125 | 40.5 171 | 79.9 150 | 3.32 142 |
BriefMatch [122] | 125.3 | 14.0 95 | 37.0 70 | 2.17 126 | 25.6 101 | 38.8 103 | 3.98 145 | 19.7 160 | 33.0 103 | 2.69 172 | 61.1 165 | 69.0 134 | 46.4 187 | 79.3 98 | 87.6 127 | 43.8 172 | 40.5 192 | 67.9 160 | 30.6 192 | 31.8 39 | 64.0 62 | 4.94 148 | 39.0 43 | 78.8 67 | 3.34 146 |
CompactFlow_ROB [155] | 125.8 | 14.2 115 | 39.2 148 | 1.96 102 | 27.1 150 | 41.9 171 | 4.22 148 | 20.0 170 | 37.0 179 | 1.80 107 | 60.0 122 | 69.4 150 | 42.5 134 | 79.3 98 | 87.5 82 | 43.2 78 | 36.6 69 | 67.4 129 | 24.5 36 | 33.2 156 | 65.9 154 | 4.78 112 | 40.5 171 | 80.0 155 | 3.13 82 |
Adaptive [20] | 126.0 | 14.5 142 | 39.6 161 | 2.31 143 | 27.1 150 | 40.4 149 | 3.35 119 | 18.6 70 | 33.7 119 | 1.98 129 | 59.6 84 | 68.2 79 | 42.4 127 | 79.4 141 | 87.6 127 | 43.4 106 | 37.1 131 | 67.5 138 | 25.7 145 | 32.4 125 | 64.8 98 | 4.73 81 | 40.0 143 | 80.1 162 | 3.38 155 |
IIOF-NLDP [129] | 126.1 | 14.1 105 | 38.2 113 | 1.62 26 | 26.1 120 | 39.9 136 | 2.98 84 | 19.3 132 | 32.1 80 | 1.77 100 | 60.6 152 | 69.4 150 | 43.2 161 | 79.3 98 | 87.5 82 | 43.6 145 | 37.8 161 | 68.6 179 | 25.6 134 | 34.1 180 | 69.5 190 | 5.66 190 | 39.9 135 | 79.6 132 | 3.01 41 |
IRR-PWC_RVC [180] | 126.6 | 15.0 158 | 40.8 174 | 2.39 150 | 27.2 154 | 41.3 163 | 4.51 157 | 20.2 173 | 38.0 187 | 1.86 115 | 60.4 142 | 69.8 163 | 41.9 74 | 79.4 141 | 87.6 127 | 43.4 106 | 36.6 69 | 67.0 89 | 25.0 60 | 32.6 136 | 65.5 143 | 4.72 75 | 39.7 123 | 79.5 122 | 2.99 38 |
FlowNetS+ft+v [110] | 127.3 | 14.7 152 | 38.1 107 | 2.80 165 | 27.5 161 | 40.6 154 | 4.81 166 | 19.6 152 | 34.9 149 | 2.07 137 | 60.1 131 | 69.5 157 | 42.2 106 | 79.4 141 | 87.7 155 | 43.4 106 | 36.6 69 | 67.1 102 | 25.2 90 | 32.0 70 | 65.4 137 | 4.73 81 | 39.6 116 | 79.7 140 | 3.21 112 |
CNN-flow-warp+ref [115] | 127.8 | 13.8 74 | 36.0 40 | 2.35 147 | 26.6 134 | 39.8 132 | 3.83 141 | 20.0 170 | 35.5 164 | 2.34 157 | 60.9 157 | 68.9 129 | 43.0 157 | 79.4 141 | 87.6 127 | 43.7 162 | 36.8 104 | 67.0 89 | 25.6 134 | 32.1 85 | 66.2 162 | 4.94 148 | 39.4 92 | 79.5 122 | 3.19 98 |
AdaConv-v1 [124] | 128.9 | 16.5 184 | 42.3 181 | 4.36 186 | 30.4 183 | 43.8 183 | 9.06 193 | 20.6 179 | 36.3 175 | 4.45 193 | 64.5 190 | 71.3 187 | 45.3 182 | 78.4 32 | 86.7 32 | 42.2 34 | 36.3 39 | 64.9 33 | 25.4 121 | 32.5 131 | 63.7 47 | 5.53 185 | 38.0 19 | 77.4 31 | 3.53 173 |
CVENG22+RIC [199] | 129.0 | 14.2 115 | 38.7 127 | 2.04 115 | 25.8 109 | 39.3 115 | 2.99 87 | 19.1 111 | 34.8 147 | 1.81 109 | 60.1 131 | 70.1 169 | 42.5 134 | 79.4 141 | 87.7 155 | 43.6 145 | 36.9 112 | 67.8 154 | 25.3 110 | 32.3 116 | 65.9 154 | 4.79 115 | 39.8 133 | 80.0 155 | 3.30 137 |
SPSA-learn [13] | 129.5 | 14.8 156 | 37.8 97 | 2.72 161 | 27.6 162 | 40.1 140 | 4.71 163 | 20.5 176 | 33.7 119 | 2.97 180 | 60.4 142 | 67.6 53 | 41.5 40 | 79.3 98 | 87.5 82 | 43.5 123 | 36.8 104 | 67.2 112 | 25.2 90 | 33.4 163 | 70.8 197 | 6.21 197 | 39.7 123 | 79.6 132 | 3.19 98 |
CRTflow [81] | 129.9 | 14.4 137 | 38.9 137 | 2.38 148 | 26.0 115 | 39.0 108 | 3.14 104 | 20.2 173 | 36.2 173 | 2.37 159 | 60.5 147 | 69.5 157 | 44.1 173 | 79.3 98 | 87.5 82 | 43.4 106 | 37.1 131 | 67.3 122 | 25.7 145 | 32.0 70 | 64.6 89 | 4.85 133 | 39.6 116 | 79.6 132 | 3.45 162 |
LDOF [28] | 130.0 | 15.0 158 | 38.8 131 | 2.92 171 | 28.0 169 | 41.1 161 | 5.03 169 | 19.7 160 | 34.8 147 | 2.15 148 | 60.0 122 | 68.9 129 | 42.6 142 | 79.4 141 | 87.6 127 | 43.5 123 | 36.9 112 | 66.8 71 | 25.5 127 | 31.9 54 | 65.1 120 | 4.73 81 | 39.5 106 | 79.6 132 | 3.23 120 |
HBpMotionGpu [43] | 130.2 | 15.8 177 | 40.2 169 | 3.66 183 | 29.5 178 | 42.8 178 | 6.27 179 | 18.5 59 | 31.9 74 | 1.73 86 | 61.3 170 | 69.9 165 | 43.9 170 | 79.1 45 | 87.6 127 | 43.0 51 | 37.6 155 | 67.6 145 | 25.9 152 | 32.0 70 | 64.3 69 | 4.67 49 | 40.0 143 | 79.9 150 | 3.75 182 |
ResPWCR_ROB [140] | 130.3 | 13.9 86 | 38.2 113 | 1.89 90 | 26.5 132 | 40.4 149 | 3.42 129 | 19.9 169 | 35.6 166 | 1.95 126 | 60.5 147 | 70.2 170 | 43.3 163 | 78.9 34 | 87.4 48 | 42.5 36 | 42.1 195 | 67.7 150 | 32.5 195 | 33.9 176 | 65.4 137 | 4.85 133 | 40.1 151 | 79.7 140 | 3.17 93 |
ROF-ND [105] | 130.5 | 15.1 163 | 37.9 102 | 1.86 81 | 26.3 127 | 40.5 153 | 3.12 103 | 19.6 152 | 32.8 97 | 1.68 77 | 60.9 157 | 71.1 186 | 41.9 74 | 79.3 98 | 87.5 82 | 43.5 123 | 37.0 124 | 68.2 172 | 24.9 49 | 34.3 183 | 68.3 182 | 5.28 172 | 40.5 171 | 80.5 178 | 3.25 125 |
Occlusion-TV-L1 [63] | 130.8 | 14.3 129 | 39.1 144 | 2.21 136 | 26.6 134 | 40.0 138 | 3.14 104 | 19.2 123 | 34.2 136 | 2.15 148 | 60.0 122 | 68.5 96 | 42.8 145 | 79.3 98 | 87.5 82 | 43.6 145 | 37.5 149 | 67.0 89 | 26.2 162 | 32.9 149 | 65.1 120 | 5.16 166 | 40.0 143 | 79.8 144 | 3.30 137 |
Modified CLG [34] | 132.3 | 14.1 105 | 37.6 89 | 2.33 145 | 28.5 174 | 41.4 168 | 5.68 175 | 19.6 152 | 35.8 169 | 2.31 156 | 60.2 137 | 68.6 108 | 42.1 93 | 79.4 141 | 87.5 82 | 43.5 123 | 36.7 90 | 67.2 112 | 25.2 90 | 32.3 116 | 66.0 157 | 4.76 105 | 40.2 157 | 80.4 175 | 3.40 157 |
CBF [12] | 133.5 | 13.7 59 | 37.2 77 | 2.15 124 | 26.0 115 | 39.4 122 | 3.28 115 | 19.1 111 | 32.1 80 | 1.79 104 | 61.0 163 | 70.0 168 | 45.8 184 | 79.6 177 | 87.8 173 | 44.9 187 | 36.8 104 | 67.4 129 | 25.2 90 | 32.2 107 | 65.5 143 | 5.22 169 | 40.0 143 | 80.2 169 | 3.99 190 |
TriangleFlow [30] | 135.1 | 14.7 152 | 40.0 168 | 2.29 142 | 26.6 134 | 40.8 156 | 3.03 92 | 19.4 140 | 33.3 111 | 2.10 141 | 60.4 142 | 69.9 165 | 42.8 145 | 79.0 38 | 87.4 48 | 42.6 38 | 37.7 156 | 68.3 175 | 25.3 110 | 33.1 155 | 67.8 176 | 5.24 171 | 40.4 166 | 80.6 180 | 3.32 142 |
ACK-Prior [27] | 136.3 | 13.8 74 | 38.1 107 | 1.74 55 | 25.5 93 | 39.3 115 | 2.82 63 | 19.6 152 | 33.8 126 | 2.45 163 | 60.5 147 | 70.3 173 | 42.3 114 | 80.2 189 | 88.0 182 | 45.8 191 | 38.2 166 | 67.8 154 | 26.9 176 | 32.6 136 | 66.2 162 | 5.35 179 | 38.9 36 | 79.7 140 | 3.60 178 |
BlockOverlap [61] | 136.3 | 15.1 163 | 37.6 89 | 3.31 179 | 27.7 165 | 39.3 115 | 5.73 176 | 18.6 70 | 30.3 35 | 2.09 140 | 60.9 157 | 68.2 79 | 47.1 190 | 80.2 189 | 87.9 176 | 46.5 193 | 39.0 179 | 67.3 122 | 28.4 185 | 31.9 54 | 63.9 55 | 5.09 161 | 39.7 123 | 79.3 103 | 3.55 174 |
2D-CLG [1] | 136.5 | 14.5 142 | 37.6 89 | 2.76 162 | 29.8 180 | 42.4 174 | 6.69 186 | 19.7 160 | 35.2 159 | 2.74 175 | 60.7 153 | 68.7 116 | 41.5 40 | 79.4 141 | 87.7 155 | 43.5 123 | 36.6 69 | 67.0 89 | 25.1 78 | 32.5 131 | 66.7 167 | 4.90 143 | 40.2 157 | 80.1 162 | 3.25 125 |
Nguyen [33] | 136.8 | 15.6 173 | 38.5 120 | 3.62 182 | 30.1 182 | 43.2 180 | 6.04 177 | 19.6 152 | 36.3 175 | 2.25 154 | 61.1 165 | 69.4 150 | 42.0 87 | 79.2 68 | 87.5 82 | 43.1 59 | 36.4 49 | 67.2 112 | 24.7 44 | 34.3 183 | 67.4 173 | 5.00 154 | 40.2 157 | 80.3 171 | 3.29 134 |
SegOF [10] | 137.4 | 14.2 115 | 36.8 65 | 2.54 153 | 27.0 148 | 40.0 138 | 4.18 147 | 21.1 183 | 36.1 172 | 3.15 185 | 60.5 147 | 70.7 181 | 41.6 48 | 79.4 141 | 87.6 127 | 43.6 145 | 36.9 112 | 68.2 172 | 25.2 90 | 32.5 131 | 68.0 181 | 5.31 176 | 39.6 116 | 79.4 111 | 3.22 114 |
IAOF2 [51] | 138.2 | 15.6 173 | 41.3 176 | 2.58 156 | 27.6 162 | 41.4 168 | 4.29 151 | 17.8 40 | 33.6 116 | 1.94 124 | 61.2 168 | 70.8 182 | 42.8 145 | 79.4 141 | 87.7 155 | 43.3 88 | 37.2 139 | 67.5 138 | 25.6 134 | 32.3 116 | 65.0 109 | 4.63 30 | 40.6 174 | 80.4 175 | 3.40 157 |
TV-L1-improved [17] | 139.2 | 14.2 115 | 38.8 131 | 2.25 139 | 26.9 145 | 40.3 146 | 3.40 126 | 19.5 147 | 33.9 127 | 2.44 162 | 59.9 116 | 69.0 134 | 42.7 144 | 79.4 141 | 87.7 155 | 43.5 123 | 37.2 139 | 67.6 145 | 25.8 149 | 32.1 85 | 66.1 160 | 5.05 158 | 39.9 135 | 80.0 155 | 3.46 164 |
StereoOF-V1MT [117] | 139.4 | 14.6 148 | 39.9 166 | 2.00 109 | 27.2 154 | 41.9 171 | 3.04 93 | 20.9 182 | 37.8 184 | 2.85 178 | 61.3 170 | 68.3 86 | 43.8 167 | 79.2 68 | 87.5 82 | 42.9 44 | 38.2 166 | 67.8 154 | 26.3 166 | 33.8 172 | 68.5 183 | 5.36 180 | 40.0 143 | 79.4 111 | 3.09 69 |
Correlation Flow [76] | 139.6 | 14.0 95 | 38.3 116 | 1.61 21 | 26.2 124 | 39.8 132 | 2.98 84 | 19.1 111 | 31.9 74 | 1.73 86 | 60.4 142 | 69.4 150 | 43.6 166 | 80.2 189 | 87.9 176 | 47.8 196 | 38.0 164 | 68.7 182 | 26.0 157 | 33.4 163 | 67.2 171 | 5.29 173 | 40.1 151 | 80.3 171 | 3.39 156 |
Dynamic MRF [7] | 139.9 | 13.9 86 | 38.6 122 | 1.90 92 | 26.1 120 | 40.4 149 | 3.08 96 | 20.0 170 | 37.7 183 | 2.73 174 | 61.3 170 | 69.3 144 | 44.6 177 | 79.1 45 | 87.6 127 | 43.0 51 | 37.7 156 | 68.0 164 | 25.9 152 | 32.6 136 | 67.2 171 | 5.08 160 | 40.4 166 | 80.5 178 | 3.49 169 |
WRT [146] | 141.5 | 14.3 129 | 39.0 141 | 1.76 59 | 26.6 134 | 39.7 128 | 3.14 104 | 20.8 180 | 31.9 74 | 2.57 168 | 60.2 137 | 69.5 157 | 42.3 114 | 79.6 177 | 87.7 155 | 44.4 181 | 37.8 161 | 69.5 194 | 25.5 127 | 34.2 182 | 71.4 198 | 6.06 195 | 39.7 123 | 79.8 144 | 2.95 33 |
Rannacher [23] | 143.6 | 14.4 137 | 39.3 151 | 2.38 148 | 26.9 145 | 40.4 149 | 3.36 122 | 19.5 147 | 34.6 144 | 2.58 169 | 59.8 104 | 68.8 123 | 42.8 145 | 79.4 141 | 87.7 155 | 43.6 145 | 37.2 139 | 67.8 154 | 25.8 149 | 32.2 107 | 66.0 157 | 5.02 155 | 39.9 135 | 79.9 150 | 3.56 175 |
Black & Anandan [4] | 144.4 | 15.3 168 | 38.8 131 | 2.96 174 | 28.4 172 | 40.9 159 | 4.78 165 | 20.5 176 | 35.2 159 | 2.74 175 | 60.9 157 | 69.3 144 | 42.1 93 | 79.4 141 | 87.7 155 | 43.6 145 | 37.1 131 | 66.6 53 | 25.6 134 | 32.9 149 | 65.9 154 | 4.72 75 | 40.3 160 | 80.3 171 | 3.25 125 |
LocallyOriented [52] | 146.5 | 15.0 158 | 40.3 170 | 2.53 152 | 27.7 165 | 41.3 163 | 3.86 142 | 19.4 140 | 34.4 141 | 1.95 126 | 61.1 165 | 70.6 178 | 43.3 163 | 79.2 68 | 87.5 82 | 43.3 88 | 39.1 183 | 68.1 169 | 27.6 182 | 32.9 149 | 65.8 150 | 4.72 75 | 40.6 174 | 80.6 180 | 3.37 153 |
UnFlow [127] | 148.9 | 16.0 179 | 42.8 184 | 2.87 168 | 30.6 186 | 45.2 192 | 4.52 158 | 21.3 186 | 39.4 191 | 2.81 177 | 60.0 122 | 68.3 86 | 42.1 93 | 79.2 68 | 87.4 48 | 43.5 123 | 37.5 149 | 68.0 164 | 25.2 90 | 33.8 172 | 65.1 120 | 4.98 152 | 43.2 194 | 81.8 192 | 3.67 180 |
TVL1_RVC [175] | 152.5 | 16.2 181 | 39.4 156 | 4.14 185 | 30.4 183 | 43.4 181 | 6.38 181 | 18.9 89 | 34.9 149 | 2.12 144 | 61.3 170 | 69.1 141 | 42.9 156 | 79.4 141 | 87.7 155 | 43.6 145 | 37.5 149 | 67.2 112 | 26.0 157 | 32.3 116 | 66.2 162 | 4.91 145 | 40.1 151 | 80.3 171 | 3.31 141 |
Filter Flow [19] | 153.6 | 15.0 158 | 39.4 156 | 2.78 164 | 28.4 172 | 40.8 156 | 6.31 180 | 18.5 59 | 32.9 99 | 2.14 146 | 61.7 177 | 69.3 144 | 45.3 182 | 79.7 182 | 88.0 182 | 44.5 183 | 37.3 143 | 67.7 150 | 26.1 160 | 32.1 85 | 65.2 131 | 4.93 146 | 40.3 160 | 80.7 183 | 3.97 189 |
StereoFlow [44] | 154.7 | 22.8 197 | 51.1 198 | 4.80 188 | 36.2 196 | 51.1 198 | 6.57 184 | 19.2 123 | 34.6 144 | 1.89 120 | 60.0 122 | 68.5 96 | 42.4 127 | 80.3 192 | 89.1 197 | 43.9 175 | 39.0 179 | 74.1 198 | 25.3 110 | 32.1 85 | 65.0 109 | 4.73 81 | 40.3 160 | 80.9 184 | 3.36 150 |
Ad-TV-NDC [36] | 160.8 | 17.2 187 | 39.9 166 | 5.26 190 | 29.6 179 | 42.1 173 | 6.18 178 | 19.2 123 | 33.7 119 | 1.98 129 | 62.4 179 | 70.3 173 | 45.2 181 | 79.6 177 | 87.9 176 | 43.9 175 | 38.3 169 | 67.3 122 | 27.2 180 | 32.3 116 | 65.5 143 | 4.80 124 | 40.3 160 | 80.1 162 | 3.58 177 |
WOLF_ROB [144] | 160.8 | 15.6 173 | 41.7 179 | 2.64 157 | 27.8 167 | 41.3 163 | 3.72 138 | 19.7 160 | 35.2 159 | 2.02 135 | 61.3 170 | 71.8 188 | 44.5 175 | 79.4 141 | 87.8 173 | 43.7 162 | 38.8 177 | 67.9 160 | 27.5 181 | 34.4 186 | 67.7 174 | 5.09 161 | 39.9 135 | 79.6 132 | 3.22 114 |
Bartels [41] | 161.6 | 14.6 148 | 39.3 151 | 2.80 165 | 26.1 120 | 39.7 128 | 4.45 154 | 19.0 97 | 33.2 108 | 2.14 146 | 62.1 178 | 70.9 183 | 48.9 192 | 80.7 196 | 88.1 185 | 49.2 198 | 43.7 197 | 69.0 188 | 34.8 198 | 32.4 125 | 65.0 109 | 5.76 192 | 40.4 166 | 80.1 162 | 4.26 192 |
TI-DOFE [24] | 164.2 | 17.9 190 | 43.0 185 | 5.41 191 | 32.3 192 | 46.2 195 | 7.98 191 | 20.5 176 | 38.1 189 | 2.97 180 | 63.1 186 | 70.6 178 | 43.8 167 | 79.1 45 | 87.6 127 | 43.1 59 | 37.7 156 | 67.4 129 | 25.8 149 | 33.4 163 | 67.8 176 | 5.09 161 | 41.6 185 | 81.5 190 | 3.68 181 |
Horn & Schunck [3] | 165.3 | 15.3 168 | 40.4 172 | 2.69 159 | 29.0 175 | 42.7 176 | 5.10 170 | 21.1 183 | 37.9 186 | 3.33 187 | 62.5 181 | 70.3 173 | 43.0 157 | 79.3 98 | 87.7 155 | 43.6 145 | 37.5 149 | 67.3 122 | 25.9 152 | 33.9 176 | 68.5 183 | 5.03 156 | 41.2 181 | 81.2 187 | 3.57 176 |
GroupFlow [9] | 168.4 | 16.8 186 | 43.4 186 | 3.43 180 | 29.1 176 | 43.9 184 | 5.11 172 | 22.2 190 | 39.3 190 | 3.53 188 | 61.0 163 | 70.6 178 | 42.5 134 | 79.7 182 | 88.1 185 | 44.0 178 | 39.0 179 | 69.4 193 | 26.8 175 | 32.8 145 | 66.8 169 | 4.87 139 | 40.4 166 | 80.1 162 | 3.01 41 |
2bit-BM-tele [96] | 169.7 | 15.3 168 | 39.5 159 | 3.22 178 | 27.8 167 | 41.2 162 | 4.90 167 | 18.8 79 | 32.5 92 | 2.34 157 | 62.4 179 | 71.0 185 | 49.0 193 | 80.6 194 | 88.2 190 | 47.9 197 | 42.8 196 | 69.3 192 | 32.9 196 | 33.4 163 | 70.0 195 | 6.77 198 | 40.3 160 | 79.4 111 | 4.33 195 |
SLK [47] | 170.7 | 17.4 188 | 43.9 189 | 4.90 189 | 30.5 185 | 44.0 185 | 7.18 188 | 22.5 191 | 39.8 192 | 4.15 192 | 64.5 190 | 70.5 177 | 46.7 188 | 78.9 34 | 87.7 155 | 41.6 31 | 38.5 172 | 68.8 184 | 26.0 157 | 33.8 172 | 70.1 196 | 5.50 183 | 41.6 185 | 81.4 188 | 3.91 186 |
NL-TV-NCC [25] | 171.6 | 15.1 163 | 41.6 178 | 1.86 81 | 26.6 134 | 41.3 163 | 3.02 91 | 20.8 180 | 35.7 167 | 2.24 153 | 63.2 187 | 73.9 193 | 45.9 185 | 81.3 198 | 88.7 196 | 49.9 199 | 38.6 174 | 69.8 196 | 25.6 134 | 37.6 191 | 69.5 190 | 5.62 188 | 42.4 192 | 82.1 195 | 4.00 191 |
SILK [80] | 171.9 | 16.3 182 | 42.0 180 | 4.01 184 | 29.9 181 | 43.5 182 | 6.44 182 | 21.6 187 | 37.4 181 | 3.55 189 | 62.6 182 | 69.4 150 | 47.0 189 | 79.3 98 | 87.7 155 | 43.6 145 | 39.9 189 | 68.1 169 | 29.2 189 | 32.8 145 | 67.8 176 | 5.14 165 | 40.6 174 | 80.6 180 | 3.52 172 |
HCIC-L [97] | 173.2 | 23.2 198 | 49.0 197 | 11.0 198 | 32.1 191 | 44.4 186 | 9.93 194 | 23.2 193 | 36.4 177 | 3.02 182 | 64.4 188 | 72.1 189 | 44.9 178 | 80.6 194 | 88.5 194 | 46.6 194 | 39.1 183 | 68.9 186 | 27.1 178 | 32.4 125 | 65.0 109 | 5.53 185 | 39.1 55 | 79.3 103 | 3.65 179 |
H+S_RVC [176] | 175.6 | 16.5 184 | 43.8 188 | 2.91 170 | 31.7 189 | 44.6 187 | 6.50 183 | 24.3 194 | 44.2 195 | 4.80 195 | 65.7 193 | 69.4 150 | 44.5 175 | 79.4 141 | 88.2 190 | 43.1 59 | 38.5 172 | 68.6 179 | 25.6 134 | 34.8 187 | 69.4 189 | 5.55 187 | 43.5 197 | 81.6 191 | 3.89 185 |
Heeger++ [102] | 175.7 | 17.5 189 | 47.2 196 | 2.80 165 | 31.1 188 | 44.9 190 | 4.93 168 | 26.6 196 | 47.7 197 | 4.79 194 | 62.6 182 | 68.0 72 | 45.1 179 | 79.8 186 | 88.4 193 | 44.1 179 | 39.1 183 | 68.9 186 | 26.5 170 | 34.8 187 | 67.9 180 | 5.23 170 | 41.5 184 | 80.1 162 | 3.23 120 |
FFV1MT [104] | 178.2 | 16.4 183 | 44.7 191 | 3.13 175 | 31.9 190 | 44.7 188 | 7.15 187 | 25.4 195 | 45.6 196 | 5.04 196 | 62.6 182 | 68.0 72 | 45.1 179 | 79.6 177 | 87.9 176 | 44.1 179 | 38.9 178 | 67.7 150 | 27.1 178 | 34.0 179 | 68.5 183 | 5.29 173 | 41.8 188 | 81.0 185 | 4.48 197 |
Learning Flow [11] | 178.3 | 15.3 168 | 42.7 183 | 2.55 154 | 28.0 169 | 42.7 176 | 3.95 143 | 21.1 183 | 37.0 179 | 3.03 184 | 63.0 185 | 73.3 191 | 46.2 186 | 80.0 187 | 88.2 190 | 45.1 188 | 38.2 166 | 68.6 179 | 26.7 172 | 33.8 172 | 68.5 183 | 5.21 168 | 41.9 189 | 82.3 196 | 3.95 188 |
Adaptive flow [45] | 181.5 | 19.6 192 | 44.1 190 | 6.76 193 | 32.8 193 | 45.7 193 | 10.2 195 | 19.8 165 | 34.4 141 | 3.02 182 | 64.7 192 | 72.1 189 | 49.4 194 | 80.3 192 | 88.6 195 | 45.6 190 | 38.3 169 | 69.2 189 | 26.7 172 | 32.6 136 | 66.5 166 | 5.45 182 | 41.0 178 | 81.1 186 | 3.75 182 |
Pyramid LK [2] | 183.9 | 21.2 196 | 43.7 187 | 10.7 197 | 33.1 195 | 45.1 191 | 11.9 196 | 27.3 197 | 36.0 170 | 6.46 197 | 70.7 198 | 78.5 198 | 57.7 198 | 79.5 173 | 88.1 185 | 43.3 88 | 38.6 174 | 68.8 184 | 27.0 177 | 33.5 169 | 68.8 187 | 6.00 193 | 41.0 178 | 81.8 192 | 4.31 194 |
FOLKI [16] | 188.3 | 20.9 194 | 46.0 193 | 9.48 196 | 32.8 193 | 47.4 196 | 8.75 192 | 21.6 187 | 40.7 193 | 4.10 191 | 67.2 196 | 74.2 195 | 53.7 197 | 79.5 173 | 88.1 185 | 43.7 162 | 39.2 186 | 69.2 189 | 27.9 183 | 33.4 163 | 69.5 190 | 5.65 189 | 41.7 187 | 82.3 196 | 4.28 193 |
PGAM+LK [55] | 188.6 | 19.4 191 | 46.4 194 | 6.81 194 | 30.9 187 | 44.8 189 | 7.52 189 | 22.7 192 | 40.9 194 | 3.99 190 | 66.6 195 | 73.9 193 | 52.4 196 | 79.7 182 | 88.1 185 | 44.5 183 | 40.2 191 | 69.7 195 | 28.8 187 | 33.3 160 | 69.3 188 | 5.42 181 | 41.4 183 | 81.8 192 | 4.36 196 |
Periodicity [79] | 195.5 | 21.0 195 | 47.0 195 | 9.32 195 | 38.1 198 | 48.1 197 | 14.7 198 | 29.8 198 | 47.9 198 | 9.27 198 | 66.0 194 | 77.1 197 | 50.7 195 | 80.8 197 | 89.3 198 | 46.8 195 | 45.1 198 | 70.6 197 | 35.5 199 | 33.5 169 | 69.6 193 | 6.07 196 | 43.5 197 | 84.0 198 | 6.51 198 |
AVG_FLOW_ROB [137] | 198.2 | 51.4 199 | 76.8 199 | 29.6 199 | 67.5 199 | 74.0 199 | 36.6 199 | 51.8 199 | 59.9 199 | 20.1 199 | 84.7 199 | 90.1 199 | 64.7 199 | 81.8 199 | 91.0 199 | 44.5 183 | 51.7 199 | 87.4 199 | 33.4 197 | 57.5 199 | 81.8 199 | 10.1 199 | 63.2 199 | 86.1 199 | 26.5 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |