Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
A90 interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
SoftsplatAug [190] | 2.5 | 2.16 1 | 3.87 1 | 1.41 1 | 3.56 1 | 4.83 2 | 1.41 1 | 1.73 1 | 2.71 3 | 1.29 3 | 5.48 3 | 6.38 3 | 3.74 4 | 9.09 2 | 11.6 2 | 3.56 3 | 4.00 3 | 9.40 4 | 2.94 1 | 4.65 9 | 15.0 4 | 1.91 1 | 6.73 4 | 11.0 3 | 1.83 1 |
SoftSplat [169] | 4.8 | 2.38 3 | 4.08 3 | 1.73 12 | 3.70 2 | 5.57 5 | 1.41 1 | 1.73 1 | 2.65 2 | 1.00 1 | 5.45 2 | 6.35 2 | 3.70 1 | 9.57 15 | 12.5 18 | 3.56 3 | 4.08 6 | 10.1 6 | 2.94 1 | 4.65 9 | 16.3 11 | 1.91 1 | 6.81 5 | 11.0 3 | 1.83 1 |
IFRNet [193] | 6.2 | 2.38 3 | 4.04 2 | 1.73 12 | 3.79 4 | 5.35 4 | 1.63 5 | 1.73 1 | 2.71 3 | 1.29 3 | 5.60 4 | 6.48 5 | 4.04 18 | 9.42 7 | 12.0 6 | 3.70 14 | 4.12 8 | 10.9 11 | 2.94 1 | 4.65 9 | 16.2 9 | 1.91 1 | 7.44 8 | 12.2 9 | 1.83 1 |
EAFI [186] | 7.0 | 2.16 1 | 4.08 3 | 1.41 1 | 3.70 2 | 4.69 1 | 1.41 1 | 1.73 1 | 2.38 1 | 1.00 1 | 5.35 1 | 6.14 1 | 3.70 1 | 10.8 26 | 14.5 27 | 3.46 1 | 4.36 19 | 12.2 21 | 2.94 1 | 4.69 13 | 17.1 16 | 1.91 1 | 7.85 13 | 12.9 13 | 1.83 1 |
SepConv++ [185] | 7.5 | 2.65 17 | 5.03 21 | 1.73 12 | 4.04 7 | 6.06 8 | 1.73 7 | 2.00 7 | 3.37 11 | 1.41 7 | 6.06 19 | 7.59 23 | 3.92 12 | 9.09 2 | 11.6 2 | 3.65 12 | 3.70 1 | 8.29 2 | 2.94 1 | 4.43 1 | 14.9 3 | 1.91 1 | 6.16 2 | 10.4 2 | 1.83 1 |
DistillNet [184] | 12.5 | 2.38 3 | 4.36 7 | 1.73 12 | 3.79 4 | 5.32 3 | 1.63 5 | 1.73 1 | 2.71 3 | 1.29 3 | 5.69 5 | 6.76 7 | 3.74 4 | 9.63 18 | 12.4 17 | 3.56 3 | 4.43 21 | 12.4 23 | 2.94 1 | 5.07 101 | 18.7 22 | 1.91 1 | 8.04 19 | 13.0 16 | 1.83 1 |
EDSC [173] | 12.5 | 2.52 13 | 4.69 12 | 1.63 9 | 4.08 8 | 6.45 13 | 1.73 7 | 2.00 7 | 3.37 11 | 1.41 7 | 6.03 18 | 7.53 21 | 4.00 16 | 9.33 5 | 11.9 5 | 3.70 14 | 4.08 6 | 11.4 12 | 2.94 1 | 4.51 4 | 15.6 5 | 2.00 27 | 7.55 10 | 12.7 11 | 1.91 59 |
MV_VFI [183] | 13.0 | 2.65 17 | 5.00 18 | 1.73 12 | 4.36 15 | 6.66 18 | 1.73 7 | 2.00 7 | 3.37 11 | 1.41 7 | 5.97 14 | 7.48 20 | 3.87 6 | 9.56 13 | 12.3 13 | 3.70 14 | 4.32 16 | 11.8 18 | 2.94 1 | 4.83 19 | 19.3 23 | 1.91 1 | 8.23 22 | 13.5 20 | 1.83 1 |
TC-GAN [166] | 13.1 | 2.65 17 | 5.03 21 | 1.73 12 | 4.36 15 | 6.68 19 | 1.73 7 | 2.00 7 | 3.37 11 | 1.41 7 | 5.97 14 | 7.44 18 | 3.87 6 | 9.56 13 | 12.3 13 | 3.70 14 | 4.32 16 | 11.7 13 | 2.94 1 | 4.90 21 | 19.3 23 | 1.91 1 | 8.25 24 | 13.5 20 | 1.83 1 |
DAIN [152] | 13.4 | 2.65 17 | 5.07 23 | 1.73 12 | 4.43 22 | 6.73 23 | 1.73 7 | 2.00 7 | 3.37 11 | 1.41 7 | 5.97 14 | 7.39 15 | 3.87 6 | 9.57 15 | 12.3 13 | 3.70 14 | 4.32 16 | 11.7 13 | 2.94 1 | 4.83 19 | 19.3 23 | 1.91 1 | 8.23 22 | 13.5 20 | 1.83 1 |
FGME [158] | 15.3 | 2.38 3 | 4.16 5 | 1.41 1 | 4.24 11 | 6.35 11 | 1.83 138 | 2.38 19 | 3.37 11 | 1.41 7 | 5.72 7 | 6.45 4 | 4.08 21 | 8.81 1 | 11.3 1 | 3.56 3 | 3.92 2 | 9.13 3 | 3.00 22 | 4.43 1 | 13.2 2 | 2.00 27 | 6.58 3 | 11.2 5 | 1.91 59 |
STAR-Net [164] | 15.7 | 2.52 13 | 4.32 6 | 1.73 12 | 4.32 14 | 6.98 30 | 1.73 7 | 2.00 7 | 2.71 3 | 1.41 7 | 5.92 12 | 7.07 11 | 3.70 1 | 9.15 4 | 11.7 4 | 3.51 2 | 4.24 14 | 11.8 18 | 2.94 1 | 5.51 177 | 16.1 7 | 1.91 1 | 7.87 14 | 12.6 10 | 1.83 1 |
DAI [168] | 16.8 | 2.52 13 | 4.43 8 | 1.73 12 | 4.43 22 | 6.73 23 | 1.73 7 | 1.73 1 | 2.71 3 | 1.29 3 | 5.69 5 | 6.61 6 | 4.08 21 | 10.9 27 | 14.4 26 | 3.56 3 | 4.55 26 | 13.2 26 | 2.94 1 | 5.03 89 | 19.6 28 | 1.91 1 | 8.35 25 | 13.8 27 | 1.83 1 |
STSR [170] | 17.7 | 2.38 3 | 4.83 16 | 1.73 12 | 3.87 6 | 5.69 6 | 1.41 1 | 2.38 19 | 3.79 23 | 1.41 7 | 5.80 8 | 6.95 9 | 4.08 21 | 11.4 29 | 15.2 31 | 3.74 22 | 4.65 28 | 14.2 31 | 3.00 22 | 4.97 33 | 21.3 32 | 1.91 1 | 8.70 31 | 14.3 32 | 1.83 1 |
IDIAL [192] | 18.9 | 2.52 13 | 4.65 10 | 1.63 9 | 4.24 11 | 6.45 13 | 1.73 7 | 2.00 7 | 3.00 9 | 1.41 7 | 5.97 14 | 7.07 11 | 3.87 6 | 9.40 6 | 12.1 8 | 3.56 3 | 4.43 21 | 11.7 13 | 2.94 1 | 5.57 179 | 17.3 17 | 1.91 1 | 7.94 16 | 12.8 12 | 1.91 59 |
AdaCoF [165] | 19.6 | 2.71 23 | 5.07 23 | 1.83 161 | 4.24 11 | 6.45 13 | 1.73 7 | 2.71 25 | 4.00 24 | 1.41 7 | 6.27 24 | 7.72 26 | 3.92 12 | 10.2 23 | 13.4 23 | 3.83 25 | 4.04 4 | 10.0 5 | 2.94 1 | 4.51 4 | 16.8 14 | 1.91 1 | 7.07 7 | 11.8 7 | 1.83 1 |
MEMC-Net+ [160] | 22.4 | 2.83 27 | 4.97 17 | 1.73 12 | 4.43 22 | 6.68 19 | 1.83 138 | 2.16 17 | 3.37 11 | 1.41 7 | 6.24 22 | 7.44 18 | 3.87 6 | 10.2 23 | 13.5 24 | 3.70 14 | 4.55 26 | 12.4 23 | 2.94 1 | 4.97 33 | 19.3 23 | 1.91 1 | 8.39 27 | 13.7 26 | 1.83 1 |
BMBC [171] | 23.0 | 2.71 23 | 4.69 12 | 1.73 12 | 4.12 10 | 6.06 8 | 1.83 138 | 3.37 32 | 5.00 31 | 1.73 179 | 5.80 8 | 6.98 10 | 3.87 6 | 9.49 12 | 12.3 13 | 3.56 3 | 4.12 8 | 10.1 6 | 2.94 1 | 4.80 14 | 16.3 11 | 1.91 1 | 6.98 6 | 11.6 6 | 1.83 1 |
DSepConv [162] | 25.3 | 2.65 17 | 5.20 28 | 1.73 12 | 4.51 26 | 6.81 28 | 1.83 138 | 2.38 19 | 3.70 21 | 1.41 7 | 6.48 73 | 8.04 27 | 4.04 18 | 9.42 7 | 12.2 9 | 3.74 22 | 4.12 8 | 11.7 13 | 2.94 1 | 4.51 4 | 16.0 6 | 2.00 27 | 8.02 17 | 13.5 20 | 1.91 59 |
ProBoost-Net [191] | 25.4 | 2.45 10 | 4.65 10 | 1.41 1 | 4.55 34 | 7.44 47 | 1.73 7 | 2.38 19 | 3.37 11 | 1.41 7 | 5.94 13 | 7.07 11 | 4.24 30 | 10.2 23 | 13.5 24 | 3.87 26 | 4.36 19 | 12.3 22 | 3.11 25 | 4.55 8 | 16.9 15 | 2.08 153 | 8.02 17 | 13.4 19 | 1.91 59 |
MAF-net [163] | 25.7 | 2.38 3 | 4.51 9 | 1.41 1 | 4.36 15 | 7.14 34 | 1.73 7 | 2.00 7 | 3.46 20 | 1.41 7 | 6.06 19 | 7.19 14 | 4.24 30 | 11.0 28 | 14.7 28 | 3.87 26 | 4.51 24 | 13.5 28 | 3.11 25 | 4.65 9 | 17.9 19 | 2.08 153 | 8.35 25 | 13.8 27 | 1.91 59 |
GDCN [172] | 27.2 | 2.65 17 | 5.07 23 | 1.63 9 | 5.00 108 | 7.77 64 | 1.83 138 | 2.00 7 | 3.32 10 | 1.41 7 | 6.56 100 | 7.39 15 | 4.00 16 | 9.47 9 | 12.2 9 | 3.70 14 | 4.24 14 | 12.0 20 | 3.00 22 | 4.80 14 | 16.2 9 | 1.91 1 | 7.59 11 | 13.0 16 | 1.83 1 |
ADC [161] | 34.8 | 2.94 30 | 5.66 33 | 1.83 161 | 4.51 26 | 6.61 17 | 1.91 164 | 3.00 28 | 4.36 27 | 1.41 7 | 6.66 134 | 8.29 44 | 4.08 21 | 10.0 22 | 13.1 22 | 3.74 22 | 4.12 8 | 11.7 13 | 2.94 1 | 4.51 4 | 16.1 7 | 1.91 1 | 8.12 21 | 13.5 20 | 1.83 1 |
PMMST [112] | 36.2 | 3.11 34 | 6.22 35 | 1.73 12 | 4.69 51 | 7.39 44 | 1.73 7 | 4.00 43 | 6.35 37 | 1.41 7 | 6.27 24 | 8.12 31 | 4.24 30 | 11.8 36 | 15.8 37 | 4.20 43 | 5.20 37 | 15.3 36 | 3.27 51 | 4.97 33 | 23.2 48 | 2.00 27 | 9.33 63 | 15.6 44 | 1.91 59 |
CoT-AMFlow [174] | 36.8 | 3.11 34 | 6.45 43 | 1.73 12 | 4.55 34 | 7.39 44 | 1.73 7 | 4.00 43 | 6.35 37 | 1.41 7 | 6.32 28 | 8.19 34 | 4.24 30 | 11.9 42 | 15.9 41 | 4.20 43 | 5.32 63 | 16.6 64 | 3.27 51 | 4.97 33 | 23.2 48 | 2.00 27 | 9.33 63 | 15.7 53 | 1.83 1 |
CtxSyn [134] | 37.4 | 2.45 10 | 5.00 18 | 1.41 1 | 4.08 8 | 6.14 10 | 1.73 7 | 2.38 19 | 3.70 21 | 1.41 7 | 5.83 10 | 7.39 15 | 4.20 26 | 11.6 34 | 15.4 34 | 4.12 33 | 5.07 35 | 14.2 31 | 3.32 77 | 6.06 194 | 22.0 34 | 2.08 153 | 8.70 31 | 14.1 30 | 1.91 59 |
MDP-Flow2 [68] | 37.5 | 3.11 34 | 6.35 36 | 1.73 12 | 4.55 34 | 7.35 42 | 1.73 7 | 4.00 43 | 6.35 37 | 1.41 7 | 6.32 28 | 8.12 31 | 4.24 30 | 11.8 36 | 15.8 37 | 4.20 43 | 5.32 63 | 16.6 64 | 3.27 51 | 4.97 33 | 22.9 40 | 2.00 27 | 9.33 63 | 15.6 44 | 1.91 59 |
FRUCnet [153] | 39.8 | 2.94 30 | 5.07 23 | 2.16 191 | 4.36 15 | 6.56 16 | 2.08 176 | 2.71 25 | 4.00 24 | 1.73 179 | 6.35 30 | 7.70 24 | 4.04 18 | 9.63 18 | 12.5 18 | 3.65 12 | 4.12 8 | 10.8 10 | 2.94 1 | 4.80 14 | 16.6 13 | 2.00 27 | 7.83 12 | 12.9 13 | 1.91 59 |
FeFlow [167] | 40.5 | 2.45 10 | 4.69 12 | 1.41 1 | 4.36 15 | 7.05 32 | 1.83 138 | 2.16 17 | 3.37 11 | 1.63 177 | 6.14 21 | 7.53 21 | 3.92 12 | 9.47 9 | 12.2 9 | 3.56 3 | 4.51 24 | 12.4 23 | 2.94 1 | 5.45 169 | 17.7 18 | 2.08 153 | 8.10 20 | 13.2 18 | 1.91 59 |
NN-field [71] | 41.5 | 3.11 34 | 6.98 84 | 1.73 12 | 4.51 26 | 6.78 26 | 1.73 7 | 4.00 43 | 6.35 37 | 1.41 7 | 6.48 73 | 9.26 119 | 4.24 30 | 11.8 36 | 15.9 41 | 4.20 43 | 5.32 63 | 17.0 81 | 3.27 51 | 4.93 24 | 22.9 40 | 2.00 27 | 9.27 48 | 15.6 44 | 1.83 1 |
NNF-Local [75] | 43.5 | 3.11 34 | 6.78 65 | 1.73 12 | 4.51 26 | 6.76 25 | 1.73 7 | 4.00 43 | 6.35 37 | 1.41 7 | 6.45 60 | 9.04 96 | 4.24 30 | 11.9 42 | 15.9 41 | 4.20 43 | 5.35 82 | 17.6 110 | 3.32 77 | 4.93 24 | 23.5 57 | 2.00 27 | 9.26 44 | 15.7 53 | 1.83 1 |
IROF++ [58] | 45.3 | 3.11 34 | 7.16 113 | 1.73 12 | 4.69 51 | 7.62 53 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.27 24 | 8.10 29 | 4.24 30 | 11.9 42 | 16.1 65 | 4.20 43 | 5.23 43 | 16.2 47 | 3.27 51 | 5.03 89 | 23.7 62 | 2.00 27 | 9.26 44 | 15.8 58 | 1.91 59 |
PH-Flow [99] | 45.8 | 3.11 34 | 7.12 102 | 1.73 12 | 4.51 26 | 6.86 29 | 1.73 7 | 4.00 43 | 6.35 37 | 1.41 7 | 6.24 22 | 8.10 29 | 4.24 30 | 11.9 42 | 16.0 55 | 4.20 43 | 5.48 132 | 17.9 123 | 3.16 28 | 4.97 33 | 23.6 61 | 2.00 27 | 9.31 59 | 15.8 58 | 1.91 59 |
CyclicGen [149] | 46.3 | 2.94 30 | 5.00 18 | 2.00 187 | 4.36 15 | 5.80 7 | 2.65 196 | 3.00 28 | 5.35 32 | 1.73 179 | 6.58 122 | 8.27 41 | 4.36 162 | 9.59 17 | 12.2 9 | 3.92 29 | 4.04 4 | 8.06 1 | 3.16 28 | 4.43 1 | 12.9 1 | 1.91 1 | 6.14 1 | 9.88 1 | 1.83 1 |
SepConv-v1 [125] | 46.4 | 2.38 3 | 5.35 29 | 1.41 1 | 4.43 22 | 7.62 53 | 1.73 7 | 2.38 19 | 4.36 27 | 1.73 179 | 6.40 52 | 8.21 38 | 4.36 162 | 11.8 36 | 15.8 37 | 4.16 35 | 4.69 29 | 14.6 33 | 3.16 28 | 4.80 14 | 21.0 31 | 2.08 153 | 8.76 33 | 14.4 33 | 1.91 59 |
MPRN [151] | 49.0 | 2.83 27 | 5.60 32 | 1.73 12 | 4.93 92 | 7.33 39 | 1.83 138 | 4.36 164 | 7.35 129 | 1.41 7 | 6.45 60 | 8.45 54 | 4.20 26 | 11.4 29 | 15.1 29 | 4.08 30 | 4.80 31 | 13.7 29 | 3.16 28 | 5.16 128 | 21.3 32 | 1.91 1 | 8.49 29 | 14.0 29 | 1.83 1 |
NNF-EAC [101] | 51.2 | 3.27 122 | 6.68 50 | 1.73 12 | 4.80 77 | 7.85 74 | 1.73 7 | 4.00 43 | 6.35 37 | 1.41 7 | 6.40 52 | 8.27 41 | 4.32 146 | 11.9 42 | 15.9 41 | 4.20 43 | 5.23 43 | 15.6 38 | 3.27 51 | 4.97 33 | 23.4 52 | 2.00 27 | 9.42 80 | 15.7 53 | 1.91 59 |
OFRI [154] | 51.3 | 2.71 23 | 4.69 12 | 1.83 161 | 4.36 15 | 6.35 11 | 2.08 176 | 2.00 7 | 2.71 3 | 1.41 7 | 5.83 10 | 6.81 8 | 3.92 12 | 9.63 18 | 12.6 21 | 3.70 14 | 4.69 29 | 13.2 26 | 3.11 25 | 6.48 197 | 19.3 23 | 2.16 191 | 8.43 28 | 13.5 20 | 2.08 195 |
nLayers [57] | 51.9 | 3.11 34 | 6.83 76 | 1.73 12 | 4.55 34 | 7.23 37 | 1.73 7 | 3.70 34 | 6.06 36 | 1.41 7 | 6.40 52 | 8.54 59 | 4.24 30 | 12.1 124 | 16.4 140 | 4.20 43 | 5.35 82 | 17.7 113 | 3.32 77 | 4.93 24 | 23.4 52 | 2.00 27 | 9.33 63 | 16.0 81 | 1.83 1 |
GMFlow_RVC [196] | 52.0 | 3.11 34 | 7.83 162 | 1.73 12 | 4.65 41 | 7.55 52 | 1.73 7 | 4.00 43 | 6.35 37 | 1.41 7 | 6.38 36 | 8.76 75 | 4.24 30 | 12.0 70 | 16.2 88 | 4.24 112 | 5.32 63 | 17.0 81 | 3.16 28 | 4.97 33 | 23.4 52 | 2.00 27 | 9.38 75 | 16.0 81 | 1.83 1 |
Layers++ [37] | 52.8 | 3.11 34 | 6.78 65 | 1.73 12 | 4.51 26 | 6.68 19 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.40 52 | 8.41 50 | 4.24 30 | 12.0 70 | 16.3 110 | 4.20 43 | 5.35 82 | 18.7 166 | 3.32 77 | 4.97 33 | 23.5 57 | 2.00 27 | 9.35 72 | 15.9 72 | 1.91 59 |
ProbFlowFields [126] | 54.8 | 3.11 34 | 6.88 78 | 1.73 12 | 4.55 34 | 7.44 47 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.45 60 | 8.70 67 | 4.24 30 | 12.0 70 | 16.4 140 | 4.24 112 | 5.45 105 | 18.0 128 | 3.32 77 | 4.93 24 | 23.1 44 | 1.91 1 | 9.13 37 | 15.6 44 | 1.91 59 |
IROF-TV [53] | 54.8 | 3.11 34 | 7.12 102 | 1.73 12 | 4.69 51 | 7.85 74 | 1.73 7 | 4.00 43 | 7.35 129 | 1.41 7 | 6.38 36 | 8.50 57 | 4.24 30 | 12.0 70 | 16.1 65 | 4.24 112 | 5.26 49 | 17.1 89 | 3.16 28 | 5.00 68 | 24.1 80 | 2.00 27 | 9.27 48 | 15.4 38 | 1.91 59 |
DeepFlow2 [106] | 55.4 | 3.11 34 | 6.45 43 | 1.73 12 | 4.97 97 | 8.76 110 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.56 100 | 8.91 91 | 4.24 30 | 11.9 42 | 15.9 41 | 4.24 112 | 5.16 36 | 15.5 37 | 3.32 77 | 5.00 68 | 23.8 68 | 2.00 27 | 9.29 55 | 15.6 44 | 1.91 59 |
MS_RAFT+_RVC [195] | 55.4 | 3.11 34 | 7.39 130 | 1.73 12 | 4.69 51 | 7.77 64 | 1.73 7 | 4.00 43 | 6.00 34 | 1.41 7 | 6.27 24 | 8.16 33 | 4.24 30 | 12.0 70 | 16.3 110 | 4.24 112 | 5.20 37 | 16.0 41 | 3.16 28 | 4.90 21 | 22.3 35 | 2.00 27 | 10.3 186 | 20.0 192 | 1.83 1 |
DeepFlow [85] | 55.6 | 3.11 34 | 6.40 41 | 1.73 12 | 4.97 97 | 8.66 102 | 1.73 7 | 4.00 43 | 7.05 109 | 1.41 7 | 6.56 100 | 8.83 82 | 4.24 30 | 11.9 42 | 15.9 41 | 4.24 112 | 5.20 37 | 15.6 38 | 3.37 162 | 4.97 33 | 22.8 39 | 2.00 27 | 9.20 42 | 15.4 38 | 1.91 59 |
CombBMOF [111] | 55.8 | 3.11 34 | 6.95 82 | 1.73 12 | 4.69 51 | 7.62 53 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.56 100 | 9.09 102 | 4.24 30 | 12.0 70 | 16.1 65 | 4.20 43 | 5.35 82 | 16.4 55 | 3.27 51 | 5.60 181 | 24.3 87 | 2.00 27 | 9.26 44 | 15.8 58 | 1.83 1 |
Brox et al. [5] | 57.2 | 3.11 34 | 6.66 48 | 1.73 12 | 5.07 114 | 8.58 99 | 1.73 7 | 4.00 43 | 7.35 129 | 1.41 7 | 6.56 100 | 8.70 67 | 4.24 30 | 11.9 42 | 15.9 41 | 4.20 43 | 5.32 63 | 17.1 89 | 3.27 51 | 5.00 68 | 24.5 100 | 2.00 27 | 9.29 55 | 15.6 44 | 1.91 59 |
LME [70] | 58.1 | 3.11 34 | 6.81 71 | 1.73 12 | 4.76 73 | 7.94 80 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.38 36 | 8.50 57 | 4.24 30 | 12.1 124 | 16.3 110 | 4.24 112 | 5.42 103 | 17.0 81 | 3.27 51 | 4.97 33 | 23.0 42 | 2.00 27 | 9.29 55 | 15.8 58 | 1.91 59 |
WLIF-Flow [91] | 58.2 | 3.11 34 | 6.88 78 | 1.73 12 | 4.69 51 | 7.77 64 | 1.73 7 | 4.00 43 | 6.56 51 | 1.41 7 | 6.38 36 | 8.19 34 | 4.32 146 | 11.9 42 | 16.1 65 | 4.20 43 | 5.51 140 | 18.0 128 | 3.32 77 | 4.97 33 | 23.4 52 | 2.00 27 | 9.43 95 | 15.9 72 | 1.91 59 |
FMOF [92] | 58.8 | 3.32 130 | 7.39 130 | 1.73 12 | 4.65 41 | 7.35 42 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.53 98 | 8.98 93 | 4.24 30 | 12.0 70 | 16.1 65 | 4.20 43 | 5.35 82 | 17.0 81 | 3.27 51 | 4.93 24 | 23.5 57 | 1.91 1 | 9.47 100 | 16.1 92 | 1.91 59 |
COFM [59] | 59.8 | 3.11 34 | 6.76 64 | 1.73 12 | 4.69 51 | 7.62 53 | 1.73 7 | 4.00 43 | 6.66 53 | 1.41 7 | 6.35 30 | 8.35 46 | 4.24 30 | 12.0 70 | 16.2 88 | 4.16 35 | 5.45 105 | 18.9 170 | 3.16 28 | 4.80 14 | 23.1 44 | 2.08 153 | 9.56 126 | 16.3 112 | 1.91 59 |
DF-Auto [113] | 59.8 | 3.11 34 | 6.06 34 | 1.73 12 | 5.07 114 | 8.58 99 | 1.83 138 | 4.00 43 | 6.35 37 | 1.41 7 | 6.48 73 | 8.58 62 | 4.24 30 | 11.7 35 | 15.7 35 | 4.24 112 | 5.20 37 | 16.1 45 | 3.32 77 | 5.07 101 | 23.8 68 | 2.00 27 | 9.45 99 | 15.8 58 | 1.91 59 |
Sparse-NonSparse [56] | 60.0 | 3.11 34 | 7.07 98 | 1.73 12 | 4.65 41 | 7.53 51 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.38 36 | 8.37 49 | 4.24 30 | 12.0 70 | 16.3 110 | 4.20 43 | 5.45 105 | 18.1 137 | 3.32 77 | 4.97 33 | 25.4 130 | 2.00 27 | 9.42 80 | 16.2 106 | 1.91 59 |
FlowFields [108] | 60.0 | 3.11 34 | 7.14 106 | 1.73 12 | 4.69 51 | 7.79 70 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.48 73 | 9.35 130 | 4.24 30 | 12.0 70 | 16.2 88 | 4.20 43 | 5.45 105 | 17.6 110 | 3.32 77 | 4.97 33 | 23.5 57 | 2.00 27 | 9.27 48 | 15.9 72 | 1.91 59 |
Aniso. Huber-L1 [22] | 60.1 | 3.27 122 | 6.78 65 | 1.73 12 | 5.45 150 | 9.66 151 | 1.73 7 | 4.00 43 | 6.73 79 | 1.41 7 | 6.48 73 | 8.81 79 | 4.24 30 | 11.9 42 | 15.9 41 | 4.20 43 | 5.26 49 | 16.3 50 | 3.16 28 | 5.07 101 | 23.9 71 | 2.00 27 | 9.38 75 | 15.4 38 | 1.91 59 |
TV-L1-MCT [64] | 60.1 | 3.37 153 | 7.62 154 | 1.73 12 | 4.83 83 | 8.58 99 | 1.73 7 | 3.70 34 | 6.68 54 | 1.41 7 | 6.38 36 | 8.25 40 | 4.24 30 | 12.1 124 | 16.4 140 | 4.20 43 | 5.20 37 | 16.0 41 | 3.32 77 | 4.97 33 | 24.0 75 | 2.00 27 | 9.15 39 | 15.4 38 | 1.91 59 |
ComponentFusion [94] | 60.5 | 3.11 34 | 7.16 113 | 1.73 12 | 4.69 51 | 7.72 60 | 1.73 7 | 4.00 43 | 6.88 88 | 1.41 7 | 6.38 36 | 8.54 59 | 4.24 30 | 12.0 70 | 16.2 88 | 4.20 43 | 5.26 49 | 16.8 70 | 3.32 77 | 5.03 89 | 26.3 155 | 2.00 27 | 9.42 80 | 16.2 106 | 1.91 59 |
VCN_RVC [178] | 60.6 | 3.11 34 | 8.16 171 | 1.73 12 | 4.69 51 | 7.79 70 | 1.73 7 | 4.00 43 | 7.62 151 | 1.41 7 | 6.45 60 | 9.33 125 | 4.24 30 | 12.0 70 | 16.3 110 | 4.20 43 | 5.32 63 | 16.6 64 | 3.16 28 | 5.00 68 | 24.3 87 | 2.00 27 | 9.18 41 | 16.1 92 | 1.83 1 |
PRAFlow_RVC [177] | 61.7 | 3.11 34 | 7.53 142 | 1.73 12 | 4.69 51 | 7.77 64 | 1.73 7 | 4.00 43 | 6.35 37 | 1.41 7 | 6.48 73 | 9.15 112 | 4.24 30 | 12.0 70 | 16.0 55 | 4.24 112 | 5.20 37 | 16.5 58 | 3.32 77 | 4.97 33 | 22.7 38 | 2.00 27 | 9.68 145 | 16.9 157 | 1.91 59 |
TF+OM [98] | 61.8 | 3.11 34 | 6.48 45 | 1.73 12 | 4.69 51 | 7.75 63 | 1.73 7 | 4.00 43 | 7.33 128 | 1.41 7 | 6.48 73 | 9.09 102 | 4.24 30 | 12.0 70 | 16.2 88 | 4.24 112 | 5.26 49 | 17.2 97 | 3.32 77 | 4.97 33 | 24.8 108 | 2.00 27 | 9.43 95 | 15.9 72 | 1.91 59 |
EAI-Flow [147] | 61.8 | 3.11 34 | 7.12 102 | 1.73 12 | 4.97 97 | 8.43 89 | 1.73 7 | 4.00 43 | 7.12 121 | 1.41 7 | 6.48 73 | 9.31 124 | 4.20 26 | 12.0 70 | 16.3 110 | 4.20 43 | 5.32 63 | 16.6 64 | 3.32 77 | 5.07 101 | 24.9 115 | 2.00 27 | 9.11 36 | 15.5 42 | 1.83 1 |
SuperSlomo [130] | 63.2 | 2.83 27 | 5.07 23 | 1.73 12 | 4.69 51 | 7.44 47 | 2.16 183 | 3.00 28 | 4.69 29 | 1.73 179 | 6.35 30 | 7.70 24 | 4.24 30 | 11.4 29 | 15.1 29 | 4.08 30 | 4.90 32 | 14.1 30 | 3.32 77 | 5.26 153 | 20.7 30 | 2.16 191 | 8.58 30 | 14.1 30 | 2.00 192 |
SegFlow [156] | 63.3 | 3.11 34 | 7.05 92 | 1.73 12 | 4.69 51 | 7.85 74 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.45 60 | 9.26 119 | 4.24 30 | 12.0 70 | 16.3 110 | 4.24 112 | 5.35 82 | 17.1 89 | 3.32 77 | 5.03 89 | 24.1 80 | 2.00 27 | 9.27 48 | 15.8 58 | 1.91 59 |
RAFT-it+_RVC [198] | 63.7 | 3.11 34 | 7.53 142 | 1.73 12 | 4.65 41 | 7.42 46 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.45 60 | 9.15 112 | 4.24 30 | 12.0 70 | 16.1 65 | 4.24 112 | 6.24 194 | 17.7 113 | 3.74 193 | 4.97 33 | 22.6 37 | 2.00 27 | 9.13 37 | 15.8 58 | 1.83 1 |
2DHMM-SAS [90] | 64.2 | 3.27 122 | 7.48 140 | 1.73 12 | 5.07 114 | 8.96 119 | 1.73 7 | 3.70 34 | 6.68 54 | 1.41 7 | 6.35 30 | 8.19 34 | 4.24 30 | 12.0 70 | 16.2 88 | 4.20 43 | 5.32 63 | 17.0 81 | 3.27 51 | 4.97 33 | 24.4 96 | 2.00 27 | 9.49 115 | 16.3 112 | 1.91 59 |
FlowFields+ [128] | 64.3 | 3.11 34 | 7.23 122 | 1.73 12 | 4.69 51 | 7.72 60 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.45 60 | 9.33 125 | 4.24 30 | 12.1 124 | 16.3 110 | 4.24 112 | 5.45 105 | 17.9 123 | 3.32 77 | 4.97 33 | 23.7 62 | 2.00 27 | 9.27 48 | 16.0 81 | 1.83 1 |
MS-PFT [159] | 64.5 | 3.00 33 | 5.57 31 | 1.73 12 | 4.80 77 | 7.14 34 | 2.00 172 | 2.71 25 | 4.12 26 | 1.73 179 | 7.23 178 | 9.20 116 | 4.20 26 | 9.75 21 | 12.5 18 | 3.87 26 | 4.43 21 | 10.6 9 | 3.27 51 | 6.45 196 | 18.6 21 | 2.16 191 | 7.87 14 | 12.9 13 | 1.91 59 |
Second-order prior [8] | 64.6 | 3.11 34 | 6.63 47 | 1.73 12 | 5.32 139 | 9.63 149 | 1.73 7 | 4.00 43 | 7.68 152 | 1.41 7 | 6.56 100 | 9.11 106 | 4.24 30 | 11.9 42 | 16.0 55 | 4.20 43 | 5.23 43 | 16.4 55 | 3.27 51 | 5.10 118 | 24.4 96 | 2.00 27 | 9.40 78 | 15.8 58 | 1.91 59 |
PGM-C [118] | 65.2 | 3.11 34 | 7.05 92 | 1.73 12 | 4.69 51 | 7.83 73 | 1.73 7 | 4.00 43 | 7.05 109 | 1.41 7 | 6.48 73 | 9.42 133 | 4.24 30 | 12.0 70 | 16.2 88 | 4.24 112 | 5.32 63 | 16.9 75 | 3.32 77 | 5.00 68 | 25.0 118 | 2.00 27 | 9.33 63 | 16.0 81 | 1.91 59 |
CPM-Flow [114] | 65.8 | 3.11 34 | 7.05 92 | 1.73 12 | 4.69 51 | 7.85 74 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.56 100 | 9.81 152 | 4.24 30 | 12.0 70 | 16.3 110 | 4.24 112 | 5.29 61 | 16.5 58 | 3.32 77 | 5.07 101 | 24.7 106 | 2.00 27 | 9.27 48 | 15.8 58 | 1.91 59 |
LSM [39] | 65.8 | 3.11 34 | 7.53 142 | 1.73 12 | 4.69 51 | 7.79 70 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.45 60 | 8.70 67 | 4.24 30 | 12.0 70 | 16.3 110 | 4.20 43 | 5.45 105 | 18.3 144 | 3.32 77 | 4.97 33 | 25.5 131 | 2.00 27 | 9.47 100 | 16.4 127 | 1.83 1 |
MDP-Flow [26] | 66.0 | 3.11 34 | 6.68 50 | 1.73 12 | 4.65 41 | 7.44 47 | 1.73 7 | 4.00 43 | 6.35 37 | 1.41 7 | 6.58 122 | 8.96 92 | 4.24 30 | 11.9 42 | 16.1 65 | 4.24 112 | 5.60 148 | 19.2 174 | 3.32 77 | 5.16 128 | 24.3 87 | 2.00 27 | 9.33 63 | 16.0 81 | 1.91 59 |
TOF-M [150] | 66.1 | 2.71 23 | 5.45 30 | 1.73 12 | 4.65 41 | 7.77 64 | 2.00 172 | 3.00 28 | 4.69 29 | 1.73 179 | 6.38 36 | 8.08 28 | 4.24 30 | 11.5 33 | 15.3 33 | 4.12 33 | 5.03 34 | 14.6 33 | 3.32 77 | 5.80 188 | 20.4 29 | 2.16 191 | 9.09 35 | 14.7 34 | 2.08 195 |
DPOF [18] | 66.6 | 3.16 107 | 7.55 148 | 1.73 12 | 4.55 34 | 7.05 32 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.56 100 | 9.20 116 | 4.24 30 | 11.9 42 | 16.0 55 | 4.20 43 | 5.45 105 | 17.8 118 | 3.16 28 | 5.10 118 | 24.0 75 | 2.00 27 | 9.56 126 | 16.3 112 | 1.91 59 |
RAFT-TF_RVC [179] | 66.6 | 3.11 34 | 7.72 158 | 1.73 12 | 4.65 41 | 7.68 58 | 1.73 7 | 4.00 43 | 6.61 52 | 1.41 7 | 6.45 60 | 9.13 110 | 4.24 30 | 12.0 70 | 16.1 65 | 4.20 43 | 6.06 187 | 17.5 107 | 3.74 193 | 4.93 24 | 23.1 44 | 2.00 27 | 9.33 63 | 17.0 162 | 1.83 1 |
CLG-TV [48] | 66.6 | 3.16 107 | 6.61 46 | 1.73 12 | 5.35 141 | 9.56 143 | 1.73 7 | 4.00 43 | 7.05 109 | 1.41 7 | 6.56 100 | 8.81 79 | 4.24 30 | 11.9 42 | 15.9 41 | 4.24 112 | 5.26 49 | 16.0 41 | 3.32 77 | 5.07 101 | 24.3 87 | 2.00 27 | 9.43 95 | 15.6 44 | 1.91 59 |
HAST [107] | 66.8 | 3.11 34 | 6.68 50 | 1.73 12 | 4.65 41 | 7.33 39 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.35 30 | 8.23 39 | 4.24 30 | 12.1 124 | 16.5 159 | 4.20 43 | 5.45 105 | 19.9 182 | 3.16 28 | 4.90 21 | 25.2 124 | 2.00 27 | 9.81 154 | 16.9 157 | 1.91 59 |
ALD-Flow [66] | 67.0 | 3.16 107 | 6.98 84 | 1.73 12 | 4.83 83 | 8.54 98 | 1.73 7 | 4.00 43 | 7.05 109 | 1.41 7 | 6.40 52 | 8.54 59 | 4.24 30 | 12.1 124 | 16.2 88 | 4.24 112 | 5.32 63 | 15.8 40 | 3.32 77 | 4.97 33 | 23.1 44 | 2.00 27 | 9.54 123 | 16.4 127 | 1.91 59 |
AGIF+OF [84] | 67.5 | 3.11 34 | 7.39 130 | 1.73 12 | 4.69 51 | 7.77 64 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.38 36 | 8.45 54 | 4.24 30 | 12.2 160 | 16.6 167 | 4.20 43 | 5.51 140 | 18.5 156 | 3.27 51 | 4.97 33 | 23.7 62 | 1.91 1 | 9.59 138 | 16.6 147 | 1.83 1 |
HCFN [157] | 67.8 | 3.11 34 | 7.14 106 | 1.73 12 | 4.83 83 | 8.35 85 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.38 36 | 8.70 67 | 4.24 30 | 11.9 42 | 16.1 65 | 4.20 43 | 5.89 178 | 16.4 55 | 3.70 190 | 5.03 89 | 24.8 108 | 2.00 27 | 9.42 80 | 16.1 92 | 1.91 59 |
RAFT-it [194] | 68.5 | 3.11 34 | 7.55 148 | 1.73 12 | 4.55 34 | 7.30 38 | 1.73 7 | 4.00 43 | 6.35 37 | 1.41 7 | 6.38 36 | 8.98 93 | 4.24 30 | 11.9 42 | 16.0 55 | 4.20 43 | 6.06 187 | 18.0 128 | 3.87 197 | 4.93 24 | 22.4 36 | 2.00 27 | 10.5 191 | 20.3 193 | 1.83 1 |
Classic+NL [31] | 68.5 | 3.27 122 | 7.35 125 | 1.73 12 | 4.69 51 | 7.68 58 | 1.73 7 | 3.70 34 | 6.68 54 | 1.41 7 | 6.38 36 | 8.35 46 | 4.24 30 | 12.0 70 | 16.3 110 | 4.20 43 | 5.48 132 | 18.1 137 | 3.32 77 | 4.97 33 | 25.8 141 | 2.00 27 | 9.52 121 | 16.3 112 | 1.91 59 |
S2F-IF [121] | 68.6 | 3.11 34 | 7.19 118 | 1.73 12 | 4.69 51 | 7.72 60 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.48 73 | 9.35 130 | 4.24 30 | 12.1 124 | 16.4 140 | 4.24 112 | 5.45 105 | 17.8 118 | 3.32 77 | 5.00 68 | 24.1 80 | 2.00 27 | 9.27 48 | 16.1 92 | 1.83 1 |
F-TV-L1 [15] | 69.1 | 3.37 153 | 6.68 50 | 1.73 12 | 5.48 154 | 9.76 159 | 1.73 7 | 4.00 43 | 7.35 129 | 1.41 7 | 6.56 100 | 8.76 75 | 4.32 146 | 11.8 36 | 15.8 37 | 4.16 35 | 5.26 49 | 16.1 45 | 3.32 77 | 5.00 68 | 24.0 75 | 2.00 27 | 9.35 72 | 15.6 44 | 1.91 59 |
Ramp [62] | 70.0 | 3.16 107 | 7.19 118 | 1.73 12 | 4.69 51 | 7.62 53 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.35 30 | 8.27 41 | 4.24 30 | 12.0 70 | 16.3 110 | 4.20 43 | 5.51 140 | 18.9 170 | 3.32 77 | 4.97 33 | 25.9 146 | 2.00 27 | 9.56 126 | 16.4 127 | 1.91 59 |
RFlow [88] | 70.1 | 3.11 34 | 6.81 71 | 1.73 12 | 5.32 139 | 9.80 161 | 1.73 7 | 4.00 43 | 7.05 109 | 1.41 7 | 6.58 122 | 9.26 119 | 4.24 30 | 11.9 42 | 16.0 55 | 4.20 43 | 5.26 49 | 17.1 89 | 3.16 28 | 5.03 89 | 24.9 115 | 2.00 27 | 9.61 141 | 16.1 92 | 1.91 59 |
JOF [136] | 71.4 | 3.32 130 | 7.33 124 | 1.73 12 | 4.65 41 | 7.19 36 | 1.73 7 | 4.00 43 | 6.35 37 | 1.41 7 | 6.38 36 | 8.29 44 | 4.32 146 | 12.1 124 | 16.3 110 | 4.24 112 | 5.48 132 | 18.2 143 | 3.32 77 | 4.93 24 | 23.3 51 | 2.00 27 | 9.47 100 | 16.1 92 | 1.91 59 |
CBF [12] | 71.9 | 3.11 34 | 6.38 39 | 1.73 12 | 5.07 114 | 8.72 105 | 1.73 7 | 4.00 43 | 6.73 79 | 1.41 7 | 6.56 100 | 8.60 65 | 4.43 172 | 11.9 42 | 15.9 41 | 4.24 112 | 5.32 63 | 16.5 58 | 3.27 51 | 5.07 101 | 24.5 100 | 2.08 153 | 9.49 115 | 15.7 53 | 1.91 59 |
RNLOD-Flow [119] | 72.0 | 3.11 34 | 7.07 98 | 1.73 12 | 4.97 97 | 8.81 114 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.45 60 | 8.66 66 | 4.24 30 | 12.1 124 | 16.4 140 | 4.20 43 | 5.45 105 | 18.3 144 | 3.32 77 | 4.97 33 | 23.9 71 | 2.00 27 | 9.81 154 | 16.8 151 | 1.83 1 |
OAR-Flow [123] | 72.1 | 3.11 34 | 6.95 82 | 1.73 12 | 4.97 97 | 8.68 103 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.38 36 | 8.58 62 | 4.24 30 | 12.1 124 | 16.3 110 | 4.24 112 | 5.45 105 | 16.9 75 | 3.32 77 | 5.07 101 | 25.3 126 | 2.00 27 | 9.47 100 | 16.3 112 | 1.91 59 |
LDOF [28] | 72.1 | 3.37 153 | 6.68 50 | 1.73 12 | 5.35 141 | 8.35 85 | 1.83 138 | 4.00 43 | 7.35 129 | 1.41 7 | 6.61 130 | 9.09 102 | 4.24 30 | 11.9 42 | 15.9 41 | 4.24 112 | 5.23 43 | 16.2 47 | 3.32 77 | 5.00 68 | 23.7 62 | 2.00 27 | 9.38 75 | 15.8 58 | 1.91 59 |
p-harmonic [29] | 72.4 | 3.11 34 | 6.68 50 | 1.73 12 | 5.45 150 | 9.68 153 | 1.73 7 | 4.00 43 | 7.39 148 | 1.41 7 | 6.68 136 | 9.15 112 | 4.24 30 | 12.0 70 | 16.1 65 | 4.20 43 | 5.32 63 | 16.5 58 | 3.32 77 | 5.20 133 | 24.8 108 | 2.00 27 | 9.43 95 | 15.8 58 | 1.91 59 |
UnDAF [187] | 72.9 | 3.11 34 | 7.62 154 | 1.73 12 | 4.80 77 | 8.35 85 | 1.73 7 | 4.00 43 | 8.00 170 | 1.41 7 | 6.68 136 | 11.3 179 | 4.24 30 | 11.9 42 | 15.9 41 | 4.20 43 | 5.35 82 | 16.8 70 | 3.32 77 | 5.00 68 | 24.9 115 | 2.00 27 | 9.47 100 | 16.1 92 | 1.91 59 |
ProFlow_ROB [142] | 73.2 | 3.11 34 | 6.81 71 | 1.73 12 | 4.83 83 | 8.50 95 | 1.73 7 | 4.00 43 | 6.73 79 | 1.41 7 | 6.45 60 | 9.06 99 | 4.24 30 | 12.1 124 | 16.4 140 | 4.24 112 | 5.23 43 | 16.0 41 | 3.27 51 | 5.10 118 | 26.0 150 | 2.00 27 | 9.57 133 | 16.5 140 | 1.91 59 |
ComplOF-FED-GPU [35] | 73.7 | 3.11 34 | 7.05 92 | 1.73 12 | 4.83 83 | 8.43 89 | 1.73 7 | 4.08 151 | 7.19 126 | 1.41 7 | 6.48 73 | 9.11 106 | 4.24 30 | 12.0 70 | 16.1 65 | 4.20 43 | 5.35 82 | 17.1 89 | 3.32 77 | 5.07 101 | 24.8 108 | 2.00 27 | 9.56 126 | 16.3 112 | 1.91 59 |
DMF_ROB [135] | 74.0 | 3.11 34 | 6.93 80 | 1.73 12 | 5.07 114 | 9.15 127 | 1.73 7 | 4.08 151 | 7.68 152 | 1.41 7 | 6.61 130 | 9.33 125 | 4.24 30 | 11.9 42 | 16.1 65 | 4.24 112 | 5.23 43 | 16.5 58 | 3.27 51 | 5.00 68 | 24.3 87 | 2.08 153 | 9.29 55 | 15.9 72 | 1.83 1 |
TC-Flow [46] | 74.1 | 3.11 34 | 6.81 71 | 1.73 12 | 4.90 89 | 8.76 110 | 1.73 7 | 4.00 43 | 7.35 129 | 1.41 7 | 6.45 60 | 8.81 79 | 4.24 30 | 12.1 124 | 16.4 140 | 4.24 112 | 5.45 105 | 17.0 81 | 3.32 77 | 5.00 68 | 24.3 87 | 2.00 27 | 9.47 100 | 16.4 127 | 1.91 59 |
FC-2Layers-FF [74] | 74.1 | 3.16 107 | 7.23 122 | 1.73 12 | 4.51 26 | 6.68 19 | 1.73 7 | 4.00 43 | 6.78 84 | 1.41 7 | 6.40 52 | 8.49 56 | 4.24 30 | 12.1 124 | 16.4 140 | 4.20 43 | 5.57 144 | 19.0 173 | 3.32 77 | 4.97 33 | 25.6 133 | 2.00 27 | 9.57 133 | 16.4 127 | 1.91 59 |
FLAVR [188] | 74.4 | 4.12 195 | 6.98 84 | 1.91 180 | 5.48 154 | 6.78 26 | 2.38 191 | 3.37 32 | 5.48 33 | 1.73 179 | 11.4 197 | 14.1 196 | 4.08 21 | 9.47 9 | 12.0 6 | 3.56 3 | 4.20 13 | 10.2 8 | 2.94 1 | 6.06 194 | 17.9 19 | 2.00 27 | 7.51 9 | 11.8 7 | 1.83 1 |
SIOF [67] | 75.3 | 3.37 153 | 6.98 84 | 1.73 12 | 5.48 154 | 10.0 169 | 1.83 138 | 4.00 43 | 7.00 89 | 1.41 7 | 6.48 73 | 8.76 75 | 4.24 30 | 11.8 36 | 15.7 35 | 4.20 43 | 5.32 63 | 16.2 47 | 3.32 77 | 5.07 101 | 23.7 62 | 2.00 27 | 9.59 138 | 16.1 92 | 1.91 59 |
EpicFlow [100] | 77.4 | 3.11 34 | 7.07 98 | 1.73 12 | 4.90 89 | 8.74 108 | 1.73 7 | 4.00 43 | 7.05 109 | 1.41 7 | 6.56 100 | 9.59 147 | 4.24 30 | 12.0 70 | 16.3 110 | 4.24 112 | 5.35 82 | 17.4 103 | 3.27 51 | 5.07 101 | 25.7 138 | 2.00 27 | 9.42 80 | 16.5 140 | 1.91 59 |
OFLAF [78] | 78.5 | 3.11 34 | 6.98 84 | 1.73 12 | 4.51 26 | 7.00 31 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.40 52 | 8.43 52 | 4.24 30 | 12.1 124 | 16.4 140 | 4.24 112 | 5.60 148 | 18.7 166 | 3.32 77 | 5.07 101 | 28.0 177 | 2.00 27 | 9.83 159 | 17.0 162 | 1.91 59 |
S2D-Matching [83] | 79.5 | 3.32 130 | 7.37 129 | 1.73 12 | 5.00 108 | 9.00 120 | 1.73 7 | 3.70 34 | 6.68 54 | 1.41 7 | 6.38 36 | 8.35 46 | 4.24 30 | 12.1 124 | 16.5 159 | 4.20 43 | 5.57 144 | 18.8 168 | 3.32 77 | 5.00 68 | 24.5 100 | 2.00 27 | 9.49 115 | 16.3 112 | 1.91 59 |
Classic++ [32] | 81.3 | 3.11 34 | 6.78 65 | 1.73 12 | 5.07 114 | 9.15 127 | 1.73 7 | 4.00 43 | 7.12 121 | 1.41 7 | 6.56 100 | 8.83 82 | 4.32 146 | 12.0 70 | 16.2 88 | 4.24 112 | 5.45 105 | 17.7 113 | 3.37 162 | 5.00 68 | 24.8 108 | 2.00 27 | 9.47 100 | 16.0 81 | 1.91 59 |
LFNet_ROB [145] | 81.3 | 3.11 34 | 8.04 167 | 1.73 12 | 5.10 124 | 8.91 118 | 1.73 7 | 4.00 43 | 7.68 152 | 1.41 7 | 6.56 100 | 9.85 154 | 4.24 30 | 12.0 70 | 16.3 110 | 4.20 43 | 5.48 132 | 18.8 168 | 3.27 51 | 5.20 133 | 24.0 75 | 2.00 27 | 9.33 63 | 15.9 72 | 1.91 59 |
PBOFVI [189] | 81.3 | 3.32 130 | 8.16 171 | 1.73 12 | 5.20 131 | 9.56 143 | 1.73 7 | 4.00 43 | 6.78 84 | 1.41 7 | 6.48 73 | 9.06 99 | 4.24 30 | 12.0 70 | 16.3 110 | 4.24 112 | 5.35 82 | 17.1 89 | 3.32 77 | 5.10 118 | 26.1 151 | 2.00 27 | 9.35 72 | 16.3 112 | 1.83 1 |
AggregFlow [95] | 81.3 | 3.32 130 | 7.85 163 | 1.73 12 | 4.97 97 | 8.76 110 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.61 130 | 9.81 152 | 4.24 30 | 12.0 70 | 16.2 88 | 4.24 112 | 5.32 63 | 16.5 58 | 3.37 162 | 4.97 33 | 25.0 118 | 2.00 27 | 9.47 100 | 16.4 127 | 1.91 59 |
Local-TV-L1 [65] | 81.6 | 3.32 130 | 6.35 36 | 1.83 161 | 5.51 160 | 9.63 149 | 1.83 138 | 4.00 43 | 6.68 54 | 1.41 7 | 6.48 73 | 8.70 67 | 4.55 181 | 11.9 42 | 16.0 55 | 4.24 112 | 5.32 63 | 16.3 50 | 3.51 187 | 4.97 33 | 23.4 52 | 2.00 27 | 9.20 42 | 15.3 37 | 1.91 59 |
TC/T-Flow [77] | 82.2 | 3.32 130 | 7.53 142 | 1.73 12 | 4.93 92 | 8.74 108 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.48 73 | 8.87 87 | 4.24 30 | 12.1 124 | 16.4 140 | 4.24 112 | 5.45 105 | 16.8 70 | 3.32 77 | 5.10 118 | 26.6 159 | 2.00 27 | 9.63 143 | 16.3 112 | 1.83 1 |
Modified CLG [34] | 83.3 | 3.11 34 | 6.40 41 | 1.73 12 | 5.80 171 | 9.75 158 | 2.00 172 | 4.00 43 | 7.77 165 | 1.41 7 | 6.68 136 | 9.43 137 | 4.24 30 | 12.0 70 | 16.1 65 | 4.24 112 | 5.35 82 | 16.9 75 | 3.32 77 | 5.10 118 | 23.9 71 | 2.00 27 | 9.42 80 | 15.8 58 | 1.91 59 |
FlowNetS+ft+v [110] | 83.5 | 3.32 130 | 6.68 50 | 1.73 12 | 5.69 165 | 9.76 159 | 1.83 138 | 4.00 43 | 7.35 129 | 1.41 7 | 6.58 122 | 9.13 110 | 4.24 30 | 12.0 70 | 16.1 65 | 4.24 112 | 5.26 49 | 16.3 50 | 3.32 77 | 5.07 101 | 25.9 146 | 2.00 27 | 9.42 80 | 15.9 72 | 1.91 59 |
FF++_ROB [141] | 84.0 | 3.11 34 | 7.14 106 | 1.73 12 | 4.80 77 | 8.29 83 | 1.73 7 | 4.00 43 | 7.05 109 | 1.41 7 | 6.56 100 | 9.68 149 | 4.24 30 | 12.2 160 | 16.6 167 | 4.24 112 | 5.60 148 | 18.3 144 | 3.37 162 | 4.97 33 | 24.4 96 | 2.00 27 | 9.31 59 | 16.1 92 | 1.91 59 |
PMF [73] | 84.5 | 3.11 34 | 7.14 106 | 1.73 12 | 4.97 97 | 8.49 94 | 1.73 7 | 4.00 43 | 8.00 170 | 1.41 7 | 6.48 73 | 8.89 88 | 4.24 30 | 12.2 160 | 16.5 159 | 4.20 43 | 5.45 105 | 17.4 103 | 3.37 162 | 4.97 33 | 25.5 131 | 2.00 27 | 9.90 169 | 17.3 173 | 1.83 1 |
PWC-Net_RVC [143] | 85.2 | 3.11 34 | 8.39 175 | 1.73 12 | 5.00 108 | 9.06 124 | 1.73 7 | 4.00 43 | 7.68 152 | 1.41 7 | 6.48 73 | 9.49 141 | 4.24 30 | 12.2 160 | 16.7 174 | 4.24 112 | 5.48 132 | 17.8 118 | 3.32 77 | 5.00 68 | 24.4 96 | 2.00 27 | 9.33 63 | 16.3 112 | 1.83 1 |
OFH [38] | 85.3 | 3.16 107 | 7.14 106 | 1.73 12 | 5.10 124 | 9.15 127 | 1.73 7 | 4.00 43 | 7.79 166 | 1.41 7 | 6.45 60 | 9.04 96 | 4.24 30 | 12.0 70 | 16.3 110 | 4.20 43 | 5.45 105 | 17.3 100 | 3.32 77 | 5.10 118 | 27.1 169 | 2.00 27 | 9.57 133 | 16.8 151 | 1.91 59 |
C-RAFT_RVC [181] | 85.5 | 3.42 167 | 9.26 184 | 1.73 12 | 5.07 114 | 8.83 115 | 1.73 7 | 4.00 43 | 7.35 129 | 1.41 7 | 6.68 136 | 9.76 151 | 4.24 30 | 11.9 42 | 16.1 65 | 4.20 43 | 5.48 132 | 17.8 118 | 3.27 51 | 5.07 101 | 24.1 80 | 2.00 27 | 9.47 100 | 16.5 140 | 1.91 59 |
SVFilterOh [109] | 85.6 | 3.16 107 | 6.73 60 | 1.73 12 | 4.65 41 | 7.33 39 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.48 73 | 8.74 73 | 4.36 162 | 12.2 160 | 16.5 159 | 4.24 112 | 5.45 105 | 18.6 159 | 3.32 77 | 4.93 24 | 23.9 71 | 2.08 153 | 9.70 149 | 16.7 149 | 1.91 59 |
EPPM w/o HM [86] | 86.0 | 3.11 34 | 7.77 161 | 1.73 12 | 4.97 97 | 8.76 110 | 1.73 7 | 4.08 151 | 8.39 181 | 1.41 7 | 6.48 73 | 9.42 133 | 4.24 30 | 12.0 70 | 16.2 88 | 4.20 43 | 5.45 105 | 18.3 144 | 3.32 77 | 5.16 128 | 25.0 118 | 2.00 27 | 9.56 126 | 16.5 140 | 1.83 1 |
CRTflow [81] | 86.2 | 3.32 130 | 7.05 92 | 1.73 12 | 5.26 136 | 9.54 142 | 1.73 7 | 4.36 164 | 7.85 168 | 1.41 7 | 6.48 73 | 8.74 73 | 4.40 169 | 12.0 70 | 16.2 88 | 4.24 112 | 5.32 63 | 16.3 50 | 3.32 77 | 5.00 68 | 25.1 122 | 2.00 27 | 9.42 80 | 16.0 81 | 1.91 59 |
FESL [72] | 86.4 | 3.32 130 | 7.39 130 | 1.73 12 | 4.76 73 | 7.87 78 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.56 100 | 8.89 88 | 4.24 30 | 12.1 124 | 16.5 159 | 4.24 112 | 5.72 156 | 18.6 159 | 3.32 77 | 5.00 68 | 25.6 133 | 1.91 1 | 9.68 145 | 16.8 151 | 1.83 1 |
Efficient-NL [60] | 86.4 | 3.32 130 | 7.19 118 | 1.73 12 | 4.90 89 | 8.50 95 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.56 100 | 8.83 82 | 4.24 30 | 12.0 70 | 16.3 110 | 4.20 43 | 5.80 165 | 18.9 170 | 3.16 28 | 5.07 101 | 26.6 159 | 2.00 27 | 9.97 178 | 17.0 162 | 1.91 59 |
Steered-L1 [116] | 87.0 | 3.11 34 | 6.78 65 | 1.73 12 | 4.93 92 | 8.52 97 | 1.73 7 | 4.08 151 | 7.00 89 | 1.41 7 | 6.68 136 | 9.06 99 | 4.43 172 | 12.1 124 | 16.4 140 | 4.20 43 | 5.35 82 | 17.4 103 | 3.32 77 | 5.00 68 | 25.6 133 | 2.00 27 | 9.68 145 | 16.4 127 | 1.91 59 |
3DFlow [133] | 87.9 | 3.27 122 | 7.44 137 | 1.73 12 | 4.80 77 | 8.29 83 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.48 73 | 8.76 75 | 4.24 30 | 12.0 70 | 16.2 88 | 4.24 112 | 6.16 191 | 20.4 188 | 3.32 77 | 5.45 169 | 26.4 156 | 2.00 27 | 9.83 159 | 16.8 151 | 1.83 1 |
Adaptive [20] | 88.9 | 3.32 130 | 6.83 76 | 1.73 12 | 5.69 165 | 10.4 180 | 1.73 7 | 4.00 43 | 7.35 129 | 1.41 7 | 6.53 98 | 8.89 88 | 4.24 30 | 12.0 70 | 16.2 88 | 4.20 43 | 5.45 105 | 17.9 123 | 3.32 77 | 5.20 133 | 27.4 174 | 2.00 27 | 9.63 143 | 16.4 127 | 1.91 59 |
Classic+CPF [82] | 89.2 | 3.16 107 | 7.44 137 | 1.73 12 | 4.76 73 | 8.04 82 | 1.73 7 | 3.70 34 | 6.73 79 | 1.41 7 | 6.40 52 | 8.43 52 | 4.24 30 | 12.3 179 | 16.8 180 | 4.24 112 | 5.74 163 | 19.2 174 | 3.32 77 | 5.07 101 | 25.9 146 | 1.91 1 | 9.88 166 | 17.1 169 | 1.83 1 |
Sparse Occlusion [54] | 89.3 | 3.27 122 | 7.05 92 | 1.73 12 | 5.07 114 | 9.56 143 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.58 122 | 9.04 96 | 4.24 30 | 12.1 124 | 16.3 110 | 4.24 112 | 5.69 153 | 18.6 159 | 3.32 77 | 5.07 101 | 26.2 152 | 1.91 1 | 9.61 141 | 16.3 112 | 1.91 59 |
TCOF [69] | 89.5 | 3.32 130 | 7.14 106 | 1.73 12 | 5.72 168 | 10.3 177 | 1.73 7 | 4.00 43 | 6.78 84 | 1.41 7 | 6.56 100 | 8.83 82 | 4.24 30 | 12.0 70 | 16.0 55 | 4.20 43 | 5.72 156 | 18.0 128 | 3.16 28 | 5.35 164 | 27.1 169 | 2.00 27 | 9.87 164 | 16.5 140 | 1.91 59 |
Complementary OF [21] | 90.8 | 3.11 34 | 7.35 125 | 1.73 12 | 4.83 83 | 8.43 89 | 1.73 7 | 4.36 164 | 7.05 109 | 1.41 7 | 6.48 73 | 9.15 112 | 4.24 30 | 12.1 124 | 16.4 140 | 4.20 43 | 5.42 103 | 17.8 118 | 3.32 77 | 5.16 128 | 27.0 168 | 2.00 27 | 9.87 164 | 18.1 184 | 1.91 59 |
TV-L1-improved [17] | 91.0 | 3.16 107 | 6.73 60 | 1.73 12 | 5.60 161 | 10.2 173 | 1.73 7 | 4.08 151 | 7.05 109 | 1.41 7 | 6.58 122 | 9.02 95 | 4.24 30 | 12.0 70 | 16.2 88 | 4.20 43 | 5.45 105 | 18.4 152 | 3.32 77 | 5.20 133 | 28.7 180 | 2.00 27 | 9.54 123 | 16.1 92 | 1.91 59 |
SRR-TVOF-NL [89] | 91.3 | 3.32 130 | 7.53 142 | 1.73 12 | 5.10 124 | 9.15 127 | 1.73 7 | 4.00 43 | 7.05 109 | 1.41 7 | 6.68 136 | 9.33 125 | 4.24 30 | 12.1 124 | 16.4 140 | 4.20 43 | 5.35 82 | 17.9 123 | 3.16 28 | 5.23 147 | 24.3 87 | 2.00 27 | 9.97 178 | 17.0 162 | 1.91 59 |
Fusion [6] | 91.4 | 3.11 34 | 7.12 102 | 1.73 12 | 4.80 77 | 7.90 79 | 1.73 7 | 4.00 43 | 6.73 79 | 1.41 7 | 6.83 158 | 9.26 119 | 4.24 30 | 12.2 160 | 16.5 159 | 4.16 35 | 5.80 165 | 19.6 179 | 3.16 28 | 5.20 133 | 25.9 146 | 2.00 27 | 10.2 182 | 17.3 173 | 1.91 59 |
BlockOverlap [61] | 91.4 | 3.32 130 | 6.35 36 | 1.83 161 | 5.48 154 | 9.33 135 | 1.91 164 | 4.00 43 | 6.35 37 | 1.41 7 | 6.48 73 | 8.19 34 | 4.65 186 | 12.0 70 | 16.1 65 | 4.36 191 | 5.35 82 | 16.6 64 | 3.42 179 | 4.97 33 | 23.7 62 | 2.08 153 | 9.15 39 | 15.1 36 | 1.91 59 |
MLDP_OF [87] | 91.5 | 3.11 34 | 7.35 125 | 1.73 12 | 4.97 97 | 8.87 117 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.48 73 | 8.58 62 | 4.32 146 | 12.0 70 | 16.2 88 | 4.24 112 | 5.80 165 | 18.5 156 | 3.46 185 | 5.20 133 | 24.2 85 | 2.08 153 | 9.47 100 | 16.3 112 | 1.91 59 |
MCPFlow_RVC [197] | 92.7 | 3.32 130 | 9.06 183 | 1.73 12 | 4.76 73 | 7.94 80 | 1.73 7 | 4.00 43 | 7.05 109 | 1.41 7 | 6.58 122 | 9.33 125 | 4.24 30 | 12.1 124 | 16.3 110 | 4.24 112 | 5.60 148 | 19.4 177 | 3.32 77 | 5.03 89 | 23.0 42 | 2.00 27 | 13.2 198 | 27.6 198 | 1.83 1 |
CNN-flow-warp+ref [115] | 92.8 | 3.11 34 | 6.38 39 | 1.73 12 | 5.35 141 | 9.42 137 | 1.73 7 | 4.36 164 | 7.94 169 | 1.41 7 | 7.19 177 | 9.88 156 | 4.51 178 | 12.0 70 | 16.1 65 | 4.24 112 | 5.29 61 | 16.8 70 | 3.32 77 | 5.20 133 | 27.3 172 | 2.00 27 | 9.40 78 | 16.0 81 | 1.91 59 |
CostFilter [40] | 93.0 | 3.11 34 | 7.90 165 | 1.73 12 | 4.93 92 | 8.43 89 | 1.73 7 | 4.00 43 | 8.68 183 | 1.41 7 | 6.56 100 | 9.68 149 | 4.24 30 | 12.2 160 | 16.7 174 | 4.20 43 | 5.45 105 | 17.0 81 | 3.46 185 | 5.00 68 | 26.2 152 | 2.00 27 | 9.80 152 | 17.3 173 | 1.83 1 |
LiteFlowNet [138] | 94.0 | 3.11 34 | 8.50 176 | 1.73 12 | 5.00 108 | 8.72 105 | 1.73 7 | 4.00 43 | 7.68 152 | 1.41 7 | 6.76 148 | 11.7 187 | 4.32 146 | 12.1 124 | 16.4 140 | 4.20 43 | 5.69 153 | 18.0 128 | 3.16 28 | 5.26 153 | 27.1 169 | 2.00 27 | 9.31 59 | 16.2 106 | 1.83 1 |
Occlusion-TV-L1 [63] | 94.8 | 3.27 122 | 6.81 71 | 1.73 12 | 5.45 150 | 10.2 173 | 1.73 7 | 4.00 43 | 7.35 129 | 1.41 7 | 6.66 134 | 9.43 137 | 4.32 146 | 11.9 42 | 15.9 41 | 4.24 112 | 5.35 82 | 17.2 97 | 3.37 162 | 5.32 158 | 24.3 87 | 2.08 153 | 9.42 80 | 15.9 72 | 1.91 59 |
BriefMatch [122] | 96.6 | 3.11 34 | 7.19 118 | 1.73 12 | 4.97 97 | 8.43 89 | 1.73 7 | 4.36 164 | 7.00 89 | 1.41 7 | 6.98 162 | 9.42 133 | 4.69 190 | 12.1 124 | 16.2 88 | 4.24 112 | 5.72 156 | 18.5 156 | 3.70 190 | 4.97 33 | 24.2 85 | 2.00 27 | 9.42 80 | 16.2 106 | 1.91 59 |
LSM_FLOW_RVC [182] | 97.2 | 3.37 153 | 9.47 187 | 1.73 12 | 5.35 141 | 9.57 146 | 1.73 7 | 4.00 43 | 8.12 176 | 1.41 7 | 6.68 136 | 10.8 171 | 4.24 30 | 12.0 70 | 16.4 140 | 4.20 43 | 5.45 105 | 17.6 110 | 3.27 51 | 5.26 153 | 25.7 138 | 2.00 27 | 9.47 100 | 16.4 127 | 1.91 59 |
HBM-GC [103] | 98.9 | 3.32 130 | 7.16 113 | 1.73 12 | 4.93 92 | 8.72 105 | 1.73 7 | 3.74 42 | 6.00 34 | 1.41 7 | 6.48 73 | 8.70 67 | 4.32 146 | 12.3 179 | 16.7 174 | 4.32 189 | 5.80 165 | 20.9 192 | 3.32 77 | 4.97 33 | 24.5 100 | 2.08 153 | 9.57 133 | 16.1 92 | 1.91 59 |
SimpleFlow [49] | 99.4 | 3.16 107 | 7.42 134 | 1.73 12 | 5.07 114 | 9.00 120 | 1.73 7 | 4.00 43 | 7.14 124 | 1.41 7 | 6.38 36 | 8.41 50 | 4.24 30 | 12.1 124 | 16.5 159 | 4.20 43 | 5.72 156 | 19.6 179 | 3.32 77 | 5.16 128 | 32.0 193 | 2.08 153 | 9.81 154 | 17.6 177 | 1.91 59 |
2D-CLG [1] | 100.1 | 3.16 107 | 6.73 60 | 1.83 161 | 6.16 179 | 9.88 167 | 2.16 183 | 4.08 151 | 7.35 129 | 1.41 7 | 7.05 170 | 9.95 159 | 4.24 30 | 11.9 42 | 16.0 55 | 4.20 43 | 5.35 82 | 16.9 75 | 3.32 77 | 5.23 147 | 26.6 159 | 2.00 27 | 9.42 80 | 15.7 53 | 1.91 59 |
IAOF [50] | 100.9 | 3.42 167 | 7.16 113 | 1.83 161 | 6.88 192 | 11.7 197 | 1.91 164 | 3.70 34 | 7.35 129 | 1.41 7 | 6.98 162 | 9.49 141 | 4.24 30 | 11.9 42 | 16.0 55 | 4.20 43 | 5.32 63 | 17.2 97 | 3.32 77 | 5.20 133 | 25.1 122 | 2.00 27 | 9.56 126 | 16.0 81 | 1.91 59 |
CVENG22+RIC [199] | 101.2 | 3.16 107 | 7.16 113 | 1.73 12 | 5.07 114 | 9.18 131 | 1.73 7 | 4.00 43 | 7.44 150 | 1.41 7 | 6.68 136 | 10.3 166 | 4.24 30 | 12.1 124 | 16.3 110 | 4.24 112 | 5.48 132 | 18.1 137 | 3.32 77 | 5.20 133 | 26.9 167 | 2.00 27 | 9.81 154 | 17.8 181 | 1.91 59 |
Rannacher [23] | 101.4 | 3.32 130 | 7.00 91 | 1.73 12 | 5.60 161 | 10.4 180 | 1.73 7 | 4.08 151 | 7.35 129 | 1.41 7 | 6.56 100 | 9.11 106 | 4.32 146 | 12.0 70 | 16.1 65 | 4.24 112 | 5.45 105 | 18.3 144 | 3.32 77 | 5.20 133 | 28.1 179 | 2.00 27 | 9.49 115 | 16.4 127 | 1.91 59 |
TriFlow [93] | 101.5 | 3.16 107 | 7.42 134 | 1.73 12 | 5.35 141 | 9.68 153 | 1.83 138 | 4.00 43 | 7.35 129 | 1.41 7 | 6.58 122 | 9.45 139 | 4.24 30 | 12.2 160 | 16.6 167 | 4.24 112 | 5.45 105 | 18.0 128 | 3.32 77 | 5.00 68 | 24.6 104 | 2.00 27 | 9.57 133 | 16.5 140 | 1.91 59 |
Nguyen [33] | 102.8 | 3.37 153 | 6.78 65 | 1.91 180 | 6.56 189 | 10.5 184 | 2.00 172 | 4.00 43 | 8.00 170 | 1.41 7 | 7.14 175 | 10.3 166 | 4.24 30 | 11.9 42 | 16.1 65 | 4.20 43 | 5.32 63 | 17.1 89 | 3.16 28 | 5.72 185 | 28.7 180 | 2.00 27 | 9.42 80 | 15.9 72 | 1.91 59 |
CompactFlow_ROB [155] | 103.0 | 3.16 107 | 8.96 182 | 1.73 12 | 5.10 124 | 9.11 126 | 1.83 138 | 4.36 164 | 8.12 176 | 1.41 7 | 6.78 153 | 11.2 178 | 4.24 30 | 12.0 70 | 16.2 88 | 4.20 43 | 5.45 105 | 18.3 144 | 3.16 28 | 5.23 147 | 25.7 138 | 2.00 27 | 9.47 100 | 16.4 127 | 1.91 59 |
AugFNG_ROB [139] | 104.0 | 3.32 130 | 8.35 174 | 1.73 12 | 5.35 141 | 9.42 137 | 1.83 138 | 4.08 151 | 8.72 190 | 1.41 7 | 6.76 148 | 11.0 173 | 4.24 30 | 12.2 160 | 16.8 180 | 4.24 112 | 5.26 49 | 17.0 81 | 3.27 51 | 5.23 147 | 24.8 108 | 2.00 27 | 9.26 44 | 16.2 106 | 1.83 1 |
HBpMotionGpu [43] | 104.2 | 3.42 167 | 6.98 84 | 1.91 180 | 6.19 182 | 10.7 187 | 2.08 176 | 4.00 43 | 6.68 54 | 1.41 7 | 6.78 153 | 9.95 159 | 4.36 162 | 12.0 70 | 16.1 65 | 4.20 43 | 5.57 144 | 17.7 113 | 3.32 77 | 5.00 68 | 23.8 68 | 2.00 27 | 9.52 121 | 16.1 92 | 1.91 59 |
ContinualFlow_ROB [148] | 104.5 | 3.37 153 | 8.68 179 | 1.73 12 | 5.10 124 | 9.31 134 | 1.83 138 | 4.36 164 | 8.04 175 | 1.41 7 | 6.56 100 | 9.90 157 | 4.24 30 | 12.2 160 | 16.8 180 | 4.24 112 | 5.26 49 | 16.8 70 | 3.16 28 | 5.00 68 | 25.2 124 | 2.00 27 | 9.59 138 | 17.6 177 | 1.83 1 |
TVL1_RVC [175] | 105.5 | 3.46 173 | 6.66 48 | 1.91 180 | 6.56 189 | 10.8 190 | 2.08 176 | 4.00 43 | 7.39 148 | 1.41 7 | 7.00 168 | 9.56 143 | 4.24 30 | 12.0 70 | 16.1 65 | 4.24 112 | 5.35 82 | 17.3 100 | 3.32 77 | 5.23 147 | 26.6 159 | 2.00 27 | 9.42 80 | 15.8 58 | 1.91 59 |
GraphCuts [14] | 106.2 | 3.37 153 | 7.53 142 | 1.73 12 | 5.03 112 | 8.39 88 | 1.83 138 | 4.36 164 | 6.68 54 | 1.41 7 | 6.83 158 | 9.56 143 | 4.32 146 | 12.1 124 | 16.3 110 | 4.16 35 | 5.26 49 | 17.5 107 | 3.16 28 | 5.03 89 | 25.6 133 | 2.08 153 | 9.95 175 | 17.1 169 | 1.91 59 |
ResPWCR_ROB [140] | 107.5 | 3.11 34 | 7.59 151 | 1.73 12 | 5.26 136 | 9.33 135 | 1.73 7 | 4.36 164 | 7.68 152 | 1.41 7 | 6.78 153 | 10.5 169 | 4.36 162 | 11.9 42 | 16.2 88 | 4.20 43 | 5.80 165 | 18.1 137 | 3.74 193 | 5.32 158 | 24.7 106 | 2.00 27 | 9.54 123 | 16.9 157 | 1.91 59 |
Ad-TV-NDC [36] | 109.2 | 3.65 181 | 6.68 50 | 2.00 187 | 6.16 179 | 10.2 173 | 2.08 176 | 4.00 43 | 7.35 129 | 1.41 7 | 6.98 162 | 9.47 140 | 4.43 172 | 12.1 124 | 16.1 65 | 4.24 112 | 5.32 63 | 16.3 50 | 3.42 179 | 5.20 133 | 24.3 87 | 2.00 27 | 9.42 80 | 15.5 42 | 1.91 59 |
Black & Anandan [4] | 109.5 | 3.37 153 | 6.68 50 | 1.83 161 | 6.06 177 | 10.4 180 | 1.83 138 | 4.36 164 | 7.72 164 | 1.41 7 | 7.07 173 | 9.90 157 | 4.24 30 | 12.1 124 | 16.1 65 | 4.24 112 | 5.26 49 | 16.9 75 | 3.32 77 | 5.32 158 | 26.4 156 | 2.00 27 | 9.49 115 | 15.8 58 | 1.91 59 |
Shiralkar [42] | 110.2 | 3.32 130 | 7.96 166 | 1.73 12 | 5.60 161 | 9.85 165 | 1.73 7 | 4.00 43 | 8.43 182 | 1.41 7 | 7.12 174 | 11.1 176 | 4.24 30 | 12.0 70 | 16.3 110 | 4.16 35 | 5.57 144 | 18.3 144 | 3.37 162 | 5.35 164 | 29.8 188 | 2.00 27 | 9.56 126 | 17.0 162 | 1.91 59 |
IIOF-NLDP [129] | 112.2 | 3.27 122 | 7.75 160 | 1.73 12 | 5.20 131 | 9.70 155 | 1.73 7 | 4.00 43 | 7.00 89 | 1.41 7 | 6.68 136 | 9.26 119 | 4.40 169 | 12.0 70 | 16.3 110 | 4.20 43 | 6.22 193 | 20.2 186 | 3.32 77 | 5.72 185 | 36.3 197 | 2.08 153 | 9.83 159 | 17.1 169 | 1.83 1 |
FlowNet2 [120] | 112.8 | 3.70 183 | 10.2 191 | 1.83 161 | 5.20 131 | 9.00 120 | 1.83 138 | 4.08 151 | 7.68 152 | 1.41 7 | 6.76 148 | 11.0 173 | 4.24 30 | 12.2 160 | 16.6 167 | 4.24 112 | 5.35 82 | 17.3 100 | 3.27 51 | 5.03 89 | 25.8 141 | 2.00 27 | 9.42 80 | 16.3 112 | 1.83 1 |
Bartels [41] | 115.0 | 3.32 130 | 7.35 125 | 1.73 12 | 5.03 112 | 9.26 133 | 1.83 138 | 4.00 43 | 7.00 89 | 1.41 7 | 6.73 147 | 9.42 133 | 4.69 190 | 12.0 70 | 15.9 41 | 4.55 196 | 5.94 181 | 18.4 152 | 3.87 197 | 5.03 89 | 23.2 48 | 2.08 153 | 9.47 100 | 16.0 81 | 2.00 192 |
Filter Flow [19] | 115.1 | 3.37 153 | 6.93 80 | 1.83 161 | 5.80 171 | 9.98 168 | 2.08 176 | 4.00 43 | 7.05 109 | 1.41 7 | 6.95 161 | 9.09 102 | 4.43 172 | 12.2 160 | 16.3 110 | 4.24 112 | 5.35 82 | 17.4 103 | 3.32 77 | 5.10 118 | 25.3 126 | 2.00 27 | 9.83 159 | 16.4 127 | 1.91 59 |
LocallyOriented [52] | 117.9 | 3.37 153 | 7.42 134 | 1.73 12 | 5.80 171 | 10.6 185 | 1.73 7 | 4.00 43 | 7.68 152 | 1.41 7 | 6.81 157 | 10.1 162 | 4.32 146 | 12.1 124 | 16.4 140 | 4.20 43 | 5.80 165 | 18.3 144 | 3.42 179 | 5.32 158 | 26.6 159 | 2.00 27 | 9.81 154 | 16.7 149 | 1.91 59 |
IAOF2 [51] | 118.4 | 3.46 173 | 7.59 151 | 1.73 12 | 5.74 170 | 10.9 193 | 1.83 138 | 3.70 34 | 7.14 124 | 1.41 7 | 6.98 162 | 10.0 161 | 4.32 146 | 12.3 179 | 16.8 180 | 4.20 43 | 5.51 140 | 18.6 159 | 3.32 77 | 5.10 118 | 25.3 126 | 2.00 27 | 9.75 150 | 16.3 112 | 1.91 59 |
AdaConv-v1 [124] | 118.5 | 3.70 183 | 9.42 186 | 1.91 180 | 5.92 174 | 9.04 123 | 2.38 191 | 4.36 164 | 7.68 152 | 1.73 179 | 8.52 191 | 13.0 191 | 4.62 185 | 11.4 29 | 15.2 31 | 4.08 30 | 4.90 32 | 15.0 35 | 3.16 28 | 4.97 33 | 24.0 75 | 2.16 191 | 8.98 34 | 15.0 35 | 2.00 192 |
ROF-ND [105] | 119.1 | 3.46 173 | 6.98 84 | 1.73 12 | 5.10 124 | 9.42 137 | 1.73 7 | 4.08 151 | 7.12 121 | 1.41 7 | 7.16 176 | 11.7 187 | 4.24 30 | 12.1 124 | 16.3 110 | 4.24 112 | 5.80 165 | 20.0 183 | 3.27 51 | 5.57 179 | 26.7 165 | 2.08 153 | 9.95 175 | 17.3 173 | 1.91 59 |
Correlation Flow [76] | 119.7 | 3.16 107 | 7.70 156 | 1.73 12 | 5.35 141 | 10.1 170 | 1.73 7 | 4.00 43 | 6.68 54 | 1.41 7 | 6.61 130 | 9.20 116 | 4.40 169 | 12.1 124 | 16.3 110 | 4.40 194 | 6.06 187 | 20.6 190 | 3.32 77 | 5.35 164 | 29.5 186 | 2.08 153 | 9.88 166 | 16.8 151 | 1.91 59 |
TriangleFlow [30] | 119.8 | 3.37 153 | 7.70 156 | 1.73 12 | 5.35 141 | 9.70 155 | 1.73 7 | 4.08 151 | 7.19 126 | 1.41 7 | 6.78 153 | 10.1 162 | 4.32 146 | 12.0 70 | 16.2 88 | 4.16 35 | 5.77 164 | 18.6 159 | 3.32 77 | 5.32 158 | 29.0 182 | 2.08 153 | 10.1 181 | 17.8 181 | 1.91 59 |
EPMNet [131] | 121.4 | 3.65 181 | 10.7 194 | 1.83 161 | 5.20 131 | 8.83 115 | 1.83 138 | 4.08 151 | 7.68 152 | 1.41 7 | 7.00 168 | 13.0 191 | 4.24 30 | 12.2 160 | 16.6 167 | 4.24 112 | 5.48 132 | 18.4 152 | 3.27 51 | 5.03 89 | 25.8 141 | 2.00 27 | 9.49 115 | 16.6 147 | 1.83 1 |
Dynamic MRF [7] | 121.4 | 3.11 34 | 7.44 137 | 1.73 12 | 5.20 131 | 9.80 161 | 1.73 7 | 4.36 164 | 8.68 183 | 1.41 7 | 7.33 181 | 10.7 170 | 4.55 181 | 12.1 124 | 16.4 140 | 4.20 43 | 5.80 165 | 20.4 188 | 3.37 162 | 5.29 157 | 29.0 182 | 2.00 27 | 9.83 159 | 16.5 140 | 1.91 59 |
SegOF [10] | 122.2 | 3.11 34 | 7.07 98 | 1.83 161 | 5.35 141 | 9.20 132 | 1.83 138 | 4.36 164 | 8.00 170 | 1.41 7 | 6.98 162 | 11.3 179 | 4.24 30 | 12.1 124 | 16.3 110 | 4.24 112 | 5.72 156 | 18.1 137 | 3.32 77 | 5.26 153 | 29.4 185 | 2.08 153 | 9.47 100 | 16.8 151 | 1.91 59 |
IRR-PWC_RVC [180] | 123.0 | 3.42 167 | 9.47 187 | 1.73 12 | 5.16 130 | 9.06 124 | 1.91 164 | 4.36 164 | 8.91 191 | 1.41 7 | 7.05 170 | 12.5 190 | 4.24 30 | 12.3 179 | 16.8 180 | 4.24 112 | 5.45 105 | 18.6 159 | 3.27 51 | 5.20 133 | 25.6 133 | 2.00 27 | 9.80 152 | 18.1 184 | 1.83 1 |
SPSA-learn [13] | 124.3 | 3.32 130 | 6.73 60 | 1.73 12 | 5.66 164 | 9.59 147 | 1.83 138 | 4.36 164 | 7.35 129 | 1.41 7 | 7.05 170 | 9.57 146 | 4.24 30 | 12.1 124 | 16.6 167 | 4.24 112 | 5.45 105 | 18.0 128 | 3.32 77 | 5.66 184 | 35.7 196 | 2.08 153 | 10.4 188 | 20.9 194 | 1.91 59 |
Horn & Schunck [3] | 127.6 | 3.42 167 | 7.14 106 | 1.83 161 | 6.27 183 | 10.6 185 | 1.91 164 | 4.36 164 | 8.35 178 | 1.41 7 | 7.70 186 | 11.0 173 | 4.24 30 | 12.1 124 | 16.2 88 | 4.24 112 | 5.35 82 | 16.7 69 | 3.32 77 | 5.60 181 | 27.3 172 | 2.08 153 | 9.75 150 | 16.1 92 | 1.91 59 |
StereoOF-V1MT [117] | 130.4 | 3.37 153 | 8.12 168 | 1.73 12 | 5.48 154 | 9.71 157 | 1.73 7 | 4.36 164 | 8.35 178 | 1.41 7 | 7.53 185 | 11.1 176 | 4.51 178 | 12.2 160 | 16.6 167 | 4.20 43 | 5.94 181 | 18.0 128 | 3.37 162 | 5.60 181 | 27.6 175 | 2.08 153 | 9.47 100 | 16.0 81 | 1.91 59 |
OFRF [132] | 131.0 | 3.56 177 | 8.12 168 | 1.83 161 | 5.69 165 | 10.1 170 | 1.83 138 | 4.00 43 | 7.68 152 | 1.41 7 | 6.68 136 | 9.63 148 | 4.24 30 | 12.2 160 | 16.8 180 | 4.24 112 | 5.80 165 | 19.3 176 | 3.37 162 | 5.20 133 | 27.8 176 | 2.00 27 | 10.0 180 | 17.6 177 | 1.83 1 |
ACK-Prior [27] | 131.6 | 3.11 34 | 7.55 148 | 1.73 12 | 4.97 97 | 8.70 104 | 1.73 7 | 4.36 164 | 7.35 129 | 1.41 7 | 6.86 160 | 10.1 162 | 4.32 146 | 12.4 185 | 16.8 180 | 4.32 189 | 6.03 185 | 20.3 187 | 3.37 162 | 5.23 147 | 26.8 166 | 2.08 153 | 10.7 192 | 18.1 184 | 1.91 59 |
TI-DOFE [24] | 131.7 | 3.70 183 | 7.51 141 | 2.16 191 | 6.95 193 | 11.1 195 | 2.16 183 | 4.36 164 | 8.35 178 | 1.41 7 | 7.72 187 | 10.9 172 | 4.36 162 | 12.0 70 | 16.2 88 | 4.20 43 | 5.35 82 | 16.9 75 | 3.32 77 | 5.45 169 | 25.3 126 | 2.08 153 | 9.93 171 | 16.1 92 | 1.91 59 |
StereoFlow [44] | 132.1 | 5.20 198 | 12.2 198 | 2.00 187 | 6.98 194 | 11.2 196 | 2.16 183 | 4.00 43 | 7.35 129 | 1.41 7 | 6.56 100 | 8.83 82 | 4.24 30 | 14.1 197 | 20.1 197 | 4.24 112 | 7.05 198 | 24.6 198 | 3.32 77 | 5.03 89 | 24.8 108 | 2.00 27 | 10.2 182 | 17.7 180 | 1.91 59 |
WRT [146] | 132.2 | 3.32 130 | 7.85 163 | 1.73 12 | 5.45 150 | 9.47 140 | 1.73 7 | 4.36 164 | 7.00 89 | 1.41 7 | 6.76 148 | 9.38 132 | 4.36 162 | 12.3 179 | 16.8 180 | 4.24 112 | 6.38 196 | 21.8 196 | 3.32 77 | 5.83 190 | 38.4 198 | 2.08 153 | 10.7 192 | 21.0 195 | 1.83 1 |
UnFlow [127] | 137.3 | 3.56 177 | 9.26 184 | 1.83 161 | 6.00 176 | 9.87 166 | 1.83 138 | 4.36 164 | 8.68 183 | 1.41 7 | 6.76 148 | 10.2 165 | 4.24 30 | 12.2 160 | 16.7 174 | 4.24 112 | 5.92 180 | 20.0 183 | 3.32 77 | 5.35 164 | 24.1 80 | 2.00 27 | 10.7 192 | 18.3 188 | 1.91 59 |
2bit-BM-tele [96] | 138.5 | 3.37 153 | 6.68 50 | 1.83 161 | 5.48 154 | 10.1 170 | 1.91 164 | 4.00 43 | 6.78 84 | 1.41 7 | 6.68 136 | 9.11 106 | 4.69 190 | 12.2 160 | 16.4 140 | 4.43 195 | 5.83 176 | 21.0 193 | 3.70 190 | 5.45 169 | 35.2 195 | 2.16 191 | 9.31 59 | 15.6 44 | 2.08 195 |
NL-TV-NCC [25] | 142.5 | 3.46 173 | 8.50 176 | 1.73 12 | 5.26 136 | 9.83 164 | 1.73 7 | 4.36 164 | 7.68 152 | 1.41 7 | 7.39 184 | 11.6 186 | 4.55 181 | 12.2 160 | 16.3 110 | 4.55 196 | 6.19 192 | 19.6 179 | 3.32 77 | 6.76 198 | 28.0 177 | 2.16 191 | 10.2 182 | 16.9 157 | 1.91 59 |
WOLF_ROB [144] | 143.7 | 3.56 177 | 9.88 190 | 1.73 12 | 6.06 177 | 10.7 187 | 1.73 7 | 4.36 164 | 7.79 166 | 1.41 7 | 6.98 162 | 11.4 181 | 4.43 172 | 12.4 185 | 16.9 191 | 4.24 112 | 5.83 176 | 20.0 183 | 3.42 179 | 5.80 188 | 31.3 192 | 2.00 27 | 9.93 171 | 18.0 183 | 1.91 59 |
Learning Flow [11] | 143.9 | 3.42 167 | 7.59 151 | 1.73 12 | 5.72 168 | 10.3 177 | 1.73 7 | 4.51 187 | 8.68 183 | 1.41 7 | 7.26 179 | 9.85 154 | 4.55 181 | 12.4 185 | 16.7 174 | 4.36 191 | 5.66 152 | 18.1 137 | 3.37 162 | 5.45 169 | 26.6 159 | 2.08 153 | 10.2 182 | 16.9 157 | 1.91 59 |
H+S_RVC [176] | 155.2 | 3.70 183 | 8.58 178 | 1.83 161 | 6.16 179 | 9.49 141 | 2.16 183 | 5.00 192 | 9.71 193 | 1.73 179 | 9.06 195 | 11.4 181 | 4.43 172 | 12.3 179 | 16.5 159 | 4.20 43 | 5.80 165 | 18.0 128 | 3.32 77 | 5.89 192 | 26.4 156 | 2.08 153 | 9.93 171 | 16.2 106 | 1.91 59 |
SILK [80] | 157.0 | 3.56 177 | 8.12 168 | 1.91 180 | 6.61 191 | 10.8 190 | 2.08 176 | 4.69 188 | 8.68 183 | 1.73 179 | 7.35 182 | 10.4 168 | 4.65 186 | 12.2 160 | 16.4 140 | 4.24 112 | 5.72 156 | 17.7 113 | 3.56 189 | 5.32 158 | 24.6 104 | 2.08 153 | 9.68 145 | 16.3 112 | 1.91 59 |
Adaptive flow [45] | 162.0 | 4.04 190 | 7.72 158 | 2.16 191 | 6.98 194 | 10.8 190 | 2.52 195 | 4.24 163 | 7.35 129 | 1.63 177 | 7.26 179 | 9.56 143 | 4.69 190 | 12.4 185 | 16.8 180 | 4.24 112 | 5.80 165 | 20.7 191 | 3.37 162 | 5.20 133 | 25.0 118 | 2.08 153 | 9.90 169 | 17.0 162 | 1.91 59 |
SLK [47] | 164.8 | 3.70 183 | 8.76 181 | 2.08 190 | 6.35 184 | 9.59 147 | 2.16 183 | 4.93 191 | 8.68 183 | 1.73 179 | 8.70 193 | 13.3 194 | 4.69 190 | 12.5 190 | 17.1 193 | 4.16 35 | 5.97 183 | 18.4 152 | 3.32 77 | 5.74 187 | 29.2 184 | 2.08 153 | 9.93 171 | 17.2 172 | 1.91 59 |
GroupFlow [9] | 165.6 | 3.74 189 | 11.0 196 | 1.91 180 | 5.92 174 | 10.3 177 | 1.91 164 | 4.76 190 | 9.98 195 | 1.73 179 | 7.35 182 | 13.0 191 | 4.32 146 | 12.9 195 | 18.2 195 | 4.24 112 | 6.06 187 | 21.7 195 | 3.37 162 | 5.42 168 | 31.0 191 | 2.00 27 | 10.4 188 | 19.6 190 | 1.83 1 |
FOLKI [16] | 165.7 | 4.08 191 | 8.29 173 | 2.45 196 | 7.05 196 | 10.7 187 | 2.38 191 | 4.69 188 | 9.35 192 | 1.73 179 | 8.60 192 | 11.5 183 | 5.10 196 | 12.4 185 | 16.7 174 | 4.24 112 | 5.69 153 | 17.1 89 | 3.42 179 | 5.48 175 | 25.8 141 | 2.08 153 | 9.88 166 | 16.4 127 | 1.91 59 |
FFV1MT [104] | 170.8 | 3.70 183 | 10.3 193 | 1.83 161 | 6.40 186 | 9.66 151 | 2.16 183 | 5.69 195 | 12.0 197 | 1.73 179 | 8.19 189 | 11.5 183 | 4.65 186 | 12.5 190 | 16.8 180 | 4.24 112 | 5.89 178 | 17.5 107 | 3.42 179 | 5.83 190 | 30.0 189 | 2.08 153 | 10.4 188 | 18.4 189 | 1.91 59 |
Heeger++ [102] | 173.6 | 4.08 191 | 11.4 197 | 1.83 161 | 6.38 185 | 9.80 161 | 1.91 164 | 5.69 195 | 11.0 196 | 1.73 179 | 8.19 189 | 11.5 183 | 4.65 186 | 12.8 194 | 17.7 194 | 4.24 112 | 6.24 194 | 18.6 159 | 3.37 162 | 6.03 193 | 30.7 190 | 2.08 153 | 10.3 186 | 18.1 184 | 1.91 59 |
PGAM+LK [55] | 173.8 | 4.08 191 | 9.76 189 | 2.16 191 | 6.40 186 | 10.4 180 | 2.16 183 | 5.00 192 | 9.81 194 | 1.73 179 | 8.70 193 | 13.4 195 | 5.10 196 | 12.5 190 | 16.8 180 | 4.24 112 | 6.03 185 | 19.4 177 | 3.51 187 | 5.45 169 | 26.2 152 | 2.08 153 | 9.95 175 | 17.0 162 | 1.91 59 |
Pyramid LK [2] | 176.0 | 4.08 191 | 8.68 179 | 2.58 197 | 7.75 197 | 11.0 194 | 2.71 197 | 7.00 197 | 8.00 170 | 2.00 197 | 13.9 198 | 26.4 198 | 5.60 198 | 13.5 196 | 20.0 196 | 4.24 112 | 5.72 156 | 17.9 123 | 3.37 162 | 5.48 175 | 29.7 187 | 2.08 153 | 11.6 195 | 23.4 197 | 1.91 59 |
HCIC-L [97] | 176.2 | 4.55 197 | 10.7 194 | 2.65 198 | 6.40 186 | 10.2 173 | 2.45 194 | 5.00 192 | 8.68 183 | 1.73 179 | 8.12 188 | 12.3 189 | 4.51 178 | 12.6 193 | 17.0 192 | 4.36 191 | 5.97 183 | 21.1 194 | 3.37 162 | 5.10 118 | 25.8 141 | 2.08 153 | 11.8 197 | 21.2 196 | 1.91 59 |
Periodicity [79] | 195.2 | 4.32 196 | 10.2 191 | 2.38 195 | 9.88 198 | 11.9 198 | 3.00 198 | 7.35 198 | 14.4 198 | 2.38 198 | 9.56 196 | 24.6 197 | 4.97 195 | 14.3 198 | 20.9 198 | 4.55 196 | 6.38 196 | 21.9 197 | 3.87 197 | 5.51 177 | 33.0 194 | 2.16 191 | 11.6 195 | 19.9 191 | 2.16 198 |
AVG_FLOW_ROB [137] | 198.9 | 19.4 199 | 33.5 199 | 4.20 199 | 17.2 199 | 17.8 199 | 4.80 199 | 16.3 199 | 21.0 199 | 4.69 199 | 31.4 199 | 44.4 199 | 7.53 199 | 24.4 199 | 34.5 199 | 4.65 199 | 17.9 199 | 47.7 199 | 3.79 196 | 19.8 199 | 42.8 199 | 2.52 199 | 23.4 199 | 31.8 199 | 4.55 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |