Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
SD normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
EAFI [186] | 5.8 | 0.65 1 | 0.74 1 | 0.64 2 | 0.93 1 | 1.18 1 | 0.72 1 | 1.37 1 | 1.48 1 | 1.08 1 | 1.12 1 | 1.09 1 | 1.20 1 | 1.03 2 | 1.07 4 | 1.00 1 | 1.25 3 | 1.72 3 | 0.87 1 | 4.44 47 | 6.87 47 | 0.91 3 | 1.97 7 | 2.48 7 | 0.63 1 |
SoftSplat [169] | 7.5 | 0.72 3 | 0.85 4 | 0.70 12 | 1.24 6 | 1.62 9 | 0.87 6 | 3.78 20 | 1.54 4 | 3.03 17 | 1.14 2 | 1.16 3 | 1.23 2 | 1.03 2 | 1.06 2 | 1.01 2 | 1.16 1 | 1.56 1 | 0.91 3 | 3.32 16 | 5.13 17 | 1.13 10 | 1.71 2 | 2.15 2 | 0.92 35 |
SoftsplatAug [190] | 7.6 | 0.66 2 | 0.79 2 | 0.64 2 | 1.00 2 | 1.29 2 | 0.74 2 | 2.92 13 | 2.03 14 | 2.49 15 | 1.14 2 | 1.14 2 | 1.23 2 | 1.03 2 | 1.06 2 | 1.01 2 | 1.27 4 | 1.74 4 | 0.90 2 | 4.13 37 | 6.39 37 | 1.42 20 | 1.92 6 | 2.42 6 | 0.63 1 |
IFRNet [193] | 8.6 | 0.72 3 | 0.83 3 | 0.71 13 | 1.12 4 | 1.42 3 | 0.95 13 | 1.47 2 | 1.97 11 | 1.47 4 | 1.21 4 | 1.21 4 | 1.36 9 | 1.11 12 | 1.15 13 | 1.10 20 | 1.38 6 | 1.90 6 | 0.93 4 | 3.21 14 | 4.96 14 | 1.07 7 | 2.49 17 | 3.14 17 | 0.65 3 |
DistillNet [184] | 13.1 | 0.72 3 | 0.90 6 | 0.68 7 | 1.11 3 | 1.44 4 | 0.88 7 | 3.44 17 | 1.81 6 | 2.04 8 | 1.21 4 | 1.33 6 | 1.26 5 | 1.08 8 | 1.14 10 | 1.02 5 | 1.62 15 | 2.28 15 | 1.05 16 | 2.99 7 | 4.62 8 | 1.45 25 | 5.00 59 | 6.32 61 | 0.71 9 |
BMBC [171] | 14.1 | 0.84 7 | 1.05 8 | 0.74 16 | 1.35 15 | 1.76 16 | 1.06 47 | 3.80 21 | 1.87 7 | 3.11 20 | 1.31 8 | 1.38 7 | 1.27 7 | 1.04 5 | 1.07 4 | 1.04 10 | 1.31 5 | 1.80 5 | 1.07 19 | 3.90 32 | 6.02 32 | 1.38 16 | 1.84 4 | 2.32 4 | 0.81 23 |
CyclicGen [149] | 18.3 | 0.95 12 | 1.12 10 | 0.92 107 | 1.34 11 | 1.60 7 | 1.32 92 | 2.85 11 | 1.91 8 | 3.24 24 | 1.56 14 | 1.62 11 | 1.63 38 | 1.16 18 | 1.20 17 | 1.16 26 | 1.22 2 | 1.56 1 | 1.03 13 | 2.52 3 | 3.88 3 | 0.94 4 | 1.41 1 | 1.78 1 | 0.67 5 |
FGME [158] | 20.8 | 0.72 3 | 1.00 7 | 0.61 1 | 1.51 36 | 1.85 27 | 1.06 47 | 2.56 7 | 1.92 9 | 1.49 5 | 1.21 4 | 1.21 4 | 1.35 8 | 1.02 1 | 1.04 1 | 1.02 5 | 1.56 13 | 2.19 13 | 1.14 22 | 4.44 47 | 6.87 47 | 0.85 1 | 5.44 84 | 6.87 86 | 0.79 20 |
FLAVR [188] | 21.5 | 1.31 32 | 1.99 34 | 0.81 30 | 1.27 8 | 1.57 6 | 1.00 29 | 2.77 10 | 2.08 17 | 1.99 7 | 2.93 120 | 2.67 48 | 2.15 73 | 1.08 8 | 1.14 10 | 1.01 2 | 1.88 24 | 2.67 24 | 0.98 9 | 2.93 6 | 4.50 6 | 0.90 2 | 1.72 3 | 2.17 3 | 0.68 6 |
FeFlow [167] | 22.2 | 1.05 16 | 1.62 19 | 0.68 7 | 1.66 64 | 1.97 39 | 1.46 116 | 4.03 25 | 2.00 12 | 4.54 41 | 1.35 9 | 1.49 9 | 1.42 12 | 1.08 8 | 1.12 8 | 1.03 8 | 1.39 7 | 1.92 7 | 0.95 5 | 3.88 30 | 5.98 30 | 1.41 18 | 2.34 15 | 2.95 15 | 0.77 14 |
DAIN [152] | 22.6 | 0.96 13 | 1.39 15 | 0.76 22 | 1.41 22 | 1.84 26 | 0.96 17 | 3.89 22 | 2.27 20 | 3.44 26 | 1.52 13 | 1.89 17 | 1.64 39 | 1.23 25 | 1.32 26 | 1.07 13 | 1.48 9 | 2.07 10 | 1.02 11 | 3.52 23 | 5.44 23 | 1.19 11 | 4.64 54 | 5.86 56 | 0.90 30 |
AdaCoF [165] | 23.4 | 1.73 80 | 2.74 81 | 0.78 25 | 1.32 10 | 1.72 13 | 0.86 5 | 4.52 36 | 2.01 13 | 5.46 54 | 1.86 24 | 1.90 19 | 1.37 11 | 1.10 11 | 1.12 8 | 1.12 23 | 1.73 18 | 2.44 18 | 0.95 5 | 3.82 28 | 5.91 28 | 1.40 17 | 2.17 10 | 2.73 10 | 0.77 14 |
IDIAL [192] | 23.8 | 1.17 26 | 1.83 29 | 0.67 6 | 1.43 23 | 1.87 29 | 0.98 21 | 2.60 8 | 2.36 22 | 2.24 13 | 1.44 10 | 1.60 10 | 1.26 5 | 2.50 65 | 2.84 65 | 1.32 74 | 1.51 11 | 2.11 11 | 0.96 7 | 3.70 26 | 5.72 27 | 1.56 36 | 2.51 18 | 3.16 18 | 0.74 10 |
STAR-Net [164] | 24.6 | 0.90 10 | 1.31 14 | 0.73 15 | 1.60 49 | 2.04 50 | 1.08 51 | 3.89 22 | 2.34 21 | 4.43 39 | 2.50 80 | 1.80 15 | 1.25 4 | 1.16 18 | 1.25 21 | 1.02 5 | 1.47 8 | 2.05 8 | 0.97 8 | 4.49 49 | 6.95 51 | 1.53 31 | 2.14 9 | 2.70 9 | 0.65 3 |
SepConv++ [185] | 26.3 | 1.68 70 | 2.67 74 | 0.76 22 | 1.26 7 | 1.65 11 | 0.79 3 | 6.52 76 | 2.14 18 | 8.20 98 | 1.45 11 | 1.78 13 | 1.46 15 | 1.11 12 | 1.15 13 | 1.05 11 | 1.77 20 | 2.51 20 | 1.03 13 | 4.14 38 | 6.40 38 | 1.43 21 | 2.17 10 | 2.74 11 | 0.69 7 |
EDSC [173] | 28.0 | 1.34 36 | 2.11 42 | 0.69 9 | 1.36 16 | 1.77 18 | 0.84 4 | 2.44 5 | 2.37 23 | 2.08 9 | 1.85 22 | 2.44 33 | 2.32 93 | 1.48 31 | 1.64 32 | 1.09 18 | 2.63 40 | 3.75 41 | 1.48 39 | 4.27 41 | 6.60 42 | 1.47 28 | 2.23 14 | 2.81 14 | 0.80 21 |
ProBoost-Net [191] | 28.1 | 1.93 94 | 3.08 98 | 0.64 2 | 1.73 80 | 2.10 59 | 1.25 79 | 3.55 18 | 2.05 15 | 3.15 22 | 1.48 12 | 1.79 14 | 1.44 13 | 1.11 12 | 1.14 10 | 1.14 24 | 1.84 23 | 2.60 23 | 1.23 25 | 2.57 4 | 3.96 4 | 1.33 14 | 2.17 10 | 2.74 11 | 0.70 8 |
MV_VFI [183] | 28.6 | 0.89 9 | 1.26 11 | 0.75 18 | 1.45 26 | 1.80 23 | 1.41 107 | 5.26 52 | 3.68 34 | 4.74 44 | 1.56 14 | 1.96 20 | 1.70 45 | 1.22 23 | 1.31 25 | 1.07 13 | 1.68 17 | 2.36 16 | 1.04 15 | 3.63 25 | 5.62 25 | 1.08 8 | 4.34 50 | 5.48 52 | 0.77 14 |
ADC [161] | 29.3 | 1.37 42 | 2.13 43 | 0.79 26 | 1.37 18 | 1.77 18 | 1.00 29 | 4.50 35 | 2.50 24 | 5.48 56 | 1.96 29 | 2.10 26 | 1.67 41 | 1.19 22 | 1.25 21 | 1.11 21 | 3.17 68 | 4.51 67 | 1.15 24 | 3.32 16 | 5.12 16 | 1.12 9 | 2.17 10 | 2.74 11 | 0.91 32 |
CtxSyn [134] | 29.4 | 0.96 13 | 1.26 11 | 0.89 90 | 1.23 5 | 1.60 7 | 0.91 8 | 9.66 146 | 1.50 2 | 12.6 153 | 1.29 7 | 1.43 8 | 1.36 9 | 1.13 15 | 1.15 13 | 1.18 29 | 1.49 10 | 2.05 8 | 1.07 19 | 4.20 40 | 6.49 40 | 1.46 26 | 2.48 16 | 3.13 16 | 0.77 14 |
TC-GAN [166] | 29.8 | 0.91 11 | 1.29 13 | 0.75 18 | 1.50 32 | 1.82 25 | 1.56 129 | 5.19 50 | 3.55 32 | 4.69 43 | 1.57 16 | 1.96 20 | 1.73 48 | 1.24 27 | 1.33 27 | 1.07 13 | 1.59 14 | 2.23 14 | 1.02 11 | 3.50 22 | 5.40 22 | 1.05 5 | 4.50 52 | 5.69 54 | 0.78 18 |
MPRN [151] | 32.5 | 1.50 57 | 2.37 59 | 0.75 18 | 1.61 51 | 2.11 60 | 1.18 66 | 2.31 4 | 2.63 26 | 1.35 2 | 1.77 19 | 2.06 24 | 1.55 29 | 1.23 25 | 1.29 23 | 1.19 30 | 2.00 27 | 2.83 27 | 1.29 27 | 2.50 2 | 3.85 2 | 1.41 18 | 5.37 80 | 6.78 82 | 0.80 21 |
FRUCnet [153] | 34.8 | 1.69 71 | 2.65 71 | 0.95 124 | 1.47 29 | 1.90 34 | 0.99 26 | 4.35 32 | 2.06 16 | 5.49 57 | 1.85 22 | 2.42 32 | 2.28 87 | 1.13 15 | 1.20 17 | 1.05 11 | 1.67 16 | 2.36 16 | 0.98 9 | 2.70 5 | 4.16 5 | 1.46 26 | 3.73 38 | 4.72 40 | 0.94 37 |
OFRI [154] | 36.0 | 0.86 8 | 1.10 9 | 0.83 42 | 2.39 171 | 1.89 31 | 3.28 190 | 3.95 24 | 1.52 3 | 4.10 35 | 1.70 18 | 2.09 25 | 2.14 72 | 1.07 7 | 1.09 7 | 1.08 16 | 2.28 31 | 3.24 31 | 1.05 16 | 2.99 7 | 4.60 7 | 1.29 13 | 3.52 36 | 4.45 36 | 0.90 30 |
MS-PFT [159] | 36.8 | 1.27 30 | 1.97 32 | 0.75 18 | 1.69 70 | 2.21 78 | 1.16 60 | 2.91 12 | 2.67 28 | 2.60 16 | 1.58 17 | 1.96 20 | 1.47 17 | 1.70 42 | 1.91 42 | 1.54 83 | 1.76 19 | 2.47 19 | 1.32 28 | 3.12 11 | 4.78 11 | 1.48 29 | 5.19 73 | 6.56 75 | 1.03 54 |
DSepConv [162] | 37.0 | 1.95 98 | 3.10 101 | 0.74 16 | 1.44 24 | 1.86 28 | 1.17 62 | 3.39 16 | 1.93 10 | 3.72 30 | 2.44 68 | 2.62 45 | 2.30 91 | 1.14 17 | 1.18 16 | 1.16 26 | 2.17 29 | 3.08 29 | 1.37 31 | 3.16 13 | 4.88 13 | 1.34 15 | 2.06 8 | 2.60 8 | 1.23 95 |
SuperSlomo [130] | 37.3 | 1.40 44 | 2.16 45 | 0.87 73 | 1.67 66 | 2.06 55 | 1.32 92 | 2.53 6 | 3.23 31 | 2.15 10 | 2.12 36 | 2.35 29 | 2.21 80 | 1.18 21 | 1.22 19 | 1.16 26 | 1.98 26 | 2.79 26 | 1.27 26 | 2.34 1 | 3.59 1 | 1.44 22 | 4.21 49 | 5.32 51 | 1.08 60 |
MAF-net [163] | 38.4 | 1.97 101 | 3.14 110 | 0.64 2 | 1.64 58 | 2.03 49 | 1.04 43 | 3.05 14 | 2.64 27 | 3.47 28 | 2.60 93 | 1.89 17 | 1.57 32 | 1.22 23 | 1.30 24 | 1.14 24 | 2.32 32 | 3.29 32 | 1.46 36 | 3.83 29 | 5.91 28 | 1.62 39 | 3.03 27 | 3.82 27 | 0.88 27 |
STSR [170] | 41.4 | 1.15 23 | 1.78 27 | 0.69 9 | 2.87 193 | 1.53 5 | 3.97 197 | 3.24 15 | 2.15 19 | 3.30 25 | 1.86 24 | 2.40 31 | 2.33 98 | 1.16 18 | 1.22 19 | 1.09 18 | 2.66 43 | 3.79 44 | 1.62 46 | 3.91 33 | 6.05 33 | 1.23 12 | 1.86 5 | 2.35 5 | 1.02 52 |
MEMC-Net+ [160] | 46.0 | 1.43 46 | 2.24 50 | 0.76 22 | 2.56 186 | 1.81 24 | 3.36 192 | 4.43 34 | 2.74 29 | 5.18 51 | 1.84 21 | 2.34 27 | 2.20 77 | 1.39 28 | 1.54 28 | 1.08 16 | 1.52 12 | 2.12 12 | 1.14 22 | 4.53 52 | 7.01 52 | 1.60 38 | 3.26 33 | 4.12 33 | 0.78 18 |
GDCN [172] | 48.3 | 1.45 52 | 2.28 54 | 0.71 13 | 1.81 98 | 2.26 91 | 1.22 72 | 2.76 9 | 3.00 30 | 2.18 11 | 3.08 136 | 2.01 23 | 2.81 141 | 3.03 75 | 3.44 75 | 1.11 21 | 1.90 25 | 2.69 25 | 1.32 28 | 3.15 12 | 4.86 12 | 1.54 32 | 4.89 56 | 6.18 58 | 0.74 10 |
DAI [168] | 51.2 | 1.99 115 | 0.89 5 | 2.25 194 | 1.61 51 | 1.96 37 | 1.42 111 | 1.66 3 | 1.66 5 | 1.75 6 | 3.96 179 | 1.85 16 | 5.90 190 | 1.05 6 | 1.08 6 | 1.03 8 | 2.41 33 | 3.43 33 | 1.05 16 | 4.60 54 | 7.12 54 | 1.06 6 | 3.97 45 | 5.01 46 | 0.74 10 |
SepConv-v1 [125] | 58.6 | 2.15 144 | 3.44 146 | 0.69 9 | 1.70 71 | 2.16 68 | 1.17 62 | 8.00 118 | 3.78 35 | 7.22 80 | 2.71 101 | 2.44 33 | 2.23 81 | 1.63 38 | 1.81 39 | 1.22 32 | 1.80 21 | 2.53 21 | 1.09 21 | 3.88 30 | 6.01 31 | 1.90 46 | 5.43 82 | 6.86 84 | 0.76 13 |
TOF-M [150] | 60.7 | 1.31 32 | 2.02 36 | 1.05 154 | 1.84 100 | 2.33 103 | 1.23 75 | 5.50 62 | 2.54 25 | 7.05 78 | 2.29 53 | 1.76 12 | 1.84 54 | 1.72 43 | 1.93 43 | 1.21 31 | 1.83 22 | 2.56 22 | 1.42 34 | 5.37 78 | 8.30 78 | 1.44 22 | 8.23 139 | 10.4 138 | 0.81 23 |
VCN_RVC [178] | 70.5 | 2.13 141 | 3.40 145 | 0.97 131 | 1.44 24 | 1.88 30 | 1.03 40 | 6.85 87 | 10.6 130 | 8.21 100 | 2.30 55 | 3.09 80 | 1.59 35 | 1.76 44 | 1.97 45 | 1.85 87 | 2.90 54 | 4.13 54 | 1.42 34 | 4.64 55 | 7.18 55 | 2.55 56 | 3.99 46 | 5.04 47 | 1.39 117 |
NN-field [71] | 71.1 | 1.97 101 | 3.14 110 | 0.84 53 | 1.34 11 | 1.70 12 | 0.97 19 | 6.72 79 | 10.3 125 | 8.20 98 | 2.55 88 | 3.41 113 | 2.65 130 | 1.76 44 | 1.96 44 | 1.22 32 | 3.40 85 | 4.85 89 | 1.79 62 | 4.57 53 | 7.07 53 | 3.12 81 | 5.05 66 | 6.38 68 | 1.21 91 |
GMFlow_RVC [196] | 72.2 | 1.46 54 | 2.29 55 | 0.90 100 | 1.52 38 | 1.99 44 | 0.95 13 | 6.95 94 | 11.1 133 | 8.70 108 | 1.90 27 | 2.51 39 | 1.92 56 | 1.64 40 | 1.82 40 | 1.69 85 | 3.01 59 | 4.29 60 | 1.49 41 | 9.24 177 | 14.3 176 | 3.67 106 | 5.14 72 | 6.49 74 | 0.96 41 |
PMMST [112] | 73.3 | 1.96 100 | 3.12 102 | 0.81 30 | 1.60 49 | 2.09 58 | 1.03 40 | 6.35 72 | 9.32 110 | 7.35 82 | 2.93 120 | 3.99 150 | 2.65 130 | 1.64 40 | 1.82 40 | 1.23 36 | 3.08 62 | 4.39 62 | 1.53 42 | 4.97 67 | 7.68 67 | 2.63 60 | 5.04 62 | 6.37 65 | 1.34 114 |
DeepFlow [85] | 75.4 | 2.03 127 | 3.23 128 | 0.83 42 | 1.95 115 | 2.44 118 | 1.58 135 | 4.26 30 | 5.34 51 | 2.24 13 | 2.77 108 | 2.57 42 | 1.98 61 | 3.30 84 | 3.75 84 | 1.27 56 | 2.92 56 | 4.16 56 | 1.69 54 | 3.34 18 | 5.16 18 | 1.58 37 | 8.21 137 | 10.4 138 | 1.27 101 |
ALD-Flow [66] | 75.5 | 1.35 39 | 2.01 35 | 0.88 79 | 1.79 95 | 2.34 104 | 1.25 79 | 4.95 44 | 5.90 60 | 3.11 20 | 1.97 31 | 2.56 41 | 1.48 21 | 3.77 100 | 4.29 101 | 6.03 128 | 3.99 127 | 5.70 128 | 4.20 181 | 3.92 34 | 6.07 34 | 1.44 22 | 7.78 126 | 9.82 127 | 1.05 56 |
OAR-Flow [123] | 77.2 | 1.61 66 | 2.39 61 | 0.83 42 | 1.84 100 | 2.37 106 | 1.34 98 | 5.20 51 | 6.66 76 | 3.10 19 | 1.83 20 | 2.39 30 | 1.48 21 | 4.50 152 | 5.12 152 | 6.58 167 | 3.38 83 | 4.81 84 | 2.73 137 | 3.73 27 | 5.70 26 | 2.47 52 | 6.18 104 | 7.80 105 | 1.15 74 |
NNF-Local [75] | 78.1 | 1.08 19 | 1.64 23 | 0.79 26 | 1.30 9 | 1.64 10 | 0.98 21 | 8.95 136 | 13.9 157 | 11.2 139 | 2.52 82 | 3.37 112 | 2.49 109 | 1.45 29 | 1.58 30 | 1.22 32 | 4.26 146 | 6.08 148 | 2.22 103 | 5.38 79 | 8.33 79 | 5.57 167 | 4.99 58 | 6.31 60 | 1.26 100 |
ComplOF-FED-GPU [35] | 78.2 | 1.49 55 | 2.33 57 | 0.88 79 | 1.78 93 | 2.32 102 | 1.26 82 | 9.54 145 | 4.00 36 | 12.2 149 | 1.86 24 | 2.44 33 | 1.48 21 | 4.22 111 | 4.80 111 | 5.82 122 | 2.62 38 | 3.73 39 | 1.97 78 | 4.52 51 | 6.91 49 | 3.50 100 | 8.01 132 | 10.1 131 | 0.95 39 |
IROF++ [58] | 80.5 | 1.07 17 | 1.58 17 | 0.81 30 | 1.67 66 | 2.16 68 | 1.08 51 | 6.49 75 | 7.78 91 | 6.90 75 | 1.93 28 | 2.55 40 | 2.04 63 | 4.40 125 | 5.00 125 | 6.59 178 | 3.77 113 | 5.38 115 | 1.84 67 | 3.98 35 | 6.16 35 | 2.66 63 | 10.5 190 | 13.3 191 | 1.15 74 |
TC-Flow [46] | 80.9 | 1.12 20 | 1.62 19 | 0.85 63 | 1.80 97 | 2.34 104 | 1.25 79 | 3.55 18 | 5.28 48 | 1.46 3 | 2.07 34 | 2.71 52 | 2.05 64 | 4.38 122 | 4.98 121 | 6.27 136 | 4.03 131 | 5.75 134 | 2.60 128 | 4.81 58 | 7.44 58 | 2.55 56 | 8.05 134 | 10.2 135 | 1.44 128 |
CLG-TV [48] | 84.1 | 1.83 89 | 2.89 91 | 0.97 131 | 2.20 150 | 2.74 163 | 1.65 144 | 5.14 49 | 6.68 77 | 5.81 65 | 2.23 46 | 2.69 49 | 2.60 123 | 4.17 110 | 4.74 110 | 1.25 46 | 2.65 42 | 3.77 42 | 1.47 37 | 3.24 15 | 5.01 15 | 1.66 40 | 9.56 172 | 12.1 172 | 0.96 41 |
RAFT-it [194] | 84.2 | 1.79 83 | 2.85 86 | 1.01 144 | 1.49 31 | 1.94 36 | 0.92 9 | 7.08 97 | 10.3 125 | 8.27 101 | 2.29 53 | 3.05 76 | 2.15 73 | 1.45 29 | 1.57 29 | 1.23 36 | 3.45 90 | 4.89 92 | 2.72 136 | 7.00 137 | 10.8 136 | 5.02 158 | 3.45 35 | 4.34 35 | 2.45 193 |
RAFT-it+_RVC [198] | 84.8 | 1.77 82 | 2.80 83 | 0.84 53 | 1.45 26 | 1.89 31 | 0.98 21 | 4.81 42 | 6.92 80 | 5.23 52 | 2.07 34 | 2.76 53 | 2.15 73 | 1.93 49 | 2.17 49 | 1.25 46 | 4.46 157 | 6.24 154 | 4.20 181 | 7.36 150 | 11.4 151 | 6.19 175 | 5.56 89 | 7.02 90 | 1.33 113 |
Second-order prior [8] | 85.2 | 1.12 20 | 1.62 19 | 0.99 138 | 2.11 138 | 2.55 132 | 1.57 131 | 5.29 54 | 8.01 94 | 5.87 66 | 2.15 39 | 2.65 46 | 1.71 47 | 4.23 113 | 4.81 113 | 1.25 46 | 2.88 52 | 4.09 53 | 1.81 64 | 5.02 69 | 7.77 69 | 1.51 30 | 9.26 163 | 11.7 162 | 2.10 188 |
ProFlow_ROB [142] | 85.3 | 1.44 48 | 2.26 52 | 0.82 36 | 1.72 76 | 2.26 91 | 1.28 84 | 5.71 64 | 5.11 45 | 5.72 62 | 2.28 52 | 3.06 78 | 2.65 130 | 4.51 155 | 5.13 155 | 6.58 167 | 2.48 35 | 3.52 35 | 1.47 37 | 5.97 100 | 9.24 100 | 2.58 58 | 7.38 120 | 9.32 121 | 1.63 147 |
DeepFlow2 [106] | 85.4 | 2.32 159 | 3.69 161 | 0.87 73 | 1.90 108 | 2.43 113 | 1.30 88 | 4.25 27 | 5.73 56 | 2.18 11 | 3.00 128 | 3.42 116 | 1.92 56 | 3.44 87 | 3.91 88 | 2.60 95 | 2.24 30 | 3.17 30 | 1.48 39 | 3.41 19 | 5.27 20 | 2.92 74 | 8.45 143 | 10.7 144 | 2.03 184 |
SegFlow [156] | 85.8 | 1.75 81 | 2.77 82 | 0.82 36 | 1.52 38 | 1.99 44 | 1.03 40 | 4.94 43 | 4.83 42 | 3.66 29 | 2.44 68 | 3.19 93 | 2.32 93 | 4.42 130 | 5.03 130 | 6.56 156 | 2.77 47 | 3.94 47 | 2.08 88 | 6.91 131 | 10.7 133 | 4.47 138 | 8.77 150 | 11.1 149 | 1.14 72 |
MCPFlow_RVC [197] | 86.3 | 1.33 34 | 2.05 38 | 1.19 172 | 1.37 18 | 1.76 16 | 0.98 21 | 6.93 92 | 9.95 118 | 7.94 94 | 2.32 57 | 3.11 84 | 2.32 93 | 2.59 68 | 2.94 68 | 1.24 42 | 4.26 146 | 6.08 148 | 2.53 125 | 6.85 128 | 10.6 129 | 4.06 121 | 3.73 38 | 4.70 38 | 2.02 183 |
TC/T-Flow [77] | 86.5 | 1.54 60 | 2.36 58 | 1.06 156 | 1.85 102 | 2.41 111 | 1.44 113 | 5.40 57 | 7.43 87 | 5.66 60 | 2.57 91 | 2.47 36 | 1.48 21 | 4.45 137 | 5.06 137 | 6.55 154 | 3.37 81 | 4.80 82 | 1.36 30 | 4.27 41 | 6.49 40 | 4.17 126 | 7.94 129 | 10.0 130 | 0.94 37 |
FMOF [92] | 87.4 | 1.71 76 | 2.65 71 | 0.94 118 | 1.53 40 | 1.96 37 | 1.07 49 | 9.48 143 | 13.0 151 | 10.7 131 | 2.56 89 | 3.00 69 | 3.12 164 | 2.35 60 | 2.66 60 | 1.24 42 | 3.28 72 | 4.68 72 | 1.59 45 | 4.90 62 | 7.58 62 | 2.28 51 | 10.4 188 | 13.2 188 | 1.06 57 |
SIOF [67] | 87.5 | 1.33 34 | 2.02 36 | 0.92 107 | 2.30 163 | 2.84 175 | 1.72 151 | 6.84 86 | 9.18 107 | 6.21 68 | 2.57 91 | 3.17 92 | 2.81 141 | 1.61 35 | 1.78 35 | 1.27 56 | 3.79 115 | 5.40 116 | 1.54 43 | 4.49 49 | 6.94 50 | 3.42 95 | 5.85 96 | 7.39 97 | 1.09 62 |
LME [70] | 87.6 | 1.93 94 | 3.07 96 | 0.81 30 | 1.63 56 | 2.14 65 | 1.13 56 | 5.40 57 | 7.66 89 | 5.53 59 | 2.44 68 | 3.25 98 | 2.60 123 | 4.48 145 | 5.10 146 | 6.48 142 | 4.83 173 | 6.89 173 | 1.65 48 | 4.28 43 | 6.62 43 | 3.05 79 | 5.03 61 | 6.35 63 | 1.23 95 |
CBF [12] | 88.2 | 1.34 36 | 2.09 41 | 0.88 79 | 2.14 144 | 2.64 143 | 1.69 147 | 5.42 59 | 7.67 90 | 5.70 61 | 2.25 48 | 2.57 42 | 2.56 117 | 1.49 32 | 1.63 31 | 1.32 74 | 2.58 37 | 3.67 37 | 1.85 69 | 7.15 142 | 11.1 143 | 4.00 119 | 8.03 133 | 10.1 131 | 1.76 163 |
MDP-Flow2 [68] | 88.3 | 1.94 97 | 3.09 100 | 0.79 26 | 1.62 53 | 2.13 64 | 0.95 13 | 9.47 142 | 14.8 163 | 11.9 145 | 2.53 85 | 3.42 116 | 3.00 158 | 1.63 38 | 1.80 37 | 1.95 88 | 4.25 145 | 6.07 147 | 1.81 64 | 5.50 83 | 8.52 83 | 2.71 64 | 5.02 60 | 6.34 62 | 1.19 86 |
MLDP_OF [87] | 88.4 | 1.43 46 | 2.24 50 | 0.93 114 | 1.96 119 | 2.48 122 | 1.38 105 | 5.03 48 | 6.04 61 | 3.03 17 | 2.80 111 | 3.36 110 | 2.91 149 | 3.46 89 | 3.94 89 | 4.42 111 | 2.77 47 | 3.94 47 | 2.43 116 | 4.88 60 | 7.54 60 | 4.19 127 | 5.83 95 | 7.37 96 | 1.47 133 |
OFLAF [78] | 88.5 | 1.97 101 | 3.13 104 | 0.83 42 | 1.37 18 | 1.78 21 | 1.01 34 | 5.30 55 | 6.60 75 | 4.28 36 | 2.27 49 | 3.06 78 | 1.56 30 | 4.60 164 | 5.23 164 | 6.56 156 | 3.41 88 | 4.85 89 | 2.63 130 | 6.96 134 | 10.8 136 | 3.83 113 | 5.52 87 | 6.96 87 | 1.47 133 |
HCFN [157] | 89.3 | 1.70 73 | 2.68 76 | 0.93 114 | 1.65 62 | 2.17 73 | 1.33 96 | 6.20 68 | 9.30 109 | 7.21 79 | 2.33 58 | 3.14 88 | 2.07 66 | 1.93 49 | 2.17 49 | 1.64 84 | 2.99 58 | 4.20 58 | 2.45 119 | 7.74 161 | 12.0 162 | 3.80 111 | 7.00 114 | 8.84 115 | 1.27 101 |
OFH [38] | 89.7 | 1.41 45 | 2.17 46 | 0.91 104 | 1.96 119 | 2.47 121 | 1.32 92 | 7.12 99 | 9.37 112 | 6.61 72 | 2.03 33 | 2.69 49 | 1.47 17 | 4.26 115 | 4.84 115 | 5.89 123 | 3.02 61 | 4.29 60 | 2.26 105 | 6.29 111 | 9.37 103 | 6.74 176 | 6.88 113 | 8.69 114 | 0.98 47 |
WLIF-Flow [91] | 89.8 | 1.03 15 | 1.50 16 | 0.82 36 | 1.73 80 | 2.21 78 | 1.17 62 | 8.68 130 | 12.4 144 | 10.2 123 | 2.85 114 | 3.53 123 | 3.31 170 | 2.45 61 | 2.77 61 | 3.18 101 | 3.83 120 | 5.46 121 | 3.13 152 | 5.25 75 | 8.12 75 | 2.79 68 | 5.06 68 | 6.40 71 | 1.22 92 |
IROF-TV [53] | 90.4 | 1.93 94 | 3.06 95 | 0.94 118 | 1.75 84 | 2.24 87 | 1.20 67 | 4.66 38 | 6.05 62 | 3.72 30 | 2.13 38 | 2.85 57 | 1.53 28 | 4.41 127 | 5.02 127 | 6.59 178 | 3.61 98 | 5.14 100 | 2.31 108 | 6.73 121 | 10.4 123 | 3.37 92 | 6.77 111 | 8.56 112 | 1.15 74 |
p-harmonic [29] | 91.0 | 1.81 87 | 2.87 89 | 0.84 53 | 2.26 160 | 2.86 176 | 2.12 176 | 4.57 37 | 5.80 57 | 3.76 32 | 2.95 122 | 2.80 56 | 2.74 136 | 3.65 96 | 4.15 96 | 1.26 53 | 3.01 59 | 4.28 59 | 2.08 88 | 4.42 46 | 6.84 46 | 4.12 123 | 8.75 148 | 11.1 149 | 0.96 41 |
Aniso. Huber-L1 [22] | 92.5 | 1.44 48 | 2.23 48 | 0.90 100 | 2.23 153 | 2.73 159 | 1.50 122 | 5.43 60 | 6.83 79 | 5.46 54 | 2.49 76 | 2.94 65 | 3.01 159 | 4.09 108 | 4.65 108 | 1.25 46 | 4.29 149 | 6.12 150 | 1.38 32 | 4.08 36 | 6.31 36 | 1.72 41 | 10.2 183 | 12.9 184 | 0.82 25 |
PGM-C [118] | 92.9 | 1.60 65 | 2.51 67 | 0.83 42 | 1.56 46 | 2.04 50 | 0.99 26 | 6.27 71 | 6.36 68 | 5.76 63 | 2.67 95 | 3.46 119 | 2.74 136 | 4.44 133 | 5.05 133 | 6.56 156 | 2.53 36 | 3.58 36 | 1.87 71 | 9.06 174 | 14.0 173 | 4.55 141 | 7.97 130 | 10.1 131 | 1.12 67 |
MDP-Flow [26] | 93.2 | 1.07 17 | 1.61 18 | 0.85 63 | 1.64 58 | 2.16 68 | 1.07 49 | 8.65 129 | 5.50 52 | 11.0 135 | 2.77 108 | 3.46 119 | 2.60 123 | 4.48 145 | 5.10 146 | 6.56 156 | 4.21 142 | 6.00 144 | 3.35 159 | 6.09 105 | 9.42 107 | 3.48 99 | 3.01 25 | 3.79 25 | 0.97 45 |
Modified CLG [34] | 94.0 | 1.53 59 | 2.41 64 | 0.86 67 | 2.31 167 | 2.77 166 | 2.09 174 | 8.71 131 | 5.58 53 | 11.3 140 | 2.49 76 | 2.77 54 | 2.86 144 | 2.49 64 | 2.82 64 | 1.25 46 | 3.46 92 | 4.92 93 | 2.05 83 | 3.05 9 | 4.70 9 | 1.76 42 | 11.1 197 | 14.1 197 | 1.11 64 |
CostFilter [40] | 94.5 | 1.26 29 | 1.96 31 | 0.89 90 | 1.47 29 | 1.93 35 | 0.94 11 | 12.8 176 | 18.8 187 | 15.4 178 | 2.20 45 | 2.95 66 | 1.51 27 | 3.13 78 | 3.56 79 | 4.90 113 | 3.74 109 | 5.32 108 | 1.69 54 | 7.46 154 | 11.5 152 | 5.27 165 | 6.10 101 | 7.71 102 | 1.65 150 |
CoT-AMFlow [174] | 94.9 | 1.97 101 | 3.13 104 | 0.81 30 | 1.56 46 | 2.05 52 | 0.93 10 | 8.84 134 | 13.9 157 | 11.0 135 | 2.99 127 | 4.06 152 | 2.53 115 | 1.61 35 | 1.79 36 | 1.81 86 | 4.86 175 | 6.93 175 | 1.72 59 | 5.94 98 | 9.19 98 | 3.27 87 | 5.04 62 | 6.37 65 | 1.50 138 |
RAFT-TF_RVC [179] | 95.2 | 2.03 127 | 3.23 128 | 0.91 104 | 1.45 26 | 1.89 31 | 0.96 17 | 6.73 80 | 9.80 115 | 7.86 90 | 2.18 43 | 2.92 64 | 2.32 93 | 1.84 47 | 2.06 47 | 1.23 36 | 4.26 146 | 5.93 140 | 3.36 160 | 9.29 179 | 14.4 179 | 4.89 157 | 3.84 41 | 4.84 42 | 2.46 194 |
COFM [59] | 95.7 | 1.36 41 | 1.97 32 | 0.88 79 | 1.59 48 | 2.08 56 | 1.23 75 | 9.49 144 | 15.4 170 | 12.1 147 | 3.08 136 | 4.19 163 | 1.60 36 | 2.21 57 | 2.50 57 | 2.01 89 | 3.92 124 | 5.58 125 | 2.13 93 | 6.58 120 | 10.2 122 | 5.93 172 | 2.85 23 | 3.60 23 | 1.77 164 |
FlowNet2 [120] | 96.3 | 2.26 155 | 3.38 144 | 0.95 124 | 1.76 88 | 2.22 82 | 1.21 68 | 7.48 111 | 11.5 139 | 8.91 110 | 2.43 65 | 3.27 101 | 2.58 119 | 2.80 73 | 3.18 73 | 2.97 97 | 3.28 72 | 4.68 72 | 2.06 85 | 5.65 84 | 8.74 84 | 4.55 141 | 3.42 34 | 4.31 34 | 1.70 156 |
PH-Flow [99] | 97.4 | 1.97 101 | 3.13 104 | 0.83 42 | 1.55 44 | 2.05 52 | 1.22 72 | 8.79 133 | 13.5 155 | 10.6 129 | 2.33 58 | 3.14 88 | 2.10 70 | 1.78 46 | 1.99 46 | 2.14 90 | 5.44 188 | 7.77 188 | 4.46 186 | 5.15 72 | 7.97 72 | 3.91 116 | 5.25 75 | 6.63 77 | 1.47 133 |
CombBMOF [111] | 97.5 | 2.14 143 | 3.23 128 | 1.81 191 | 1.72 76 | 2.27 94 | 1.00 29 | 6.89 90 | 10.3 125 | 7.99 96 | 3.11 140 | 4.11 156 | 3.41 175 | 2.47 62 | 2.80 63 | 1.50 82 | 3.58 97 | 5.11 99 | 2.05 83 | 5.17 73 | 8.00 73 | 3.64 104 | 3.18 32 | 4.01 32 | 1.24 97 |
C-RAFT_RVC [181] | 98.1 | 2.37 163 | 3.78 164 | 1.24 177 | 1.62 53 | 2.12 63 | 1.02 38 | 7.34 106 | 11.8 142 | 9.28 118 | 2.27 49 | 3.04 75 | 1.97 60 | 2.23 58 | 2.52 58 | 1.23 36 | 3.35 79 | 4.77 80 | 1.67 50 | 8.07 164 | 12.5 164 | 4.40 133 | 5.20 74 | 6.56 75 | 1.94 176 |
NL-TV-NCC [25] | 98.2 | 1.44 48 | 2.20 47 | 0.99 138 | 2.05 132 | 2.61 138 | 1.54 127 | 5.02 46 | 6.98 83 | 4.96 47 | 3.01 130 | 4.07 153 | 2.41 102 | 2.62 69 | 2.96 69 | 3.97 106 | 4.71 168 | 6.72 168 | 3.40 162 | 3.62 24 | 5.58 24 | 2.25 50 | 8.25 140 | 10.4 138 | 1.01 49 |
TCOF [69] | 98.7 | 1.34 36 | 2.05 38 | 0.84 53 | 2.47 180 | 3.10 196 | 2.36 185 | 6.61 77 | 8.86 100 | 6.94 76 | 2.52 82 | 3.35 109 | 2.27 84 | 3.95 103 | 4.49 103 | 1.29 65 | 3.12 64 | 4.45 64 | 1.96 76 | 7.32 148 | 11.3 149 | 3.45 96 | 5.79 93 | 7.31 94 | 1.25 98 |
PRAFlow_RVC [177] | 99.5 | 1.70 73 | 2.70 78 | 0.81 30 | 1.54 43 | 2.02 48 | 1.01 34 | 9.42 141 | 15.3 168 | 12.1 147 | 2.24 47 | 3.00 69 | 2.86 144 | 1.62 37 | 1.80 37 | 1.30 67 | 3.37 81 | 4.80 82 | 2.14 94 | 10.1 188 | 15.7 188 | 10.1 185 | 6.21 105 | 7.85 106 | 2.97 196 |
AdaConv-v1 [124] | 100.4 | 2.21 150 | 3.48 150 | 1.50 186 | 2.62 188 | 2.27 94 | 3.48 194 | 7.18 101 | 5.05 43 | 8.08 97 | 3.52 161 | 2.96 67 | 4.59 185 | 2.79 72 | 3.17 72 | 1.25 46 | 2.08 28 | 2.95 28 | 1.58 44 | 6.09 105 | 9.43 108 | 3.03 77 | 5.26 76 | 6.64 78 | 1.08 60 |
TV-L1-MCT [64] | 101.0 | 1.97 101 | 3.12 102 | 0.87 73 | 1.95 115 | 2.39 107 | 1.54 127 | 7.42 110 | 11.1 133 | 8.52 104 | 2.46 73 | 3.14 88 | 2.51 112 | 4.86 179 | 5.52 179 | 6.08 130 | 3.29 74 | 4.69 74 | 2.17 98 | 5.14 71 | 7.95 71 | 2.65 62 | 6.33 106 | 8.00 107 | 0.88 27 |
nLayers [57] | 101.2 | 1.97 101 | 3.14 110 | 0.84 53 | 1.53 40 | 1.99 44 | 1.13 56 | 15.8 188 | 22.3 192 | 18.5 189 | 2.70 98 | 3.66 129 | 1.96 59 | 4.43 131 | 5.04 131 | 6.34 140 | 3.84 121 | 5.48 122 | 2.21 102 | 5.26 76 | 8.14 76 | 1.78 43 | 2.78 20 | 3.51 20 | 2.09 187 |
CRTflow [81] | 101.3 | 1.83 89 | 2.87 89 | 1.01 144 | 2.30 163 | 2.90 181 | 2.26 179 | 5.96 66 | 6.95 81 | 5.40 53 | 2.45 72 | 3.05 76 | 2.28 87 | 4.40 125 | 5.01 126 | 6.50 145 | 3.19 69 | 4.55 70 | 1.67 50 | 6.35 113 | 9.83 113 | 2.60 59 | 7.70 124 | 9.73 125 | 0.91 32 |
PWC-Net_RVC [143] | 101.5 | 1.81 87 | 2.86 87 | 0.99 138 | 1.64 58 | 2.15 66 | 0.95 13 | 4.71 40 | 6.26 65 | 4.28 36 | 2.74 102 | 3.72 134 | 1.69 43 | 4.49 151 | 5.11 151 | 6.58 167 | 3.68 105 | 5.24 106 | 1.84 67 | 7.57 157 | 11.7 157 | 4.12 123 | 6.12 103 | 7.73 104 | 1.93 175 |
CPM-Flow [114] | 102.1 | 1.80 85 | 2.86 87 | 0.83 42 | 1.51 36 | 1.98 43 | 1.02 38 | 5.28 53 | 5.59 54 | 4.93 46 | 2.52 82 | 3.26 100 | 2.60 123 | 4.43 131 | 5.04 131 | 6.56 156 | 4.06 134 | 5.79 136 | 3.55 167 | 6.83 127 | 10.6 129 | 4.21 128 | 8.75 148 | 11.1 149 | 1.42 125 |
PMF [73] | 103.2 | 1.69 71 | 2.67 74 | 0.83 42 | 1.53 40 | 2.00 47 | 0.97 19 | 13.5 177 | 20.0 188 | 16.5 184 | 2.88 117 | 3.78 141 | 2.97 154 | 2.16 56 | 2.44 56 | 1.27 56 | 3.76 111 | 5.36 112 | 1.70 56 | 7.19 145 | 11.1 143 | 4.74 154 | 5.29 77 | 6.68 79 | 1.95 177 |
Classic++ [32] | 103.5 | 1.39 43 | 2.14 44 | 0.88 79 | 2.12 140 | 2.71 155 | 1.76 157 | 4.40 33 | 5.20 46 | 3.44 26 | 3.04 131 | 3.10 81 | 2.94 151 | 3.49 90 | 3.97 90 | 2.88 96 | 4.14 138 | 5.90 139 | 2.33 109 | 6.85 128 | 10.6 129 | 3.78 110 | 8.54 147 | 10.8 147 | 1.15 74 |
JOF [136] | 103.6 | 2.08 135 | 3.31 137 | 0.89 90 | 1.62 53 | 2.08 56 | 1.21 68 | 7.10 98 | 9.32 110 | 7.84 89 | 2.56 89 | 3.03 74 | 2.75 138 | 4.68 169 | 5.32 169 | 6.58 167 | 5.29 185 | 7.55 185 | 2.15 97 | 4.95 65 | 7.66 66 | 1.78 43 | 2.72 19 | 3.43 19 | 1.80 166 |
NNF-EAC [101] | 104.0 | 2.01 121 | 3.16 117 | 1.02 146 | 1.75 84 | 2.29 99 | 1.17 62 | 11.4 162 | 18.5 183 | 14.6 171 | 4.57 185 | 6.10 188 | 2.97 154 | 3.85 102 | 4.38 102 | 1.23 36 | 2.78 49 | 3.95 49 | 1.65 48 | 5.19 74 | 8.03 74 | 2.23 49 | 5.05 66 | 6.38 68 | 1.29 106 |
UnDAF [187] | 104.1 | 2.18 145 | 3.48 150 | 1.51 187 | 1.64 58 | 2.16 68 | 1.05 46 | 10.2 151 | 15.9 173 | 12.9 156 | 2.77 108 | 3.76 139 | 2.30 91 | 1.94 51 | 2.18 51 | 1.22 32 | 4.92 178 | 7.03 178 | 1.85 69 | 4.90 62 | 7.58 62 | 3.39 93 | 5.08 70 | 6.42 72 | 1.31 108 |
Ad-TV-NDC [36] | 104.2 | 2.61 176 | 4.13 179 | 1.16 170 | 2.45 177 | 2.78 168 | 2.34 184 | 4.25 27 | 6.07 63 | 3.78 33 | 3.58 164 | 4.45 173 | 2.51 112 | 1.87 48 | 2.10 48 | 1.33 79 | 3.36 80 | 4.79 81 | 2.42 114 | 3.41 19 | 5.27 20 | 1.54 32 | 9.04 155 | 11.4 155 | 0.97 45 |
FlowFields [108] | 104.5 | 2.27 156 | 3.62 156 | 1.09 162 | 1.50 32 | 1.97 39 | 0.94 11 | 12.4 174 | 17.3 177 | 14.9 173 | 2.49 76 | 3.36 110 | 1.65 40 | 3.73 99 | 4.24 99 | 6.03 128 | 3.39 84 | 4.83 86 | 1.90 74 | 7.03 140 | 10.9 139 | 1.87 45 | 6.86 112 | 8.67 113 | 1.18 82 |
HAST [107] | 105.0 | 1.54 60 | 2.41 64 | 0.83 42 | 1.50 32 | 1.97 39 | 1.01 34 | 14.2 181 | 20.2 189 | 16.8 185 | 2.16 41 | 2.90 60 | 1.46 15 | 4.04 106 | 4.60 106 | 1.26 53 | 4.22 143 | 6.02 145 | 3.98 175 | 9.18 175 | 14.2 175 | 4.53 140 | 5.99 99 | 7.57 100 | 1.75 160 |
2DHMM-SAS [90] | 106.3 | 1.13 22 | 1.63 22 | 0.89 90 | 2.18 147 | 2.69 152 | 1.88 163 | 7.19 102 | 9.66 113 | 7.61 87 | 2.67 95 | 3.53 123 | 2.25 83 | 4.96 183 | 5.64 183 | 6.29 137 | 2.83 51 | 4.03 51 | 1.78 61 | 4.96 66 | 7.68 67 | 3.98 118 | 9.87 178 | 12.5 178 | 1.17 80 |
Bartels [41] | 106.8 | 2.18 145 | 3.46 148 | 1.03 149 | 2.07 134 | 2.71 155 | 1.72 151 | 5.71 64 | 6.16 64 | 5.76 63 | 2.80 111 | 3.33 106 | 2.60 123 | 1.58 33 | 1.72 33 | 1.38 80 | 4.88 177 | 6.96 177 | 2.47 120 | 4.66 56 | 7.21 56 | 3.81 112 | 7.43 121 | 9.39 122 | 1.10 63 |
EAI-Flow [147] | 106.8 | 2.24 153 | 3.53 153 | 1.03 149 | 1.71 74 | 2.21 78 | 1.28 84 | 7.17 100 | 10.0 120 | 7.76 88 | 2.43 65 | 3.27 101 | 1.48 21 | 3.95 103 | 4.49 103 | 6.10 131 | 2.42 34 | 3.43 33 | 1.80 63 | 9.22 176 | 14.3 176 | 7.18 178 | 9.27 164 | 11.7 162 | 1.03 54 |
AugFNG_ROB [139] | 107.2 | 2.07 132 | 3.28 134 | 0.94 118 | 1.89 105 | 2.40 108 | 1.30 88 | 6.76 85 | 8.58 99 | 6.94 76 | 5.27 190 | 7.01 190 | 1.74 49 | 4.41 127 | 5.02 127 | 6.53 148 | 3.30 75 | 4.71 75 | 2.43 116 | 5.68 87 | 8.79 87 | 3.12 81 | 5.33 79 | 6.73 81 | 1.39 117 |
F-TV-L1 [15] | 107.3 | 2.41 165 | 3.82 166 | 0.97 131 | 2.33 168 | 2.89 179 | 1.91 166 | 4.72 41 | 6.38 69 | 4.58 42 | 2.49 76 | 2.90 60 | 2.98 157 | 2.25 59 | 2.54 59 | 1.30 67 | 2.73 46 | 3.88 46 | 2.40 113 | 6.37 115 | 9.85 115 | 3.69 107 | 11.1 197 | 14.1 197 | 0.92 35 |
Sparse Occlusion [54] | 107.4 | 2.21 150 | 3.52 152 | 0.93 114 | 2.12 140 | 2.73 159 | 1.46 116 | 4.67 39 | 6.57 73 | 4.98 49 | 2.16 41 | 2.85 57 | 1.75 50 | 5.06 187 | 5.76 187 | 6.58 167 | 2.64 41 | 3.74 40 | 2.23 104 | 6.21 110 | 9.61 111 | 3.46 98 | 9.82 177 | 12.4 177 | 0.95 39 |
LSM [39] | 107.6 | 1.15 23 | 1.70 25 | 0.89 90 | 1.72 76 | 2.11 60 | 1.37 102 | 7.40 109 | 11.1 133 | 8.52 104 | 1.96 29 | 2.60 44 | 1.79 52 | 4.95 182 | 5.63 182 | 6.24 134 | 4.37 151 | 6.23 152 | 2.08 88 | 6.95 133 | 10.7 133 | 5.20 163 | 8.77 150 | 11.1 149 | 1.40 119 |
ACK-Prior [27] | 107.7 | 1.52 58 | 2.37 59 | 1.10 163 | 1.90 108 | 2.51 125 | 1.04 43 | 12.1 171 | 8.87 101 | 14.9 173 | 2.53 85 | 3.02 71 | 2.32 93 | 4.80 175 | 5.46 175 | 6.63 186 | 4.03 131 | 5.74 133 | 2.68 133 | 5.80 90 | 8.97 90 | 4.01 120 | 3.02 26 | 3.80 26 | 1.01 49 |
EPMNet [131] | 108.0 | 2.84 189 | 4.50 189 | 1.08 160 | 1.75 84 | 2.23 85 | 1.13 56 | 7.48 111 | 11.5 139 | 8.91 110 | 5.47 191 | 7.48 192 | 2.49 109 | 2.80 73 | 3.18 73 | 2.97 97 | 2.70 45 | 3.84 45 | 1.96 76 | 5.65 84 | 8.74 84 | 4.55 141 | 4.80 55 | 6.07 57 | 1.62 146 |
CompactFlow_ROB [155] | 108.8 | 2.47 169 | 3.94 170 | 1.28 181 | 1.67 66 | 2.16 68 | 1.11 55 | 8.48 125 | 12.8 146 | 10.3 125 | 5.49 192 | 7.42 191 | 1.62 37 | 2.54 66 | 2.88 66 | 2.41 92 | 3.62 99 | 5.15 101 | 1.81 64 | 6.07 103 | 9.39 104 | 2.52 54 | 6.11 102 | 7.71 102 | 1.47 133 |
Complementary OF [21] | 109.0 | 2.67 182 | 4.25 183 | 0.82 36 | 1.89 105 | 2.49 124 | 1.47 120 | 14.5 182 | 11.4 138 | 15.7 180 | 2.33 58 | 3.13 86 | 1.56 30 | 4.37 121 | 4.98 121 | 6.31 138 | 3.19 69 | 4.54 69 | 2.26 105 | 6.11 107 | 9.40 106 | 5.87 169 | 3.12 30 | 3.94 30 | 1.43 126 |
ComponentFusion [94] | 109.8 | 1.44 48 | 2.27 53 | 0.80 29 | 1.68 69 | 2.23 85 | 1.00 29 | 11.0 156 | 14.9 164 | 11.7 143 | 2.43 65 | 3.28 104 | 1.47 17 | 3.77 100 | 4.27 100 | 4.63 112 | 4.18 140 | 5.96 142 | 3.42 163 | 10.2 190 | 15.8 190 | 11.7 193 | 6.07 100 | 7.66 101 | 1.51 141 |
EPPM w/o HM [86] | 110.0 | 1.72 77 | 2.70 78 | 1.27 180 | 1.65 62 | 2.18 75 | 1.30 88 | 14.6 183 | 15.2 166 | 13.1 157 | 2.76 105 | 3.69 132 | 2.07 66 | 1.98 52 | 2.22 52 | 1.28 61 | 3.63 100 | 5.17 102 | 2.42 114 | 8.88 172 | 13.7 172 | 8.97 184 | 5.63 90 | 7.11 91 | 1.17 80 |
FlowNetS+ft+v [110] | 110.1 | 2.75 187 | 4.38 187 | 0.92 107 | 3.05 194 | 2.83 173 | 3.29 191 | 4.97 45 | 3.66 33 | 4.97 48 | 1.97 31 | 2.34 27 | 2.24 82 | 4.78 173 | 5.44 173 | 6.58 167 | 2.93 57 | 4.17 57 | 1.74 60 | 6.15 108 | 9.52 109 | 2.63 60 | 9.27 164 | 11.7 162 | 0.98 47 |
CNN-flow-warp+ref [115] | 110.7 | 1.79 83 | 2.83 84 | 0.87 73 | 2.11 138 | 2.69 152 | 1.69 147 | 5.64 63 | 6.46 72 | 6.31 69 | 3.11 140 | 2.91 63 | 2.85 143 | 4.52 158 | 5.14 158 | 6.58 167 | 3.34 78 | 4.75 78 | 2.76 141 | 6.52 119 | 10.1 118 | 2.88 72 | 8.42 141 | 10.6 142 | 1.07 58 |
Layers++ [37] | 111.2 | 1.97 101 | 3.13 104 | 0.84 53 | 1.34 11 | 1.72 13 | 0.98 21 | 10.9 155 | 17.8 180 | 13.8 163 | 2.74 102 | 3.71 133 | 2.06 65 | 6.74 198 | 7.67 198 | 8.88 196 | 5.04 181 | 7.20 181 | 4.08 177 | 5.81 91 | 8.98 91 | 1.54 32 | 5.06 68 | 6.39 70 | 1.19 86 |
SVFilterOh [109] | 111.5 | 2.18 145 | 3.45 147 | 0.92 107 | 1.66 64 | 2.19 77 | 1.22 72 | 15.7 187 | 22.4 193 | 18.5 189 | 2.48 75 | 3.32 105 | 2.35 99 | 4.46 141 | 5.08 142 | 6.58 167 | 3.66 102 | 5.21 104 | 2.37 112 | 5.40 81 | 8.36 81 | 1.54 32 | 3.87 42 | 4.89 43 | 1.83 168 |
DPOF [18] | 111.8 | 2.79 188 | 4.46 188 | 1.92 193 | 1.36 16 | 1.77 18 | 1.01 34 | 10.5 153 | 7.45 88 | 13.5 159 | 3.60 167 | 4.88 181 | 2.92 150 | 3.40 86 | 3.86 86 | 1.23 36 | 3.10 63 | 4.42 63 | 2.06 85 | 5.73 89 | 8.87 89 | 2.76 65 | 10.2 183 | 12.8 183 | 1.40 119 |
MS_RAFT+_RVC [195] | 111.8 | 1.72 77 | 2.73 80 | 0.82 36 | 1.37 18 | 1.78 21 | 0.99 26 | 8.28 123 | 13.1 152 | 10.2 123 | 3.13 142 | 4.25 165 | 2.61 128 | 4.56 163 | 5.18 163 | 6.62 185 | 3.16 66 | 4.51 67 | 1.39 33 | 9.77 185 | 15.1 185 | 8.20 181 | 5.91 97 | 7.47 98 | 1.83 168 |
S2F-IF [121] | 111.9 | 2.28 157 | 3.63 157 | 0.95 124 | 1.55 44 | 2.05 52 | 1.09 54 | 8.10 119 | 12.9 148 | 10.1 122 | 2.33 58 | 3.13 86 | 1.93 58 | 4.33 120 | 4.93 120 | 6.57 164 | 2.66 43 | 3.77 42 | 2.10 92 | 6.50 117 | 10.1 118 | 4.58 146 | 10.3 187 | 13.0 187 | 1.91 171 |
LDOF [28] | 113.3 | 2.50 172 | 3.97 172 | 0.94 118 | 3.47 196 | 2.44 118 | 3.90 196 | 6.75 84 | 5.87 58 | 7.37 83 | 2.12 36 | 2.70 51 | 2.27 84 | 2.09 54 | 2.35 54 | 1.30 67 | 3.15 65 | 4.48 65 | 2.14 94 | 11.8 194 | 18.3 194 | 11.2 191 | 5.67 91 | 7.16 92 | 2.25 190 |
EpicFlow [100] | 114.2 | 2.07 132 | 3.30 135 | 0.83 42 | 1.75 84 | 2.29 99 | 1.23 75 | 5.47 61 | 4.72 40 | 4.44 40 | 5.04 189 | 6.87 189 | 3.09 161 | 4.46 141 | 5.08 142 | 6.56 156 | 2.81 50 | 4.00 50 | 2.00 79 | 9.31 180 | 14.4 179 | 5.04 159 | 8.21 137 | 10.4 138 | 1.18 82 |
3DFlow [133] | 114.5 | 1.21 28 | 1.82 28 | 0.88 79 | 1.70 71 | 2.21 78 | 1.37 102 | 8.30 124 | 13.6 156 | 10.7 131 | 3.22 151 | 4.38 172 | 2.71 135 | 3.25 83 | 3.69 82 | 4.37 110 | 6.56 196 | 9.36 196 | 6.71 196 | 4.79 57 | 7.41 57 | 2.22 48 | 10.2 183 | 12.9 184 | 1.27 101 |
Horn & Schunck [3] | 114.7 | 2.06 130 | 3.26 132 | 0.89 90 | 2.63 189 | 2.90 181 | 2.77 188 | 11.3 161 | 6.80 78 | 13.6 160 | 3.18 147 | 3.23 97 | 2.95 152 | 3.59 94 | 4.08 94 | 1.30 67 | 2.91 55 | 4.14 55 | 1.70 56 | 4.91 64 | 7.59 64 | 2.79 68 | 10.1 182 | 12.7 181 | 1.12 67 |
FESL [72] | 115.2 | 1.16 25 | 1.69 24 | 0.87 73 | 1.71 74 | 2.18 75 | 1.21 68 | 6.73 80 | 8.98 102 | 6.68 74 | 2.81 113 | 3.41 113 | 3.29 169 | 5.02 186 | 5.71 186 | 6.58 167 | 4.39 153 | 6.26 155 | 2.29 107 | 6.36 114 | 9.84 114 | 4.42 136 | 9.75 174 | 12.3 174 | 1.31 108 |
Brox et al. [5] | 115.2 | 2.86 190 | 4.57 190 | 0.85 63 | 1.89 105 | 2.48 122 | 1.41 107 | 5.02 46 | 5.06 44 | 5.06 50 | 2.74 102 | 2.48 37 | 2.20 77 | 2.57 67 | 2.91 67 | 1.28 61 | 4.77 171 | 6.81 171 | 4.16 178 | 17.2 199 | 26.6 199 | 21.6 199 | 8.51 146 | 10.8 147 | 0.88 27 |
ContinualFlow_ROB [148] | 115.2 | 2.11 138 | 3.35 141 | 1.05 154 | 1.73 80 | 2.24 87 | 1.21 68 | 7.58 113 | 11.3 137 | 9.11 113 | 3.18 147 | 4.33 170 | 1.75 50 | 4.45 137 | 5.06 137 | 6.54 152 | 3.76 111 | 5.36 112 | 1.67 50 | 7.32 148 | 11.3 149 | 3.22 85 | 5.04 62 | 6.37 65 | 1.75 160 |
Nguyen [33] | 115.8 | 2.62 179 | 4.16 180 | 0.94 118 | 2.35 170 | 2.74 163 | 1.78 159 | 5.37 56 | 5.59 54 | 4.85 45 | 2.76 105 | 2.97 68 | 2.96 153 | 3.62 95 | 4.12 95 | 1.25 46 | 4.16 139 | 5.94 141 | 3.86 171 | 6.94 132 | 10.7 133 | 3.64 104 | 7.20 115 | 9.10 116 | 0.96 41 |
Sparse-NonSparse [56] | 116.0 | 1.98 111 | 3.14 110 | 0.85 63 | 1.72 76 | 2.11 60 | 1.36 101 | 8.49 127 | 13.4 153 | 10.4 127 | 2.15 39 | 2.87 59 | 1.47 17 | 4.86 179 | 5.52 179 | 6.00 126 | 4.42 156 | 6.31 158 | 2.81 145 | 6.82 126 | 10.5 126 | 4.64 151 | 8.92 154 | 11.3 154 | 1.19 86 |
H+S_RVC [176] | 116.0 | 1.63 68 | 2.54 69 | 0.88 79 | 2.10 135 | 2.54 130 | 1.57 131 | 6.93 92 | 4.81 41 | 8.58 107 | 3.32 154 | 3.43 118 | 3.44 176 | 4.64 167 | 5.27 167 | 5.52 118 | 4.40 154 | 6.27 156 | 2.52 123 | 4.18 39 | 6.46 39 | 3.04 78 | 9.64 173 | 12.2 173 | 1.25 98 |
Local-TV-L1 [65] | 116.2 | 1.56 63 | 2.40 62 | 0.98 136 | 2.43 175 | 2.91 184 | 2.04 172 | 4.29 31 | 5.30 49 | 3.22 23 | 2.27 49 | 2.65 46 | 2.08 68 | 5.34 188 | 6.08 189 | 6.63 186 | 3.66 102 | 5.02 98 | 2.69 134 | 7.43 152 | 11.5 152 | 4.10 122 | 7.36 118 | 9.29 119 | 1.92 172 |
Fusion [6] | 117.5 | 2.25 154 | 3.58 155 | 1.33 182 | 1.95 115 | 2.53 127 | 1.23 75 | 8.48 125 | 5.32 50 | 10.5 128 | 2.89 118 | 3.75 136 | 1.67 41 | 4.65 168 | 5.29 168 | 3.65 104 | 5.17 183 | 7.37 183 | 4.89 188 | 5.87 95 | 9.09 95 | 2.49 53 | 3.09 29 | 3.89 29 | 1.40 119 |
SRR-TVOF-NL [89] | 118.0 | 1.49 55 | 2.29 55 | 0.95 124 | 1.85 102 | 2.40 108 | 1.41 107 | 14.1 180 | 20.2 189 | 16.3 182 | 2.54 87 | 3.41 113 | 1.81 53 | 4.52 158 | 5.14 158 | 6.60 184 | 4.49 160 | 6.40 161 | 1.88 72 | 5.35 77 | 8.28 77 | 3.57 103 | 5.81 94 | 7.34 95 | 1.50 138 |
TI-DOFE [24] | 118.4 | 2.32 159 | 3.67 158 | 1.10 163 | 2.56 186 | 2.92 185 | 2.11 175 | 4.25 27 | 4.63 39 | 4.31 38 | 3.59 165 | 3.76 139 | 2.86 144 | 3.24 82 | 3.69 82 | 1.32 74 | 4.55 162 | 6.50 164 | 3.36 160 | 4.41 45 | 6.81 45 | 2.76 65 | 9.18 160 | 11.6 160 | 1.11 64 |
ResPWCR_ROB [140] | 118.8 | 1.84 91 | 2.91 92 | 0.89 90 | 2.01 125 | 2.64 143 | 1.41 107 | 6.21 70 | 9.00 103 | 7.24 81 | 3.64 169 | 4.96 183 | 1.70 45 | 4.48 145 | 5.10 146 | 6.59 178 | 3.65 101 | 5.20 103 | 1.71 58 | 7.79 162 | 12.1 163 | 3.88 114 | 7.25 116 | 9.15 117 | 1.65 150 |
DF-Auto [113] | 119.0 | 2.69 184 | 4.30 186 | 1.12 166 | 2.13 143 | 2.69 152 | 1.58 135 | 6.20 68 | 8.02 95 | 5.50 58 | 2.68 97 | 3.34 107 | 2.70 134 | 1.59 34 | 1.76 34 | 1.28 61 | 3.52 95 | 5.01 96 | 1.68 53 | 8.36 167 | 12.9 167 | 10.1 185 | 8.45 143 | 10.7 144 | 1.67 152 |
DMF_ROB [135] | 119.9 | 2.10 137 | 3.33 140 | 0.89 90 | 2.10 135 | 2.72 158 | 1.75 156 | 6.74 83 | 7.22 84 | 6.53 71 | 2.98 126 | 3.27 101 | 2.28 87 | 4.44 133 | 5.05 133 | 6.58 167 | 4.76 170 | 6.80 170 | 3.43 164 | 5.72 88 | 8.85 88 | 2.52 54 | 7.74 125 | 9.78 126 | 1.22 92 |
TriangleFlow [30] | 121.3 | 1.80 85 | 2.83 84 | 0.95 124 | 2.18 147 | 2.77 166 | 1.61 139 | 7.36 107 | 9.16 105 | 8.83 109 | 2.70 98 | 3.56 125 | 2.88 148 | 3.17 80 | 3.60 80 | 1.27 56 | 5.17 183 | 7.38 184 | 5.34 191 | 7.58 158 | 11.7 157 | 5.87 169 | 5.12 71 | 6.45 73 | 1.14 72 |
AGIF+OF [84] | 121.4 | 1.61 66 | 2.52 68 | 0.82 36 | 1.79 95 | 2.25 89 | 1.40 106 | 7.38 108 | 11.2 136 | 9.13 114 | 2.97 123 | 3.75 136 | 3.12 164 | 4.51 155 | 5.13 155 | 6.54 152 | 3.89 123 | 5.54 124 | 2.34 111 | 5.85 93 | 9.05 93 | 4.40 133 | 10.8 195 | 13.6 195 | 1.55 143 |
Occlusion-TV-L1 [63] | 121.6 | 2.12 139 | 3.37 143 | 1.25 179 | 2.30 163 | 2.90 181 | 1.91 166 | 4.07 26 | 5.27 47 | 3.82 34 | 3.60 167 | 4.67 178 | 3.14 166 | 3.03 75 | 3.45 76 | 1.24 42 | 3.73 107 | 5.32 108 | 2.95 149 | 6.99 136 | 9.92 116 | 4.22 129 | 9.25 162 | 11.7 162 | 1.12 67 |
StereoOF-V1MT [117] | 121.7 | 1.70 73 | 2.65 71 | 0.87 73 | 2.10 135 | 2.64 143 | 1.74 155 | 9.86 148 | 4.53 38 | 12.2 149 | 4.12 180 | 4.14 159 | 4.98 188 | 4.38 122 | 4.98 121 | 6.21 132 | 3.56 96 | 4.72 76 | 3.00 151 | 7.15 142 | 11.1 143 | 4.77 155 | 6.63 109 | 8.37 110 | 1.02 52 |
Ramp [62] | 122.0 | 1.99 115 | 3.16 117 | 0.84 53 | 1.76 88 | 2.17 73 | 1.33 96 | 12.3 172 | 18.7 186 | 15.2 176 | 2.41 64 | 3.25 98 | 2.12 71 | 4.79 174 | 5.45 174 | 6.02 127 | 4.46 157 | 6.36 159 | 2.80 143 | 5.82 92 | 9.00 92 | 3.35 91 | 8.47 145 | 10.7 144 | 1.41 122 |
Black & Anandan [4] | 122.2 | 2.44 166 | 3.86 167 | 1.02 146 | 2.49 182 | 2.93 186 | 1.98 168 | 13.5 177 | 7.92 92 | 14.3 166 | 3.14 144 | 3.16 91 | 2.55 116 | 3.13 78 | 3.55 78 | 1.27 56 | 3.51 94 | 5.01 96 | 2.20 100 | 5.13 70 | 7.94 70 | 3.20 84 | 7.26 117 | 9.17 118 | 1.89 170 |
2D-CLG [1] | 122.8 | 2.03 127 | 3.22 127 | 0.89 90 | 2.24 154 | 2.67 148 | 1.80 160 | 7.75 115 | 4.01 37 | 9.13 114 | 3.05 132 | 2.78 55 | 3.46 177 | 6.30 197 | 7.17 197 | 9.00 197 | 2.62 38 | 3.71 38 | 2.33 109 | 6.41 116 | 9.92 116 | 3.52 101 | 9.35 166 | 11.8 166 | 1.13 71 |
Shiralkar [42] | 122.9 | 2.18 145 | 3.46 148 | 0.88 79 | 2.25 156 | 2.71 155 | 1.88 163 | 7.65 114 | 6.40 70 | 9.36 119 | 3.87 177 | 4.79 179 | 2.75 138 | 3.52 92 | 4.00 92 | 3.60 102 | 3.75 110 | 5.34 111 | 2.74 138 | 6.85 128 | 10.6 129 | 2.98 76 | 7.97 130 | 10.1 131 | 1.12 67 |
Filter Flow [19] | 122.9 | 2.67 182 | 4.25 183 | 0.94 118 | 2.40 172 | 2.89 179 | 1.70 150 | 7.19 102 | 10.2 124 | 8.54 106 | 3.40 157 | 3.60 126 | 3.38 172 | 2.09 54 | 2.36 55 | 1.32 74 | 3.73 107 | 5.32 108 | 2.69 134 | 5.67 86 | 8.77 86 | 4.39 132 | 7.91 128 | 9.99 129 | 1.19 86 |
Classic+CPF [82] | 123.2 | 1.98 111 | 3.14 110 | 0.86 67 | 1.82 99 | 2.26 91 | 1.47 120 | 7.22 104 | 10.0 120 | 7.55 86 | 2.31 56 | 3.11 84 | 1.44 13 | 4.80 175 | 5.46 175 | 6.56 156 | 4.55 162 | 6.48 163 | 2.85 147 | 6.73 121 | 10.4 123 | 4.62 150 | 10.4 188 | 13.2 188 | 1.63 147 |
Adaptive [20] | 123.9 | 2.51 173 | 3.99 173 | 0.93 114 | 2.42 173 | 3.03 191 | 2.24 178 | 6.42 73 | 9.95 118 | 7.88 91 | 2.89 118 | 3.63 127 | 3.26 168 | 4.30 117 | 4.89 117 | 1.26 53 | 4.07 136 | 5.81 137 | 3.25 155 | 6.07 103 | 9.39 104 | 2.94 75 | 7.57 123 | 9.57 124 | 0.91 32 |
BlockOverlap [61] | 124.0 | 2.06 130 | 3.26 132 | 1.03 149 | 2.22 151 | 2.67 148 | 1.85 162 | 8.84 134 | 6.32 66 | 11.0 135 | 4.26 183 | 3.93 148 | 5.84 189 | 4.23 113 | 4.81 113 | 1.31 73 | 4.01 130 | 5.71 131 | 3.22 154 | 4.98 68 | 7.64 65 | 4.44 137 | 4.57 53 | 5.77 55 | 1.72 158 |
OFRF [132] | 124.0 | 2.13 141 | 3.31 137 | 1.06 156 | 2.25 156 | 2.73 159 | 1.77 158 | 6.95 94 | 10.5 129 | 8.46 102 | 2.85 114 | 3.85 143 | 1.57 32 | 4.08 107 | 4.64 107 | 5.33 117 | 2.88 52 | 4.08 52 | 2.01 81 | 8.13 165 | 12.6 165 | 4.58 146 | 9.40 169 | 11.9 167 | 1.44 128 |
ROF-ND [105] | 124.5 | 1.28 31 | 1.94 30 | 0.83 42 | 3.07 195 | 2.65 146 | 4.13 198 | 7.93 117 | 11.9 143 | 9.17 116 | 3.22 151 | 4.28 168 | 2.58 119 | 4.29 116 | 4.88 116 | 6.50 145 | 4.98 180 | 7.10 180 | 4.47 187 | 6.01 101 | 9.30 102 | 3.24 86 | 6.57 108 | 8.29 109 | 1.27 101 |
PGAM+LK [55] | 124.7 | 2.12 139 | 3.32 139 | 1.16 170 | 2.33 168 | 2.79 169 | 2.01 170 | 18.8 196 | 29.3 199 | 23.5 199 | 4.83 187 | 3.93 148 | 6.42 192 | 2.76 71 | 3.13 71 | 1.47 81 | 3.40 85 | 4.83 86 | 2.49 122 | 3.41 19 | 5.25 19 | 2.90 73 | 6.38 107 | 8.05 108 | 1.15 74 |
IRR-PWC_RVC [180] | 124.9 | 2.61 176 | 3.99 173 | 1.22 175 | 2.01 125 | 2.63 142 | 1.29 87 | 8.17 120 | 12.9 148 | 9.99 121 | 6.42 194 | 8.36 193 | 2.27 84 | 4.52 158 | 5.14 158 | 6.63 186 | 3.46 92 | 4.93 94 | 2.48 121 | 4.87 59 | 7.53 59 | 3.05 79 | 4.91 57 | 6.21 59 | 1.50 138 |
Steered-L1 [116] | 125.5 | 1.89 92 | 3.01 94 | 0.89 90 | 1.93 113 | 2.51 125 | 1.50 122 | 17.3 192 | 23.1 195 | 20.6 195 | 3.65 171 | 4.27 167 | 3.39 173 | 3.51 91 | 3.99 91 | 3.99 107 | 3.32 76 | 4.73 77 | 1.95 75 | 7.20 146 | 11.1 143 | 4.57 144 | 8.42 141 | 10.6 142 | 1.01 49 |
Efficient-NL [60] | 125.6 | 1.57 64 | 2.46 66 | 0.84 53 | 1.97 121 | 2.43 113 | 1.46 116 | 11.2 159 | 7.97 93 | 14.4 167 | 2.61 94 | 3.50 122 | 2.08 68 | 4.84 178 | 5.51 178 | 6.23 133 | 4.00 128 | 5.70 128 | 2.09 91 | 7.55 156 | 11.7 157 | 4.15 125 | 10.5 190 | 13.2 188 | 1.43 126 |
TriFlow [93] | 125.8 | 2.63 181 | 4.19 182 | 1.07 159 | 2.05 132 | 2.61 138 | 1.57 131 | 6.62 78 | 10.1 122 | 7.49 85 | 2.70 98 | 3.10 81 | 2.86 144 | 4.46 141 | 5.07 141 | 6.53 148 | 3.72 106 | 5.30 107 | 1.88 72 | 5.90 96 | 9.13 96 | 4.57 144 | 9.77 176 | 12.3 174 | 1.19 86 |
Heeger++ [102] | 126.5 | 3.50 196 | 5.53 196 | 2.53 196 | 2.00 123 | 2.45 120 | 1.37 102 | 8.20 121 | 5.88 59 | 9.23 117 | 3.50 159 | 3.20 95 | 3.83 181 | 4.31 118 | 4.90 118 | 6.32 139 | 3.45 90 | 4.82 85 | 2.97 150 | 7.84 163 | 10.1 118 | 6.00 173 | 3.91 44 | 4.93 45 | 1.44 128 |
RNLOD-Flow [119] | 126.7 | 1.97 101 | 3.13 104 | 0.84 53 | 1.90 108 | 2.43 113 | 1.46 116 | 7.30 105 | 10.8 132 | 8.46 102 | 2.51 81 | 3.02 71 | 3.06 160 | 4.50 152 | 5.12 152 | 6.48 142 | 5.34 186 | 7.62 186 | 4.17 179 | 6.16 109 | 9.53 110 | 3.27 87 | 10.6 192 | 13.4 192 | 1.31 108 |
RFlow [88] | 127.1 | 1.17 26 | 1.77 26 | 0.88 79 | 2.16 146 | 2.68 150 | 1.68 146 | 10.8 154 | 15.8 172 | 12.8 154 | 3.06 134 | 3.81 142 | 3.10 162 | 4.14 109 | 4.71 109 | 1.30 67 | 4.00 128 | 5.70 128 | 2.75 140 | 6.80 125 | 10.5 126 | 3.39 93 | 10.0 181 | 12.7 181 | 1.92 172 |
LFNet_ROB [145] | 127.1 | 2.48 171 | 3.95 171 | 1.40 184 | 1.76 88 | 2.27 94 | 1.15 59 | 6.90 91 | 9.74 114 | 7.46 84 | 2.18 43 | 2.90 60 | 1.57 32 | 4.44 133 | 5.05 133 | 6.59 178 | 4.30 150 | 6.13 151 | 3.67 169 | 9.25 178 | 14.3 176 | 4.87 156 | 7.88 127 | 9.96 128 | 2.01 180 |
FFV1MT [104] | 127.1 | 2.33 161 | 3.68 159 | 1.04 153 | 2.15 145 | 2.53 127 | 1.51 124 | 8.99 137 | 9.89 116 | 10.6 129 | 3.50 159 | 3.20 95 | 3.83 181 | 3.19 81 | 3.62 81 | 3.04 100 | 4.61 165 | 6.56 165 | 3.72 170 | 6.78 124 | 10.5 126 | 5.04 159 | 2.81 21 | 3.54 21 | 1.67 152 |
FlowFields+ [128] | 127.8 | 2.34 162 | 3.73 162 | 1.81 191 | 1.50 32 | 1.97 39 | 1.00 29 | 12.7 175 | 17.9 182 | 15.4 178 | 3.08 136 | 4.14 159 | 2.41 102 | 4.44 133 | 5.05 133 | 6.58 167 | 4.11 137 | 5.87 138 | 2.06 85 | 8.38 168 | 13.0 168 | 5.69 168 | 5.43 82 | 6.86 84 | 1.07 58 |
IAOF2 [51] | 128.0 | 2.09 136 | 3.25 131 | 1.11 165 | 2.25 156 | 2.81 171 | 1.69 147 | 6.45 74 | 8.52 97 | 6.67 73 | 2.44 68 | 3.02 71 | 2.49 109 | 4.62 166 | 5.25 166 | 5.71 120 | 3.94 126 | 5.61 127 | 3.18 153 | 5.86 94 | 9.06 94 | 4.66 152 | 9.21 161 | 11.6 160 | 1.69 154 |
LSM_FLOW_RVC [182] | 128.5 | 3.61 197 | 5.73 197 | 2.33 195 | 2.00 123 | 2.54 130 | 1.32 92 | 7.92 116 | 11.5 139 | 8.94 112 | 3.65 171 | 4.98 185 | 1.50 26 | 4.48 145 | 5.10 146 | 6.63 186 | 3.40 85 | 4.84 88 | 2.52 123 | 6.73 121 | 10.4 123 | 2.79 68 | 5.31 78 | 6.71 80 | 1.74 159 |
SLK [47] | 129.5 | 1.66 69 | 2.59 70 | 0.99 138 | 2.25 156 | 2.58 136 | 1.73 153 | 13.8 179 | 9.17 106 | 15.3 177 | 4.21 181 | 5.03 186 | 4.67 186 | 4.31 118 | 4.90 118 | 4.35 109 | 3.88 122 | 5.52 123 | 2.78 142 | 9.91 186 | 15.3 186 | 3.29 89 | 4.40 51 | 5.55 53 | 1.15 74 |
FC-2Layers-FF [74] | 129.5 | 1.91 93 | 2.98 93 | 0.95 124 | 1.34 11 | 1.73 15 | 1.04 43 | 11.8 168 | 17.6 179 | 14.4 167 | 3.36 155 | 4.58 175 | 1.84 54 | 5.00 184 | 5.69 184 | 6.49 144 | 3.93 125 | 5.60 126 | 2.61 129 | 7.47 155 | 11.6 156 | 4.60 149 | 9.38 167 | 11.9 167 | 1.58 145 |
BriefMatch [122] | 130.2 | 1.45 52 | 2.23 48 | 1.06 156 | 2.03 128 | 2.62 141 | 2.01 170 | 11.4 162 | 6.57 73 | 14.0 164 | 4.56 184 | 3.92 147 | 6.24 191 | 3.37 85 | 3.80 85 | 2.51 93 | 4.47 159 | 6.37 160 | 2.80 143 | 6.03 102 | 9.28 101 | 7.81 180 | 8.90 153 | 5.08 48 | 13.3 199 |
LiteFlowNet [138] | 130.2 | 2.00 119 | 3.18 120 | 1.08 160 | 1.70 71 | 2.22 82 | 1.35 100 | 9.21 138 | 13.9 157 | 10.9 134 | 6.29 193 | 8.38 194 | 8.10 195 | 4.45 137 | 5.06 137 | 6.59 178 | 3.80 117 | 5.41 117 | 2.44 118 | 6.50 117 | 10.1 118 | 2.76 65 | 5.55 88 | 7.01 89 | 2.01 180 |
Classic+NL [31] | 130.2 | 1.97 101 | 3.13 104 | 0.88 79 | 1.78 93 | 2.22 82 | 1.44 113 | 11.8 168 | 17.8 180 | 14.5 170 | 2.47 74 | 3.34 107 | 2.43 104 | 4.81 177 | 5.47 177 | 5.90 124 | 4.41 155 | 6.29 157 | 2.58 127 | 7.03 140 | 10.9 139 | 5.12 162 | 9.04 155 | 11.4 155 | 1.18 82 |
PBOFVI [189] | 130.5 | 1.35 39 | 2.06 40 | 0.86 67 | 2.12 140 | 2.65 146 | 1.53 126 | 8.27 122 | 12.8 146 | 9.85 120 | 3.17 146 | 4.17 162 | 3.15 167 | 5.00 184 | 5.69 184 | 6.53 148 | 3.43 89 | 4.88 91 | 1.62 46 | 7.45 153 | 11.5 152 | 8.27 182 | 10.2 183 | 12.9 184 | 1.36 115 |
LocallyOriented [52] | 131.1 | 1.99 115 | 3.14 110 | 0.92 107 | 2.22 151 | 2.68 150 | 1.60 137 | 12.0 170 | 15.6 171 | 14.9 173 | 4.67 186 | 5.61 187 | 2.20 77 | 4.22 111 | 4.80 111 | 2.99 99 | 3.66 102 | 5.22 105 | 2.20 100 | 5.95 99 | 9.21 99 | 3.13 83 | 10.7 194 | 13.5 194 | 1.38 116 |
TV-L1-improved [17] | 131.5 | 1.54 60 | 2.40 62 | 1.00 142 | 2.46 179 | 3.09 195 | 2.33 182 | 11.4 162 | 6.97 82 | 14.4 167 | 2.35 62 | 2.50 38 | 2.44 107 | 4.48 145 | 5.09 144 | 1.32 74 | 4.23 144 | 6.03 146 | 3.29 157 | 7.02 138 | 10.9 139 | 3.93 117 | 9.39 168 | 11.9 167 | 2.01 180 |
HBM-GC [103] | 131.7 | 1.99 115 | 3.16 117 | 0.97 131 | 1.98 122 | 2.60 137 | 1.26 82 | 9.23 139 | 8.07 96 | 11.4 141 | 3.08 136 | 4.11 156 | 2.59 121 | 4.61 165 | 5.24 165 | 6.64 190 | 4.79 172 | 6.83 172 | 3.97 174 | 6.97 135 | 10.8 136 | 4.41 135 | 2.84 22 | 3.58 22 | 1.98 179 |
FF++_ROB [141] | 132.2 | 2.31 158 | 3.68 159 | 0.84 53 | 1.77 92 | 2.27 94 | 1.16 60 | 11.6 165 | 15.2 166 | 12.4 151 | 3.39 156 | 4.56 174 | 2.52 114 | 4.45 137 | 5.06 137 | 6.57 164 | 3.16 66 | 4.50 66 | 2.17 98 | 7.41 151 | 11.5 152 | 7.10 177 | 9.04 155 | 11.4 155 | 1.92 172 |
S2D-Matching [83] | 132.4 | 1.98 111 | 3.14 110 | 0.90 100 | 2.02 127 | 2.55 132 | 1.63 142 | 10.3 152 | 15.0 165 | 11.9 145 | 2.76 105 | 3.74 135 | 2.15 73 | 4.02 105 | 4.57 105 | 5.30 116 | 5.99 192 | 8.55 192 | 5.16 189 | 5.45 82 | 8.43 82 | 4.59 148 | 9.75 174 | 12.3 174 | 1.41 122 |
ProbFlowFields [126] | 133.0 | 2.07 132 | 3.30 135 | 0.86 67 | 1.63 56 | 2.15 66 | 1.08 51 | 15.1 185 | 21.3 191 | 17.8 187 | 2.85 114 | 3.87 145 | 2.56 117 | 4.41 127 | 5.02 127 | 6.55 154 | 4.37 151 | 6.23 152 | 3.86 171 | 8.64 169 | 13.4 169 | 11.3 192 | 5.51 86 | 6.96 87 | 1.75 160 |
CVENG22+RIC [199] | 133.5 | 2.02 124 | 3.20 125 | 0.92 107 | 1.88 104 | 2.43 113 | 1.31 91 | 6.98 96 | 7.23 85 | 6.10 67 | 3.55 162 | 4.65 177 | 3.40 174 | 4.51 155 | 5.13 155 | 6.56 156 | 4.86 175 | 6.94 176 | 2.00 79 | 7.20 146 | 11.1 143 | 3.53 102 | 9.44 171 | 11.9 167 | 1.69 154 |
AggregFlow [95] | 134.5 | 2.69 184 | 4.28 185 | 0.86 67 | 1.76 88 | 2.31 101 | 1.34 98 | 11.2 159 | 16.4 174 | 13.7 161 | 3.22 151 | 4.29 169 | 2.65 130 | 2.08 53 | 2.34 53 | 2.34 91 | 3.26 71 | 4.65 71 | 2.14 94 | 12.4 195 | 19.2 195 | 15.8 197 | 9.95 179 | 12.6 179 | 2.03 184 |
Adaptive flow [45] | 137.5 | 2.69 184 | 4.00 176 | 1.20 174 | 2.49 182 | 2.95 189 | 1.99 169 | 8.50 128 | 9.02 104 | 10.8 133 | 3.93 178 | 4.14 159 | 4.77 187 | 5.90 193 | 6.71 193 | 5.77 121 | 4.85 174 | 6.91 174 | 4.19 180 | 4.88 60 | 7.54 60 | 3.70 108 | 2.88 24 | 3.64 24 | 0.86 26 |
SILK [80] | 137.5 | 1.72 77 | 2.69 77 | 1.00 142 | 2.80 191 | 2.87 177 | 3.18 189 | 19.4 197 | 18.6 185 | 18.8 193 | 3.49 158 | 4.07 153 | 3.78 180 | 3.44 87 | 3.90 87 | 2.57 94 | 4.69 167 | 6.68 167 | 2.82 146 | 3.07 10 | 4.72 10 | 3.31 90 | 10.9 196 | 13.8 196 | 1.45 132 |
UnFlow [127] | 137.9 | 2.61 176 | 4.16 180 | 1.12 166 | 1.95 115 | 2.40 108 | 1.57 131 | 6.73 80 | 9.90 117 | 7.88 91 | 2.38 63 | 3.19 93 | 1.69 43 | 4.55 162 | 5.17 162 | 6.37 141 | 5.77 191 | 8.23 191 | 5.32 190 | 7.15 142 | 11.1 143 | 2.87 71 | 11.3 199 | 14.3 199 | 1.70 156 |
Rannacher [23] | 140.1 | 2.22 152 | 3.54 154 | 0.92 107 | 2.45 177 | 3.08 194 | 2.39 187 | 11.7 166 | 9.26 108 | 14.6 171 | 2.97 123 | 3.88 146 | 2.44 107 | 3.71 98 | 4.22 98 | 1.29 65 | 4.68 166 | 6.67 166 | 3.29 157 | 7.02 138 | 10.9 139 | 3.72 109 | 8.05 134 | 10.2 135 | 1.78 165 |
TVL1_RVC [175] | 141.2 | 3.03 192 | 4.83 193 | 0.98 136 | 2.47 180 | 2.95 189 | 1.81 161 | 9.26 140 | 13.4 153 | 11.1 138 | 3.18 147 | 3.68 131 | 2.35 99 | 2.70 70 | 3.06 70 | 1.30 67 | 4.49 160 | 6.41 162 | 2.74 138 | 9.56 182 | 14.4 179 | 12.8 194 | 7.52 122 | 9.50 123 | 1.11 64 |
Dynamic MRF [7] | 141.3 | 2.00 119 | 3.18 120 | 0.88 79 | 2.26 160 | 2.87 177 | 2.30 181 | 6.85 87 | 6.45 71 | 7.97 95 | 3.65 171 | 4.22 164 | 4.17 184 | 4.47 144 | 5.09 144 | 6.53 148 | 4.03 131 | 5.73 132 | 3.48 165 | 8.15 166 | 12.6 165 | 4.25 130 | 9.08 158 | 11.5 158 | 1.53 142 |
Correlation Flow [76] | 141.3 | 2.01 121 | 3.18 120 | 0.91 104 | 2.18 147 | 2.73 159 | 1.60 137 | 8.77 132 | 12.9 148 | 10.3 125 | 3.00 128 | 4.07 153 | 2.00 62 | 3.52 92 | 4.00 92 | 4.02 108 | 6.31 194 | 9.00 194 | 6.21 194 | 7.72 160 | 11.9 161 | 5.07 161 | 8.86 152 | 11.2 153 | 2.61 195 |
GraphCuts [14] | 141.5 | 2.47 169 | 3.90 168 | 1.03 149 | 1.91 112 | 2.43 113 | 1.56 129 | 11.0 156 | 6.33 67 | 13.7 161 | 2.97 123 | 3.47 121 | 3.11 163 | 5.47 190 | 6.22 190 | 7.89 193 | 3.33 77 | 4.75 78 | 2.03 82 | 8.66 170 | 13.4 169 | 6.07 174 | 9.96 180 | 12.6 179 | 1.18 82 |
FOLKI [16] | 141.5 | 1.98 111 | 3.08 98 | 1.24 177 | 2.52 185 | 2.83 173 | 2.33 182 | 10.1 149 | 8.57 98 | 12.8 154 | 4.91 188 | 4.36 171 | 6.54 193 | 3.10 77 | 3.52 77 | 3.73 105 | 8.35 197 | 11.9 197 | 9.26 198 | 4.40 44 | 6.80 44 | 5.91 171 | 9.08 158 | 11.5 158 | 1.22 92 |
TF+OM [98] | 141.6 | 1.95 98 | 3.07 96 | 1.54 188 | 1.73 80 | 2.25 89 | 1.28 84 | 6.86 89 | 10.4 128 | 7.88 91 | 3.72 176 | 4.88 181 | 2.97 154 | 5.54 191 | 6.30 191 | 8.26 195 | 4.18 140 | 5.97 143 | 2.90 148 | 7.63 159 | 11.8 160 | 5.25 164 | 8.05 134 | 10.2 135 | 2.03 184 |
HCIC-L [97] | 145.0 | 2.19 149 | 3.36 142 | 1.38 183 | 1.90 108 | 2.28 98 | 1.62 141 | 15.4 186 | 22.7 194 | 18.7 191 | 3.66 174 | 4.96 183 | 2.28 87 | 2.47 62 | 2.79 62 | 1.28 61 | 5.47 189 | 7.81 189 | 5.56 192 | 10.4 191 | 16.2 191 | 10.4 188 | 5.04 62 | 6.36 64 | 2.40 192 |
IAOF [50] | 145.5 | 3.34 194 | 5.18 194 | 3.47 198 | 2.75 190 | 3.20 198 | 2.07 173 | 11.7 166 | 16.6 175 | 14.1 165 | 3.56 163 | 3.67 130 | 3.65 178 | 3.65 96 | 4.16 97 | 1.24 42 | 3.82 118 | 5.45 119 | 2.66 132 | 6.34 112 | 9.81 112 | 3.45 96 | 9.42 170 | 11.9 167 | 1.31 108 |
Learning Flow [11] | 145.6 | 2.38 164 | 3.78 164 | 0.95 124 | 2.24 154 | 2.80 170 | 1.63 142 | 20.4 199 | 24.8 197 | 20.8 196 | 3.05 132 | 3.10 81 | 2.35 99 | 4.76 172 | 5.41 172 | 5.57 119 | 3.79 115 | 5.41 117 | 3.26 156 | 5.92 97 | 9.16 97 | 3.90 115 | 10.6 192 | 13.4 192 | 1.44 128 |
SegOF [10] | 146.2 | 2.46 168 | 3.92 169 | 0.97 131 | 1.93 113 | 2.42 112 | 1.45 115 | 14.8 184 | 12.5 145 | 16.0 181 | 6.84 195 | 9.29 195 | 6.71 194 | 4.69 170 | 5.34 170 | 6.57 164 | 4.06 134 | 5.78 135 | 2.56 126 | 9.69 184 | 15.0 184 | 7.78 179 | 3.03 27 | 3.82 27 | 1.29 106 |
SimpleFlow [49] | 146.6 | 2.01 121 | 3.19 123 | 0.86 67 | 2.04 129 | 2.57 135 | 1.51 124 | 19.8 198 | 24.0 196 | 21.5 197 | 3.07 135 | 3.85 143 | 3.31 170 | 4.93 181 | 5.61 181 | 6.26 135 | 5.48 190 | 7.81 189 | 3.88 173 | 9.39 181 | 14.5 182 | 10.2 187 | 3.62 37 | 4.57 37 | 1.31 108 |
WRT [146] | 151.9 | 2.02 124 | 3.19 123 | 1.02 146 | 2.82 192 | 2.56 134 | 3.75 195 | 17.1 190 | 17.2 176 | 18.0 188 | 4.24 182 | 4.11 156 | 2.43 104 | 4.39 124 | 4.99 124 | 5.22 115 | 4.93 179 | 7.03 178 | 4.39 184 | 10.1 188 | 15.7 188 | 8.96 183 | 4.13 47 | 5.21 49 | 1.95 177 |
StereoFlow [44] | 152.5 | 2.98 191 | 4.65 191 | 1.15 168 | 2.26 160 | 2.74 163 | 1.61 139 | 6.11 67 | 7.37 86 | 6.48 70 | 3.16 145 | 4.04 151 | 2.76 140 | 6.10 196 | 6.94 196 | 8.09 194 | 5.13 182 | 7.31 182 | 4.06 176 | 9.04 173 | 14.0 173 | 4.66 152 | 6.69 110 | 8.45 111 | 1.56 144 |
HBpMotionGpu [43] | 153.8 | 2.51 173 | 3.99 173 | 1.40 184 | 2.50 184 | 3.10 196 | 2.21 177 | 9.83 147 | 14.5 161 | 11.5 142 | 3.59 165 | 4.62 176 | 2.59 121 | 7.38 199 | 8.39 199 | 11.8 199 | 5.43 187 | 7.75 187 | 4.40 185 | 5.39 80 | 8.33 79 | 2.06 47 | 5.92 98 | 7.48 99 | 1.47 133 |
IIOF-NLDP [129] | 154.0 | 2.02 124 | 3.20 125 | 0.90 100 | 2.04 129 | 2.61 138 | 1.43 112 | 10.1 149 | 14.7 162 | 11.7 143 | 3.13 142 | 4.25 165 | 2.43 104 | 6.02 195 | 6.85 195 | 9.58 198 | 6.28 193 | 8.96 193 | 6.18 193 | 10.9 192 | 16.8 192 | 10.6 190 | 7.37 119 | 9.31 120 | 1.41 122 |
WOLF_ROB [144] | 154.5 | 3.29 193 | 4.72 192 | 1.64 190 | 2.43 175 | 2.94 187 | 1.88 163 | 11.1 158 | 15.3 168 | 13.4 158 | 3.64 169 | 4.86 180 | 2.64 129 | 4.48 145 | 5.10 146 | 6.51 147 | 3.77 113 | 5.37 114 | 2.63 130 | 9.92 187 | 15.3 186 | 5.33 166 | 5.40 81 | 6.82 83 | 1.64 149 |
GroupFlow [9] | 155.8 | 2.44 166 | 3.75 163 | 1.61 189 | 2.04 129 | 2.53 127 | 1.67 145 | 12.3 172 | 10.6 130 | 12.5 152 | 9.06 198 | 10.6 198 | 12.0 198 | 4.69 170 | 5.34 170 | 6.59 178 | 4.72 169 | 6.72 168 | 4.23 183 | 8.80 171 | 13.6 171 | 4.48 139 | 3.88 43 | 4.90 44 | 1.81 167 |
Pyramid LK [2] | 156.6 | 2.62 179 | 4.11 177 | 1.23 176 | 3.77 197 | 2.94 187 | 2.29 180 | 17.2 191 | 10.1 122 | 16.4 183 | 7.25 196 | 9.29 195 | 8.44 196 | 5.34 188 | 6.07 188 | 3.60 102 | 4.58 164 | 4.97 95 | 3.49 166 | 9.56 182 | 14.8 183 | 4.29 131 | 3.73 38 | 4.70 38 | 1.28 105 |
SPSA-learn [13] | 157.8 | 3.49 195 | 5.31 195 | 1.15 168 | 2.30 163 | 2.81 171 | 1.73 153 | 16.0 189 | 14.3 160 | 16.8 185 | 3.70 175 | 3.65 128 | 4.08 183 | 4.54 161 | 5.16 161 | 5.09 114 | 3.82 118 | 5.45 119 | 3.56 168 | 16.4 198 | 25.3 198 | 19.6 198 | 4.18 48 | 5.27 50 | 2.10 188 |
2bit-BM-tele [96] | 166.1 | 2.60 175 | 4.11 177 | 1.19 172 | 2.42 173 | 3.07 193 | 2.37 186 | 18.2 195 | 27.8 198 | 23.0 198 | 3.19 150 | 3.75 136 | 3.71 179 | 4.50 152 | 5.12 152 | 5.98 125 | 6.47 195 | 9.23 195 | 6.38 195 | 14.3 196 | 22.1 196 | 15.2 196 | 3.15 31 | 3.97 31 | 2.39 191 |
AVG_FLOW_ROB [137] | 184.6 | 8.35 199 | 7.59 198 | 5.23 199 | 5.53 199 | 5.85 199 | 5.12 199 | 18.0 194 | 18.5 183 | 18.9 194 | 9.93 199 | 13.2 199 | 12.4 199 | 5.79 192 | 6.59 192 | 6.79 191 | 14.6 199 | 20.8 199 | 12.4 199 | 11.3 193 | 17.1 193 | 10.5 189 | 5.49 85 | 4.72 40 | 5.67 198 |
Periodicity [79] | 186.3 | 5.15 198 | 7.86 199 | 3.24 197 | 5.39 198 | 3.06 192 | 3.39 193 | 17.5 193 | 17.3 177 | 18.7 191 | 7.38 197 | 9.91 197 | 8.96 197 | 5.97 194 | 6.80 194 | 6.94 192 | 8.36 198 | 11.9 197 | 8.85 197 | 15.0 197 | 23.2 197 | 14.1 195 | 5.71 92 | 7.19 93 | 4.90 197 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |