Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
A90 normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
EAFI [186] | 3.7 | 0.78 8 | 0.73 1 | 0.88 8 | 0.66 1 | 0.72 1 | 0.77 1 | 0.65 1 | 0.65 1 | 0.77 1 | 1.26 1 | 1.12 1 | 1.60 1 | 1.27 7 | 1.25 12 | 1.37 1 | 1.20 1 | 1.01 3 | 1.28 2 | 0.82 5 | 1.01 11 | 0.95 2 | 0.83 10 | 0.99 8 | 0.88 1 |
SoftsplatAug [190] | 3.9 | 0.76 5 | 0.74 2 | 0.85 6 | 0.67 2 | 0.79 2 | 0.79 2 | 0.65 1 | 0.70 4 | 0.78 3 | 1.29 4 | 1.17 3 | 1.64 4 | 1.25 3 | 1.20 3 | 1.42 8 | 1.21 4 | 0.99 1 | 1.30 6 | 0.82 5 | 0.97 3 | 0.98 16 | 0.79 3 | 0.94 2 | 0.88 1 |
SoftSplat [169] | 4.9 | 0.83 14 | 0.81 9 | 0.92 15 | 0.70 3 | 0.87 5 | 0.82 3 | 0.65 1 | 0.67 2 | 0.77 1 | 1.27 2 | 1.15 2 | 1.62 2 | 1.28 8 | 1.24 10 | 1.41 4 | 1.21 4 | 1.00 2 | 1.29 4 | 0.82 5 | 1.00 9 | 0.96 6 | 0.79 3 | 0.96 3 | 0.88 1 |
DistillNet [184] | 6.4 | 0.82 12 | 0.80 6 | 0.91 13 | 0.71 4 | 0.84 3 | 0.83 5 | 0.67 5 | 0.71 5 | 0.79 5 | 1.28 3 | 1.17 3 | 1.64 4 | 1.26 5 | 1.22 5 | 1.41 4 | 1.22 8 | 1.08 14 | 1.31 9 | 0.82 5 | 1.00 9 | 0.95 2 | 0.83 10 | 1.02 13 | 0.88 1 |
IDIAL [192] | 8.9 | 0.80 9 | 0.82 10 | 0.88 8 | 0.78 8 | 1.00 9 | 0.86 7 | 0.71 7 | 0.76 8 | 0.84 12 | 1.33 8 | 1.22 9 | 1.66 6 | 1.28 8 | 1.23 7 | 1.43 9 | 1.22 8 | 1.06 10 | 1.30 6 | 0.83 14 | 1.01 11 | 0.96 6 | 0.83 10 | 1.01 12 | 0.89 11 |
IFRNet [193] | 10.3 | 0.84 15 | 0.79 5 | 0.93 16 | 0.72 5 | 0.85 4 | 0.85 6 | 0.65 1 | 0.67 2 | 0.78 3 | 1.33 8 | 1.20 6 | 1.72 18 | 1.33 21 | 1.28 22 | 1.50 19 | 1.25 16 | 1.06 10 | 1.34 19 | 0.81 3 | 0.99 6 | 0.97 13 | 0.82 7 | 1.00 11 | 0.89 11 |
DAI [168] | 16.6 | 0.87 19 | 0.80 6 | 0.97 113 | 0.78 8 | 1.01 12 | 0.88 60 | 0.67 5 | 0.71 5 | 0.81 6 | 1.32 5 | 1.18 5 | 1.73 20 | 1.30 13 | 1.27 19 | 1.41 4 | 1.23 11 | 1.07 12 | 1.31 9 | 0.83 14 | 1.03 19 | 0.95 2 | 0.85 15 | 1.05 16 | 0.88 1 |
SepConv++ [185] | 16.9 | 0.88 21 | 0.93 23 | 0.97 113 | 0.78 8 | 1.00 9 | 0.89 97 | 0.72 11 | 0.80 12 | 0.82 7 | 1.36 16 | 1.29 19 | 1.68 11 | 1.29 11 | 1.24 10 | 1.45 12 | 1.20 1 | 1.03 5 | 1.28 2 | 0.80 1 | 0.98 5 | 0.96 6 | 0.78 1 | 0.96 3 | 0.88 1 |
STAR-Net [164] | 17.7 | 0.88 21 | 0.85 12 | 0.98 123 | 0.82 23 | 1.06 25 | 0.92 124 | 0.73 13 | 0.73 7 | 0.84 12 | 1.32 5 | 1.22 9 | 1.62 2 | 1.24 1 | 1.18 1 | 1.40 2 | 1.21 4 | 1.07 12 | 1.29 4 | 0.82 5 | 0.97 3 | 0.94 1 | 0.82 7 | 0.99 8 | 0.88 1 |
STSR [170] | 17.8 | 0.84 15 | 0.86 14 | 0.93 16 | 0.72 5 | 0.90 6 | 0.82 3 | 0.73 13 | 0.83 17 | 0.82 7 | 1.35 13 | 1.23 11 | 1.73 20 | 1.36 27 | 1.33 28 | 1.50 19 | 1.28 23 | 1.14 24 | 1.37 23 | 0.86 23 | 1.11 29 | 0.99 17 | 0.88 26 | 1.09 29 | 0.91 18 |
MV_VFI [183] | 19.4 | 0.88 21 | 0.91 21 | 0.96 41 | 0.81 17 | 1.06 25 | 0.93 129 | 0.71 7 | 0.79 9 | 0.82 7 | 1.34 10 | 1.28 15 | 1.67 8 | 1.30 13 | 1.25 12 | 1.47 14 | 1.25 16 | 1.10 17 | 1.34 19 | 0.82 5 | 1.03 19 | 0.96 6 | 0.85 15 | 1.06 19 | 0.88 1 |
TC-GAN [166] | 20.1 | 0.88 21 | 0.91 21 | 0.96 41 | 0.81 17 | 1.06 25 | 0.93 129 | 0.71 7 | 0.79 9 | 0.82 7 | 1.34 10 | 1.28 15 | 1.67 8 | 1.30 13 | 1.25 12 | 1.47 14 | 1.25 16 | 1.10 17 | 1.33 16 | 0.82 5 | 1.04 21 | 0.97 13 | 0.85 15 | 1.06 19 | 0.89 11 |
DAIN [152] | 26.0 | 0.89 34 | 0.93 23 | 0.99 145 | 0.82 23 | 1.07 30 | 0.93 129 | 0.71 7 | 0.80 12 | 0.82 7 | 1.34 10 | 1.28 15 | 1.67 8 | 1.31 17 | 1.25 12 | 1.48 17 | 1.25 16 | 1.10 17 | 1.34 19 | 0.82 5 | 1.04 21 | 0.97 13 | 0.85 15 | 1.06 19 | 0.89 11 |
MEMC-Net+ [160] | 27.7 | 0.89 34 | 0.90 19 | 0.99 145 | 0.84 58 | 1.04 22 | 0.93 129 | 0.74 15 | 0.84 18 | 0.84 12 | 1.35 13 | 1.23 11 | 1.68 11 | 1.31 17 | 1.26 16 | 1.45 12 | 1.24 13 | 1.10 17 | 1.32 14 | 0.83 14 | 1.07 24 | 0.96 6 | 0.85 15 | 1.06 19 | 0.89 11 |
GDCN [172] | 30.1 | 0.81 10 | 0.90 19 | 0.88 8 | 0.91 125 | 1.21 86 | 0.93 129 | 0.72 11 | 0.81 14 | 0.84 12 | 1.42 47 | 1.30 22 | 1.70 14 | 1.32 19 | 1.26 16 | 1.52 22 | 1.28 23 | 1.15 25 | 1.36 22 | 0.83 14 | 1.02 18 | 1.00 18 | 0.84 14 | 1.05 16 | 0.91 18 |
AdaCoF [165] | 30.1 | 0.93 146 | 0.95 28 | 1.02 169 | 0.82 23 | 1.03 19 | 0.92 124 | 0.77 16 | 0.84 18 | 0.84 12 | 1.38 20 | 1.29 19 | 1.69 13 | 1.35 23 | 1.29 24 | 1.54 25 | 1.21 4 | 1.03 5 | 1.30 6 | 0.81 3 | 0.99 6 | 0.96 6 | 0.80 6 | 0.98 7 | 0.88 1 |
BMBC [171] | 34.1 | 0.89 34 | 0.88 17 | 0.98 123 | 0.83 41 | 0.96 8 | 0.97 152 | 0.93 164 | 0.98 32 | 0.94 175 | 1.32 5 | 1.20 6 | 1.66 6 | 1.28 8 | 1.23 7 | 1.41 4 | 1.22 8 | 1.03 5 | 1.31 9 | 0.80 1 | 0.96 2 | 0.95 2 | 0.79 3 | 0.97 6 | 0.88 1 |
MDP-Flow2 [68] | 34.6 | 0.88 21 | 0.99 34 | 0.95 20 | 0.82 23 | 1.09 39 | 0.87 13 | 0.86 28 | 0.98 32 | 0.84 12 | 1.41 24 | 1.38 39 | 1.83 34 | 1.45 35 | 1.40 35 | 1.67 53 | 1.41 43 | 1.41 55 | 1.50 71 | 0.86 23 | 1.14 38 | 1.01 22 | 0.93 47 | 1.24 50 | 0.93 40 |
PMMST [112] | 35.2 | 0.89 34 | 0.99 34 | 0.96 41 | 0.84 58 | 1.10 43 | 0.87 13 | 0.86 28 | 0.97 30 | 0.84 12 | 1.41 24 | 1.37 33 | 1.83 34 | 1.45 35 | 1.41 39 | 1.67 53 | 1.40 34 | 1.32 35 | 1.49 46 | 0.86 23 | 1.14 38 | 1.01 22 | 0.93 47 | 1.24 50 | 0.93 40 |
EDSC [173] | 35.8 | 0.81 10 | 0.86 14 | 0.88 8 | 0.79 11 | 1.02 14 | 0.91 117 | 0.77 16 | 0.82 15 | 0.90 169 | 1.37 18 | 1.29 19 | 1.71 15 | 1.32 19 | 1.27 19 | 1.49 18 | 1.24 13 | 1.08 14 | 1.32 14 | 0.83 14 | 0.99 6 | 1.02 120 | 0.85 15 | 1.02 13 | 0.95 169 |
CoT-AMFlow [174] | 36.7 | 0.88 21 | 0.99 34 | 0.95 20 | 0.82 23 | 1.10 43 | 0.87 13 | 0.87 37 | 1.01 43 | 0.84 12 | 1.41 24 | 1.38 39 | 1.83 34 | 1.46 41 | 1.41 39 | 1.67 53 | 1.41 43 | 1.44 71 | 1.50 71 | 0.86 23 | 1.14 38 | 1.01 22 | 0.93 47 | 1.24 50 | 0.93 40 |
PH-Flow [99] | 38.1 | 0.89 34 | 1.04 49 | 0.96 41 | 0.80 12 | 1.03 19 | 0.87 13 | 0.86 28 | 0.99 36 | 0.84 12 | 1.41 24 | 1.37 33 | 1.83 34 | 1.45 35 | 1.41 39 | 1.66 38 | 1.41 43 | 1.59 141 | 1.49 46 | 0.86 23 | 1.16 59 | 1.01 22 | 0.93 47 | 1.23 46 | 0.93 40 |
NNF-Local [75] | 38.2 | 0.88 21 | 1.00 37 | 0.95 20 | 0.80 12 | 1.02 14 | 0.86 7 | 0.86 28 | 0.98 32 | 0.84 12 | 1.43 53 | 1.46 108 | 1.83 34 | 1.45 35 | 1.40 35 | 1.66 38 | 1.41 43 | 1.50 102 | 1.50 71 | 0.86 23 | 1.14 38 | 1.01 22 | 0.93 47 | 1.23 46 | 0.93 40 |
GMFlow_RVC [196] | 38.8 | 0.89 34 | 1.04 49 | 0.96 41 | 0.82 23 | 1.06 25 | 0.87 13 | 0.86 28 | 0.99 36 | 0.84 12 | 1.41 24 | 1.39 45 | 1.84 58 | 1.47 82 | 1.42 50 | 1.67 53 | 1.41 43 | 1.48 91 | 1.49 46 | 0.86 23 | 1.13 34 | 1.01 22 | 0.92 37 | 1.22 39 | 0.92 22 |
CombBMOF [111] | 40.0 | 0.89 34 | 1.00 37 | 0.95 20 | 0.81 17 | 1.08 33 | 0.87 13 | 0.88 80 | 1.02 46 | 0.87 106 | 1.42 47 | 1.40 52 | 1.83 34 | 1.46 41 | 1.41 39 | 1.66 38 | 1.41 43 | 1.36 41 | 1.49 46 | 0.86 23 | 1.16 59 | 1.01 22 | 0.91 30 | 1.20 36 | 0.92 22 |
DSepConv [162] | 40.6 | 0.86 18 | 0.93 23 | 0.94 18 | 0.86 83 | 1.10 43 | 0.96 145 | 0.81 21 | 0.85 20 | 0.91 170 | 1.41 24 | 1.34 25 | 1.72 18 | 1.33 21 | 1.27 19 | 1.52 22 | 1.26 21 | 1.11 22 | 1.33 16 | 0.83 14 | 1.01 11 | 1.01 22 | 0.87 23 | 1.07 25 | 0.94 151 |
NN-field [71] | 41.9 | 0.89 34 | 1.04 49 | 0.95 20 | 0.80 12 | 1.02 14 | 0.86 7 | 0.88 80 | 0.97 30 | 0.84 12 | 1.44 80 | 1.49 132 | 1.83 34 | 1.45 35 | 1.40 35 | 1.66 38 | 1.41 43 | 1.44 71 | 1.50 71 | 0.86 23 | 1.14 38 | 1.01 22 | 0.93 47 | 1.22 39 | 0.93 40 |
IROF++ [58] | 44.0 | 0.89 34 | 1.06 67 | 0.96 41 | 0.83 41 | 1.12 54 | 0.87 13 | 0.87 37 | 1.04 61 | 0.84 12 | 1.41 24 | 1.37 33 | 1.84 58 | 1.46 41 | 1.42 50 | 1.66 38 | 1.41 43 | 1.39 46 | 1.49 46 | 0.87 65 | 1.18 82 | 1.01 22 | 0.93 47 | 1.25 61 | 0.93 40 |
FGME [158] | 44.4 | 0.71 1 | 0.74 2 | 0.77 1 | 0.83 41 | 1.00 9 | 0.96 145 | 0.82 22 | 0.82 15 | 0.96 178 | 1.36 16 | 1.20 6 | 1.75 24 | 1.24 1 | 1.18 1 | 1.44 10 | 1.27 22 | 1.04 8 | 1.37 23 | 0.93 184 | 0.94 1 | 1.03 155 | 0.83 10 | 0.96 3 | 1.00 188 |
nLayers [57] | 44.5 | 0.89 34 | 1.02 43 | 0.96 41 | 0.82 23 | 1.08 33 | 0.87 13 | 0.87 37 | 0.96 27 | 0.84 12 | 1.41 24 | 1.39 45 | 1.84 58 | 1.47 82 | 1.43 79 | 1.67 53 | 1.42 101 | 1.51 105 | 1.50 71 | 0.86 23 | 1.13 34 | 1.01 22 | 0.93 47 | 1.22 39 | 0.92 22 |
FeFlow [167] | 44.8 | 0.77 7 | 0.85 12 | 0.85 6 | 0.87 94 | 1.10 43 | 0.98 158 | 0.82 22 | 0.87 22 | 0.98 186 | 1.37 18 | 1.27 14 | 1.71 15 | 1.26 5 | 1.22 5 | 1.44 10 | 1.25 16 | 1.09 16 | 1.33 16 | 0.87 65 | 1.01 11 | 1.02 120 | 0.87 23 | 1.05 16 | 0.96 175 |
Layers++ [37] | 45.2 | 0.89 34 | 1.05 60 | 0.96 41 | 0.81 17 | 1.02 14 | 0.87 13 | 0.87 37 | 1.02 46 | 0.84 12 | 1.41 24 | 1.39 45 | 1.83 34 | 1.47 82 | 1.43 79 | 1.67 53 | 1.42 101 | 1.53 114 | 1.50 71 | 0.86 23 | 1.14 38 | 1.01 22 | 0.93 47 | 1.22 39 | 0.93 40 |
ADC [161] | 45.2 | 0.93 146 | 0.96 29 | 1.02 169 | 0.88 102 | 1.08 33 | 1.00 166 | 0.82 22 | 0.90 25 | 0.87 106 | 1.43 53 | 1.34 25 | 1.73 20 | 1.35 23 | 1.30 25 | 1.53 24 | 1.23 11 | 1.10 17 | 1.31 9 | 0.82 5 | 1.01 11 | 0.96 6 | 0.86 22 | 1.08 26 | 0.89 11 |
MS_RAFT+_RVC [195] | 48.7 | 0.89 34 | 1.02 43 | 0.96 41 | 0.82 23 | 1.09 39 | 0.87 13 | 0.85 27 | 0.96 27 | 0.84 12 | 1.40 22 | 1.34 25 | 1.83 34 | 1.47 82 | 1.42 50 | 1.68 106 | 1.40 34 | 1.34 39 | 1.49 46 | 0.85 22 | 1.12 32 | 1.01 22 | 1.00 182 | 1.60 192 | 0.92 22 |
ProBoost-Net [191] | 50.0 | 0.72 3 | 0.78 4 | 0.78 3 | 0.85 70 | 1.13 56 | 0.93 129 | 0.82 22 | 0.87 22 | 0.96 178 | 1.41 24 | 1.30 22 | 1.82 29 | 1.35 23 | 1.28 22 | 1.58 27 | 1.33 26 | 1.15 25 | 1.43 27 | 0.87 65 | 1.04 21 | 1.04 171 | 0.88 26 | 1.06 19 | 0.98 186 |
CtxSyn [134] | 50.4 | 0.74 4 | 0.84 11 | 0.81 4 | 0.76 7 | 0.95 7 | 0.88 60 | 0.79 18 | 0.85 20 | 0.95 177 | 1.39 21 | 1.28 15 | 1.80 28 | 1.42 31 | 1.36 31 | 1.66 38 | 1.38 30 | 1.19 30 | 1.48 33 | 1.00 195 | 1.11 29 | 1.05 179 | 0.90 28 | 1.08 26 | 1.00 188 |
FMOF [92] | 51.2 | 0.91 100 | 1.09 91 | 0.96 41 | 0.82 23 | 1.08 33 | 0.87 13 | 0.88 80 | 1.02 46 | 0.85 86 | 1.44 80 | 1.43 77 | 1.83 34 | 1.46 41 | 1.42 50 | 1.67 53 | 1.41 43 | 1.44 71 | 1.49 46 | 0.86 23 | 1.14 38 | 1.01 22 | 0.93 47 | 1.24 50 | 0.93 40 |
NNF-EAC [101] | 51.2 | 0.91 100 | 1.05 60 | 0.96 41 | 0.84 58 | 1.15 65 | 0.87 13 | 0.87 37 | 1.01 43 | 0.84 12 | 1.44 80 | 1.40 52 | 1.89 164 | 1.46 41 | 1.41 39 | 1.67 53 | 1.40 34 | 1.34 39 | 1.49 46 | 0.86 23 | 1.16 59 | 1.01 22 | 0.93 47 | 1.25 61 | 0.93 40 |
TV-L1-MCT [64] | 52.2 | 0.91 100 | 1.12 124 | 0.96 41 | 0.85 70 | 1.22 88 | 0.87 13 | 0.87 37 | 1.04 61 | 0.84 12 | 1.41 24 | 1.39 45 | 1.83 34 | 1.46 41 | 1.43 79 | 1.66 38 | 1.41 43 | 1.39 46 | 1.50 71 | 0.87 65 | 1.18 82 | 1.01 22 | 0.92 37 | 1.22 39 | 0.93 40 |
Sparse-NonSparse [56] | 53.1 | 0.89 34 | 1.06 67 | 0.96 41 | 0.82 23 | 1.11 49 | 0.87 13 | 0.87 37 | 1.03 56 | 0.84 12 | 1.43 53 | 1.40 52 | 1.84 58 | 1.46 41 | 1.42 50 | 1.67 53 | 1.43 114 | 1.55 128 | 1.51 120 | 0.86 23 | 1.17 68 | 1.01 22 | 0.93 47 | 1.26 73 | 0.93 40 |
PRAFlow_RVC [177] | 54.0 | 0.89 34 | 1.00 37 | 0.95 20 | 0.83 41 | 1.10 43 | 0.88 60 | 0.86 28 | 1.01 43 | 0.84 12 | 1.43 53 | 1.41 64 | 1.85 92 | 1.46 41 | 1.42 50 | 1.68 106 | 1.41 43 | 1.41 55 | 1.50 71 | 0.86 23 | 1.15 48 | 1.01 22 | 0.95 128 | 1.31 143 | 0.93 40 |
VCN_RVC [178] | 54.2 | 0.89 34 | 1.12 124 | 0.96 41 | 0.83 41 | 1.11 49 | 0.87 13 | 0.88 80 | 1.17 130 | 0.84 12 | 1.43 53 | 1.44 82 | 1.85 92 | 1.47 82 | 1.43 79 | 1.67 53 | 1.40 34 | 1.42 64 | 1.48 33 | 0.86 23 | 1.16 59 | 1.01 22 | 0.91 30 | 1.24 50 | 0.92 22 |
MAF-net [163] | 54.9 | 0.71 1 | 0.80 6 | 0.77 1 | 0.82 23 | 1.09 39 | 0.92 124 | 0.80 19 | 0.89 24 | 0.96 178 | 1.44 80 | 1.35 29 | 1.82 29 | 1.39 29 | 1.34 29 | 1.57 26 | 1.33 26 | 1.18 28 | 1.41 25 | 0.89 155 | 1.09 26 | 1.05 179 | 0.90 28 | 1.08 26 | 0.99 187 |
RAFT-it+_RVC [198] | 55.3 | 0.88 21 | 1.02 43 | 0.95 20 | 0.81 17 | 1.05 24 | 0.87 13 | 0.87 37 | 1.02 46 | 0.84 12 | 1.41 24 | 1.40 52 | 1.83 34 | 1.46 41 | 1.42 50 | 1.68 106 | 1.58 192 | 1.55 128 | 1.70 192 | 0.86 23 | 1.13 34 | 1.02 120 | 0.91 30 | 1.23 46 | 0.92 22 |
RAFT-TF_RVC [179] | 55.7 | 0.88 21 | 1.04 49 | 0.95 20 | 0.82 23 | 1.08 33 | 0.87 13 | 0.87 37 | 1.02 46 | 0.84 12 | 1.42 47 | 1.41 64 | 1.84 58 | 1.46 41 | 1.42 50 | 1.67 53 | 1.61 194 | 1.49 95 | 1.72 195 | 0.86 23 | 1.14 38 | 1.01 22 | 0.93 47 | 1.30 133 | 0.92 22 |
2DHMM-SAS [90] | 55.7 | 0.90 83 | 1.10 102 | 0.96 41 | 0.88 102 | 1.28 107 | 0.87 13 | 0.87 37 | 1.04 61 | 0.84 12 | 1.42 47 | 1.39 45 | 1.84 58 | 1.46 41 | 1.42 50 | 1.67 53 | 1.41 43 | 1.43 68 | 1.49 46 | 0.86 23 | 1.17 68 | 1.01 22 | 0.94 88 | 1.27 87 | 0.93 40 |
ComponentFusion [94] | 56.2 | 0.89 34 | 1.04 49 | 0.96 41 | 0.82 23 | 1.12 54 | 0.86 7 | 0.87 37 | 1.07 84 | 0.84 12 | 1.41 24 | 1.40 52 | 1.83 34 | 1.47 82 | 1.43 79 | 1.68 106 | 1.41 43 | 1.42 64 | 1.50 71 | 0.87 65 | 1.25 152 | 1.01 22 | 0.94 88 | 1.27 87 | 0.93 40 |
FlowFields [108] | 56.2 | 0.89 34 | 1.08 80 | 0.96 41 | 0.83 41 | 1.15 65 | 0.87 13 | 0.87 37 | 1.10 98 | 0.84 12 | 1.44 80 | 1.46 108 | 1.85 92 | 1.47 82 | 1.42 50 | 1.67 53 | 1.41 43 | 1.52 108 | 1.50 71 | 0.86 23 | 1.16 59 | 1.01 22 | 0.92 37 | 1.25 61 | 0.93 40 |
S2F-IF [121] | 56.6 | 0.89 34 | 1.08 80 | 0.95 20 | 0.83 41 | 1.13 56 | 0.87 13 | 0.87 37 | 1.09 96 | 0.84 12 | 1.43 53 | 1.44 82 | 1.83 34 | 1.47 82 | 1.43 79 | 1.68 106 | 1.41 43 | 1.52 108 | 1.50 71 | 0.87 65 | 1.19 98 | 1.01 22 | 0.92 37 | 1.24 50 | 0.93 40 |
MPRN [151] | 57.4 | 0.89 34 | 0.96 29 | 0.97 113 | 0.88 102 | 1.15 65 | 0.95 141 | 0.93 164 | 1.25 160 | 0.89 155 | 1.41 24 | 1.37 33 | 1.78 26 | 1.42 31 | 1.36 31 | 1.63 30 | 1.37 29 | 1.15 25 | 1.48 33 | 0.86 23 | 1.12 32 | 1.01 22 | 0.87 23 | 1.10 30 | 0.92 22 |
AGIF+OF [84] | 58.3 | 0.89 34 | 1.06 67 | 0.95 20 | 0.83 41 | 1.14 62 | 0.87 13 | 0.87 37 | 1.00 38 | 0.84 12 | 1.41 24 | 1.37 33 | 1.83 34 | 1.48 145 | 1.44 120 | 1.67 53 | 1.43 114 | 1.63 157 | 1.49 46 | 0.87 65 | 1.15 48 | 1.01 22 | 0.94 88 | 1.27 87 | 0.93 40 |
COFM [59] | 58.7 | 0.89 34 | 1.04 49 | 0.96 41 | 0.83 41 | 1.11 49 | 0.87 13 | 0.87 37 | 1.00 38 | 0.84 12 | 1.41 24 | 1.38 39 | 1.82 29 | 1.46 41 | 1.42 50 | 1.65 32 | 1.41 43 | 1.66 165 | 1.47 29 | 0.87 65 | 1.18 82 | 1.03 155 | 0.95 128 | 1.25 61 | 0.94 151 |
RAFT-it [194] | 59.7 | 0.88 21 | 1.03 48 | 0.95 20 | 0.80 12 | 1.03 19 | 0.86 7 | 0.86 28 | 1.00 38 | 0.84 12 | 1.41 24 | 1.38 39 | 1.84 58 | 1.46 41 | 1.41 39 | 1.67 53 | 1.63 196 | 1.51 105 | 1.76 196 | 0.86 23 | 1.13 34 | 1.01 22 | 1.00 182 | 1.61 194 | 0.92 22 |
FRUCnet [153] | 59.8 | 1.10 191 | 0.96 29 | 1.24 194 | 0.90 123 | 1.07 30 | 1.05 178 | 0.88 80 | 0.92 26 | 1.04 193 | 1.41 24 | 1.32 24 | 1.73 20 | 1.30 13 | 1.26 16 | 1.47 14 | 1.24 13 | 1.12 23 | 1.31 9 | 0.84 21 | 1.01 11 | 1.01 22 | 0.85 15 | 1.04 15 | 0.94 151 |
UnDAF [187] | 60.2 | 0.89 34 | 1.04 49 | 0.95 20 | 0.84 58 | 1.19 80 | 0.87 13 | 0.88 80 | 1.19 139 | 0.84 12 | 1.44 80 | 1.48 122 | 1.85 92 | 1.46 41 | 1.41 39 | 1.67 53 | 1.41 43 | 1.48 91 | 1.50 71 | 0.86 23 | 1.17 68 | 1.01 22 | 0.94 88 | 1.27 87 | 0.93 40 |
FlowFields+ [128] | 61.1 | 0.89 34 | 1.08 80 | 0.96 41 | 0.83 41 | 1.13 56 | 0.88 60 | 0.87 37 | 1.10 98 | 0.84 12 | 1.43 53 | 1.45 95 | 1.84 58 | 1.47 82 | 1.43 79 | 1.68 106 | 1.42 101 | 1.54 121 | 1.50 71 | 0.86 23 | 1.16 59 | 1.01 22 | 0.92 37 | 1.25 61 | 0.93 40 |
ProbFlowFields [126] | 61.8 | 0.89 34 | 1.10 102 | 0.96 41 | 0.82 23 | 1.11 49 | 0.87 13 | 0.86 28 | 1.02 46 | 0.84 12 | 1.44 80 | 1.44 82 | 1.85 92 | 1.47 82 | 1.43 79 | 1.69 154 | 1.43 114 | 1.59 141 | 1.51 120 | 0.86 23 | 1.14 38 | 1.01 22 | 0.91 30 | 1.21 38 | 0.93 40 |
LSM [39] | 62.4 | 0.89 34 | 1.09 91 | 0.96 41 | 0.83 41 | 1.13 56 | 0.87 13 | 0.87 37 | 1.07 84 | 0.84 12 | 1.43 53 | 1.41 64 | 1.84 58 | 1.47 82 | 1.43 79 | 1.67 53 | 1.43 114 | 1.57 134 | 1.50 71 | 0.87 65 | 1.18 82 | 1.00 18 | 0.94 88 | 1.27 87 | 0.93 40 |
LME [70] | 63.0 | 0.88 21 | 1.00 37 | 0.95 20 | 0.85 70 | 1.15 65 | 0.91 117 | 0.87 37 | 1.12 107 | 0.84 12 | 1.41 24 | 1.40 52 | 1.84 58 | 1.48 145 | 1.45 150 | 1.71 181 | 1.41 43 | 1.47 85 | 1.50 71 | 0.86 23 | 1.14 38 | 1.00 18 | 0.93 47 | 1.24 50 | 0.93 40 |
WLIF-Flow [91] | 63.0 | 0.89 34 | 1.05 60 | 0.96 41 | 0.83 41 | 1.15 65 | 0.87 13 | 0.87 37 | 1.02 46 | 0.84 12 | 1.43 53 | 1.38 39 | 1.87 139 | 1.46 41 | 1.42 50 | 1.68 106 | 1.45 151 | 1.62 154 | 1.52 147 | 0.86 23 | 1.15 48 | 1.01 22 | 0.94 88 | 1.25 61 | 0.93 40 |
HAST [107] | 64.3 | 0.89 34 | 1.01 41 | 0.96 41 | 0.82 23 | 1.09 39 | 0.87 13 | 0.88 80 | 1.08 90 | 0.86 99 | 1.40 22 | 1.36 31 | 1.83 34 | 1.46 41 | 1.44 120 | 1.66 38 | 1.43 114 | 1.66 165 | 1.48 33 | 0.87 65 | 1.19 98 | 1.01 22 | 0.95 128 | 1.30 133 | 0.93 40 |
EAI-Flow [147] | 64.8 | 0.91 100 | 1.09 91 | 0.96 41 | 0.87 94 | 1.24 92 | 0.89 97 | 0.88 80 | 1.15 116 | 0.84 12 | 1.43 53 | 1.44 82 | 1.82 29 | 1.46 41 | 1.42 50 | 1.67 53 | 1.41 43 | 1.39 46 | 1.49 46 | 0.87 65 | 1.19 98 | 1.02 120 | 0.91 30 | 1.20 36 | 0.93 40 |
RNLOD-Flow [119] | 65.0 | 0.89 34 | 1.07 73 | 0.96 41 | 0.86 83 | 1.27 105 | 0.87 13 | 0.87 37 | 1.08 90 | 0.84 12 | 1.41 24 | 1.39 45 | 1.83 34 | 1.47 82 | 1.44 120 | 1.67 53 | 1.43 114 | 1.57 134 | 1.50 71 | 0.86 23 | 1.15 48 | 1.01 22 | 0.95 128 | 1.30 133 | 0.93 40 |
HCFN [157] | 66.2 | 0.89 34 | 1.06 67 | 0.95 20 | 0.84 58 | 1.20 84 | 0.87 13 | 0.87 37 | 1.08 90 | 0.84 12 | 1.43 53 | 1.42 73 | 1.85 92 | 1.46 41 | 1.42 50 | 1.66 38 | 1.55 190 | 1.43 68 | 1.67 191 | 0.87 65 | 1.20 116 | 1.01 22 | 0.93 47 | 1.27 87 | 0.93 40 |
DeepFlow2 [106] | 67.2 | 0.90 83 | 1.07 73 | 0.96 41 | 0.87 94 | 1.29 111 | 0.89 97 | 0.87 37 | 1.15 116 | 0.84 12 | 1.44 80 | 1.45 95 | 1.85 92 | 1.46 41 | 1.41 39 | 1.69 154 | 1.41 43 | 1.33 36 | 1.51 120 | 0.86 23 | 1.17 68 | 1.01 22 | 0.93 47 | 1.24 50 | 0.93 40 |
Ramp [62] | 67.5 | 0.90 83 | 1.10 102 | 0.96 41 | 0.83 41 | 1.13 56 | 0.87 13 | 0.87 37 | 1.03 56 | 0.84 12 | 1.41 24 | 1.39 45 | 1.84 58 | 1.47 82 | 1.43 79 | 1.67 53 | 1.45 151 | 1.65 162 | 1.51 120 | 0.87 65 | 1.18 82 | 1.01 22 | 0.94 88 | 1.28 109 | 0.93 40 |
PGM-C [118] | 67.7 | 0.89 34 | 1.10 102 | 0.96 41 | 0.84 58 | 1.17 74 | 0.88 60 | 0.88 80 | 1.15 116 | 0.84 12 | 1.44 80 | 1.48 122 | 1.84 58 | 1.47 82 | 1.43 79 | 1.68 106 | 1.41 43 | 1.45 77 | 1.50 71 | 0.87 65 | 1.18 82 | 1.01 22 | 0.93 47 | 1.26 73 | 0.93 40 |
OFLAF [78] | 68.0 | 0.88 21 | 1.01 41 | 0.95 20 | 0.81 17 | 1.04 22 | 0.87 13 | 0.87 37 | 1.04 61 | 0.84 12 | 1.41 24 | 1.38 39 | 1.83 34 | 1.47 82 | 1.44 120 | 1.68 106 | 1.43 114 | 1.68 172 | 1.50 71 | 0.88 128 | 1.26 156 | 1.01 22 | 0.96 146 | 1.30 133 | 0.93 40 |
SegFlow [156] | 68.2 | 0.90 83 | 1.11 111 | 0.96 41 | 0.84 58 | 1.18 77 | 0.88 60 | 0.87 37 | 1.12 107 | 0.84 12 | 1.43 53 | 1.45 95 | 1.84 58 | 1.47 82 | 1.43 79 | 1.68 106 | 1.42 101 | 1.49 95 | 1.51 120 | 0.86 23 | 1.17 68 | 1.01 22 | 0.93 47 | 1.25 61 | 0.93 40 |
CyclicGen [149] | 69.5 | 1.00 180 | 0.96 29 | 1.12 188 | 0.98 161 | 1.02 14 | 1.35 196 | 0.89 112 | 1.07 84 | 1.00 187 | 1.47 140 | 1.34 25 | 1.87 139 | 1.38 28 | 1.31 27 | 1.59 29 | 1.35 28 | 1.02 4 | 1.48 33 | 0.83 14 | 1.01 11 | 1.00 18 | 0.78 1 | 0.92 1 | 0.91 18 |
Classic+NL [31] | 70.6 | 0.91 100 | 1.11 111 | 0.96 41 | 0.83 41 | 1.14 62 | 0.87 13 | 0.87 37 | 1.03 56 | 0.84 12 | 1.43 53 | 1.41 64 | 1.85 92 | 1.47 82 | 1.43 79 | 1.67 53 | 1.44 134 | 1.58 139 | 1.51 120 | 0.87 65 | 1.18 82 | 1.01 22 | 0.94 88 | 1.28 109 | 0.93 40 |
MDP-Flow [26] | 70.7 | 0.89 34 | 1.04 49 | 0.96 41 | 0.83 41 | 1.15 65 | 0.88 60 | 0.87 37 | 1.04 61 | 0.84 12 | 1.46 121 | 1.48 122 | 1.85 92 | 1.46 41 | 1.42 50 | 1.68 106 | 1.44 134 | 1.75 182 | 1.51 120 | 0.87 65 | 1.18 82 | 1.01 22 | 0.93 47 | 1.26 73 | 0.93 40 |
SRR-TVOF-NL [89] | 71.1 | 0.91 100 | 1.08 80 | 0.96 41 | 0.88 102 | 1.31 121 | 0.89 97 | 0.88 80 | 1.10 98 | 0.84 12 | 1.43 53 | 1.40 52 | 1.82 29 | 1.46 41 | 1.44 120 | 1.67 53 | 1.40 34 | 1.46 81 | 1.47 29 | 0.87 65 | 1.17 68 | 1.01 22 | 0.96 146 | 1.31 143 | 0.93 40 |
Second-order prior [8] | 72.0 | 0.90 83 | 1.07 73 | 0.96 41 | 0.92 134 | 1.39 143 | 0.88 60 | 0.90 142 | 1.26 161 | 0.87 106 | 1.44 80 | 1.44 82 | 1.83 34 | 1.46 41 | 1.41 39 | 1.67 53 | 1.40 34 | 1.39 46 | 1.49 46 | 0.87 65 | 1.17 68 | 1.01 22 | 0.93 47 | 1.27 87 | 0.93 40 |
IROF-TV [53] | 72.0 | 0.91 100 | 1.12 124 | 0.96 41 | 0.83 41 | 1.15 65 | 0.87 13 | 0.88 80 | 1.21 144 | 0.84 12 | 1.43 53 | 1.42 73 | 1.86 125 | 1.47 82 | 1.44 120 | 1.69 154 | 1.41 43 | 1.48 91 | 1.48 33 | 0.87 65 | 1.19 98 | 1.01 22 | 0.93 47 | 1.25 61 | 0.93 40 |
Aniso. Huber-L1 [22] | 72.3 | 0.91 100 | 1.12 124 | 0.98 123 | 0.94 146 | 1.42 155 | 0.89 97 | 0.88 80 | 1.07 84 | 0.84 12 | 1.44 80 | 1.43 77 | 1.84 58 | 1.46 41 | 1.41 39 | 1.67 53 | 1.40 34 | 1.41 55 | 1.48 33 | 0.87 65 | 1.17 68 | 1.01 22 | 0.94 88 | 1.25 61 | 0.93 40 |
LFNet_ROB [145] | 72.3 | 0.90 83 | 1.09 91 | 0.96 41 | 0.89 112 | 1.31 121 | 0.89 97 | 0.89 112 | 1.26 161 | 0.87 106 | 1.44 80 | 1.48 122 | 1.83 34 | 1.46 41 | 1.42 50 | 1.66 38 | 1.41 43 | 1.65 162 | 1.48 33 | 0.86 23 | 1.15 48 | 1.01 22 | 0.92 37 | 1.22 39 | 0.93 40 |
JOF [136] | 72.8 | 0.91 100 | 1.11 111 | 0.98 123 | 0.82 23 | 1.08 33 | 0.87 13 | 0.87 37 | 1.00 38 | 0.84 12 | 1.44 80 | 1.41 64 | 1.88 156 | 1.47 82 | 1.43 79 | 1.68 106 | 1.44 134 | 1.59 141 | 1.51 120 | 0.86 23 | 1.15 48 | 1.01 22 | 0.94 88 | 1.26 73 | 0.93 40 |
FC-2Layers-FF [74] | 73.0 | 0.90 83 | 1.09 91 | 0.96 41 | 0.80 12 | 1.01 12 | 0.88 60 | 0.87 37 | 1.04 61 | 0.84 12 | 1.42 47 | 1.40 52 | 1.85 92 | 1.47 82 | 1.44 120 | 1.68 106 | 1.45 151 | 1.68 172 | 1.51 120 | 0.87 65 | 1.19 98 | 1.01 22 | 0.94 88 | 1.27 87 | 0.93 40 |
OFRI [154] | 73.8 | 0.94 159 | 0.86 14 | 1.04 179 | 0.92 134 | 1.07 30 | 1.11 188 | 0.80 19 | 0.79 9 | 1.02 191 | 1.35 13 | 1.24 13 | 1.71 15 | 1.29 11 | 1.23 7 | 1.50 19 | 1.32 25 | 1.23 33 | 1.41 25 | 1.41 198 | 1.08 25 | 1.73 199 | 0.93 47 | 1.06 19 | 1.16 198 |
FESL [72] | 74.1 | 0.91 100 | 1.08 80 | 0.96 41 | 0.84 58 | 1.15 65 | 0.87 13 | 0.87 37 | 1.05 71 | 0.84 12 | 1.43 53 | 1.41 64 | 1.84 58 | 1.47 82 | 1.44 120 | 1.68 106 | 1.44 134 | 1.64 158 | 1.51 120 | 0.87 65 | 1.18 82 | 1.01 22 | 0.94 88 | 1.28 109 | 0.93 40 |
DF-Auto [113] | 74.1 | 0.91 100 | 1.05 60 | 0.98 123 | 0.92 134 | 1.30 117 | 0.96 145 | 0.87 37 | 1.02 46 | 0.84 12 | 1.44 80 | 1.45 95 | 1.84 58 | 1.46 41 | 1.42 50 | 1.68 106 | 1.41 43 | 1.37 43 | 1.50 71 | 0.87 65 | 1.20 116 | 1.01 22 | 0.94 88 | 1.27 87 | 0.93 40 |
CPM-Flow [114] | 74.6 | 0.90 83 | 1.11 111 | 0.96 41 | 0.84 58 | 1.17 74 | 0.88 60 | 0.88 80 | 1.11 104 | 0.84 12 | 1.46 121 | 1.51 152 | 1.85 92 | 1.47 82 | 1.43 79 | 1.68 106 | 1.41 43 | 1.41 55 | 1.51 120 | 0.87 65 | 1.18 82 | 1.01 22 | 0.93 47 | 1.25 61 | 0.93 40 |
FLAVR [188] | 74.9 | 1.02 187 | 1.04 49 | 1.08 186 | 1.07 177 | 1.11 49 | 1.15 191 | 0.91 151 | 1.04 61 | 0.96 178 | 1.69 190 | 1.76 193 | 1.76 25 | 1.25 3 | 1.20 3 | 1.40 2 | 1.20 1 | 1.05 9 | 1.27 1 | 0.87 65 | 1.11 29 | 1.01 22 | 0.82 7 | 0.99 8 | 0.89 11 |
Efficient-NL [60] | 75.2 | 0.90 83 | 1.08 80 | 0.96 41 | 0.85 70 | 1.22 88 | 0.87 13 | 0.89 112 | 1.05 71 | 0.87 106 | 1.43 53 | 1.41 64 | 1.83 34 | 1.46 41 | 1.42 50 | 1.67 53 | 1.42 101 | 1.61 152 | 1.49 46 | 0.87 65 | 1.21 130 | 1.01 22 | 0.96 146 | 1.31 143 | 0.93 40 |
S2D-Matching [83] | 77.0 | 0.91 100 | 1.11 111 | 0.96 41 | 0.87 94 | 1.29 111 | 0.87 13 | 0.87 37 | 1.02 46 | 0.84 12 | 1.43 53 | 1.40 52 | 1.87 139 | 1.47 82 | 1.44 120 | 1.67 53 | 1.44 134 | 1.67 170 | 1.51 120 | 0.87 65 | 1.16 59 | 1.01 22 | 0.94 88 | 1.27 87 | 0.93 40 |
ProFlow_ROB [142] | 77.1 | 0.89 34 | 1.07 73 | 0.96 41 | 0.86 83 | 1.27 105 | 0.88 60 | 0.87 37 | 1.10 98 | 0.84 12 | 1.44 80 | 1.49 132 | 1.86 125 | 1.48 145 | 1.44 120 | 1.68 106 | 1.41 43 | 1.36 41 | 1.49 46 | 0.87 65 | 1.21 130 | 1.01 22 | 0.94 88 | 1.29 124 | 0.93 40 |
DeepFlow [85] | 78.0 | 0.89 34 | 1.06 67 | 0.96 41 | 0.88 102 | 1.29 111 | 0.90 116 | 0.88 80 | 1.19 139 | 0.85 86 | 1.46 121 | 1.46 108 | 1.85 92 | 1.46 41 | 1.42 50 | 1.69 154 | 1.42 101 | 1.33 36 | 1.53 162 | 0.86 23 | 1.15 48 | 1.01 22 | 0.93 47 | 1.24 50 | 0.93 40 |
AggregFlow [95] | 78.7 | 0.92 140 | 1.13 137 | 0.97 113 | 0.87 94 | 1.25 96 | 0.89 97 | 0.86 28 | 1.00 38 | 0.84 12 | 1.44 80 | 1.44 82 | 1.84 58 | 1.47 82 | 1.42 50 | 1.68 106 | 1.44 134 | 1.41 55 | 1.54 170 | 0.87 65 | 1.18 82 | 1.01 22 | 0.93 47 | 1.25 61 | 0.93 40 |
Brox et al. [5] | 79.2 | 0.90 83 | 1.07 73 | 0.96 41 | 0.89 112 | 1.30 117 | 0.89 97 | 0.89 112 | 1.22 151 | 0.87 106 | 1.44 80 | 1.42 73 | 1.84 58 | 1.47 82 | 1.43 79 | 1.68 106 | 1.41 43 | 1.45 77 | 1.50 71 | 0.87 65 | 1.20 116 | 1.01 22 | 0.93 47 | 1.24 50 | 0.93 40 |
SepConv-v1 [125] | 79.3 | 0.76 5 | 0.94 26 | 0.81 4 | 0.83 41 | 1.19 80 | 0.91 117 | 0.84 26 | 0.98 32 | 0.97 185 | 1.50 162 | 1.44 82 | 1.88 156 | 1.46 41 | 1.40 35 | 1.67 53 | 1.39 31 | 1.22 31 | 1.49 46 | 0.93 184 | 1.20 116 | 1.08 192 | 0.92 37 | 1.12 33 | 1.00 188 |
DPOF [18] | 79.8 | 0.91 100 | 1.18 165 | 0.97 113 | 0.82 23 | 1.06 25 | 0.88 60 | 0.89 112 | 1.05 71 | 0.87 106 | 1.44 80 | 1.45 95 | 1.85 92 | 1.46 41 | 1.42 50 | 1.67 53 | 1.41 43 | 1.49 95 | 1.49 46 | 0.87 65 | 1.18 82 | 1.02 120 | 0.95 128 | 1.28 109 | 0.93 40 |
Classic+CPF [82] | 79.9 | 0.90 83 | 1.08 80 | 0.96 41 | 0.84 58 | 1.16 73 | 0.87 13 | 0.87 37 | 1.04 61 | 0.84 12 | 1.41 24 | 1.37 33 | 1.83 34 | 1.49 169 | 1.46 171 | 1.67 53 | 1.44 134 | 1.72 179 | 1.50 71 | 0.88 128 | 1.21 130 | 1.01 22 | 0.95 128 | 1.31 143 | 0.93 40 |
p-harmonic [29] | 80.3 | 0.89 34 | 1.07 73 | 0.96 41 | 0.93 139 | 1.41 148 | 0.89 97 | 0.88 80 | 1.22 151 | 0.87 106 | 1.46 121 | 1.48 122 | 1.85 92 | 1.47 82 | 1.43 79 | 1.67 53 | 1.41 43 | 1.40 51 | 1.50 71 | 0.87 65 | 1.19 98 | 1.01 22 | 0.93 47 | 1.26 73 | 0.93 40 |
EPPM w/o HM [86] | 80.6 | 0.88 21 | 1.02 43 | 0.95 20 | 0.85 70 | 1.22 88 | 0.87 13 | 0.90 142 | 1.26 161 | 0.87 106 | 1.43 53 | 1.45 95 | 1.84 58 | 1.46 41 | 1.43 79 | 1.67 53 | 1.43 114 | 1.54 121 | 1.51 120 | 0.87 65 | 1.22 136 | 1.02 120 | 0.94 88 | 1.27 87 | 0.93 40 |
EpicFlow [100] | 82.0 | 0.89 34 | 1.10 102 | 0.96 41 | 0.86 83 | 1.29 111 | 0.88 60 | 0.88 80 | 1.15 116 | 0.85 86 | 1.45 107 | 1.50 144 | 1.85 92 | 1.47 82 | 1.43 79 | 1.68 106 | 1.41 43 | 1.52 108 | 1.50 71 | 0.87 65 | 1.20 116 | 1.01 22 | 0.93 47 | 1.30 133 | 0.93 40 |
ComplOF-FED-GPU [35] | 82.1 | 0.89 34 | 1.10 102 | 0.96 41 | 0.85 70 | 1.25 96 | 0.88 60 | 0.91 151 | 1.18 135 | 0.87 106 | 1.44 80 | 1.47 114 | 1.85 92 | 1.46 41 | 1.43 79 | 1.68 106 | 1.41 43 | 1.49 95 | 1.50 71 | 0.87 65 | 1.20 116 | 1.01 22 | 0.94 88 | 1.29 124 | 0.93 40 |
Sparse Occlusion [54] | 82.8 | 0.91 100 | 1.12 124 | 0.96 41 | 0.89 112 | 1.37 137 | 0.87 13 | 0.87 37 | 1.06 77 | 0.84 12 | 1.44 80 | 1.45 95 | 1.84 58 | 1.47 82 | 1.43 79 | 1.67 53 | 1.43 114 | 1.60 148 | 1.51 120 | 0.87 65 | 1.20 116 | 1.01 22 | 0.95 128 | 1.30 133 | 0.93 40 |
TC/T-Flow [77] | 82.8 | 0.91 100 | 1.09 91 | 0.96 41 | 0.86 83 | 1.26 102 | 0.87 13 | 0.87 37 | 1.08 90 | 0.84 12 | 1.44 80 | 1.45 95 | 1.85 92 | 1.47 82 | 1.44 120 | 1.68 106 | 1.41 43 | 1.46 81 | 1.50 71 | 0.88 128 | 1.24 147 | 1.02 120 | 0.94 88 | 1.29 124 | 0.93 40 |
PBOFVI [189] | 82.9 | 0.91 100 | 1.15 150 | 0.96 41 | 0.89 112 | 1.37 137 | 0.88 60 | 0.89 112 | 1.06 77 | 0.87 106 | 1.44 80 | 1.43 77 | 1.84 58 | 1.47 82 | 1.43 79 | 1.68 106 | 1.42 101 | 1.42 64 | 1.50 71 | 0.87 65 | 1.21 130 | 1.01 22 | 0.93 47 | 1.26 73 | 0.93 40 |
LiteFlowNet [138] | 83.5 | 0.90 83 | 1.12 124 | 0.96 41 | 0.85 70 | 1.24 92 | 0.88 60 | 0.88 80 | 1.20 142 | 0.84 12 | 1.48 149 | 1.60 178 | 1.88 156 | 1.47 82 | 1.44 120 | 1.67 53 | 1.41 43 | 1.62 154 | 1.48 33 | 0.87 65 | 1.23 144 | 1.01 22 | 0.91 30 | 1.24 50 | 0.92 22 |
FF++_ROB [141] | 83.9 | 0.89 34 | 1.07 73 | 0.96 41 | 0.85 70 | 1.21 86 | 0.88 60 | 0.88 80 | 1.14 113 | 0.84 12 | 1.45 107 | 1.47 114 | 1.86 125 | 1.48 145 | 1.44 120 | 1.68 106 | 1.45 151 | 1.55 128 | 1.53 162 | 0.86 23 | 1.18 82 | 1.01 22 | 0.93 47 | 1.26 73 | 0.93 40 |
PMF [73] | 84.4 | 0.89 34 | 1.02 43 | 0.95 20 | 0.85 70 | 1.18 77 | 0.86 7 | 0.89 112 | 1.21 144 | 0.86 99 | 1.42 47 | 1.40 52 | 1.84 58 | 1.47 82 | 1.44 120 | 1.67 53 | 1.44 134 | 1.45 77 | 1.54 170 | 0.87 65 | 1.19 98 | 1.02 120 | 0.96 146 | 1.32 157 | 0.93 40 |
ALD-Flow [66] | 84.6 | 0.91 100 | 1.11 111 | 0.98 123 | 0.86 83 | 1.28 107 | 0.89 97 | 0.88 80 | 1.17 130 | 0.84 12 | 1.43 53 | 1.45 95 | 1.86 125 | 1.47 82 | 1.43 79 | 1.69 154 | 1.41 43 | 1.40 51 | 1.51 120 | 0.86 23 | 1.15 48 | 1.01 22 | 0.95 128 | 1.29 124 | 0.93 40 |
MS-PFT [159] | 85.0 | 0.85 17 | 0.94 26 | 0.91 13 | 0.93 139 | 1.13 56 | 1.03 172 | 0.89 112 | 1.05 71 | 1.08 195 | 1.47 140 | 1.51 152 | 1.79 27 | 1.35 23 | 1.30 25 | 1.58 27 | 1.39 31 | 1.22 31 | 1.50 71 | 1.00 195 | 1.17 68 | 1.09 195 | 0.92 37 | 1.10 30 | 1.00 188 |
SuperSlomo [130] | 85.1 | 0.87 19 | 0.96 29 | 0.94 18 | 0.95 153 | 1.19 80 | 1.10 185 | 0.91 151 | 1.03 56 | 0.96 178 | 1.46 121 | 1.36 31 | 1.86 125 | 1.41 30 | 1.35 30 | 1.64 31 | 1.40 34 | 1.18 28 | 1.51 120 | 0.89 155 | 1.10 27 | 1.08 192 | 0.91 30 | 1.11 32 | 1.00 188 |
SIOF [67] | 85.9 | 0.91 100 | 1.13 137 | 0.97 113 | 0.97 160 | 1.47 164 | 0.94 140 | 0.88 80 | 1.12 107 | 0.85 86 | 1.44 80 | 1.46 108 | 1.85 92 | 1.45 35 | 1.41 39 | 1.66 38 | 1.41 43 | 1.41 55 | 1.50 71 | 0.86 23 | 1.17 68 | 1.01 22 | 0.95 128 | 1.30 133 | 0.93 40 |
C-RAFT_RVC [181] | 86.2 | 0.93 146 | 1.12 124 | 0.98 123 | 0.87 94 | 1.24 92 | 0.91 117 | 0.89 112 | 1.13 111 | 0.86 99 | 1.43 53 | 1.44 82 | 1.85 92 | 1.46 41 | 1.42 50 | 1.68 106 | 1.42 101 | 1.53 114 | 1.49 46 | 0.86 23 | 1.15 48 | 1.02 120 | 0.93 47 | 1.27 87 | 0.93 40 |
PWC-Net_RVC [143] | 86.9 | 0.90 83 | 1.15 150 | 0.96 41 | 0.86 83 | 1.25 96 | 0.88 60 | 0.89 112 | 1.18 135 | 0.85 86 | 1.43 53 | 1.44 82 | 1.84 58 | 1.48 145 | 1.45 150 | 1.69 154 | 1.44 134 | 1.52 108 | 1.51 120 | 0.86 23 | 1.16 59 | 1.01 22 | 0.92 37 | 1.26 73 | 0.92 22 |
RFlow [88] | 87.5 | 0.90 83 | 1.11 111 | 0.97 113 | 0.91 125 | 1.41 148 | 0.87 13 | 0.88 80 | 1.15 116 | 0.85 86 | 1.45 107 | 1.49 132 | 1.84 58 | 1.47 82 | 1.43 79 | 1.67 53 | 1.41 43 | 1.47 85 | 1.48 33 | 0.87 65 | 1.22 136 | 1.01 22 | 0.96 146 | 1.31 143 | 0.93 40 |
TOF-M [150] | 89.2 | 0.82 12 | 0.89 18 | 0.88 8 | 0.93 139 | 1.23 91 | 1.04 174 | 0.90 142 | 1.05 71 | 1.01 189 | 1.45 107 | 1.35 29 | 1.85 92 | 1.44 34 | 1.38 34 | 1.67 53 | 1.41 43 | 1.24 34 | 1.52 147 | 0.98 194 | 1.10 27 | 1.08 192 | 0.94 88 | 1.15 34 | 1.00 188 |
DMF_ROB [135] | 89.3 | 0.90 83 | 1.10 102 | 0.96 41 | 0.88 102 | 1.33 126 | 0.88 60 | 0.92 160 | 1.28 170 | 0.87 106 | 1.45 107 | 1.48 122 | 1.84 58 | 1.47 82 | 1.42 50 | 1.68 106 | 1.41 43 | 1.41 55 | 1.50 71 | 0.88 128 | 1.17 68 | 1.03 155 | 0.93 47 | 1.25 61 | 0.93 40 |
LSM_FLOW_RVC [182] | 89.3 | 0.93 146 | 1.22 177 | 0.98 123 | 0.93 139 | 1.40 145 | 0.93 129 | 0.89 112 | 1.30 173 | 0.84 12 | 1.45 107 | 1.53 159 | 1.83 34 | 1.46 41 | 1.43 79 | 1.66 38 | 1.41 43 | 1.49 95 | 1.48 33 | 0.87 65 | 1.19 98 | 1.01 22 | 0.93 47 | 1.27 87 | 0.93 40 |
CLG-TV [48] | 89.6 | 0.91 100 | 1.12 124 | 0.98 123 | 0.93 139 | 1.40 145 | 0.89 97 | 0.89 112 | 1.19 139 | 0.87 106 | 1.45 107 | 1.45 95 | 1.86 125 | 1.46 41 | 1.42 50 | 1.68 106 | 1.41 43 | 1.37 43 | 1.50 71 | 0.87 65 | 1.18 82 | 1.01 22 | 0.94 88 | 1.27 87 | 0.93 40 |
TC-Flow [46] | 91.0 | 0.89 34 | 1.09 91 | 0.96 41 | 0.86 83 | 1.31 121 | 0.88 60 | 0.89 112 | 1.17 130 | 0.84 12 | 1.45 107 | 1.47 114 | 1.87 139 | 1.48 145 | 1.44 120 | 1.68 106 | 1.43 114 | 1.53 114 | 1.51 120 | 0.87 65 | 1.18 82 | 1.01 22 | 0.94 88 | 1.29 124 | 0.93 40 |
MCPFlow_RVC [197] | 92.4 | 0.91 100 | 1.09 91 | 0.97 113 | 0.85 70 | 1.14 62 | 0.91 117 | 0.87 37 | 1.09 96 | 0.84 12 | 1.43 53 | 1.41 64 | 1.85 92 | 1.47 82 | 1.43 79 | 1.68 106 | 1.45 151 | 1.76 183 | 1.50 71 | 0.86 23 | 1.16 59 | 1.02 120 | 1.21 198 | 2.41 198 | 0.93 40 |
3DFlow [133] | 95.4 | 0.89 34 | 1.08 80 | 0.95 20 | 0.84 58 | 1.19 80 | 0.87 13 | 0.89 112 | 1.04 61 | 0.85 86 | 1.43 53 | 1.40 52 | 1.86 125 | 1.47 82 | 1.43 79 | 1.72 185 | 1.46 161 | 1.80 185 | 1.52 147 | 0.88 128 | 1.22 136 | 1.02 120 | 0.95 128 | 1.29 124 | 0.93 40 |
TCOF [69] | 95.8 | 0.91 100 | 1.11 111 | 0.96 41 | 0.96 155 | 1.48 166 | 0.89 97 | 0.87 37 | 1.05 71 | 0.84 12 | 1.44 80 | 1.45 95 | 1.86 125 | 1.47 82 | 1.43 79 | 1.67 53 | 1.42 101 | 1.59 141 | 1.49 46 | 0.87 65 | 1.22 136 | 1.01 22 | 0.97 167 | 1.34 166 | 0.94 151 |
CompactFlow_ROB [155] | 96.4 | 0.92 140 | 1.13 137 | 0.98 123 | 0.91 125 | 1.32 124 | 0.97 152 | 0.90 142 | 1.33 176 | 0.85 86 | 1.47 140 | 1.57 167 | 1.87 139 | 1.46 41 | 1.42 50 | 1.67 53 | 1.41 43 | 1.51 105 | 1.47 29 | 0.87 65 | 1.19 98 | 1.01 22 | 0.93 47 | 1.27 87 | 0.92 22 |
SVFilterOh [109] | 97.0 | 0.89 34 | 1.04 49 | 0.96 41 | 0.82 23 | 1.10 43 | 0.88 60 | 0.88 80 | 1.02 46 | 0.87 106 | 1.43 53 | 1.40 52 | 1.89 164 | 1.49 169 | 1.45 150 | 1.71 181 | 1.43 114 | 1.54 121 | 1.50 71 | 0.88 128 | 1.15 48 | 1.04 171 | 0.96 146 | 1.28 109 | 0.95 169 |
OAR-Flow [123] | 97.2 | 0.91 100 | 1.09 91 | 0.97 113 | 0.87 94 | 1.30 117 | 0.89 97 | 0.88 80 | 1.16 126 | 0.84 12 | 1.43 53 | 1.45 95 | 1.84 58 | 1.47 82 | 1.44 120 | 1.69 154 | 1.43 114 | 1.52 108 | 1.51 120 | 0.88 128 | 1.22 136 | 1.02 120 | 0.94 88 | 1.27 87 | 0.93 40 |
Fusion [6] | 100.2 | 0.89 34 | 1.14 146 | 0.96 41 | 0.85 70 | 1.20 84 | 0.88 60 | 0.88 80 | 1.06 77 | 0.87 106 | 1.47 140 | 1.50 144 | 1.84 58 | 1.47 82 | 1.46 171 | 1.65 32 | 1.41 43 | 1.71 177 | 1.47 29 | 0.89 155 | 1.29 165 | 1.02 120 | 0.99 181 | 1.35 170 | 0.93 40 |
OFH [38] | 100.5 | 0.91 100 | 1.11 111 | 0.96 41 | 0.89 112 | 1.34 131 | 0.88 60 | 0.89 112 | 1.26 161 | 0.85 86 | 1.44 80 | 1.48 122 | 1.84 58 | 1.47 82 | 1.44 120 | 1.67 53 | 1.42 101 | 1.54 121 | 1.50 71 | 0.88 128 | 1.27 157 | 1.02 120 | 0.94 88 | 1.32 157 | 0.93 40 |
CostFilter [40] | 100.5 | 0.89 34 | 1.05 60 | 0.95 20 | 0.84 58 | 1.17 74 | 0.87 13 | 0.89 112 | 1.27 167 | 0.87 106 | 1.44 80 | 1.44 82 | 1.84 58 | 1.48 145 | 1.45 150 | 1.68 106 | 1.48 171 | 1.46 81 | 1.58 184 | 0.88 128 | 1.22 136 | 1.02 120 | 0.95 128 | 1.33 160 | 0.93 40 |
IAOF [50] | 100.6 | 0.95 168 | 1.15 150 | 1.01 166 | 1.16 192 | 1.70 197 | 1.00 166 | 0.88 80 | 1.14 113 | 0.87 106 | 1.48 149 | 1.45 95 | 1.85 92 | 1.46 41 | 1.42 50 | 1.67 53 | 1.41 43 | 1.47 85 | 1.49 46 | 0.87 65 | 1.19 98 | 1.01 22 | 0.94 88 | 1.28 109 | 0.93 40 |
MLDP_OF [87] | 102.0 | 0.89 34 | 1.06 67 | 0.96 41 | 0.86 83 | 1.25 96 | 0.87 13 | 0.87 37 | 1.06 77 | 0.84 12 | 1.45 107 | 1.42 73 | 1.88 156 | 1.47 82 | 1.44 120 | 1.70 173 | 1.52 187 | 1.66 165 | 1.60 186 | 0.87 65 | 1.20 116 | 1.03 155 | 0.95 128 | 1.29 124 | 0.94 151 |
LDOF [28] | 102.4 | 0.93 146 | 1.12 124 | 1.00 147 | 0.94 146 | 1.30 117 | 0.97 152 | 0.90 142 | 1.24 159 | 0.87 106 | 1.46 121 | 1.50 144 | 1.87 139 | 1.47 82 | 1.42 50 | 1.68 106 | 1.41 43 | 1.38 45 | 1.50 71 | 0.87 65 | 1.20 116 | 1.01 22 | 0.94 88 | 1.27 87 | 0.93 40 |
ContinualFlow_ROB [148] | 102.7 | 0.93 146 | 1.19 167 | 0.98 123 | 0.91 125 | 1.34 131 | 0.95 141 | 0.90 142 | 1.27 167 | 0.87 106 | 1.44 80 | 1.49 132 | 1.85 92 | 1.48 145 | 1.45 150 | 1.67 53 | 1.40 34 | 1.47 85 | 1.48 33 | 0.86 23 | 1.17 68 | 1.01 22 | 0.94 88 | 1.36 171 | 0.93 40 |
FlowNet2 [120] | 103.6 | 0.98 176 | 1.25 180 | 1.02 169 | 0.92 134 | 1.28 107 | 0.97 152 | 0.89 112 | 1.16 126 | 0.87 106 | 1.45 107 | 1.51 152 | 1.85 92 | 1.48 145 | 1.45 150 | 1.67 53 | 1.41 43 | 1.47 85 | 1.50 71 | 0.87 65 | 1.19 98 | 1.01 22 | 0.93 47 | 1.26 73 | 0.92 22 |
Modified CLG [34] | 104.3 | 0.91 100 | 1.08 80 | 1.00 147 | 1.04 173 | 1.49 169 | 1.03 172 | 0.90 142 | 1.33 176 | 0.87 106 | 1.46 121 | 1.49 132 | 1.85 92 | 1.47 82 | 1.43 79 | 1.68 106 | 1.41 43 | 1.48 91 | 1.50 71 | 0.87 65 | 1.19 98 | 1.01 22 | 0.94 88 | 1.28 109 | 0.93 40 |
Complementary OF [21] | 105.0 | 0.89 34 | 1.12 124 | 0.96 41 | 0.85 70 | 1.25 96 | 0.88 60 | 0.93 164 | 1.14 113 | 0.87 106 | 1.46 121 | 1.50 144 | 1.86 125 | 1.47 82 | 1.44 120 | 1.67 53 | 1.42 101 | 1.54 121 | 1.50 71 | 0.88 128 | 1.28 159 | 1.02 120 | 0.96 146 | 1.40 182 | 0.93 40 |
Classic++ [32] | 105.6 | 0.91 100 | 1.13 137 | 0.98 123 | 0.89 112 | 1.35 133 | 0.88 60 | 0.89 112 | 1.18 135 | 0.86 99 | 1.47 140 | 1.49 132 | 1.87 139 | 1.47 82 | 1.43 79 | 1.67 53 | 1.46 161 | 1.55 128 | 1.54 170 | 0.87 65 | 1.20 116 | 1.01 22 | 0.94 88 | 1.28 109 | 0.93 40 |
TriFlow [93] | 106.2 | 0.92 140 | 1.19 167 | 0.98 123 | 0.94 146 | 1.39 143 | 0.98 158 | 0.88 80 | 1.17 130 | 0.84 12 | 1.45 107 | 1.47 114 | 1.83 34 | 1.48 145 | 1.45 150 | 1.68 106 | 1.43 114 | 1.53 114 | 1.50 71 | 0.87 65 | 1.21 130 | 1.01 22 | 0.95 128 | 1.28 109 | 0.93 40 |
ROF-ND [105] | 107.5 | 0.91 100 | 1.05 60 | 0.96 41 | 0.89 112 | 1.35 133 | 0.88 60 | 0.88 80 | 1.06 77 | 0.84 12 | 1.50 162 | 1.61 180 | 1.85 92 | 1.47 82 | 1.43 79 | 1.68 106 | 1.43 114 | 1.66 165 | 1.49 46 | 0.90 171 | 1.28 159 | 1.04 171 | 0.97 167 | 1.36 171 | 0.93 40 |
Local-TV-L1 [65] | 107.6 | 0.94 159 | 1.14 146 | 1.01 166 | 0.98 161 | 1.43 158 | 0.96 145 | 0.87 37 | 1.08 90 | 0.84 12 | 1.50 162 | 1.46 108 | 1.97 183 | 1.47 82 | 1.43 79 | 1.69 154 | 1.50 184 | 1.40 51 | 1.61 188 | 0.87 65 | 1.19 98 | 1.01 22 | 0.93 47 | 1.23 46 | 0.93 40 |
ResPWCR_ROB [140] | 107.7 | 0.91 100 | 1.11 111 | 0.96 41 | 0.89 112 | 1.32 124 | 0.91 117 | 0.91 151 | 1.22 151 | 0.87 106 | 1.47 140 | 1.55 163 | 1.90 169 | 1.46 41 | 1.42 50 | 1.65 32 | 1.60 193 | 1.57 134 | 1.71 194 | 0.87 65 | 1.19 98 | 1.01 22 | 0.94 88 | 1.31 143 | 0.93 40 |
EPMNet [131] | 108.2 | 0.96 171 | 1.26 183 | 1.00 147 | 0.91 125 | 1.25 96 | 0.96 145 | 0.89 112 | 1.16 126 | 0.87 106 | 1.48 149 | 1.64 187 | 1.85 92 | 1.48 145 | 1.45 150 | 1.67 53 | 1.42 101 | 1.54 121 | 1.49 46 | 0.87 65 | 1.19 98 | 1.01 22 | 0.93 47 | 1.27 87 | 0.92 22 |
TF+OM [98] | 108.6 | 0.91 100 | 1.11 111 | 0.98 123 | 0.86 83 | 1.18 77 | 0.93 129 | 0.87 37 | 1.16 126 | 0.84 12 | 1.46 121 | 1.47 114 | 1.85 92 | 1.47 82 | 1.44 120 | 1.69 154 | 1.43 114 | 1.46 81 | 1.52 147 | 0.88 128 | 1.24 147 | 1.02 120 | 0.95 128 | 1.28 109 | 0.94 151 |
SimpleFlow [49] | 110.0 | 0.91 100 | 1.12 124 | 0.96 41 | 0.88 102 | 1.29 111 | 0.88 60 | 0.92 160 | 1.10 98 | 0.87 106 | 1.43 53 | 1.41 64 | 1.85 92 | 1.47 82 | 1.43 79 | 1.67 53 | 1.45 151 | 1.79 184 | 1.51 120 | 0.89 155 | 1.58 192 | 1.03 155 | 0.96 146 | 1.36 171 | 0.93 40 |
AugFNG_ROB [139] | 110.0 | 0.93 146 | 1.13 137 | 1.00 147 | 0.94 146 | 1.36 136 | 0.98 158 | 0.91 151 | 1.41 180 | 0.87 106 | 1.47 140 | 1.56 164 | 1.85 92 | 1.49 169 | 1.46 171 | 1.68 106 | 1.41 43 | 1.44 71 | 1.49 46 | 0.87 65 | 1.20 116 | 1.01 22 | 0.92 37 | 1.26 73 | 0.91 18 |
F-TV-L1 [15] | 110.4 | 0.93 146 | 1.16 159 | 1.00 147 | 0.96 155 | 1.45 162 | 0.91 117 | 0.89 112 | 1.22 151 | 0.87 106 | 1.46 121 | 1.49 132 | 1.87 139 | 1.46 41 | 1.43 79 | 1.66 38 | 1.41 43 | 1.41 55 | 1.51 120 | 0.87 65 | 1.21 130 | 1.02 120 | 0.94 88 | 1.26 73 | 0.94 151 |
IIOF-NLDP [129] | 111.5 | 0.89 34 | 1.05 60 | 0.95 20 | 0.88 102 | 1.33 126 | 0.88 60 | 0.89 112 | 1.07 84 | 0.87 106 | 1.46 121 | 1.43 77 | 1.89 164 | 1.47 82 | 1.43 79 | 1.68 106 | 1.47 165 | 1.85 187 | 1.52 147 | 0.93 184 | 1.98 196 | 1.04 171 | 0.95 128 | 1.31 143 | 0.92 22 |
CBF [12] | 115.2 | 0.91 100 | 1.10 102 | 0.98 123 | 0.89 112 | 1.33 126 | 0.89 97 | 0.88 80 | 1.07 84 | 0.85 86 | 1.48 149 | 1.46 108 | 1.95 180 | 1.47 82 | 1.43 79 | 1.72 185 | 1.41 43 | 1.44 71 | 1.50 71 | 0.88 128 | 1.24 147 | 1.03 155 | 0.97 167 | 1.28 109 | 0.97 180 |
CRTflow [81] | 116.4 | 0.91 100 | 1.15 150 | 0.98 123 | 0.91 125 | 1.40 145 | 0.88 60 | 0.93 164 | 1.29 172 | 0.89 155 | 1.46 121 | 1.47 114 | 1.90 169 | 1.47 82 | 1.44 120 | 1.68 106 | 1.41 43 | 1.41 55 | 1.51 120 | 0.87 65 | 1.22 136 | 1.02 120 | 0.94 88 | 1.28 109 | 0.94 151 |
Occlusion-TV-L1 [63] | 116.6 | 0.91 100 | 1.12 124 | 0.98 123 | 0.94 146 | 1.48 166 | 0.89 97 | 0.89 112 | 1.21 144 | 0.87 106 | 1.48 149 | 1.53 159 | 1.87 139 | 1.47 82 | 1.42 50 | 1.68 106 | 1.44 134 | 1.50 102 | 1.53 162 | 0.88 128 | 1.19 98 | 1.02 120 | 0.94 88 | 1.29 124 | 0.93 40 |
2D-CLG [1] | 117.2 | 0.94 159 | 1.11 111 | 1.02 169 | 1.11 182 | 1.52 180 | 1.08 184 | 0.94 174 | 1.27 167 | 0.89 155 | 1.50 162 | 1.51 152 | 1.84 58 | 1.47 82 | 1.43 79 | 1.68 106 | 1.41 43 | 1.50 102 | 1.50 71 | 0.88 128 | 1.30 166 | 1.01 22 | 0.93 47 | 1.26 73 | 0.93 40 |
FlowNetS+ft+v [110] | 117.2 | 0.92 140 | 1.09 91 | 1.00 147 | 0.99 165 | 1.47 164 | 0.97 152 | 0.89 112 | 1.23 156 | 0.87 106 | 1.45 107 | 1.47 114 | 1.86 125 | 1.48 145 | 1.44 120 | 1.69 154 | 1.41 43 | 1.42 64 | 1.50 71 | 0.88 128 | 1.25 152 | 1.02 120 | 0.94 88 | 1.28 109 | 0.93 40 |
Black & Anandan [4] | 117.3 | 0.94 159 | 1.15 150 | 1.00 147 | 1.06 176 | 1.53 183 | 0.98 158 | 0.94 174 | 1.26 161 | 0.88 151 | 1.48 149 | 1.49 132 | 1.84 58 | 1.47 82 | 1.44 120 | 1.69 154 | 1.41 43 | 1.39 46 | 1.50 71 | 0.88 128 | 1.22 136 | 1.01 22 | 0.94 88 | 1.27 87 | 0.93 40 |
CNN-flow-warp+ref [115] | 119.7 | 0.91 100 | 1.04 49 | 0.98 123 | 0.94 146 | 1.42 155 | 0.93 129 | 0.93 164 | 1.30 173 | 0.87 106 | 1.55 178 | 1.57 167 | 1.93 175 | 1.47 82 | 1.43 79 | 1.70 173 | 1.41 43 | 1.47 85 | 1.51 120 | 0.89 155 | 1.37 176 | 1.02 120 | 0.93 47 | 1.27 87 | 0.93 40 |
CVENG22+RIC [199] | 120.0 | 0.91 100 | 1.11 111 | 0.97 113 | 0.88 102 | 1.35 133 | 0.88 60 | 0.89 112 | 1.23 156 | 0.86 99 | 1.48 149 | 1.57 167 | 1.86 125 | 1.48 145 | 1.44 120 | 1.69 154 | 1.43 114 | 1.57 134 | 1.51 120 | 0.88 128 | 1.24 147 | 1.01 22 | 0.96 146 | 1.40 182 | 0.93 40 |
Nguyen [33] | 121.2 | 1.00 180 | 1.14 146 | 1.07 184 | 1.15 189 | 1.59 188 | 1.04 174 | 0.90 142 | 1.37 178 | 0.87 106 | 1.51 169 | 1.52 157 | 1.85 92 | 1.47 82 | 1.43 79 | 1.67 53 | 1.41 43 | 1.49 95 | 1.48 33 | 0.88 128 | 1.36 174 | 1.02 120 | 0.93 47 | 1.28 109 | 0.93 40 |
Adaptive [20] | 121.5 | 0.92 140 | 1.16 159 | 0.98 123 | 0.96 155 | 1.49 169 | 0.89 97 | 0.89 112 | 1.17 130 | 0.87 106 | 1.45 107 | 1.47 114 | 1.86 125 | 1.48 145 | 1.44 120 | 1.68 106 | 1.44 134 | 1.54 121 | 1.52 147 | 0.88 128 | 1.23 144 | 1.01 22 | 0.95 128 | 1.31 143 | 0.93 40 |
Shiralkar [42] | 121.6 | 0.91 100 | 1.14 146 | 0.96 41 | 0.94 146 | 1.41 148 | 0.88 60 | 0.91 151 | 1.48 185 | 0.88 151 | 1.52 170 | 1.59 174 | 1.84 58 | 1.46 41 | 1.44 120 | 1.65 32 | 1.45 151 | 1.60 148 | 1.52 147 | 0.89 155 | 1.38 180 | 1.02 120 | 0.94 88 | 1.34 166 | 0.93 40 |
Correlation Flow [76] | 121.6 | 0.89 34 | 1.08 80 | 0.95 20 | 0.90 123 | 1.41 148 | 0.88 60 | 0.88 80 | 1.06 77 | 0.84 12 | 1.46 121 | 1.44 82 | 1.89 164 | 1.50 179 | 1.45 150 | 1.77 194 | 1.48 171 | 1.85 187 | 1.53 162 | 0.90 171 | 1.37 176 | 1.03 155 | 0.97 167 | 1.34 166 | 0.93 40 |
IAOF2 [51] | 124.0 | 0.94 159 | 1.19 167 | 1.00 147 | 0.99 165 | 1.55 185 | 0.95 141 | 0.88 80 | 1.15 116 | 0.87 106 | 1.49 157 | 1.50 144 | 1.87 139 | 1.49 169 | 1.47 179 | 1.67 53 | 1.43 114 | 1.61 152 | 1.50 71 | 0.87 65 | 1.19 98 | 1.01 22 | 0.96 146 | 1.33 160 | 0.93 40 |
Steered-L1 [116] | 124.2 | 0.89 34 | 1.13 137 | 0.96 41 | 0.86 83 | 1.28 107 | 0.88 60 | 0.92 160 | 1.11 104 | 0.87 106 | 1.49 157 | 1.50 144 | 1.90 169 | 1.48 145 | 1.45 150 | 1.68 106 | 1.43 114 | 1.52 108 | 1.52 147 | 0.89 155 | 1.28 159 | 1.03 155 | 0.96 146 | 1.31 143 | 0.94 151 |
IRR-PWC_RVC [180] | 124.3 | 0.94 159 | 1.28 187 | 1.00 147 | 0.93 139 | 1.33 126 | 0.98 158 | 0.91 151 | 1.41 180 | 0.87 106 | 1.48 149 | 1.60 178 | 1.85 92 | 1.48 145 | 1.45 150 | 1.68 106 | 1.43 114 | 1.58 139 | 1.50 71 | 0.87 65 | 1.20 116 | 1.01 22 | 0.94 88 | 1.37 174 | 0.92 22 |
BriefMatch [122] | 124.6 | 0.91 100 | 1.10 102 | 0.96 41 | 0.88 102 | 1.29 111 | 0.92 124 | 0.93 164 | 1.12 107 | 0.89 155 | 1.56 180 | 1.56 164 | 2.03 191 | 1.47 82 | 1.44 120 | 1.70 173 | 1.56 191 | 1.59 141 | 1.66 190 | 0.87 65 | 1.20 116 | 1.02 120 | 0.94 88 | 1.29 124 | 0.93 40 |
GraphCuts [14] | 125.8 | 0.95 168 | 1.23 178 | 1.00 147 | 0.91 125 | 1.26 102 | 0.98 158 | 1.00 186 | 1.04 61 | 0.89 155 | 1.49 157 | 1.50 144 | 1.88 156 | 1.46 41 | 1.43 79 | 1.65 32 | 1.39 31 | 1.53 114 | 1.46 28 | 0.89 155 | 1.31 169 | 1.03 155 | 0.97 167 | 1.33 160 | 0.94 151 |
HBpMotionGpu [43] | 126.0 | 0.98 176 | 1.25 180 | 1.04 179 | 1.10 180 | 1.61 190 | 1.05 178 | 0.87 37 | 1.08 90 | 0.86 99 | 1.50 162 | 1.56 164 | 1.90 169 | 1.47 82 | 1.44 120 | 1.67 53 | 1.44 134 | 1.56 133 | 1.52 147 | 0.86 23 | 1.15 48 | 1.01 22 | 0.96 146 | 1.31 143 | 0.95 169 |
TriangleFlow [30] | 126.6 | 0.92 140 | 1.15 150 | 0.98 123 | 0.91 125 | 1.37 137 | 0.88 60 | 0.90 142 | 1.13 111 | 0.87 106 | 1.47 140 | 1.49 132 | 1.88 156 | 1.46 41 | 1.43 79 | 1.66 38 | 1.44 134 | 1.64 158 | 1.50 71 | 0.89 155 | 1.36 174 | 1.03 155 | 0.98 175 | 1.41 186 | 0.94 151 |
HBM-GC [103] | 127.6 | 0.93 146 | 1.13 137 | 1.00 147 | 0.87 94 | 1.26 102 | 0.89 97 | 0.87 37 | 0.96 27 | 0.85 86 | 1.46 121 | 1.44 82 | 1.87 139 | 1.50 179 | 1.47 179 | 1.73 189 | 1.48 171 | 1.88 190 | 1.53 162 | 0.88 128 | 1.17 68 | 1.05 179 | 0.96 146 | 1.27 87 | 0.95 169 |
LocallyOriented [52] | 132.6 | 0.93 146 | 1.15 150 | 1.00 147 | 0.98 161 | 1.50 175 | 0.93 129 | 0.91 151 | 1.20 142 | 0.87 106 | 1.49 157 | 1.54 161 | 1.88 156 | 1.47 82 | 1.44 120 | 1.67 53 | 1.49 179 | 1.60 148 | 1.57 182 | 0.88 128 | 1.23 144 | 1.01 22 | 0.96 146 | 1.32 157 | 0.93 40 |
StereoOF-V1MT [117] | 133.6 | 0.91 100 | 1.19 167 | 0.96 41 | 0.93 139 | 1.41 148 | 0.87 13 | 0.96 179 | 1.42 182 | 0.89 155 | 1.59 184 | 1.63 184 | 1.92 174 | 1.48 145 | 1.46 171 | 1.67 53 | 1.47 165 | 1.65 162 | 1.54 170 | 0.91 176 | 1.40 184 | 1.03 155 | 0.93 47 | 1.26 73 | 0.93 40 |
WRT [146] | 134.6 | 0.90 83 | 1.09 91 | 0.96 41 | 0.92 134 | 1.33 126 | 0.88 60 | 0.96 179 | 1.06 77 | 0.87 106 | 1.46 121 | 1.44 82 | 1.87 139 | 1.49 169 | 1.46 171 | 1.70 173 | 1.48 171 | 2.06 196 | 1.52 147 | 0.95 192 | 2.37 198 | 1.05 179 | 1.00 182 | 1.59 191 | 0.92 22 |
ACK-Prior [27] | 134.8 | 0.89 34 | 1.08 80 | 0.96 41 | 0.85 70 | 1.24 92 | 0.87 13 | 0.93 164 | 1.11 104 | 0.87 106 | 1.46 121 | 1.48 122 | 1.86 125 | 1.51 184 | 1.47 179 | 1.73 189 | 1.49 179 | 1.70 176 | 1.55 177 | 0.91 176 | 1.30 166 | 1.06 186 | 1.03 194 | 1.40 182 | 0.96 175 |
OFRF [132] | 135.2 | 0.97 174 | 1.18 165 | 1.03 176 | 0.98 161 | 1.41 148 | 0.96 145 | 0.89 112 | 1.18 135 | 0.85 86 | 1.45 107 | 1.43 77 | 1.87 139 | 1.48 145 | 1.45 150 | 1.67 53 | 1.47 165 | 1.66 165 | 1.53 162 | 0.89 155 | 1.28 159 | 1.02 120 | 0.96 146 | 1.33 160 | 0.93 40 |
Ad-TV-NDC [36] | 137.2 | 1.03 188 | 1.20 172 | 1.11 187 | 1.10 180 | 1.52 180 | 1.04 174 | 0.88 80 | 1.15 116 | 0.86 99 | 1.53 175 | 1.49 132 | 1.93 175 | 1.49 169 | 1.45 150 | 1.70 173 | 1.46 161 | 1.40 51 | 1.55 177 | 0.87 65 | 1.20 116 | 1.01 22 | 0.95 128 | 1.26 73 | 0.94 151 |
Dynamic MRF [7] | 138.6 | 0.90 83 | 1.16 159 | 0.96 41 | 0.89 112 | 1.44 159 | 0.88 60 | 0.95 177 | 1.53 190 | 0.89 155 | 1.59 184 | 1.68 189 | 1.96 181 | 1.47 82 | 1.45 150 | 1.67 53 | 1.47 165 | 1.97 194 | 1.53 162 | 0.90 171 | 1.47 187 | 1.02 120 | 0.96 146 | 1.34 166 | 0.93 40 |
TV-L1-improved [17] | 139.8 | 0.91 100 | 1.15 150 | 0.98 123 | 0.96 155 | 1.50 175 | 0.89 97 | 0.93 164 | 1.15 116 | 0.88 151 | 1.46 121 | 1.50 144 | 1.87 139 | 1.48 145 | 1.45 150 | 1.68 106 | 1.44 134 | 1.59 141 | 1.52 147 | 0.89 155 | 1.39 182 | 1.02 120 | 0.96 146 | 1.31 143 | 0.94 151 |
TVL1_RVC [175] | 140.3 | 1.00 180 | 1.20 172 | 1.07 184 | 1.15 189 | 1.62 191 | 1.07 181 | 0.89 112 | 1.26 161 | 0.87 106 | 1.52 170 | 1.52 157 | 1.87 139 | 1.48 145 | 1.45 150 | 1.68 106 | 1.44 134 | 1.53 114 | 1.51 120 | 0.88 128 | 1.32 172 | 1.02 120 | 0.94 88 | 1.28 109 | 0.93 40 |
BlockOverlap [61] | 140.5 | 0.96 171 | 1.13 137 | 1.03 176 | 1.00 168 | 1.42 155 | 1.02 171 | 0.89 112 | 1.03 56 | 0.87 106 | 1.52 170 | 1.48 122 | 2.02 190 | 1.50 179 | 1.45 150 | 1.74 192 | 1.49 179 | 1.45 77 | 1.59 185 | 0.88 128 | 1.17 68 | 1.05 179 | 0.94 88 | 1.22 39 | 0.96 175 |
SegOF [10] | 141.0 | 0.93 146 | 1.12 124 | 1.00 147 | 0.95 153 | 1.37 137 | 0.96 145 | 0.97 183 | 1.30 173 | 0.89 155 | 1.49 157 | 1.63 184 | 1.85 92 | 1.48 145 | 1.44 120 | 1.68 106 | 1.44 134 | 1.74 181 | 1.51 120 | 0.91 176 | 1.57 190 | 1.03 155 | 0.94 88 | 1.30 133 | 0.93 40 |
StereoFlow [44] | 141.5 | 1.14 194 | 1.49 197 | 1.12 188 | 1.22 193 | 1.67 193 | 1.07 181 | 0.88 80 | 1.23 156 | 0.85 86 | 1.46 121 | 1.49 132 | 1.86 125 | 1.59 197 | 1.67 196 | 1.70 173 | 1.49 179 | 2.18 198 | 1.50 71 | 0.86 23 | 1.18 82 | 1.01 22 | 1.00 182 | 1.45 187 | 0.93 40 |
AdaConv-v1 [124] | 141.6 | 1.00 180 | 1.21 176 | 1.05 182 | 1.11 182 | 1.44 159 | 1.22 193 | 1.08 193 | 1.43 183 | 1.15 196 | 1.63 189 | 1.69 192 | 1.98 185 | 1.43 33 | 1.37 33 | 1.65 32 | 1.41 43 | 1.33 36 | 1.50 71 | 1.00 195 | 1.25 152 | 1.09 195 | 0.98 175 | 1.18 35 | 1.00 188 |
UnFlow [127] | 144.2 | 0.97 174 | 1.26 183 | 1.02 169 | 1.05 174 | 1.50 175 | 0.97 152 | 0.96 179 | 1.52 188 | 0.89 155 | 1.47 140 | 1.54 161 | 1.84 58 | 1.50 179 | 1.49 187 | 1.69 154 | 1.45 151 | 1.89 192 | 1.49 46 | 0.87 65 | 1.24 147 | 1.01 22 | 1.00 182 | 1.45 187 | 0.93 40 |
Rannacher [23] | 144.7 | 0.91 100 | 1.17 163 | 0.98 123 | 0.96 155 | 1.51 178 | 0.89 97 | 0.93 164 | 1.22 151 | 0.88 151 | 1.46 121 | 1.51 152 | 1.88 156 | 1.48 145 | 1.45 150 | 1.68 106 | 1.45 151 | 1.62 154 | 1.52 147 | 0.89 155 | 1.37 176 | 1.02 120 | 0.96 146 | 1.33 160 | 0.94 151 |
SPSA-learn [13] | 147.2 | 0.94 159 | 1.16 159 | 1.00 147 | 1.00 168 | 1.44 159 | 0.98 158 | 0.95 177 | 1.21 144 | 0.89 155 | 1.50 162 | 1.48 122 | 1.84 58 | 1.48 145 | 1.46 171 | 1.69 154 | 1.42 101 | 1.59 141 | 1.50 71 | 0.94 190 | 2.17 197 | 1.05 179 | 1.00 182 | 1.66 195 | 0.93 40 |
TI-DOFE [24] | 147.6 | 1.07 190 | 1.24 179 | 1.14 191 | 1.25 194 | 1.67 193 | 1.13 190 | 0.96 179 | 1.50 187 | 0.89 155 | 1.59 184 | 1.59 174 | 1.89 164 | 1.47 82 | 1.45 150 | 1.68 106 | 1.41 43 | 1.43 68 | 1.49 46 | 0.88 128 | 1.28 159 | 1.02 120 | 0.97 167 | 1.31 143 | 0.94 151 |
Horn & Schunck [3] | 147.8 | 0.94 159 | 1.17 163 | 1.00 147 | 1.08 179 | 1.57 187 | 1.00 166 | 0.98 184 | 1.46 184 | 0.91 170 | 1.55 178 | 1.58 172 | 1.87 139 | 1.48 145 | 1.45 150 | 1.69 154 | 1.41 43 | 1.44 71 | 1.50 71 | 0.89 155 | 1.31 169 | 1.02 120 | 0.96 146 | 1.31 143 | 0.94 151 |
Filter Flow [19] | 149.2 | 0.94 159 | 1.15 150 | 1.00 147 | 1.05 174 | 1.49 169 | 1.06 180 | 0.89 112 | 1.15 116 | 0.87 106 | 1.52 170 | 1.49 132 | 1.93 175 | 1.49 169 | 1.45 150 | 1.71 181 | 1.44 134 | 1.49 95 | 1.52 147 | 0.88 128 | 1.27 157 | 1.02 120 | 0.98 175 | 1.33 160 | 0.96 175 |
NL-TV-NCC [25] | 152.5 | 0.91 100 | 1.13 137 | 0.96 41 | 0.89 112 | 1.37 137 | 0.88 60 | 0.92 160 | 1.21 144 | 0.87 106 | 1.53 175 | 1.59 174 | 1.96 181 | 1.53 192 | 1.47 179 | 1.83 198 | 1.46 161 | 1.72 179 | 1.52 147 | 0.91 176 | 1.30 166 | 1.07 189 | 1.01 191 | 1.37 174 | 0.97 180 |
WOLF_ROB [144] | 155.2 | 0.96 171 | 1.35 190 | 1.00 147 | 1.00 168 | 1.49 169 | 0.92 124 | 0.93 164 | 1.21 144 | 0.87 106 | 1.50 162 | 1.61 180 | 1.93 175 | 1.49 169 | 1.47 179 | 1.68 106 | 1.50 184 | 1.86 189 | 1.55 177 | 0.89 155 | 1.39 182 | 1.02 120 | 0.96 146 | 1.39 179 | 0.93 40 |
Bartels [41] | 159.6 | 0.93 146 | 1.20 172 | 1.00 147 | 0.91 125 | 1.38 142 | 0.95 141 | 0.89 112 | 1.15 116 | 0.89 155 | 1.54 177 | 1.57 167 | 2.06 194 | 1.53 192 | 1.46 171 | 1.83 198 | 1.67 197 | 1.67 170 | 1.79 198 | 0.88 128 | 1.19 98 | 1.07 189 | 0.98 175 | 1.30 133 | 1.00 188 |
SILK [80] | 163.8 | 1.00 180 | 1.27 186 | 1.05 182 | 1.14 185 | 1.60 189 | 1.04 174 | 1.02 187 | 1.52 188 | 0.93 172 | 1.60 187 | 1.61 180 | 1.98 185 | 1.49 169 | 1.46 171 | 1.69 154 | 1.52 187 | 1.53 114 | 1.62 189 | 0.88 128 | 1.28 159 | 1.03 155 | 0.95 128 | 1.31 143 | 0.93 40 |
GroupFlow [9] | 166.6 | 1.00 180 | 1.37 192 | 1.04 179 | 1.02 172 | 1.48 166 | 1.00 166 | 1.05 190 | 1.60 191 | 0.96 178 | 1.52 170 | 1.63 184 | 1.87 139 | 1.52 189 | 1.53 195 | 1.69 154 | 1.48 171 | 2.05 195 | 1.52 147 | 0.89 155 | 1.38 180 | 1.02 120 | 0.98 175 | 1.47 189 | 0.92 22 |
H+S_RVC [176] | 167.0 | 0.98 176 | 1.20 172 | 1.03 176 | 1.13 184 | 1.49 169 | 1.07 181 | 1.13 194 | 1.99 195 | 1.05 194 | 1.72 193 | 1.62 183 | 1.91 173 | 1.49 169 | 1.47 179 | 1.69 154 | 1.43 114 | 1.64 158 | 1.49 46 | 0.92 182 | 1.45 186 | 1.04 171 | 0.98 175 | 1.30 133 | 0.94 151 |
Learning Flow [11] | 171.2 | 0.93 146 | 1.25 180 | 1.00 147 | 0.99 165 | 1.52 180 | 0.93 129 | 0.98 184 | 1.48 185 | 0.89 155 | 1.58 182 | 1.65 188 | 1.97 183 | 1.52 189 | 1.50 188 | 1.73 189 | 1.47 165 | 1.64 158 | 1.54 170 | 0.89 155 | 1.34 173 | 1.03 155 | 1.01 191 | 1.40 182 | 0.95 169 |
Heeger++ [102] | 172.4 | 1.00 180 | 1.37 192 | 1.01 166 | 1.07 177 | 1.45 162 | 0.99 165 | 1.24 196 | 2.05 196 | 1.01 189 | 1.69 190 | 1.68 189 | 2.00 187 | 1.51 184 | 1.51 192 | 1.70 173 | 1.48 171 | 1.71 177 | 1.53 162 | 0.92 182 | 1.49 188 | 1.03 155 | 0.96 146 | 1.38 178 | 0.93 40 |
SLK [47] | 172.5 | 1.05 189 | 1.26 183 | 1.13 190 | 1.15 189 | 1.51 178 | 1.10 185 | 1.07 191 | 1.62 192 | 0.94 175 | 1.73 194 | 1.79 194 | 2.01 189 | 1.50 179 | 1.50 188 | 1.66 38 | 1.45 151 | 1.69 174 | 1.51 120 | 0.93 184 | 1.57 190 | 1.04 171 | 0.97 167 | 1.39 179 | 0.94 151 |
2bit-BM-tele [96] | 172.9 | 0.95 168 | 1.19 167 | 1.02 169 | 1.00 168 | 1.54 184 | 1.00 166 | 0.91 151 | 1.10 98 | 0.89 155 | 1.56 180 | 1.59 174 | 2.05 193 | 1.53 192 | 1.48 185 | 1.79 195 | 1.62 195 | 1.88 190 | 1.70 192 | 0.97 193 | 1.95 195 | 1.12 197 | 0.97 167 | 1.27 87 | 1.00 188 |
FFV1MT [104] | 180.8 | 0.98 176 | 1.35 190 | 1.02 169 | 1.14 185 | 1.49 169 | 1.10 185 | 1.22 195 | 2.34 197 | 1.03 192 | 1.69 190 | 1.68 189 | 2.00 187 | 1.51 184 | 1.50 188 | 1.71 181 | 1.48 171 | 1.57 134 | 1.54 170 | 0.93 184 | 1.51 189 | 1.03 155 | 1.02 193 | 1.51 190 | 0.96 175 |
Adaptive flow [45] | 181.2 | 1.12 193 | 1.32 188 | 1.19 193 | 1.26 195 | 1.66 192 | 1.25 195 | 0.94 174 | 1.21 144 | 0.93 172 | 1.61 188 | 1.57 167 | 2.04 192 | 1.53 192 | 1.51 192 | 1.72 185 | 1.49 179 | 1.91 193 | 1.54 170 | 0.90 171 | 1.25 152 | 1.06 186 | 1.00 182 | 1.37 174 | 0.97 180 |
HCIC-L [97] | 182.7 | 1.30 198 | 1.47 196 | 1.41 198 | 1.14 185 | 1.41 148 | 1.24 194 | 1.03 188 | 1.28 170 | 0.93 172 | 1.58 182 | 1.58 172 | 1.93 175 | 1.52 189 | 1.48 185 | 1.74 192 | 1.50 184 | 1.69 174 | 1.56 181 | 0.91 176 | 1.31 169 | 1.07 189 | 1.10 196 | 1.60 192 | 0.97 180 |
FOLKI [16] | 184.6 | 1.20 195 | 1.37 192 | 1.32 196 | 1.27 196 | 1.69 196 | 1.18 192 | 1.04 189 | 1.76 194 | 1.00 187 | 1.81 196 | 1.79 194 | 2.23 197 | 1.51 184 | 1.51 192 | 1.70 173 | 1.48 171 | 1.55 128 | 1.57 182 | 0.91 176 | 1.42 185 | 1.05 179 | 1.00 182 | 1.37 174 | 0.97 180 |
PGAM+LK [55] | 186.0 | 1.11 192 | 1.44 195 | 1.17 192 | 1.14 185 | 1.55 185 | 1.12 189 | 1.07 191 | 1.65 193 | 0.96 178 | 1.79 195 | 1.84 196 | 2.20 196 | 1.51 184 | 1.50 188 | 1.72 185 | 1.53 189 | 1.80 185 | 1.60 186 | 0.90 171 | 1.37 176 | 1.04 171 | 1.00 182 | 1.39 179 | 0.97 180 |
Pyramid LK [2] | 186.8 | 1.25 197 | 1.32 188 | 1.38 197 | 1.39 197 | 1.68 195 | 1.35 196 | 1.49 197 | 1.38 179 | 1.22 197 | 2.22 198 | 3.01 198 | 2.39 198 | 1.58 196 | 1.67 196 | 1.69 154 | 1.47 165 | 1.60 148 | 1.55 177 | 0.93 184 | 1.60 193 | 1.04 171 | 1.09 195 | 1.90 197 | 0.95 169 |
Periodicity [79] | 196.2 | 1.21 196 | 1.59 198 | 1.29 195 | 1.65 198 | 1.80 198 | 1.47 198 | 1.61 198 | 2.64 198 | 1.37 198 | 1.90 197 | 3.00 197 | 2.16 195 | 1.68 198 | 1.80 198 | 1.80 196 | 1.71 198 | 2.09 197 | 1.78 197 | 0.94 190 | 1.72 194 | 1.06 186 | 1.15 197 | 1.71 196 | 1.04 197 |
AVG_FLOW_ROB [137] | 198.9 | 2.86 199 | 4.15 199 | 2.20 199 | 2.81 199 | 2.71 199 | 2.41 199 | 3.73 199 | 4.82 199 | 2.61 199 | 3.99 199 | 6.82 199 | 3.00 199 | 2.04 199 | 2.41 199 | 1.81 197 | 2.39 199 | 5.64 199 | 1.80 199 | 1.63 199 | 2.56 199 | 1.19 198 | 2.34 199 | 2.77 199 | 2.06 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |