Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
Average normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
EAFI [186] | 3.4 | 0.50 5 | 0.46 1 | 0.58 8 | 0.46 1 | 0.53 1 | 0.51 1 | 0.42 1 | 0.50 1 | 0.53 1 | 0.79 1 | 0.71 1 | 1.04 1 | 0.85 7 | 0.83 13 | 0.95 1 | 0.81 1 | 0.74 4 | 0.89 1 | 0.58 7 | 0.95 16 | 0.59 1 | 0.57 4 | 0.73 3 | 0.59 1 |
SoftsplatAug [190] | 4.1 | 0.49 4 | 0.47 2 | 0.56 6 | 0.47 2 | 0.58 2 | 0.53 2 | 0.51 4 | 0.61 7 | 0.57 3 | 0.81 3 | 0.73 2 | 1.07 4 | 0.82 1 | 0.78 2 | 0.97 2 | 0.81 1 | 0.73 2 | 0.90 4 | 0.59 11 | 0.95 16 | 0.62 14 | 0.55 2 | 0.70 2 | 0.59 1 |
SoftSplat [169] | 4.2 | 0.53 10 | 0.51 4 | 0.61 14 | 0.52 5 | 0.68 6 | 0.55 3 | 0.52 5 | 0.53 2 | 0.58 6 | 0.80 2 | 0.73 2 | 1.06 2 | 0.85 7 | 0.81 6 | 0.98 6 | 0.81 1 | 0.73 2 | 0.90 4 | 0.56 2 | 0.86 2 | 0.60 2 | 0.57 4 | 0.73 3 | 0.59 1 |
DistillNet [184] | 7.1 | 0.52 8 | 0.52 6 | 0.60 12 | 0.50 3 | 0.62 3 | 0.55 3 | 0.52 5 | 0.58 5 | 0.57 3 | 0.81 3 | 0.75 4 | 1.07 4 | 0.84 5 | 0.81 6 | 0.97 2 | 0.85 11 | 0.90 19 | 0.91 9 | 0.57 4 | 0.88 3 | 0.61 5 | 0.65 19 | 0.88 21 | 0.60 7 |
IFRNet [193] | 7.5 | 0.53 10 | 0.51 4 | 0.62 17 | 0.51 4 | 0.63 4 | 0.57 5 | 0.43 2 | 0.54 3 | 0.54 2 | 0.83 5 | 0.76 5 | 1.13 14 | 0.87 14 | 0.83 13 | 1.03 19 | 0.84 8 | 0.78 6 | 0.92 14 | 0.56 2 | 0.88 3 | 0.61 5 | 0.58 8 | 0.75 7 | 0.60 7 |
IDIAL [192] | 11.9 | 0.52 8 | 0.56 8 | 0.58 8 | 0.59 11 | 0.78 17 | 0.58 6 | 0.61 8 | 0.69 10 | 0.65 11 | 0.85 7 | 0.81 9 | 1.08 6 | 0.88 18 | 0.88 25 | 1.00 11 | 0.83 5 | 0.82 8 | 0.90 4 | 0.62 23 | 1.01 27 | 0.62 14 | 0.63 11 | 0.84 13 | 0.61 18 |
BMBC [171] | 13.2 | 0.57 19 | 0.57 10 | 0.64 24 | 0.58 9 | 0.73 8 | 0.64 98 | 0.77 22 | 0.78 22 | 0.71 21 | 0.84 6 | 0.77 7 | 1.09 7 | 0.85 7 | 0.81 6 | 0.98 6 | 0.82 4 | 0.77 5 | 0.91 9 | 0.58 7 | 0.93 12 | 0.60 2 | 0.56 3 | 0.73 3 | 0.59 1 |
SepConv++ [185] | 16.8 | 0.58 22 | 0.67 25 | 0.64 24 | 0.56 7 | 0.73 8 | 0.59 13 | 0.95 50 | 0.70 14 | 1.30 101 | 0.87 10 | 0.87 17 | 1.11 9 | 0.85 7 | 0.81 6 | 1.00 11 | 0.84 8 | 0.88 14 | 0.89 1 | 0.59 11 | 0.97 21 | 0.61 5 | 0.59 9 | 0.79 9 | 0.59 1 |
EDSC [173] | 17.7 | 0.53 10 | 0.60 16 | 0.59 11 | 0.58 9 | 0.76 11 | 0.60 39 | 0.63 9 | 0.76 20 | 0.69 16 | 0.88 18 | 0.90 23 | 1.13 14 | 0.88 18 | 0.85 19 | 1.02 17 | 0.91 23 | 1.09 33 | 0.92 14 | 0.59 11 | 0.95 16 | 0.64 19 | 0.64 16 | 0.85 16 | 0.63 26 |
MV_VFI [183] | 18.5 | 0.57 19 | 0.62 18 | 0.64 24 | 0.60 17 | 0.78 17 | 0.62 65 | 0.79 26 | 0.83 27 | 0.76 29 | 0.87 10 | 0.87 17 | 1.11 9 | 0.87 14 | 0.82 11 | 1.01 13 | 0.86 14 | 0.89 17 | 0.92 14 | 0.59 11 | 0.96 20 | 0.61 5 | 0.65 19 | 0.88 21 | 0.60 7 |
TC-GAN [166] | 18.8 | 0.57 19 | 0.62 18 | 0.64 24 | 0.60 17 | 0.78 17 | 0.63 85 | 0.78 24 | 0.81 25 | 0.75 25 | 0.87 10 | 0.87 17 | 1.11 9 | 0.86 11 | 0.82 11 | 1.01 13 | 0.86 14 | 0.88 14 | 0.92 14 | 0.59 11 | 0.95 16 | 0.61 5 | 0.65 19 | 0.89 25 | 0.60 7 |
STAR-Net [164] | 19.3 | 0.56 17 | 0.56 8 | 0.65 79 | 0.65 58 | 0.85 43 | 0.62 65 | 0.70 15 | 0.69 10 | 0.76 29 | 0.87 10 | 0.82 11 | 1.06 2 | 0.83 3 | 0.79 3 | 0.97 2 | 0.83 5 | 0.83 9 | 0.90 4 | 0.63 26 | 1.09 32 | 0.61 5 | 0.61 10 | 0.80 10 | 0.60 7 |
DAIN [152] | 20.2 | 0.58 22 | 0.63 20 | 0.65 79 | 0.60 17 | 0.79 23 | 0.62 65 | 0.69 14 | 0.73 18 | 0.68 15 | 0.86 9 | 0.86 16 | 1.10 8 | 0.87 14 | 0.83 13 | 1.02 17 | 0.85 11 | 0.86 13 | 0.92 14 | 0.59 11 | 0.97 21 | 0.61 5 | 0.66 25 | 0.90 27 | 0.60 7 |
FGME [158] | 20.8 | 0.46 1 | 0.49 3 | 0.51 1 | 0.63 36 | 0.78 17 | 0.64 98 | 0.60 7 | 0.65 9 | 0.67 14 | 0.85 7 | 0.76 5 | 1.15 17 | 0.82 1 | 0.77 1 | 0.99 9 | 0.86 14 | 0.81 7 | 0.95 23 | 0.61 22 | 0.93 12 | 0.70 53 | 0.63 11 | 0.83 11 | 0.65 120 |
STSR [170] | 22.6 | 0.54 13 | 0.58 13 | 0.61 14 | 0.56 7 | 0.66 5 | 0.68 133 | 0.65 11 | 0.72 17 | 0.74 24 | 0.87 10 | 0.83 14 | 1.15 17 | 0.91 25 | 0.89 27 | 1.04 21 | 0.93 27 | 1.08 31 | 0.95 23 | 0.62 23 | 1.04 28 | 0.63 18 | 0.63 11 | 0.84 13 | 0.61 18 |
AdaCoF [165] | 23.2 | 0.60 39 | 0.68 27 | 0.67 144 | 0.59 11 | 0.76 11 | 0.60 39 | 0.84 30 | 0.71 16 | 0.94 60 | 0.92 23 | 0.89 21 | 1.11 9 | 0.90 23 | 0.85 19 | 1.06 25 | 0.84 8 | 0.85 11 | 0.90 4 | 0.58 7 | 0.93 12 | 0.61 5 | 0.57 4 | 0.75 7 | 0.59 1 |
DSepConv [162] | 28.0 | 0.58 22 | 0.72 34 | 0.62 17 | 0.63 36 | 0.82 32 | 0.65 112 | 0.72 18 | 0.70 14 | 0.75 25 | 0.96 53 | 0.97 32 | 1.15 17 | 0.87 14 | 0.83 13 | 1.04 21 | 0.89 21 | 1.00 25 | 0.93 20 | 0.57 4 | 0.89 5 | 0.64 19 | 0.65 19 | 0.87 20 | 0.64 78 |
MEMC-Net+ [160] | 29.0 | 0.59 26 | 0.65 22 | 0.65 79 | 0.64 45 | 0.79 23 | 0.70 145 | 0.80 27 | 0.77 21 | 0.96 62 | 0.88 18 | 0.83 14 | 1.12 13 | 0.88 18 | 0.85 19 | 1.01 13 | 0.85 11 | 0.88 14 | 0.91 9 | 0.64 29 | 1.13 37 | 0.62 14 | 0.63 11 | 0.86 18 | 0.60 7 |
ProBoost-Net [191] | 29.5 | 0.48 2 | 0.58 13 | 0.52 2 | 0.69 87 | 0.90 67 | 0.64 98 | 0.67 12 | 0.69 10 | 0.70 18 | 0.90 20 | 0.87 17 | 1.19 27 | 0.89 22 | 0.84 18 | 1.08 26 | 0.92 24 | 0.95 21 | 0.99 26 | 0.59 11 | 0.90 7 | 0.66 29 | 0.64 16 | 0.85 16 | 0.65 120 |
FeFlow [167] | 29.6 | 0.51 7 | 0.58 13 | 0.56 6 | 0.66 62 | 0.84 37 | 0.67 129 | 0.70 15 | 0.69 10 | 0.86 46 | 0.87 10 | 0.82 11 | 1.13 14 | 0.84 5 | 0.80 4 | 0.99 9 | 0.86 14 | 0.84 10 | 0.93 20 | 0.64 29 | 0.98 23 | 0.71 64 | 0.67 26 | 0.90 27 | 0.65 120 |
MPRN [151] | 32.2 | 0.59 26 | 0.70 30 | 0.64 24 | 0.66 62 | 0.89 60 | 0.64 98 | 0.77 22 | 1.07 33 | 0.64 8 | 0.93 26 | 0.93 28 | 1.17 23 | 0.95 31 | 0.91 31 | 1.12 30 | 0.96 31 | 1.04 29 | 1.01 29 | 0.60 19 | 0.98 23 | 0.65 25 | 0.72 32 | 1.02 33 | 0.62 21 |
ADC [161] | 32.6 | 0.61 54 | 0.68 27 | 0.67 144 | 0.62 28 | 0.78 17 | 0.66 120 | 0.84 30 | 0.81 25 | 0.82 38 | 0.96 53 | 0.93 28 | 1.15 17 | 0.90 23 | 0.86 24 | 1.05 24 | 0.92 24 | 1.12 34 | 0.91 9 | 0.57 4 | 0.92 10 | 0.61 5 | 0.64 16 | 0.88 21 | 0.60 7 |
GDCN [172] | 34.4 | 0.54 13 | 0.65 22 | 0.58 8 | 0.72 108 | 0.94 84 | 0.64 98 | 0.63 9 | 0.79 23 | 0.69 16 | 1.03 127 | 0.90 23 | 1.18 24 | 0.93 28 | 0.93 32 | 1.04 21 | 0.90 22 | 1.01 27 | 0.94 22 | 0.59 11 | 0.94 15 | 0.64 19 | 0.67 26 | 0.93 29 | 0.61 18 |
DAI [168] | 39.1 | 0.65 140 | 0.52 6 | 0.79 191 | 0.64 45 | 0.82 32 | 0.66 120 | 0.47 3 | 0.56 4 | 0.57 3 | 0.91 21 | 0.77 7 | 1.41 181 | 0.88 18 | 0.85 19 | 0.98 6 | 0.87 19 | 0.96 22 | 0.91 9 | 0.60 19 | 0.99 25 | 0.60 2 | 0.65 19 | 0.88 21 | 0.60 7 |
MAF-net [163] | 40.8 | 0.48 2 | 0.61 17 | 0.52 2 | 0.65 58 | 0.86 48 | 0.62 65 | 0.67 12 | 0.86 29 | 0.78 34 | 0.96 53 | 0.92 27 | 1.20 32 | 0.93 28 | 0.89 27 | 1.08 26 | 0.95 29 | 1.08 31 | 0.99 26 | 0.67 37 | 1.04 28 | 0.83 144 | 0.65 19 | 0.86 18 | 0.69 187 |
CyclicGen [149] | 41.1 | 0.64 132 | 0.63 20 | 0.73 186 | 0.67 72 | 0.73 8 | 0.88 192 | 0.72 18 | 0.84 28 | 0.78 34 | 0.95 43 | 0.89 21 | 1.24 88 | 0.91 25 | 0.85 19 | 1.09 28 | 0.87 19 | 0.67 1 | 1.00 28 | 0.53 1 | 0.71 1 | 0.62 14 | 0.52 1 | 0.64 1 | 0.60 7 |
FRUCnet [153] | 41.1 | 0.70 170 | 0.71 32 | 0.80 192 | 0.64 45 | 0.80 27 | 0.69 140 | 0.78 24 | 0.75 19 | 0.95 61 | 0.91 21 | 0.91 26 | 1.15 17 | 0.86 11 | 0.83 13 | 1.01 13 | 0.86 14 | 0.89 17 | 0.92 14 | 0.58 7 | 0.89 5 | 0.64 19 | 0.63 11 | 0.83 11 | 0.64 78 |
CtxSyn [134] | 41.9 | 0.50 5 | 0.57 10 | 0.55 5 | 0.55 6 | 0.71 7 | 0.59 13 | 1.42 140 | 0.64 8 | 2.08 157 | 0.87 10 | 0.82 11 | 1.18 24 | 0.95 31 | 0.90 29 | 1.13 32 | 0.94 28 | 0.92 20 | 1.02 30 | 0.68 38 | 1.00 26 | 0.83 144 | 0.67 26 | 0.89 25 | 0.68 181 |
PMMST [112] | 49.2 | 0.59 26 | 0.73 37 | 0.64 24 | 0.64 45 | 0.85 43 | 0.59 13 | 0.99 55 | 1.69 82 | 1.05 73 | 0.97 68 | 1.14 114 | 1.23 70 | 0.99 38 | 0.96 37 | 1.14 34 | 1.03 41 | 1.29 42 | 1.04 41 | 0.71 51 | 1.33 57 | 0.67 36 | 0.77 37 | 1.10 38 | 0.64 78 |
SuperSlomo [130] | 49.7 | 0.59 26 | 0.69 29 | 0.64 24 | 0.72 108 | 0.91 72 | 0.75 166 | 0.74 20 | 1.01 32 | 0.71 21 | 0.98 81 | 0.95 30 | 1.23 70 | 0.94 30 | 0.90 29 | 1.12 30 | 0.96 31 | 0.98 23 | 1.04 41 | 0.60 19 | 0.90 7 | 0.71 64 | 0.69 30 | 0.93 29 | 0.68 181 |
OFRI [154] | 50.8 | 0.60 39 | 0.57 10 | 0.69 168 | 0.67 72 | 0.81 30 | 0.79 177 | 0.70 15 | 0.59 6 | 0.83 42 | 0.87 10 | 0.81 9 | 1.15 17 | 0.86 11 | 0.81 6 | 1.03 19 | 0.92 24 | 0.99 24 | 0.98 25 | 0.79 91 | 0.90 7 | 1.18 183 | 0.67 26 | 0.84 13 | 0.78 196 |
FLAVR [188] | 50.9 | 0.67 156 | 0.70 30 | 0.71 177 | 0.71 100 | 0.78 17 | 0.76 169 | 0.76 21 | 0.80 24 | 0.75 25 | 1.24 181 | 1.28 160 | 1.23 70 | 0.83 3 | 0.80 4 | 0.97 2 | 0.83 5 | 0.85 11 | 0.89 1 | 0.62 23 | 0.92 10 | 0.64 19 | 0.57 4 | 0.73 3 | 0.60 7 |
MS-PFT [159] | 51.4 | 0.56 17 | 0.67 25 | 0.61 14 | 0.69 87 | 0.90 67 | 0.70 145 | 0.82 28 | 0.92 30 | 0.89 50 | 0.95 43 | 1.00 36 | 1.18 24 | 0.91 25 | 0.88 25 | 1.10 29 | 0.95 29 | 1.00 25 | 1.03 34 | 0.72 57 | 1.05 30 | 0.92 161 | 0.72 32 | 0.98 32 | 0.70 189 |
NN-field [71] | 53.2 | 0.59 26 | 0.77 49 | 0.64 24 | 0.59 11 | 0.77 15 | 0.58 6 | 1.09 79 | 1.77 93 | 1.16 90 | 1.00 105 | 1.18 130 | 1.26 113 | 0.98 34 | 0.95 34 | 1.14 34 | 1.08 62 | 1.46 70 | 1.05 55 | 0.68 38 | 1.26 47 | 0.70 53 | 0.78 41 | 1.12 42 | 0.63 26 |
MDP-Flow2 [68] | 55.1 | 0.59 26 | 0.72 34 | 0.63 19 | 0.62 28 | 0.85 43 | 0.58 6 | 1.24 114 | 2.52 148 | 1.61 129 | 0.94 30 | 1.05 61 | 1.24 88 | 0.98 34 | 0.96 37 | 1.16 71 | 1.09 71 | 1.49 76 | 1.05 55 | 0.70 48 | 1.32 55 | 0.68 41 | 0.78 41 | 1.12 42 | 0.63 26 |
GMFlow_RVC [196] | 56.1 | 0.60 39 | 0.81 79 | 0.64 24 | 0.61 23 | 0.81 30 | 0.59 13 | 0.99 55 | 1.88 106 | 1.15 89 | 0.93 26 | 1.00 36 | 1.22 53 | 1.00 46 | 0.98 45 | 1.16 71 | 1.06 52 | 1.41 59 | 1.03 34 | 0.89 131 | 1.86 137 | 0.75 101 | 0.77 37 | 1.11 40 | 0.62 21 |
SepConv-v1 [125] | 59.2 | 0.54 13 | 0.81 79 | 0.54 4 | 0.67 72 | 0.91 72 | 0.63 85 | 1.07 76 | 1.18 35 | 1.07 77 | 1.03 127 | 1.04 57 | 1.28 138 | 0.99 38 | 0.96 37 | 1.14 34 | 0.96 31 | 1.01 27 | 1.02 30 | 0.68 38 | 1.15 39 | 0.76 106 | 0.70 31 | 0.96 31 | 0.66 144 |
VCN_RVC [178] | 59.6 | 0.64 132 | 0.96 156 | 0.64 24 | 0.62 28 | 0.84 37 | 0.59 13 | 1.09 79 | 2.07 121 | 1.19 95 | 0.95 43 | 1.05 61 | 1.22 53 | 1.00 46 | 0.99 53 | 1.16 71 | 1.04 44 | 1.34 48 | 1.02 30 | 0.71 51 | 1.33 57 | 0.69 45 | 0.83 58 | 1.20 60 | 0.63 26 |
CoT-AMFlow [174] | 60.6 | 0.59 26 | 0.73 37 | 0.64 24 | 0.62 28 | 0.85 43 | 0.58 6 | 1.27 120 | 2.62 154 | 1.62 132 | 0.95 43 | 1.08 73 | 1.22 53 | 0.99 38 | 0.96 37 | 1.16 71 | 1.12 88 | 1.58 99 | 1.05 55 | 0.72 57 | 1.37 65 | 0.68 41 | 0.79 44 | 1.12 42 | 0.64 78 |
TOF-M [150] | 64.2 | 0.55 16 | 0.66 24 | 0.60 12 | 0.72 108 | 0.95 88 | 0.71 155 | 0.92 44 | 0.92 30 | 1.08 78 | 0.96 53 | 0.90 23 | 1.24 88 | 0.97 33 | 0.94 33 | 1.14 34 | 0.98 34 | 1.06 30 | 1.05 55 | 0.72 57 | 1.18 42 | 0.83 144 | 0.90 86 | 1.30 84 | 0.70 189 |
NNF-Local [75] | 64.8 | 0.58 22 | 0.71 32 | 0.63 19 | 0.59 11 | 0.76 11 | 0.58 6 | 1.21 103 | 2.31 135 | 1.51 124 | 0.98 81 | 1.13 105 | 1.25 99 | 0.98 34 | 0.95 34 | 1.14 34 | 1.13 100 | 1.61 110 | 1.07 80 | 0.75 76 | 1.45 83 | 0.88 155 | 0.77 37 | 1.10 38 | 0.63 26 |
CombBMOF [111] | 65.2 | 0.62 77 | 0.80 70 | 0.65 79 | 0.63 36 | 0.86 48 | 0.59 13 | 1.11 83 | 2.06 120 | 1.19 95 | 1.00 105 | 1.14 114 | 1.28 138 | 1.02 58 | 1.02 62 | 1.15 46 | 1.08 62 | 1.43 62 | 1.04 41 | 0.71 51 | 1.33 57 | 0.70 53 | 0.75 34 | 1.06 35 | 0.63 26 |
ALD-Flow [66] | 65.9 | 0.62 77 | 0.81 79 | 0.66 121 | 0.70 93 | 0.99 100 | 0.62 65 | 0.87 34 | 1.28 41 | 0.65 11 | 0.94 30 | 1.01 40 | 1.21 39 | 1.09 99 | 1.12 99 | 1.54 126 | 1.03 41 | 1.24 39 | 1.07 80 | 0.64 29 | 1.12 34 | 0.65 25 | 0.97 126 | 1.44 127 | 0.63 26 |
LME [70] | 69.2 | 0.59 26 | 0.72 34 | 0.64 24 | 0.66 62 | 0.90 67 | 0.62 65 | 0.99 55 | 1.78 95 | 0.92 57 | 0.96 53 | 1.09 82 | 1.24 88 | 1.20 160 | 1.30 161 | 1.70 170 | 1.12 88 | 1.57 96 | 1.05 55 | 0.64 29 | 1.12 34 | 0.68 41 | 0.79 44 | 1.14 48 | 0.63 26 |
DeepFlow [85] | 69.2 | 0.62 77 | 0.84 102 | 0.65 79 | 0.74 120 | 1.04 123 | 0.66 120 | 0.86 33 | 1.33 44 | 0.65 11 | 0.99 97 | 1.02 44 | 1.23 70 | 1.04 70 | 1.05 71 | 1.16 71 | 1.02 38 | 1.23 38 | 1.05 55 | 0.63 26 | 1.07 31 | 0.65 25 | 0.96 117 | 1.43 120 | 0.64 78 |
IROF++ [58] | 71.2 | 0.59 26 | 0.74 40 | 0.64 24 | 0.65 58 | 0.89 60 | 0.59 13 | 1.15 90 | 1.71 85 | 1.17 92 | 0.92 23 | 0.96 31 | 1.21 39 | 1.17 127 | 1.26 129 | 1.69 149 | 1.11 79 | 1.54 85 | 1.04 41 | 0.68 38 | 1.23 43 | 0.70 53 | 1.07 177 | 1.62 180 | 0.63 26 |
FMOF [92] | 72.7 | 0.62 77 | 0.79 64 | 0.65 79 | 0.63 36 | 0.84 37 | 0.59 13 | 1.32 126 | 2.09 123 | 1.41 114 | 0.99 97 | 1.08 73 | 1.26 113 | 1.00 46 | 0.98 45 | 1.14 34 | 1.08 62 | 1.44 63 | 1.04 41 | 0.68 38 | 1.26 47 | 0.67 36 | 1.07 177 | 1.61 177 | 0.63 26 |
PH-Flow [99] | 73.5 | 0.60 39 | 0.77 49 | 0.64 24 | 0.61 23 | 0.82 32 | 0.59 13 | 1.26 118 | 2.55 152 | 1.55 125 | 0.94 30 | 1.03 49 | 1.21 39 | 0.99 38 | 0.98 45 | 1.17 84 | 1.22 153 | 1.86 165 | 1.13 146 | 0.74 73 | 1.42 78 | 0.75 101 | 0.82 53 | 1.19 56 | 0.64 78 |
DeepFlow2 [106] | 74.6 | 0.63 113 | 0.86 112 | 0.65 79 | 0.73 118 | 1.03 117 | 0.63 85 | 0.85 32 | 1.35 49 | 0.64 8 | 0.99 97 | 1.04 57 | 1.22 53 | 1.05 77 | 1.07 81 | 1.18 86 | 0.99 35 | 1.14 35 | 1.03 34 | 0.66 36 | 1.17 41 | 0.68 41 | 0.98 130 | 1.45 130 | 0.66 144 |
RAFT-it+_RVC [198] | 76.0 | 0.61 54 | 0.85 107 | 0.63 19 | 0.60 17 | 0.80 27 | 0.58 6 | 0.89 38 | 1.50 65 | 0.84 44 | 0.94 30 | 1.03 49 | 1.23 70 | 1.00 46 | 0.98 45 | 1.15 46 | 1.33 184 | 1.81 157 | 1.36 192 | 0.87 129 | 1.79 130 | 0.94 165 | 0.84 63 | 1.22 64 | 0.64 78 |
HCFN [157] | 76.7 | 0.61 54 | 0.85 107 | 0.64 24 | 0.66 62 | 0.93 81 | 0.60 39 | 1.03 63 | 1.76 91 | 0.99 66 | 0.96 53 | 1.09 82 | 1.23 70 | 1.00 46 | 0.99 53 | 1.16 71 | 1.17 124 | 1.45 66 | 1.19 173 | 0.83 113 | 1.66 114 | 0.74 87 | 0.90 86 | 1.32 89 | 0.63 26 |
IROF-TV [53] | 77.5 | 0.62 77 | 0.84 102 | 0.65 79 | 0.67 72 | 0.92 77 | 0.60 39 | 0.92 44 | 1.49 62 | 0.79 37 | 0.94 30 | 1.02 44 | 1.22 53 | 1.18 138 | 1.28 145 | 1.70 170 | 1.12 88 | 1.58 99 | 1.05 55 | 0.79 91 | 1.57 95 | 0.70 53 | 0.85 66 | 1.24 67 | 0.64 78 |
CLG-TV [48] | 77.6 | 0.63 113 | 0.86 112 | 0.66 121 | 0.81 148 | 1.12 153 | 0.66 120 | 0.96 51 | 1.43 56 | 0.96 62 | 0.97 68 | 1.03 49 | 1.25 99 | 1.06 87 | 1.08 89 | 1.15 46 | 1.02 38 | 1.25 40 | 1.04 41 | 0.63 26 | 1.09 32 | 0.66 29 | 0.97 126 | 1.45 130 | 0.63 26 |
Aniso. Huber-L1 [22] | 78.8 | 0.62 77 | 0.80 70 | 0.66 121 | 0.84 156 | 1.13 156 | 0.66 120 | 1.03 63 | 1.44 57 | 0.93 58 | 0.97 68 | 1.03 49 | 1.26 113 | 1.06 87 | 1.09 90 | 1.15 46 | 1.08 62 | 1.46 70 | 1.03 34 | 0.64 29 | 1.12 34 | 0.66 29 | 0.99 135 | 1.48 141 | 0.63 26 |
OAR-Flow [123] | 78.9 | 0.63 113 | 0.84 102 | 0.65 79 | 0.71 100 | 1.01 108 | 0.63 85 | 0.88 36 | 1.38 52 | 0.64 8 | 0.93 26 | 1.00 36 | 1.21 39 | 1.18 138 | 1.27 136 | 1.70 170 | 1.12 88 | 1.56 92 | 1.10 116 | 0.73 64 | 1.33 57 | 0.70 53 | 0.89 82 | 1.31 87 | 0.63 26 |
UnDAF [187] | 79.5 | 0.62 77 | 0.86 112 | 0.65 79 | 0.66 62 | 0.91 72 | 0.59 13 | 1.39 136 | 3.05 168 | 1.90 149 | 0.98 81 | 1.16 123 | 1.23 70 | 1.00 46 | 0.98 45 | 1.14 34 | 1.11 79 | 1.53 81 | 1.06 73 | 0.73 64 | 1.40 73 | 0.74 87 | 0.81 52 | 1.17 53 | 0.64 78 |
TV-L1-MCT [64] | 79.5 | 0.62 77 | 0.81 79 | 0.65 79 | 0.71 100 | 1.00 104 | 0.63 85 | 1.21 103 | 2.34 138 | 1.25 100 | 0.95 43 | 1.04 57 | 1.22 53 | 1.19 153 | 1.29 154 | 1.61 135 | 1.07 57 | 1.39 53 | 1.05 55 | 0.71 51 | 1.32 55 | 0.69 45 | 0.82 53 | 1.18 54 | 0.63 26 |
SIOF [67] | 79.6 | 0.63 113 | 0.81 79 | 0.66 121 | 0.84 156 | 1.16 169 | 0.70 145 | 1.14 87 | 2.04 118 | 1.00 68 | 0.99 97 | 1.11 91 | 1.25 99 | 0.98 34 | 0.95 34 | 1.15 46 | 1.07 57 | 1.40 57 | 1.04 41 | 0.68 38 | 1.24 45 | 0.72 72 | 0.83 58 | 1.20 60 | 0.63 26 |
Second-order prior [8] | 80.2 | 0.61 54 | 0.78 59 | 0.66 121 | 0.80 146 | 1.11 147 | 0.64 98 | 1.05 69 | 1.85 103 | 0.99 66 | 0.96 53 | 1.04 57 | 1.21 39 | 1.05 77 | 1.07 81 | 1.15 46 | 1.05 47 | 1.38 52 | 1.05 55 | 0.69 46 | 1.28 50 | 0.65 25 | 1.00 144 | 1.50 147 | 0.66 144 |
WLIF-Flow [91] | 80.8 | 0.59 26 | 0.73 37 | 0.64 24 | 0.66 62 | 0.92 77 | 0.61 54 | 1.34 131 | 2.50 146 | 1.59 127 | 0.98 81 | 1.07 69 | 1.28 138 | 1.03 63 | 1.04 68 | 1.22 98 | 1.19 138 | 1.76 144 | 1.12 137 | 0.72 57 | 1.37 65 | 0.70 53 | 0.83 58 | 1.20 60 | 0.63 26 |
NNF-EAC [101] | 82.0 | 0.63 113 | 0.78 59 | 0.66 121 | 0.66 62 | 0.91 72 | 0.60 39 | 1.45 144 | 3.35 180 | 2.05 155 | 1.05 140 | 1.26 153 | 1.27 125 | 1.06 87 | 1.09 90 | 1.14 34 | 1.02 38 | 1.26 41 | 1.03 34 | 0.72 57 | 1.36 63 | 0.69 45 | 0.79 44 | 1.13 46 | 0.63 26 |
TC/T-Flow [77] | 82.0 | 0.62 77 | 0.80 70 | 0.65 79 | 0.70 93 | 1.00 104 | 0.62 65 | 0.90 39 | 1.41 55 | 0.84 44 | 0.95 43 | 1.01 40 | 1.21 39 | 1.18 138 | 1.27 136 | 1.69 149 | 1.07 57 | 1.42 61 | 1.04 41 | 0.86 122 | 1.68 118 | 0.88 155 | 0.95 110 | 1.41 113 | 0.62 21 |
ComplOF-FED-GPU [35] | 82.5 | 0.62 77 | 0.86 112 | 0.65 79 | 0.69 87 | 0.98 94 | 0.61 54 | 1.63 157 | 1.15 34 | 2.12 158 | 0.94 30 | 1.03 49 | 1.21 39 | 1.14 116 | 1.21 116 | 1.52 125 | 1.07 57 | 1.41 59 | 1.06 73 | 0.74 73 | 1.36 63 | 0.71 64 | 0.96 117 | 1.43 120 | 0.63 26 |
p-harmonic [29] | 82.6 | 0.61 54 | 0.83 94 | 0.64 24 | 0.82 152 | 1.14 161 | 0.68 133 | 0.91 42 | 1.49 62 | 0.77 31 | 1.04 136 | 1.11 91 | 1.28 138 | 1.05 77 | 1.07 81 | 1.15 46 | 1.06 52 | 1.39 53 | 1.07 80 | 0.70 48 | 1.31 52 | 0.76 106 | 0.96 117 | 1.44 127 | 0.63 26 |
OFLAF [78] | 84.0 | 0.59 26 | 0.75 43 | 0.64 24 | 0.60 17 | 0.79 23 | 0.59 13 | 0.92 44 | 1.34 46 | 0.77 31 | 0.93 26 | 0.99 34 | 1.20 32 | 1.21 178 | 1.32 178 | 1.69 149 | 1.18 128 | 1.75 140 | 1.13 146 | 1.00 166 | 2.14 169 | 0.81 138 | 0.91 93 | 1.33 94 | 0.64 78 |
CBF [12] | 84.2 | 0.61 54 | 0.79 64 | 0.66 121 | 0.77 132 | 1.07 133 | 0.66 120 | 1.00 58 | 1.50 65 | 0.90 52 | 0.98 81 | 1.02 44 | 1.31 159 | 0.99 38 | 0.96 37 | 1.18 86 | 1.05 47 | 1.33 46 | 1.06 73 | 0.80 96 | 1.59 98 | 0.74 87 | 0.89 82 | 1.29 81 | 0.67 167 |
TC-Flow [46] | 84.2 | 0.60 39 | 0.77 49 | 0.65 79 | 0.70 93 | 1.01 108 | 0.62 65 | 0.82 28 | 1.21 38 | 0.62 7 | 0.98 81 | 1.11 91 | 1.25 99 | 1.17 127 | 1.26 129 | 1.65 138 | 1.12 88 | 1.56 92 | 1.10 116 | 0.70 48 | 1.29 51 | 0.69 45 | 1.00 144 | 1.50 147 | 0.65 120 |
ProFlow_ROB [142] | 84.4 | 0.61 54 | 0.81 79 | 0.64 24 | 0.68 84 | 0.98 94 | 0.62 65 | 1.06 72 | 1.26 39 | 0.90 52 | 0.96 53 | 1.09 82 | 1.24 88 | 1.19 153 | 1.28 145 | 1.70 170 | 1.00 36 | 1.20 37 | 1.03 34 | 0.86 122 | 1.76 125 | 0.69 45 | 0.97 126 | 1.44 127 | 0.65 120 |
nLayers [57] | 84.9 | 0.60 39 | 0.76 45 | 0.65 79 | 0.62 28 | 0.84 37 | 0.60 39 | 2.15 178 | 4.10 190 | 2.76 179 | 0.97 68 | 1.11 91 | 1.21 39 | 1.18 138 | 1.28 145 | 1.61 135 | 1.14 105 | 1.64 120 | 1.10 116 | 0.68 38 | 1.23 43 | 0.67 36 | 0.76 36 | 1.07 36 | 0.64 78 |
SegFlow [156] | 85.5 | 0.62 77 | 0.86 112 | 0.64 24 | 0.64 45 | 0.89 60 | 0.60 39 | 0.97 53 | 1.33 44 | 0.70 18 | 0.98 81 | 1.13 105 | 1.25 99 | 1.17 127 | 1.26 129 | 1.69 149 | 1.10 74 | 1.50 78 | 1.10 116 | 0.81 101 | 1.63 107 | 0.77 112 | 0.99 135 | 1.48 141 | 0.63 26 |
RAFT-it [194] | 85.8 | 0.62 77 | 0.90 137 | 0.64 24 | 0.59 11 | 0.79 23 | 0.58 6 | 1.04 66 | 1.81 99 | 1.11 82 | 0.94 30 | 1.02 44 | 1.23 70 | 0.99 38 | 0.96 37 | 1.15 46 | 1.25 168 | 1.58 99 | 1.26 188 | 0.80 96 | 1.59 98 | 0.79 128 | 1.02 154 | 1.53 156 | 0.68 181 |
JOF [136] | 85.8 | 0.62 77 | 0.83 94 | 0.66 121 | 0.64 45 | 0.86 48 | 0.61 54 | 1.12 85 | 1.70 84 | 1.16 90 | 0.98 81 | 1.05 61 | 1.26 113 | 1.19 153 | 1.29 154 | 1.70 170 | 1.18 128 | 1.72 134 | 1.08 92 | 0.68 38 | 1.24 45 | 0.66 29 | 0.79 44 | 1.12 42 | 0.64 78 |
PRAFlow_RVC [177] | 86.5 | 0.60 39 | 0.80 70 | 0.63 19 | 0.62 28 | 0.85 43 | 0.59 13 | 1.23 110 | 2.63 155 | 1.62 132 | 0.94 30 | 1.01 40 | 1.25 99 | 0.99 38 | 0.97 43 | 1.16 71 | 1.08 62 | 1.45 66 | 1.05 55 | 1.05 174 | 2.27 176 | 1.24 184 | 0.96 117 | 1.43 120 | 0.71 192 |
FlowFields [108] | 87.7 | 0.62 77 | 0.88 131 | 0.64 24 | 0.63 36 | 0.87 53 | 0.59 13 | 1.64 158 | 3.24 176 | 2.16 160 | 0.98 81 | 1.14 114 | 1.22 53 | 1.10 105 | 1.14 103 | 1.54 126 | 1.11 79 | 1.56 92 | 1.08 92 | 0.77 84 | 1.51 87 | 0.67 36 | 0.93 98 | 1.38 101 | 0.63 26 |
MLDP_OF [87] | 88.0 | 0.60 39 | 0.77 49 | 0.64 24 | 0.73 118 | 1.03 117 | 0.62 65 | 0.90 39 | 1.38 52 | 0.70 18 | 1.03 127 | 1.10 86 | 1.31 159 | 1.10 105 | 1.15 107 | 1.33 114 | 1.16 120 | 1.58 99 | 1.15 157 | 0.73 64 | 1.38 70 | 0.78 123 | 0.86 70 | 1.26 71 | 0.65 120 |
RAFT-TF_RVC [179] | 88.6 | 0.62 77 | 0.91 140 | 0.63 19 | 0.61 23 | 0.82 32 | 0.59 13 | 1.04 66 | 1.87 105 | 1.11 82 | 0.94 30 | 1.03 49 | 1.23 70 | 1.00 46 | 0.98 45 | 1.15 46 | 1.30 181 | 1.68 127 | 1.26 188 | 0.94 152 | 1.99 155 | 0.76 106 | 0.92 95 | 1.36 99 | 0.68 181 |
MDP-Flow [26] | 89.0 | 0.59 26 | 0.74 40 | 0.64 24 | 0.64 45 | 0.90 67 | 0.60 39 | 1.16 93 | 1.18 35 | 1.43 117 | 1.03 127 | 1.17 126 | 1.27 125 | 1.18 138 | 1.28 145 | 1.69 149 | 1.26 174 | 1.97 179 | 1.18 172 | 0.73 64 | 1.39 72 | 0.71 64 | 0.79 44 | 1.13 46 | 0.63 26 |
HAST [107] | 90.0 | 0.60 39 | 0.74 40 | 0.64 24 | 0.62 28 | 0.84 37 | 0.59 13 | 2.15 178 | 3.90 187 | 2.59 174 | 0.92 23 | 0.98 33 | 1.19 27 | 1.05 77 | 1.07 81 | 1.14 34 | 1.22 153 | 1.87 167 | 1.15 157 | 0.94 152 | 1.98 154 | 0.74 87 | 0.90 86 | 1.32 89 | 0.65 120 |
PMF [73] | 90.1 | 0.59 26 | 0.75 43 | 0.64 24 | 0.64 45 | 0.89 60 | 0.59 13 | 1.85 165 | 3.91 188 | 2.44 171 | 0.98 81 | 1.12 100 | 1.25 99 | 1.03 63 | 1.03 65 | 1.15 46 | 1.09 71 | 1.44 63 | 1.08 92 | 0.95 155 | 2.02 158 | 0.79 128 | 0.88 79 | 1.30 84 | 0.66 144 |
2DHMM-SAS [90] | 90.7 | 0.61 54 | 0.77 49 | 0.64 24 | 0.77 132 | 1.07 133 | 0.65 112 | 1.16 93 | 2.02 115 | 1.12 85 | 0.98 81 | 1.10 86 | 1.22 53 | 1.18 138 | 1.28 145 | 1.65 138 | 1.05 47 | 1.37 50 | 1.03 34 | 0.76 82 | 1.48 84 | 0.77 112 | 1.01 150 | 1.51 153 | 0.63 26 |
COFM [59] | 91.3 | 0.61 54 | 0.77 49 | 0.65 79 | 0.64 45 | 0.88 57 | 0.60 39 | 1.32 126 | 2.95 167 | 1.79 145 | 0.97 68 | 1.12 100 | 1.19 27 | 1.01 57 | 1.00 57 | 1.16 71 | 1.18 128 | 1.76 144 | 1.09 102 | 0.89 131 | 1.85 135 | 1.03 174 | 0.79 44 | 1.14 48 | 0.66 144 |
C-RAFT_RVC [181] | 92.2 | 0.68 166 | 1.05 179 | 0.66 121 | 0.67 72 | 0.94 84 | 0.62 65 | 1.16 93 | 2.36 139 | 1.40 113 | 0.96 53 | 1.07 69 | 1.23 70 | 1.00 46 | 0.98 45 | 1.15 46 | 1.11 79 | 1.53 81 | 1.05 55 | 0.83 113 | 1.67 117 | 0.74 87 | 0.90 86 | 1.32 89 | 0.66 144 |
Layers++ [37] | 92.8 | 0.60 39 | 0.76 45 | 0.65 79 | 0.59 11 | 0.76 11 | 0.59 13 | 1.43 143 | 3.28 177 | 1.95 151 | 0.97 68 | 1.13 105 | 1.23 70 | 1.31 194 | 1.48 194 | 1.79 196 | 1.26 174 | 1.97 179 | 1.11 132 | 0.72 57 | 1.35 62 | 0.64 19 | 0.78 41 | 1.11 40 | 0.63 26 |
CPM-Flow [114] | 93.6 | 0.62 77 | 0.86 112 | 0.64 24 | 0.64 45 | 0.88 57 | 0.60 39 | 1.04 66 | 1.39 54 | 0.82 38 | 1.01 114 | 1.19 134 | 1.27 125 | 1.17 127 | 1.26 129 | 1.69 149 | 1.11 79 | 1.52 80 | 1.07 80 | 0.82 106 | 1.66 114 | 0.76 106 | 0.99 135 | 1.47 137 | 0.65 120 |
LSM [39] | 95.6 | 0.61 54 | 0.78 59 | 0.64 24 | 0.66 62 | 0.89 60 | 0.61 54 | 1.16 93 | 2.21 128 | 1.17 92 | 0.94 30 | 1.01 40 | 1.21 39 | 1.20 160 | 1.30 161 | 1.65 138 | 1.18 128 | 1.73 136 | 1.08 92 | 0.92 144 | 1.94 148 | 0.80 135 | 1.00 144 | 1.50 147 | 0.63 26 |
TCOF [69] | 95.6 | 0.61 54 | 0.78 59 | 0.64 24 | 0.88 171 | 1.22 183 | 0.72 160 | 1.08 78 | 1.90 109 | 1.09 80 | 0.98 81 | 1.11 91 | 1.24 88 | 1.07 91 | 1.10 95 | 1.15 46 | 1.12 88 | 1.58 99 | 1.07 80 | 0.95 155 | 2.02 158 | 0.73 80 | 0.87 72 | 1.27 75 | 0.64 78 |
ComponentFusion [94] | 95.7 | 0.60 39 | 0.80 70 | 0.64 24 | 0.64 45 | 0.88 57 | 0.59 13 | 1.41 139 | 2.74 159 | 1.63 135 | 0.95 43 | 1.08 73 | 1.20 32 | 1.13 113 | 1.19 112 | 1.35 115 | 1.11 79 | 1.55 89 | 1.08 92 | 1.23 189 | 2.74 189 | 1.51 189 | 0.95 110 | 1.41 113 | 0.64 78 |
PGM-C [118] | 95.9 | 0.62 77 | 0.86 112 | 0.64 24 | 0.64 45 | 0.89 60 | 0.60 39 | 1.21 103 | 1.51 67 | 0.93 58 | 1.00 105 | 1.18 130 | 1.27 125 | 1.18 138 | 1.27 136 | 1.69 149 | 1.06 52 | 1.40 57 | 1.07 80 | 0.96 159 | 2.04 160 | 0.78 123 | 0.99 135 | 1.48 141 | 0.63 26 |
MCPFlow_RVC [197] | 96.0 | 0.62 77 | 0.82 89 | 0.65 79 | 0.62 28 | 0.84 37 | 0.61 54 | 1.02 59 | 1.73 88 | 0.98 65 | 0.95 43 | 1.05 61 | 1.24 88 | 1.04 70 | 1.04 68 | 1.15 46 | 1.24 165 | 1.90 174 | 1.10 116 | 0.80 96 | 1.61 102 | 0.77 112 | 1.21 197 | 1.86 197 | 0.71 192 |
Sparse-NonSparse [56] | 96.5 | 0.61 54 | 0.79 64 | 0.64 24 | 0.65 58 | 0.89 60 | 0.61 54 | 1.23 110 | 2.49 145 | 1.38 110 | 0.94 30 | 1.03 49 | 1.20 32 | 1.18 138 | 1.28 145 | 1.58 130 | 1.18 128 | 1.73 136 | 1.09 102 | 0.95 155 | 2.00 156 | 0.79 128 | 0.99 135 | 1.49 146 | 0.63 26 |
EAI-Flow [147] | 96.5 | 0.63 113 | 0.87 123 | 0.65 79 | 0.69 87 | 0.95 88 | 0.62 65 | 1.21 103 | 2.19 127 | 1.23 98 | 0.96 53 | 1.08 73 | 1.19 27 | 1.13 113 | 1.19 112 | 1.60 134 | 1.04 44 | 1.31 44 | 1.06 73 | 0.98 163 | 2.09 165 | 1.06 176 | 0.96 117 | 1.42 117 | 0.62 21 |
PWC-Net_RVC [143] | 96.6 | 0.63 113 | 0.93 143 | 0.64 24 | 0.67 72 | 0.95 88 | 0.59 13 | 0.94 49 | 1.57 73 | 0.82 38 | 0.97 68 | 1.13 105 | 1.22 53 | 1.20 160 | 1.30 161 | 1.70 170 | 1.15 114 | 1.62 115 | 1.07 80 | 0.84 116 | 1.72 121 | 0.79 128 | 0.92 95 | 1.36 99 | 0.65 120 |
CostFilter [40] | 96.8 | 0.60 39 | 0.79 64 | 0.64 24 | 0.63 36 | 0.87 53 | 0.59 13 | 1.89 167 | 3.95 189 | 2.39 169 | 0.96 53 | 1.07 69 | 1.20 32 | 1.07 91 | 1.09 90 | 1.32 112 | 1.14 105 | 1.55 89 | 1.10 116 | 1.02 170 | 2.20 173 | 0.85 149 | 0.93 98 | 1.38 101 | 0.65 120 |
EPPM w/o HM [86] | 97.8 | 0.60 39 | 0.80 70 | 0.64 24 | 0.67 72 | 0.95 88 | 0.59 13 | 2.36 183 | 3.43 182 | 2.13 159 | 1.01 114 | 1.22 140 | 1.23 70 | 1.00 46 | 0.99 53 | 1.15 46 | 1.14 105 | 1.61 110 | 1.09 102 | 1.18 186 | 2.63 186 | 1.25 185 | 0.87 72 | 1.27 75 | 0.63 26 |
MS_RAFT+_RVC [195] | 98.1 | 0.60 39 | 0.77 49 | 0.64 24 | 0.61 23 | 0.82 32 | 0.59 13 | 1.17 97 | 2.38 141 | 1.47 121 | 0.96 53 | 1.09 82 | 1.23 70 | 1.20 160 | 1.30 161 | 1.70 170 | 1.03 41 | 1.29 42 | 1.02 30 | 1.02 170 | 2.20 173 | 1.08 178 | 1.05 170 | 1.58 172 | 0.66 144 |
DPOF [18] | 98.5 | 0.66 149 | 1.05 179 | 0.68 157 | 0.61 23 | 0.80 27 | 0.59 13 | 1.60 156 | 1.55 71 | 2.16 160 | 1.05 140 | 1.33 169 | 1.28 138 | 1.05 77 | 1.07 81 | 1.14 34 | 1.08 62 | 1.47 73 | 1.04 41 | 0.77 84 | 1.49 85 | 0.69 45 | 1.04 161 | 1.56 161 | 0.64 78 |
RNLOD-Flow [119] | 99.5 | 0.61 54 | 0.79 64 | 0.64 24 | 0.72 108 | 1.02 114 | 0.62 65 | 1.25 116 | 2.31 135 | 1.37 106 | 0.94 30 | 1.00 36 | 1.23 70 | 1.20 160 | 1.30 161 | 1.68 146 | 1.19 138 | 1.77 146 | 1.10 116 | 0.72 57 | 1.33 57 | 0.74 87 | 1.09 185 | 1.65 186 | 0.63 26 |
OFH [38] | 99.7 | 0.62 77 | 0.83 94 | 0.65 79 | 0.76 126 | 1.05 127 | 0.63 85 | 1.14 87 | 1.95 110 | 0.89 50 | 0.95 43 | 1.06 66 | 1.21 39 | 1.15 119 | 1.24 121 | 1.54 126 | 1.12 88 | 1.56 92 | 1.10 116 | 1.00 166 | 1.97 153 | 1.11 180 | 0.95 110 | 1.41 113 | 0.63 26 |
Brox et al. [5] | 99.9 | 0.67 156 | 1.04 174 | 0.65 79 | 0.72 108 | 1.02 114 | 0.63 85 | 0.96 51 | 1.34 46 | 0.83 42 | 0.98 81 | 0.99 34 | 1.24 88 | 1.02 58 | 1.02 62 | 1.15 46 | 1.20 143 | 1.78 150 | 1.11 132 | 1.67 194 | 3.86 194 | 2.48 198 | 0.86 70 | 1.26 71 | 0.62 21 |
AGIF+OF [84] | 100.3 | 0.61 54 | 0.78 59 | 0.64 24 | 0.67 72 | 0.92 77 | 0.61 54 | 1.17 97 | 2.07 121 | 1.37 106 | 0.97 68 | 1.06 66 | 1.25 99 | 1.20 160 | 1.30 161 | 1.69 149 | 1.18 128 | 1.75 140 | 1.07 80 | 0.75 76 | 1.44 81 | 0.72 72 | 1.13 192 | 1.72 193 | 0.64 78 |
DF-Auto [113] | 100.8 | 0.65 140 | 0.96 156 | 0.66 121 | 0.78 136 | 1.08 136 | 0.70 145 | 1.02 59 | 1.67 80 | 0.87 49 | 1.00 105 | 1.12 100 | 1.25 99 | 0.99 38 | 0.97 43 | 1.15 46 | 1.08 62 | 1.45 66 | 1.04 41 | 0.90 141 | 1.89 143 | 1.09 179 | 0.94 104 | 1.40 109 | 0.65 120 |
Modified CLG [34] | 102.0 | 0.61 54 | 0.77 49 | 0.66 121 | 0.90 180 | 1.16 169 | 0.80 179 | 1.26 118 | 1.67 80 | 1.61 129 | 1.01 114 | 1.10 86 | 1.27 125 | 1.03 63 | 1.03 65 | 1.15 46 | 1.14 105 | 1.61 110 | 1.09 102 | 0.65 34 | 1.13 37 | 0.67 36 | 1.09 185 | 1.64 184 | 0.64 78 |
LDOF [28] | 102.1 | 0.66 149 | 0.94 148 | 0.67 144 | 0.79 139 | 0.99 100 | 0.82 185 | 1.15 90 | 1.37 51 | 1.14 88 | 0.98 81 | 1.08 73 | 1.24 88 | 1.00 46 | 0.98 45 | 1.15 46 | 1.06 52 | 1.39 53 | 1.04 41 | 1.14 181 | 2.51 183 | 1.27 186 | 0.83 58 | 1.19 56 | 0.67 167 |
S2F-IF [121] | 102.4 | 0.62 77 | 0.86 112 | 0.64 24 | 0.63 36 | 0.86 48 | 0.59 13 | 1.21 103 | 2.53 150 | 1.50 123 | 0.97 68 | 1.13 105 | 1.22 53 | 1.18 138 | 1.28 145 | 1.70 170 | 1.11 79 | 1.54 85 | 1.10 116 | 0.82 106 | 1.66 114 | 0.76 106 | 1.08 182 | 1.64 184 | 0.65 120 |
3DFlow [133] | 102.9 | 0.60 39 | 0.76 45 | 0.64 24 | 0.67 72 | 0.94 84 | 0.61 54 | 1.19 102 | 2.36 139 | 1.46 120 | 1.00 105 | 1.19 134 | 1.27 125 | 1.07 91 | 1.09 90 | 1.29 109 | 1.41 191 | 2.33 192 | 1.40 195 | 0.73 64 | 1.37 65 | 0.71 64 | 1.05 170 | 1.57 169 | 0.63 26 |
SVFilterOh [109] | 103.0 | 0.62 77 | 0.81 79 | 0.65 79 | 0.64 45 | 0.87 53 | 0.60 39 | 2.19 180 | 4.17 191 | 2.76 179 | 0.97 68 | 1.08 73 | 1.26 113 | 1.20 160 | 1.29 154 | 1.71 189 | 1.15 114 | 1.64 120 | 1.09 102 | 0.73 64 | 1.38 70 | 0.66 29 | 0.84 63 | 1.21 63 | 0.67 167 |
Ad-TV-NDC [36] | 103.4 | 0.75 186 | 1.01 166 | 0.76 189 | 0.95 187 | 1.19 177 | 0.82 185 | 0.90 39 | 1.44 57 | 0.78 34 | 1.09 152 | 1.13 105 | 1.32 164 | 1.03 63 | 1.03 65 | 1.16 71 | 1.10 74 | 1.45 66 | 1.10 116 | 0.65 34 | 1.15 39 | 0.66 29 | 0.94 104 | 1.38 101 | 0.64 78 |
SRR-TVOF-NL [89] | 103.8 | 0.63 113 | 0.83 94 | 0.65 79 | 0.72 108 | 1.01 108 | 0.64 98 | 1.84 164 | 3.78 185 | 2.38 168 | 0.96 53 | 1.08 73 | 1.21 39 | 1.20 160 | 1.30 161 | 1.69 149 | 1.14 105 | 1.65 124 | 1.05 55 | 0.73 64 | 1.40 73 | 0.73 80 | 0.88 79 | 1.29 81 | 0.64 78 |
Ramp [62] | 104.0 | 0.62 77 | 0.82 89 | 0.65 79 | 0.66 62 | 0.90 67 | 0.61 54 | 1.59 154 | 3.35 180 | 2.06 156 | 0.95 43 | 1.05 61 | 1.21 39 | 1.16 120 | 1.25 124 | 1.58 130 | 1.22 153 | 1.85 163 | 1.12 137 | 0.85 119 | 1.73 122 | 0.70 53 | 0.96 117 | 1.43 120 | 0.64 78 |
DMF_ROB [135] | 104.0 | 0.63 113 | 0.87 123 | 0.65 79 | 0.75 125 | 1.07 133 | 0.64 98 | 1.51 148 | 1.77 93 | 1.44 119 | 1.02 121 | 1.14 114 | 1.23 70 | 1.17 127 | 1.26 129 | 1.70 170 | 1.12 88 | 1.57 96 | 1.08 92 | 0.75 76 | 1.44 81 | 0.70 53 | 0.95 110 | 1.41 113 | 0.63 26 |
FlowNetS+ft+v [110] | 104.1 | 0.67 156 | 1.01 166 | 0.67 144 | 0.89 175 | 1.17 172 | 0.82 185 | 0.88 36 | 1.18 35 | 0.77 31 | 0.96 53 | 1.03 49 | 1.26 113 | 1.20 160 | 1.30 161 | 1.70 170 | 1.05 47 | 1.35 49 | 1.06 73 | 0.82 106 | 1.65 112 | 0.70 53 | 0.95 110 | 1.42 117 | 0.63 26 |
Classic++ [32] | 104.5 | 0.62 77 | 0.80 70 | 0.66 121 | 0.78 136 | 1.10 142 | 0.66 120 | 0.93 48 | 1.36 50 | 0.75 25 | 1.04 136 | 1.12 100 | 1.28 138 | 1.08 97 | 1.11 97 | 1.18 86 | 1.18 128 | 1.69 130 | 1.10 116 | 0.89 131 | 1.86 137 | 0.72 72 | 0.99 135 | 1.47 137 | 0.64 78 |
F-TV-L1 [15] | 104.5 | 0.67 156 | 0.99 162 | 0.68 157 | 0.85 160 | 1.15 163 | 0.70 145 | 0.97 53 | 1.51 67 | 0.86 46 | 1.01 114 | 1.08 73 | 1.28 138 | 1.03 63 | 1.04 68 | 1.14 34 | 1.04 44 | 1.31 44 | 1.06 73 | 0.85 119 | 1.73 122 | 0.79 128 | 1.07 177 | 1.61 177 | 0.63 26 |
Sparse Occlusion [54] | 105.0 | 0.63 113 | 0.87 123 | 0.65 79 | 0.77 132 | 1.11 147 | 0.63 85 | 0.91 42 | 1.45 60 | 0.86 46 | 0.96 53 | 1.08 73 | 1.21 39 | 1.21 178 | 1.32 178 | 1.69 149 | 1.14 105 | 1.63 119 | 1.12 137 | 0.86 122 | 1.77 128 | 0.71 64 | 1.04 161 | 1.56 161 | 0.63 26 |
FlowNet2 [120] | 105.4 | 0.71 173 | 0.99 162 | 0.68 157 | 0.71 100 | 0.98 94 | 0.67 129 | 1.27 120 | 2.29 133 | 1.41 114 | 0.99 97 | 1.18 130 | 1.26 113 | 1.05 77 | 1.07 81 | 1.22 98 | 1.09 71 | 1.47 73 | 1.06 73 | 0.81 101 | 1.61 102 | 0.77 112 | 0.80 50 | 1.15 50 | 0.65 120 |
Local-TV-L1 [65] | 107.0 | 0.65 140 | 0.83 94 | 0.69 168 | 0.88 171 | 1.15 163 | 0.76 169 | 0.87 34 | 1.27 40 | 0.71 21 | 1.01 114 | 1.06 66 | 1.31 159 | 1.13 113 | 1.19 112 | 1.35 115 | 1.14 105 | 1.48 75 | 1.13 146 | 0.81 101 | 1.63 107 | 0.73 80 | 0.85 66 | 1.23 66 | 0.66 144 |
CRTflow [81] | 107.9 | 0.64 132 | 0.89 135 | 0.67 144 | 0.83 153 | 1.16 169 | 0.69 140 | 1.12 85 | 1.66 79 | 1.02 70 | 1.00 105 | 1.10 86 | 1.28 138 | 1.18 138 | 1.27 136 | 1.69 149 | 1.05 47 | 1.33 46 | 1.05 55 | 0.93 149 | 1.95 150 | 0.69 45 | 0.94 104 | 1.40 109 | 0.63 26 |
AugFNG_ROB [139] | 108.4 | 0.64 132 | 0.90 137 | 0.67 144 | 0.76 126 | 1.04 123 | 0.68 133 | 1.18 100 | 2.13 125 | 1.08 78 | 1.17 174 | 1.59 189 | 1.22 53 | 1.21 178 | 1.32 178 | 1.70 170 | 1.06 52 | 1.39 53 | 1.04 41 | 0.80 96 | 1.59 98 | 0.74 87 | 0.82 53 | 1.19 56 | 0.63 26 |
Fusion [6] | 108.7 | 0.64 132 | 0.94 148 | 0.65 79 | 0.70 93 | 0.98 94 | 0.61 54 | 1.35 134 | 1.48 61 | 1.70 141 | 1.06 145 | 1.26 153 | 1.22 53 | 1.12 112 | 1.20 115 | 1.22 98 | 1.29 177 | 2.07 184 | 1.19 173 | 0.78 88 | 1.54 92 | 0.72 72 | 0.85 66 | 1.24 67 | 0.64 78 |
FlowFields+ [128] | 108.7 | 0.62 77 | 0.88 131 | 0.65 79 | 0.63 36 | 0.86 48 | 0.59 13 | 1.66 159 | 3.28 177 | 2.17 162 | 1.02 121 | 1.25 151 | 1.24 88 | 1.18 138 | 1.27 136 | 1.69 149 | 1.16 120 | 1.68 127 | 1.10 116 | 0.88 130 | 1.83 132 | 0.80 135 | 0.88 79 | 1.28 79 | 0.63 26 |
CompactFlow_ROB [155] | 109.4 | 0.67 156 | 1.06 182 | 0.66 121 | 0.71 100 | 0.99 100 | 0.66 120 | 1.39 136 | 2.75 160 | 1.61 129 | 1.25 182 | 1.80 191 | 1.23 70 | 1.02 58 | 1.02 62 | 1.19 89 | 1.12 88 | 1.60 109 | 1.05 55 | 0.86 122 | 1.76 125 | 0.69 45 | 0.87 72 | 1.27 75 | 0.64 78 |
FESL [72] | 110.4 | 0.61 54 | 0.77 49 | 0.64 24 | 0.66 62 | 0.91 72 | 0.60 39 | 1.18 100 | 2.09 123 | 1.11 82 | 0.99 97 | 1.10 86 | 1.27 125 | 1.21 178 | 1.32 178 | 1.69 149 | 1.20 143 | 1.81 157 | 1.12 137 | 0.90 141 | 1.87 141 | 0.74 87 | 1.06 173 | 1.60 175 | 0.64 78 |
Classic+NL [31] | 110.9 | 0.62 77 | 0.82 89 | 0.65 79 | 0.67 72 | 0.92 77 | 0.62 65 | 1.56 153 | 3.23 174 | 1.95 151 | 0.97 68 | 1.11 91 | 1.25 99 | 1.17 127 | 1.27 136 | 1.54 126 | 1.17 124 | 1.71 133 | 1.09 102 | 0.92 144 | 1.92 145 | 0.77 112 | 1.00 144 | 1.50 147 | 0.63 26 |
Classic+CPF [82] | 111.3 | 0.61 54 | 0.79 64 | 0.64 24 | 0.68 84 | 0.93 81 | 0.62 65 | 1.21 103 | 2.25 131 | 1.22 97 | 0.94 30 | 1.02 44 | 1.19 27 | 1.22 185 | 1.34 187 | 1.69 149 | 1.23 160 | 1.88 172 | 1.11 132 | 0.92 144 | 1.92 145 | 0.74 87 | 1.14 193 | 1.73 194 | 0.65 120 |
EpicFlow [100] | 111.5 | 0.62 77 | 0.86 112 | 0.64 24 | 0.70 93 | 1.00 104 | 0.62 65 | 1.06 72 | 1.31 42 | 0.82 38 | 1.09 152 | 1.42 178 | 1.31 159 | 1.18 138 | 1.27 136 | 1.69 149 | 1.10 74 | 1.51 79 | 1.09 102 | 1.00 166 | 2.13 167 | 0.85 149 | 1.04 161 | 1.56 161 | 0.64 78 |
ACK-Prior [27] | 111.7 | 0.61 54 | 0.83 94 | 0.64 24 | 0.69 87 | 0.98 94 | 0.60 39 | 2.41 184 | 1.84 100 | 3.18 185 | 1.02 121 | 1.12 100 | 1.27 125 | 1.22 185 | 1.32 178 | 1.72 190 | 1.17 124 | 1.64 120 | 1.12 137 | 0.79 91 | 1.54 92 | 0.78 123 | 0.83 58 | 1.19 56 | 0.65 120 |
AdaConv-v1 [124] | 113.8 | 0.73 182 | 1.12 189 | 0.72 184 | 0.85 160 | 1.03 117 | 0.91 195 | 1.31 124 | 1.34 46 | 1.31 102 | 1.22 179 | 1.28 160 | 1.52 185 | 1.00 46 | 1.00 57 | 1.13 32 | 1.01 37 | 1.19 36 | 1.04 41 | 0.86 122 | 1.57 95 | 1.01 173 | 0.77 37 | 1.08 37 | 0.72 195 |
EPMNet [131] | 113.9 | 0.74 184 | 1.20 191 | 0.68 157 | 0.70 93 | 0.95 88 | 0.65 112 | 1.27 120 | 2.29 133 | 1.41 114 | 1.25 182 | 1.85 192 | 1.26 113 | 1.05 77 | 1.07 81 | 1.22 98 | 1.08 62 | 1.46 70 | 1.07 80 | 0.81 101 | 1.61 102 | 0.77 112 | 0.87 72 | 1.28 79 | 0.65 120 |
Efficient-NL [60] | 114.6 | 0.61 54 | 0.77 49 | 0.64 24 | 0.71 100 | 0.99 100 | 0.62 65 | 2.03 172 | 1.80 98 | 2.75 178 | 0.97 68 | 1.11 91 | 1.22 53 | 1.18 138 | 1.28 145 | 1.64 137 | 1.19 138 | 1.77 146 | 1.09 102 | 0.96 159 | 2.04 160 | 0.78 123 | 1.10 187 | 1.65 186 | 0.64 78 |
Black & Anandan [4] | 115.0 | 0.68 166 | 0.96 156 | 0.69 168 | 0.94 185 | 1.21 180 | 0.76 169 | 2.33 182 | 1.75 89 | 2.52 173 | 1.08 149 | 1.15 120 | 1.25 99 | 1.04 70 | 1.05 71 | 1.16 71 | 1.11 79 | 1.54 85 | 1.07 80 | 0.73 64 | 1.37 65 | 0.70 53 | 0.87 72 | 1.26 71 | 0.66 144 |
NL-TV-NCC [25] | 115.2 | 0.63 113 | 0.84 102 | 0.65 79 | 0.77 132 | 1.10 142 | 0.64 98 | 1.02 59 | 1.71 85 | 0.90 52 | 1.07 148 | 1.30 165 | 1.32 164 | 1.07 91 | 1.06 74 | 1.38 118 | 1.25 168 | 1.91 175 | 1.14 152 | 0.75 76 | 1.40 73 | 0.74 87 | 0.99 135 | 1.46 134 | 0.66 144 |
Adaptive [20] | 116.0 | 0.64 132 | 0.91 140 | 0.66 121 | 0.88 171 | 1.22 183 | 0.71 155 | 1.06 72 | 1.76 91 | 1.05 73 | 1.03 127 | 1.17 126 | 1.33 169 | 1.09 99 | 1.12 99 | 1.15 46 | 1.20 143 | 1.78 150 | 1.14 152 | 0.86 122 | 1.76 125 | 0.71 64 | 0.93 98 | 1.38 101 | 0.63 26 |
ResPWCR_ROB [140] | 116.7 | 0.63 113 | 0.88 131 | 0.65 79 | 0.72 108 | 1.03 117 | 0.63 85 | 1.05 69 | 1.78 95 | 1.04 72 | 1.06 145 | 1.35 171 | 1.25 99 | 1.20 160 | 1.31 173 | 1.69 149 | 1.19 138 | 1.53 81 | 1.17 168 | 0.80 96 | 1.59 98 | 0.72 72 | 1.01 150 | 1.51 153 | 0.64 78 |
S2D-Matching [83] | 116.9 | 0.62 77 | 0.83 94 | 0.65 79 | 0.74 120 | 1.05 127 | 0.64 98 | 1.42 140 | 2.75 160 | 1.64 136 | 0.97 68 | 1.11 91 | 1.23 70 | 1.14 116 | 1.21 116 | 1.43 121 | 1.29 177 | 2.04 183 | 1.17 168 | 0.78 88 | 1.52 89 | 0.74 87 | 1.04 161 | 1.56 161 | 0.64 78 |
Occlusion-TV-L1 [63] | 116.9 | 0.62 77 | 0.86 112 | 0.66 121 | 0.85 160 | 1.20 178 | 0.68 133 | 0.92 44 | 1.58 75 | 0.90 52 | 1.13 164 | 1.43 179 | 1.30 156 | 1.04 70 | 1.06 74 | 1.15 46 | 1.20 143 | 1.78 150 | 1.15 157 | 0.89 131 | 1.54 92 | 0.83 144 | 1.04 161 | 1.56 161 | 0.63 26 |
ROF-ND [105] | 118.2 | 0.62 77 | 0.76 45 | 0.64 24 | 0.79 139 | 1.08 136 | 0.75 166 | 1.22 109 | 2.44 144 | 1.37 106 | 1.10 157 | 1.38 174 | 1.26 113 | 1.17 127 | 1.26 129 | 1.69 149 | 1.23 160 | 1.89 173 | 1.19 173 | 0.77 84 | 1.49 85 | 0.73 80 | 0.98 130 | 1.45 130 | 0.63 26 |
TF+OM [98] | 118.3 | 0.63 113 | 0.87 123 | 0.66 121 | 0.67 72 | 0.93 81 | 0.65 112 | 1.06 72 | 1.95 110 | 1.05 73 | 1.04 136 | 1.22 140 | 1.26 113 | 1.16 120 | 1.24 121 | 1.58 130 | 1.16 120 | 1.68 127 | 1.09 102 | 0.92 144 | 1.92 145 | 0.86 152 | 0.97 126 | 1.43 120 | 0.67 167 |
Complementary OF [21] | 118.4 | 0.66 149 | 1.03 171 | 0.64 24 | 0.70 93 | 1.01 108 | 0.63 85 | 3.10 189 | 2.52 148 | 3.34 188 | 0.98 81 | 1.13 105 | 1.22 53 | 1.16 120 | 1.25 124 | 1.59 133 | 1.13 100 | 1.59 104 | 1.10 116 | 0.93 149 | 1.87 141 | 0.97 169 | 0.94 104 | 1.40 109 | 0.64 78 |
FC-2Layers-FF [74] | 118.4 | 0.62 77 | 0.81 79 | 0.65 79 | 0.60 17 | 0.77 15 | 0.60 39 | 1.51 148 | 3.18 172 | 2.01 153 | 1.00 105 | 1.20 136 | 1.21 39 | 1.21 178 | 1.32 178 | 1.68 146 | 1.22 153 | 1.85 163 | 1.12 137 | 1.00 166 | 2.14 169 | 0.81 138 | 0.99 135 | 1.48 141 | 0.64 78 |
ProbFlowFields [126] | 118.4 | 0.62 77 | 0.88 131 | 0.64 24 | 0.63 36 | 0.87 53 | 0.59 13 | 1.95 170 | 3.65 184 | 2.45 172 | 0.99 97 | 1.17 126 | 1.26 113 | 1.17 127 | 1.26 129 | 1.70 170 | 1.23 160 | 1.87 167 | 1.17 168 | 0.99 165 | 2.13 167 | 1.39 188 | 0.84 63 | 1.22 64 | 0.64 78 |
LFNet_ROB [145] | 119.0 | 0.64 132 | 0.94 148 | 0.65 79 | 0.71 100 | 1.01 108 | 0.62 65 | 1.15 90 | 2.16 126 | 1.12 85 | 0.98 81 | 1.13 105 | 1.20 32 | 1.17 127 | 1.27 136 | 1.69 149 | 1.25 168 | 1.94 177 | 1.16 164 | 0.89 131 | 1.86 137 | 0.77 112 | 0.96 117 | 1.43 120 | 0.67 167 |
Nguyen [33] | 119.1 | 0.71 173 | 1.01 166 | 0.71 177 | 0.96 189 | 1.20 178 | 0.79 177 | 1.05 69 | 1.75 89 | 0.91 56 | 1.09 152 | 1.16 123 | 1.31 159 | 1.04 70 | 1.06 74 | 1.15 46 | 1.15 114 | 1.67 126 | 1.08 92 | 0.93 149 | 1.96 152 | 0.80 135 | 0.89 82 | 1.30 84 | 0.63 26 |
Bartels [41] | 119.8 | 0.66 149 | 0.94 148 | 0.68 157 | 0.76 126 | 1.10 142 | 0.70 145 | 1.03 63 | 1.58 75 | 1.03 71 | 1.09 152 | 1.24 148 | 1.39 178 | 1.03 63 | 0.99 53 | 1.25 104 | 1.33 184 | 1.87 167 | 1.25 183 | 0.71 51 | 1.31 52 | 0.78 123 | 0.90 86 | 1.32 89 | 0.67 167 |
AggregFlow [95] | 120.5 | 0.67 156 | 1.03 171 | 0.65 79 | 0.69 87 | 0.98 94 | 0.63 85 | 1.39 136 | 2.69 158 | 1.74 144 | 1.01 114 | 1.21 138 | 1.24 88 | 1.02 58 | 1.01 59 | 1.19 89 | 1.07 57 | 1.37 50 | 1.07 80 | 1.30 191 | 2.90 191 | 1.75 192 | 1.04 161 | 1.57 169 | 0.66 144 |
Filter Flow [19] | 120.5 | 0.67 156 | 0.97 161 | 0.68 157 | 0.89 175 | 1.17 172 | 0.76 169 | 1.14 87 | 2.02 115 | 1.24 99 | 1.10 157 | 1.16 123 | 1.34 173 | 1.02 58 | 1.01 59 | 1.17 84 | 1.14 105 | 1.59 104 | 1.09 102 | 0.77 84 | 1.51 87 | 0.77 112 | 0.94 104 | 1.39 106 | 0.66 144 |
TriFlow [93] | 121.0 | 0.67 156 | 1.04 174 | 0.66 121 | 0.79 139 | 1.09 139 | 0.70 145 | 1.07 76 | 2.04 118 | 1.13 87 | 1.02 121 | 1.14 114 | 1.26 113 | 1.20 160 | 1.30 161 | 1.70 170 | 1.12 88 | 1.55 89 | 1.05 55 | 0.78 88 | 1.53 91 | 0.75 101 | 1.04 161 | 1.55 159 | 0.64 78 |
CNN-flow-warp+ref [115] | 121.1 | 0.62 77 | 0.82 89 | 0.66 121 | 0.79 139 | 1.10 142 | 0.69 140 | 1.24 114 | 1.69 82 | 1.31 102 | 1.15 170 | 1.23 146 | 1.38 176 | 1.19 153 | 1.29 154 | 1.70 170 | 1.12 88 | 1.57 96 | 1.12 137 | 0.89 131 | 1.84 133 | 0.75 101 | 0.95 110 | 1.40 109 | 0.63 26 |
Horn & Schunck [3] | 121.4 | 0.66 149 | 0.93 143 | 0.67 144 | 0.96 189 | 1.22 183 | 0.82 185 | 1.91 168 | 1.72 87 | 2.27 165 | 1.14 168 | 1.24 148 | 1.30 156 | 1.04 70 | 1.06 74 | 1.16 71 | 1.08 62 | 1.44 63 | 1.05 55 | 0.75 76 | 1.43 79 | 0.74 87 | 1.03 157 | 1.53 156 | 0.64 78 |
TI-DOFE [24] | 121.9 | 0.74 184 | 0.99 162 | 0.76 189 | 1.03 194 | 1.27 194 | 0.86 191 | 1.02 59 | 1.57 73 | 0.96 62 | 1.20 177 | 1.29 164 | 1.32 164 | 1.04 70 | 1.06 74 | 1.15 46 | 1.15 114 | 1.64 120 | 1.08 92 | 0.71 51 | 1.31 52 | 0.74 87 | 1.01 150 | 1.47 137 | 0.65 120 |
ContinualFlow_ROB [148] | 122.5 | 0.65 140 | 0.96 156 | 0.66 121 | 0.72 108 | 1.01 108 | 0.66 120 | 1.23 110 | 2.33 137 | 1.38 110 | 1.02 121 | 1.27 157 | 1.22 53 | 1.22 185 | 1.34 187 | 1.70 170 | 1.10 74 | 1.53 81 | 1.04 41 | 0.95 155 | 2.01 157 | 0.72 72 | 0.96 117 | 1.42 117 | 0.66 144 |
RFlow [88] | 123.1 | 0.61 54 | 0.80 70 | 0.65 79 | 0.81 148 | 1.13 156 | 0.65 112 | 1.59 154 | 3.28 177 | 2.02 154 | 1.05 140 | 1.25 151 | 1.28 138 | 1.06 87 | 1.09 90 | 1.15 46 | 1.17 124 | 1.73 136 | 1.08 92 | 0.89 131 | 1.86 137 | 0.74 87 | 1.06 173 | 1.60 175 | 0.66 144 |
Steered-L1 [116] | 123.2 | 0.61 54 | 0.87 123 | 0.64 24 | 0.71 100 | 1.02 114 | 0.64 98 | 3.16 190 | 4.58 194 | 4.16 194 | 1.16 172 | 1.36 173 | 1.40 179 | 1.09 99 | 1.13 102 | 1.24 103 | 1.13 100 | 1.59 104 | 1.10 116 | 0.89 131 | 1.84 133 | 0.81 138 | 1.00 144 | 1.50 147 | 0.63 26 |
PBOFVI [189] | 123.5 | 0.62 77 | 0.86 112 | 0.64 24 | 0.79 139 | 1.11 147 | 0.65 112 | 1.33 128 | 2.53 150 | 1.43 117 | 1.04 136 | 1.24 148 | 1.33 169 | 1.20 160 | 1.31 173 | 1.69 149 | 1.10 74 | 1.49 76 | 1.05 55 | 0.94 152 | 1.95 150 | 0.98 172 | 1.03 157 | 1.56 161 | 0.63 26 |
BlockOverlap [61] | 124.6 | 0.66 149 | 0.87 123 | 0.70 173 | 0.86 166 | 1.13 156 | 0.77 174 | 1.34 131 | 1.49 62 | 1.70 141 | 1.13 164 | 1.15 120 | 1.57 189 | 1.07 91 | 1.07 81 | 1.20 95 | 1.20 143 | 1.72 134 | 1.16 164 | 0.76 82 | 1.40 73 | 0.83 144 | 0.75 34 | 1.05 34 | 0.67 167 |
HBM-GC [103] | 125.7 | 0.63 113 | 0.81 79 | 0.67 144 | 0.72 108 | 1.04 123 | 0.62 65 | 1.31 124 | 1.54 70 | 1.65 137 | 1.02 121 | 1.18 130 | 1.27 125 | 1.23 189 | 1.34 187 | 1.73 194 | 1.39 190 | 2.27 189 | 1.25 183 | 0.81 101 | 1.62 106 | 0.72 72 | 0.80 50 | 1.15 50 | 0.67 167 |
TriangleFlow [30] | 126.8 | 0.64 132 | 0.87 123 | 0.66 121 | 0.79 139 | 1.11 147 | 0.64 98 | 1.23 110 | 2.03 117 | 1.36 105 | 1.03 127 | 1.22 140 | 1.29 152 | 1.07 91 | 1.10 95 | 1.14 34 | 1.19 138 | 1.77 146 | 1.11 132 | 1.12 179 | 2.47 181 | 0.93 162 | 1.01 150 | 1.50 147 | 0.64 78 |
LiteFlowNet [138] | 127.2 | 0.63 113 | 0.93 143 | 0.64 24 | 0.67 72 | 0.95 88 | 0.62 65 | 1.45 144 | 3.05 168 | 1.68 139 | 1.42 191 | 2.00 193 | 1.73 193 | 1.19 153 | 1.29 154 | 1.72 190 | 1.18 128 | 1.75 140 | 1.09 102 | 0.89 131 | 1.81 131 | 0.77 112 | 0.85 66 | 1.25 70 | 0.66 144 |
OFRF [132] | 128.6 | 0.71 173 | 1.00 165 | 0.70 173 | 0.85 160 | 1.13 156 | 0.73 162 | 1.11 83 | 1.98 113 | 1.17 92 | 0.99 97 | 1.13 105 | 1.22 53 | 1.17 127 | 1.25 124 | 1.48 123 | 1.14 105 | 1.59 104 | 1.09 102 | 0.98 163 | 2.07 163 | 0.75 101 | 1.08 182 | 1.63 183 | 0.64 78 |
LSM_FLOW_RVC [182] | 128.7 | 0.79 190 | 1.46 197 | 0.70 173 | 0.76 126 | 1.09 139 | 0.64 98 | 1.33 128 | 2.63 155 | 1.39 112 | 1.09 152 | 1.47 181 | 1.20 32 | 1.18 138 | 1.27 136 | 1.70 170 | 1.13 100 | 1.62 115 | 1.09 102 | 0.82 106 | 1.65 112 | 0.72 72 | 0.91 93 | 1.34 95 | 0.67 167 |
FF++_ROB [141] | 130.8 | 0.62 77 | 0.85 107 | 0.64 24 | 0.68 84 | 0.94 84 | 0.61 54 | 1.67 160 | 3.12 171 | 1.94 150 | 1.06 145 | 1.33 169 | 1.27 125 | 1.19 153 | 1.29 154 | 1.70 170 | 1.15 114 | 1.61 110 | 1.13 146 | 0.92 144 | 1.94 148 | 0.95 167 | 1.03 157 | 1.55 159 | 0.67 167 |
2D-CLG [1] | 132.4 | 0.65 140 | 0.87 123 | 0.68 157 | 0.91 181 | 1.15 163 | 0.80 179 | 1.53 152 | 1.32 43 | 1.83 146 | 1.08 149 | 1.11 91 | 1.32 164 | 1.24 191 | 1.37 191 | 1.72 190 | 1.11 79 | 1.54 85 | 1.12 137 | 0.86 122 | 1.77 128 | 0.73 80 | 0.98 130 | 1.45 130 | 0.63 26 |
IRR-PWC_RVC [180] | 132.8 | 0.71 173 | 1.13 190 | 0.67 144 | 0.74 120 | 1.04 123 | 0.68 133 | 1.36 135 | 2.90 166 | 1.58 126 | 1.46 193 | 2.20 194 | 1.23 70 | 1.21 178 | 1.31 173 | 1.73 194 | 1.13 100 | 1.61 110 | 1.08 92 | 0.82 106 | 1.64 110 | 0.73 80 | 0.93 98 | 1.38 101 | 0.64 78 |
IAOF [50] | 133.2 | 0.72 179 | 1.03 171 | 0.71 177 | 1.06 196 | 1.33 197 | 0.80 179 | 1.94 169 | 3.23 174 | 2.43 170 | 1.12 160 | 1.14 114 | 1.36 174 | 1.05 77 | 1.06 74 | 1.15 46 | 1.15 114 | 1.66 125 | 1.07 80 | 0.85 119 | 1.74 124 | 0.71 64 | 0.96 117 | 1.43 120 | 0.64 78 |
Correlation Flow [76] | 133.6 | 0.61 54 | 0.82 89 | 0.64 24 | 0.81 148 | 1.15 163 | 0.65 112 | 1.17 97 | 2.22 129 | 1.37 106 | 1.00 105 | 1.17 126 | 1.25 99 | 1.11 108 | 1.14 103 | 1.30 110 | 1.46 194 | 2.44 194 | 1.37 193 | 1.06 177 | 2.29 178 | 0.93 162 | 1.07 177 | 1.61 177 | 0.68 181 |
IAOF2 [51] | 134.0 | 0.68 166 | 0.96 156 | 0.68 157 | 0.87 168 | 1.21 180 | 0.71 155 | 1.09 79 | 1.95 110 | 1.10 81 | 1.03 127 | 1.15 120 | 1.27 125 | 1.18 138 | 1.28 145 | 1.49 124 | 1.22 153 | 1.86 165 | 1.13 146 | 0.79 91 | 1.57 95 | 0.76 106 | 1.02 154 | 1.53 156 | 0.65 120 |
BriefMatch [122] | 134.8 | 0.63 113 | 0.83 94 | 0.66 121 | 0.72 108 | 1.03 117 | 0.70 145 | 2.06 174 | 1.62 77 | 2.76 179 | 1.26 184 | 1.28 160 | 1.70 192 | 1.05 77 | 1.05 71 | 1.20 95 | 1.25 168 | 1.78 150 | 1.19 173 | 0.84 116 | 1.68 118 | 1.13 182 | 1.03 157 | 1.24 67 | 1.49 198 |
Shiralkar [42] | 135.5 | 0.65 140 | 0.94 148 | 0.65 79 | 0.85 160 | 1.14 161 | 0.67 129 | 1.52 151 | 1.84 100 | 1.71 143 | 1.23 180 | 1.54 188 | 1.29 152 | 1.09 99 | 1.14 103 | 1.21 97 | 1.20 143 | 1.77 146 | 1.11 132 | 0.97 161 | 2.04 160 | 0.77 112 | 1.05 170 | 1.58 172 | 0.63 26 |
GraphCuts [14] | 135.8 | 0.70 170 | 1.04 174 | 0.67 144 | 0.74 120 | 1.00 104 | 0.70 145 | 2.29 181 | 1.44 57 | 2.80 183 | 1.08 149 | 1.21 138 | 1.30 156 | 1.16 120 | 1.24 121 | 1.46 122 | 1.12 88 | 1.59 104 | 1.05 55 | 0.97 161 | 2.07 163 | 0.97 169 | 1.07 177 | 1.62 180 | 0.64 78 |
CVENG22+RIC [199] | 137.0 | 0.63 113 | 0.85 107 | 0.65 79 | 0.74 120 | 1.06 129 | 0.63 85 | 1.27 120 | 1.65 78 | 1.01 69 | 1.15 170 | 1.49 183 | 1.38 176 | 1.20 160 | 1.31 173 | 1.70 170 | 1.20 143 | 1.81 157 | 1.09 102 | 0.91 143 | 1.89 143 | 0.82 143 | 1.12 189 | 1.70 191 | 0.66 144 |
LocallyOriented [52] | 137.5 | 0.65 140 | 0.89 135 | 0.67 144 | 0.86 166 | 1.17 172 | 0.69 140 | 1.85 165 | 2.79 162 | 2.37 167 | 1.19 175 | 1.50 185 | 1.25 99 | 1.08 97 | 1.12 99 | 1.19 89 | 1.16 120 | 1.62 115 | 1.12 137 | 0.82 106 | 1.61 102 | 0.79 128 | 1.12 189 | 1.70 191 | 0.64 78 |
TV-L1-improved [17] | 137.9 | 0.63 113 | 0.85 107 | 0.66 121 | 0.88 171 | 1.22 183 | 0.72 160 | 1.98 171 | 1.55 71 | 2.68 176 | 1.00 105 | 1.07 69 | 1.27 125 | 1.11 108 | 1.16 110 | 1.15 46 | 1.23 160 | 1.87 167 | 1.14 152 | 1.05 174 | 2.28 177 | 0.87 154 | 1.04 161 | 1.56 161 | 0.67 167 |
StereoOF-V1MT [117] | 139.5 | 0.65 140 | 0.93 143 | 0.65 79 | 0.80 146 | 1.11 147 | 0.65 112 | 1.80 162 | 1.51 67 | 2.20 164 | 1.34 189 | 1.49 183 | 1.58 191 | 1.20 160 | 1.30 161 | 1.65 138 | 1.24 165 | 1.69 130 | 1.19 173 | 1.02 170 | 2.19 172 | 0.89 158 | 0.90 86 | 1.31 87 | 0.63 26 |
TVL1_RVC [175] | 141.5 | 0.73 182 | 1.05 179 | 0.72 184 | 0.98 191 | 1.25 191 | 0.80 179 | 1.51 148 | 2.84 165 | 1.89 148 | 1.12 160 | 1.26 153 | 1.28 138 | 1.05 77 | 1.06 74 | 1.16 71 | 1.22 153 | 1.83 162 | 1.10 116 | 1.14 181 | 2.43 180 | 1.61 191 | 0.87 72 | 1.27 75 | 0.63 26 |
H+S_RVC [176] | 141.7 | 0.67 156 | 0.90 137 | 0.68 157 | 0.89 175 | 1.11 147 | 0.77 174 | 1.42 140 | 1.84 100 | 1.59 127 | 1.27 186 | 1.30 165 | 1.37 175 | 1.14 116 | 1.21 116 | 1.27 107 | 1.21 151 | 1.82 161 | 1.10 116 | 0.79 91 | 1.52 89 | 0.86 152 | 1.06 173 | 1.57 169 | 0.65 120 |
SimpleFlow [49] | 142.3 | 0.62 77 | 0.84 102 | 0.65 79 | 0.76 126 | 1.06 129 | 0.64 98 | 3.87 195 | 4.61 195 | 4.32 195 | 1.03 127 | 1.20 136 | 1.29 152 | 1.20 160 | 1.30 161 | 1.65 138 | 1.34 186 | 2.18 186 | 1.16 164 | 1.45 192 | 3.30 192 | 1.60 190 | 0.94 104 | 1.39 106 | 0.63 26 |
IIOF-NLDP [129] | 143.2 | 0.61 54 | 0.80 70 | 0.64 24 | 0.76 126 | 1.08 136 | 0.63 85 | 1.49 146 | 2.57 153 | 1.62 132 | 1.03 127 | 1.22 140 | 1.28 138 | 1.21 178 | 1.32 178 | 1.87 197 | 1.46 194 | 2.45 195 | 1.39 194 | 1.71 195 | 3.95 195 | 1.91 194 | 1.02 154 | 1.51 153 | 0.64 78 |
HBpMotionGpu [43] | 145.2 | 0.71 173 | 1.04 174 | 0.71 177 | 0.94 185 | 1.25 191 | 0.80 179 | 1.33 128 | 2.51 147 | 1.48 122 | 1.12 160 | 1.39 177 | 1.28 138 | 1.34 195 | 1.52 195 | 2.35 199 | 1.29 177 | 2.02 182 | 1.20 179 | 0.69 46 | 1.27 49 | 0.66 29 | 0.89 82 | 1.29 81 | 0.65 120 |
UnFlow [127] | 147.1 | 0.71 173 | 1.11 186 | 0.68 157 | 0.83 153 | 1.10 142 | 0.69 140 | 1.25 116 | 2.42 143 | 1.34 104 | 1.01 114 | 1.22 140 | 1.22 53 | 1.20 160 | 1.31 173 | 1.65 138 | 1.47 196 | 2.48 196 | 1.30 191 | 0.84 116 | 1.70 120 | 0.73 80 | 1.29 198 | 1.94 198 | 0.66 144 |
Rannacher [23] | 147.8 | 0.65 140 | 0.95 154 | 0.66 121 | 0.89 175 | 1.24 188 | 0.71 155 | 2.10 175 | 1.78 95 | 2.78 182 | 1.05 140 | 1.27 157 | 1.28 138 | 1.09 99 | 1.14 103 | 1.16 71 | 1.26 174 | 1.95 178 | 1.15 157 | 1.03 173 | 2.22 175 | 0.88 155 | 1.04 161 | 1.56 161 | 0.65 120 |
Learning Flow [11] | 150.3 | 0.66 149 | 0.94 148 | 0.67 144 | 0.85 160 | 1.18 176 | 0.68 133 | 4.24 198 | 5.56 198 | 4.33 196 | 1.14 168 | 1.26 153 | 1.33 169 | 1.16 120 | 1.22 120 | 1.32 112 | 1.18 128 | 1.70 132 | 1.13 146 | 0.82 106 | 1.63 107 | 0.81 138 | 1.08 182 | 1.62 180 | 0.66 144 |
PGAM+LK [55] | 151.3 | 0.78 189 | 1.09 184 | 0.80 192 | 0.91 181 | 1.17 172 | 0.82 185 | 3.39 192 | 6.37 199 | 4.52 197 | 1.44 192 | 1.47 181 | 1.75 194 | 1.09 99 | 1.11 97 | 1.19 89 | 1.23 160 | 1.78 150 | 1.16 164 | 0.73 64 | 1.37 65 | 0.79 128 | 0.92 95 | 1.35 96 | 0.67 167 |
Adaptive flow [45] | 151.6 | 0.80 191 | 1.06 182 | 0.81 194 | 1.02 193 | 1.27 194 | 0.91 195 | 1.34 131 | 2.01 114 | 1.68 139 | 1.21 178 | 1.30 165 | 1.52 185 | 1.25 192 | 1.37 191 | 1.35 115 | 1.37 188 | 2.22 188 | 1.25 183 | 0.75 76 | 1.43 79 | 0.81 138 | 0.82 53 | 1.18 54 | 0.65 120 |
SegOF [10] | 151.9 | 0.67 156 | 1.01 166 | 0.67 144 | 0.78 136 | 1.06 129 | 0.68 133 | 3.01 188 | 2.80 163 | 3.24 186 | 1.63 195 | 2.62 196 | 1.57 189 | 1.20 160 | 1.30 161 | 1.69 149 | 1.18 128 | 1.74 139 | 1.14 152 | 1.21 187 | 2.70 187 | 1.11 180 | 0.87 72 | 1.26 71 | 0.64 78 |
StereoFlow [44] | 152.2 | 0.85 195 | 1.29 194 | 0.75 187 | 0.95 187 | 1.24 188 | 0.76 169 | 1.10 82 | 1.85 103 | 1.06 76 | 1.05 140 | 1.23 146 | 1.27 125 | 1.44 196 | 1.67 196 | 1.65 138 | 1.43 193 | 2.40 193 | 1.25 183 | 0.89 131 | 1.85 135 | 0.77 112 | 0.98 130 | 1.46 134 | 0.65 120 |
Dynamic MRF [7] | 155.8 | 0.63 113 | 0.92 142 | 0.65 79 | 0.79 139 | 1.15 163 | 0.67 129 | 1.49 146 | 1.88 106 | 1.67 138 | 1.26 184 | 1.53 187 | 1.56 188 | 1.20 160 | 1.32 178 | 1.69 149 | 1.31 183 | 2.08 185 | 1.23 182 | 1.09 178 | 2.38 179 | 0.94 165 | 1.06 173 | 1.58 172 | 0.65 120 |
FFV1MT [104] | 156.0 | 0.72 179 | 1.11 186 | 0.69 168 | 0.89 175 | 1.12 153 | 0.77 174 | 1.83 163 | 2.67 157 | 1.88 147 | 1.31 187 | 1.38 174 | 1.51 183 | 1.11 108 | 1.15 107 | 1.25 104 | 1.24 165 | 1.81 157 | 1.15 157 | 1.05 174 | 2.17 171 | 1.04 175 | 0.93 98 | 1.35 96 | 0.69 187 |
WRT [146] | 156.3 | 0.62 77 | 0.81 79 | 0.65 79 | 0.81 148 | 1.06 129 | 0.74 164 | 3.46 193 | 3.07 170 | 3.68 191 | 1.12 160 | 1.22 140 | 1.28 138 | 1.17 127 | 1.25 124 | 1.38 118 | 1.38 189 | 2.27 189 | 1.26 188 | 1.63 193 | 3.77 193 | 1.78 193 | 1.15 194 | 1.75 195 | 0.68 181 |
HCIC-L [97] | 157.3 | 0.88 197 | 1.10 185 | 0.94 197 | 0.84 156 | 1.03 117 | 0.84 190 | 2.11 176 | 4.36 193 | 2.83 184 | 1.13 164 | 1.35 171 | 1.29 152 | 1.03 63 | 1.01 59 | 1.19 89 | 1.30 181 | 2.01 181 | 1.21 180 | 1.17 185 | 2.57 185 | 1.34 187 | 0.93 98 | 1.35 96 | 0.70 189 |
Heeger++ [102] | 158.2 | 0.80 191 | 1.35 196 | 0.70 173 | 0.84 156 | 1.09 139 | 0.70 145 | 2.05 173 | 1.88 106 | 2.18 163 | 1.31 187 | 1.38 174 | 1.51 183 | 1.22 185 | 1.33 186 | 1.67 145 | 1.25 168 | 1.75 140 | 1.21 180 | 1.12 179 | 2.09 165 | 0.97 169 | 0.95 110 | 1.39 106 | 0.64 78 |
SILK [80] | 158.6 | 0.69 169 | 0.93 143 | 0.71 177 | 1.01 192 | 1.24 188 | 0.89 193 | 3.96 196 | 3.80 186 | 3.85 192 | 1.16 172 | 1.27 157 | 1.40 179 | 1.11 108 | 1.16 110 | 1.19 89 | 1.29 177 | 1.93 176 | 1.19 173 | 0.74 73 | 1.41 77 | 0.89 158 | 1.12 189 | 1.68 189 | 0.66 144 |
SLK [47] | 159.8 | 0.72 179 | 0.95 154 | 0.75 187 | 0.93 184 | 1.13 156 | 0.81 184 | 2.97 187 | 2.41 142 | 3.25 187 | 1.38 190 | 1.61 190 | 1.53 187 | 1.19 153 | 1.29 154 | 1.26 106 | 1.21 151 | 1.78 150 | 1.14 152 | 1.14 181 | 2.51 183 | 0.91 160 | 0.90 86 | 1.32 89 | 0.66 144 |
FOLKI [16] | 163.1 | 0.82 194 | 1.04 174 | 0.88 195 | 1.03 194 | 1.26 193 | 0.90 194 | 1.74 161 | 2.22 129 | 2.29 166 | 1.48 194 | 1.50 185 | 1.85 195 | 1.10 105 | 1.15 107 | 1.22 98 | 1.41 191 | 2.30 191 | 1.55 197 | 0.83 113 | 1.64 110 | 1.07 177 | 1.00 144 | 1.48 141 | 0.67 167 |
2bit-BM-tele [96] | 165.0 | 0.70 170 | 1.02 170 | 0.71 177 | 0.87 168 | 1.23 187 | 0.75 166 | 2.82 186 | 5.34 197 | 4.12 193 | 1.13 164 | 1.30 165 | 1.43 182 | 1.16 120 | 1.21 116 | 1.42 120 | 1.59 197 | 2.66 197 | 1.52 196 | 1.90 196 | 4.42 198 | 2.38 197 | 0.82 53 | 1.16 52 | 0.71 192 |
SPSA-learn [13] | 167.5 | 0.75 186 | 1.24 193 | 0.68 157 | 0.87 168 | 1.15 163 | 0.74 164 | 3.22 191 | 3.18 172 | 3.46 189 | 1.19 175 | 1.28 160 | 1.33 169 | 1.16 120 | 1.25 124 | 1.28 108 | 1.20 143 | 1.79 156 | 1.17 168 | 2.04 198 | 4.77 199 | 2.66 199 | 1.10 187 | 1.66 188 | 0.66 144 |
WOLF_ROB [144] | 170.5 | 0.80 191 | 1.33 195 | 0.69 168 | 0.91 181 | 1.21 180 | 0.71 155 | 2.11 176 | 3.57 183 | 2.65 175 | 1.11 159 | 1.45 180 | 1.32 164 | 1.23 189 | 1.36 190 | 1.70 170 | 1.25 168 | 1.87 167 | 1.15 157 | 1.25 190 | 2.79 190 | 0.85 149 | 0.99 135 | 1.47 137 | 0.66 144 |
GroupFlow [9] | 176.1 | 0.76 188 | 1.20 191 | 0.71 177 | 0.83 153 | 1.12 153 | 0.73 162 | 2.67 185 | 2.82 164 | 2.74 177 | 1.77 196 | 2.21 195 | 2.39 196 | 1.29 193 | 1.43 193 | 1.72 190 | 1.36 187 | 2.21 187 | 1.25 183 | 1.14 181 | 2.49 182 | 0.93 162 | 0.98 130 | 1.46 134 | 0.67 167 |
Pyramid LK [2] | 178.5 | 0.86 196 | 1.11 186 | 0.90 196 | 1.15 197 | 1.29 196 | 0.99 197 | 3.86 194 | 2.26 132 | 3.64 190 | 2.42 198 | 3.60 197 | 2.78 198 | 1.45 197 | 1.68 197 | 1.30 110 | 1.22 153 | 1.62 115 | 1.15 157 | 1.22 188 | 2.72 188 | 0.95 167 | 1.16 195 | 1.76 196 | 0.66 144 |
Periodicity [79] | 194.8 | 1.11 198 | 2.00 198 | 0.94 197 | 1.39 198 | 1.34 198 | 1.12 198 | 4.06 197 | 4.26 192 | 4.55 198 | 2.25 197 | 3.71 198 | 2.59 197 | 1.53 198 | 1.77 198 | 1.68 146 | 1.69 198 | 2.82 198 | 1.60 198 | 1.93 197 | 4.41 197 | 2.10 196 | 1.17 196 | 1.68 189 | 0.87 197 |
AVG_FLOW_ROB [137] | 198.5 | 2.72 199 | 3.33 199 | 1.81 199 | 2.23 199 | 2.21 199 | 1.87 199 | 4.77 199 | 5.25 196 | 4.98 199 | 3.61 199 | 5.39 199 | 4.02 199 | 1.90 199 | 2.27 199 | 1.90 198 | 3.33 199 | 6.12 199 | 2.71 199 | 2.09 199 | 4.13 196 | 2.06 195 | 1.91 199 | 2.06 199 | 1.82 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |