Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
R0.5 normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
SoftSplat [169] | 5.9 | 32.8 14 | 24.6 7 | 46.3 16 | 20.8 3 | 24.0 4 | 34.4 3 | 18.1 1 | 17.9 2 | 35.0 1 | 47.7 2 | 38.9 2 | 76.9 2 | 64.5 16 | 57.5 13 | 82.5 6 | 63.1 4 | 39.8 6 | 79.7 3 | 26.7 7 | 36.1 11 | 41.5 8 | 29.2 3 | 39.9 5 | 48.3 3 |
IFRNet [193] | 8.8 | 33.6 16 | 24.2 6 | 47.5 18 | 21.9 6 | 23.9 3 | 36.5 6 | 18.7 4 | 18.2 3 | 35.7 4 | 48.7 6 | 39.8 4 | 78.7 16 | 63.9 7 | 56.8 6 | 83.6 18 | 64.3 9 | 42.2 9 | 80.5 17 | 26.5 6 | 35.3 10 | 41.8 10 | 31.3 9 | 44.0 8 | 49.2 10 |
EAFI [186] | 9.8 | 30.5 8 | 22.0 2 | 43.5 12 | 19.3 1 | 19.8 1 | 32.0 1 | 18.2 2 | 17.2 1 | 35.0 1 | 47.2 1 | 38.1 1 | 76.3 1 | 67.8 26 | 62.6 26 | 82.1 1 | 65.4 21 | 46.1 22 | 79.9 6 | 27.7 15 | 37.7 16 | 41.9 12 | 33.3 12 | 47.6 18 | 49.9 28 |
SoftsplatAug [190] | 10.3 | 28.8 6 | 22.0 2 | 40.9 7 | 19.4 2 | 21.9 2 | 32.9 2 | 18.6 3 | 19.2 4 | 35.4 3 | 48.5 4 | 40.0 5 | 77.6 6 | 62.1 2 | 54.5 2 | 82.3 5 | 62.7 2 | 38.5 3 | 79.7 3 | 27.4 14 | 35.1 8 | 42.7 149 | 29.2 3 | 39.3 4 | 48.8 6 |
DistillNet [184] | 11.6 | 32.9 15 | 25.4 10 | 46.2 15 | 21.7 4 | 24.8 5 | 35.6 5 | 19.3 5 | 19.7 6 | 36.6 5 | 48.3 3 | 40.1 6 | 77.2 3 | 64.4 14 | 57.7 17 | 82.2 4 | 64.9 19 | 45.2 21 | 79.9 6 | 28.0 20 | 40.2 24 | 41.8 10 | 34.0 20 | 49.0 21 | 49.8 21 |
SepConv++ [185] | 17.5 | 35.3 21 | 28.7 24 | 48.6 126 | 24.5 9 | 28.4 13 | 39.4 125 | 21.4 9 | 22.7 9 | 36.8 6 | 51.2 18 | 43.5 18 | 78.6 14 | 63.0 4 | 55.5 3 | 82.8 10 | 61.6 1 | 35.2 1 | 79.3 1 | 25.7 1 | 32.9 2 | 41.3 3 | 26.8 1 | 35.2 1 | 47.9 1 |
MV_VFI [183] | 24.2 | 35.6 22 | 28.3 21 | 49.4 148 | 25.8 21 | 30.4 28 | 39.7 129 | 21.3 8 | 23.1 12 | 38.0 9 | 50.2 10 | 43.0 13 | 78.1 10 | 64.4 14 | 57.6 15 | 83.1 12 | 64.3 9 | 43.5 16 | 79.9 6 | 27.1 10 | 38.9 17 | 41.4 4 | 33.7 15 | 49.4 23 | 49.1 9 |
TC-GAN [166] | 24.8 | 35.6 22 | 28.6 23 | 49.6 154 | 25.8 21 | 30.6 34 | 39.6 128 | 21.2 7 | 23.0 11 | 37.9 8 | 50.3 13 | 43.1 14 | 78.3 12 | 64.3 12 | 57.5 13 | 83.0 11 | 64.3 9 | 43.4 13 | 79.9 6 | 27.2 13 | 39.0 19 | 41.4 4 | 33.7 15 | 49.3 22 | 49.2 10 |
DAI [168] | 25.9 | 35.2 20 | 24.8 8 | 50.0 164 | 23.8 7 | 27.2 7 | 36.9 10 | 19.5 6 | 19.4 5 | 36.9 7 | 48.6 5 | 39.7 3 | 78.6 14 | 68.7 27 | 63.0 27 | 83.1 12 | 66.1 23 | 48.2 26 | 80.2 16 | 28.6 116 | 40.1 23 | 42.3 15 | 34.8 26 | 50.2 26 | 49.9 28 |
STSR [170] | 28.7 | 34.2 17 | 27.0 15 | 47.9 42 | 21.7 4 | 25.5 6 | 34.9 4 | 22.7 14 | 24.7 17 | 38.1 10 | 49.6 7 | 41.5 9 | 78.7 16 | 70.2 29 | 65.2 30 | 84.7 24 | 66.7 24 | 50.4 29 | 80.8 19 | 28.6 116 | 43.0 35 | 42.6 135 | 35.3 27 | 53.1 32 | 49.9 28 |
DAIN [152] | 31.0 | 36.5 103 | 28.9 27 | 50.8 176 | 26.2 45 | 30.6 34 | 40.0 132 | 21.4 9 | 23.3 13 | 38.1 10 | 50.2 10 | 43.1 14 | 77.9 7 | 64.5 16 | 57.6 15 | 83.4 16 | 64.3 9 | 43.5 16 | 80.0 11 | 27.1 10 | 39.1 20 | 41.4 4 | 33.7 15 | 49.4 23 | 49.2 10 |
AdaCoF [165] | 31.1 | 37.1 142 | 29.5 30 | 50.7 175 | 26.1 33 | 29.6 20 | 40.6 142 | 24.6 16 | 24.4 15 | 38.5 17 | 51.3 19 | 43.3 17 | 78.0 8 | 67.5 25 | 60.9 24 | 85.0 26 | 62.9 3 | 39.0 5 | 79.6 2 | 26.1 4 | 35.1 8 | 41.2 1 | 29.5 6 | 41.3 7 | 48.2 2 |
GDCN [172] | 35.5 | 31.1 9 | 28.3 21 | 41.8 8 | 29.3 153 | 33.3 103 | 41.4 153 | 21.8 12 | 22.9 10 | 39.3 107 | 52.6 87 | 44.2 22 | 78.5 13 | 64.3 12 | 57.2 11 | 84.0 21 | 64.7 16 | 43.4 13 | 80.6 18 | 26.9 9 | 36.2 13 | 42.2 14 | 31.1 8 | 45.1 11 | 49.0 8 |
IDIAL [192] | 37.4 | 31.6 11 | 25.9 11 | 43.3 11 | 25.3 13 | 28.2 11 | 37.8 96 | 21.5 11 | 21.7 8 | 38.9 52 | 50.2 10 | 42.3 11 | 77.5 5 | 63.7 5 | 56.9 7 | 82.7 9 | 64.8 17 | 44.5 19 | 79.9 6 | 29.5 171 | 38.9 17 | 43.8 182 | 34.4 23 | 47.5 16 | 52.0 176 |
EDSC [173] | 38.0 | 31.7 12 | 26.4 13 | 43.6 13 | 24.5 9 | 28.5 14 | 40.4 137 | 24.6 16 | 23.9 14 | 44.4 176 | 51.0 15 | 43.5 18 | 78.7 16 | 63.9 7 | 56.7 5 | 83.3 15 | 64.6 15 | 42.3 10 | 80.9 20 | 26.8 8 | 34.2 4 | 43.4 173 | 32.4 11 | 44.3 10 | 53.1 182 |
MDP-Flow2 [68] | 38.1 | 35.7 24 | 30.6 35 | 47.8 31 | 25.9 25 | 30.5 31 | 36.9 10 | 28.6 29 | 29.8 32 | 38.5 17 | 51.9 29 | 46.5 48 | 80.3 33 | 71.9 38 | 66.6 36 | 87.2 43 | 68.6 36 | 53.9 61 | 82.1 66 | 28.1 25 | 43.6 46 | 42.4 32 | 36.6 72 | 55.6 76 | 50.0 40 |
BMBC [171] | 39.0 | 36.0 43 | 27.1 16 | 49.4 148 | 26.2 45 | 27.5 9 | 43.1 167 | 31.9 184 | 30.3 39 | 45.0 181 | 49.6 7 | 40.7 7 | 78.1 10 | 64.2 10 | 57.0 8 | 83.1 12 | 63.5 5 | 39.8 6 | 80.1 14 | 26.0 3 | 34.5 5 | 41.2 1 | 29.3 5 | 40.7 6 | 48.6 4 |
PMMST [112] | 39.5 | 35.8 30 | 30.8 36 | 47.9 42 | 26.5 60 | 31.0 45 | 37.3 53 | 28.6 29 | 29.9 33 | 38.4 12 | 51.7 23 | 46.0 34 | 80.2 26 | 72.0 43 | 66.7 42 | 87.3 52 | 68.5 33 | 53.3 39 | 82.0 38 | 28.1 25 | 43.7 52 | 42.4 32 | 36.5 60 | 55.5 70 | 50.0 40 |
PH-Flow [99] | 40.1 | 36.1 51 | 32.5 65 | 47.8 31 | 25.6 16 | 29.6 20 | 36.9 10 | 28.7 37 | 30.0 35 | 38.5 17 | 51.6 21 | 45.5 29 | 80.2 26 | 71.9 38 | 66.7 42 | 87.3 52 | 68.8 74 | 54.8 118 | 81.9 28 | 28.1 25 | 43.6 46 | 42.4 32 | 36.4 52 | 55.3 57 | 50.0 40 |
NNF-Local [75] | 40.3 | 35.7 24 | 31.4 39 | 47.6 20 | 25.5 14 | 29.6 20 | 36.9 10 | 28.6 29 | 29.9 33 | 38.5 17 | 52.4 63 | 48.0 104 | 80.3 33 | 72.0 43 | 66.6 36 | 87.4 78 | 68.7 52 | 54.4 91 | 82.0 38 | 28.1 25 | 43.5 43 | 42.4 32 | 36.2 38 | 55.0 46 | 50.0 40 |
CoT-AMFlow [174] | 40.6 | 35.7 24 | 30.5 34 | 47.7 27 | 26.0 28 | 30.6 34 | 37.0 20 | 28.7 37 | 30.4 44 | 38.5 17 | 51.8 25 | 46.2 39 | 80.3 33 | 72.1 58 | 66.7 42 | 87.3 52 | 68.7 52 | 54.0 66 | 82.1 66 | 28.1 25 | 43.5 43 | 42.4 32 | 36.5 60 | 55.6 76 | 50.0 40 |
MEMC-Net+ [160] | 41.8 | 36.9 136 | 28.9 27 | 50.5 171 | 27.0 87 | 29.9 24 | 41.3 150 | 23.1 15 | 24.6 16 | 39.3 107 | 51.1 16 | 42.7 12 | 78.0 8 | 67.3 24 | 61.2 25 | 83.8 19 | 65.6 22 | 47.9 24 | 80.1 14 | 27.7 15 | 40.7 25 | 41.7 9 | 33.9 19 | 50.6 27 | 49.2 10 |
STAR-Net [164] | 44.0 | 36.8 130 | 26.4 13 | 51.8 182 | 26.2 45 | 28.3 12 | 40.0 132 | 22.3 13 | 20.8 7 | 39.1 81 | 49.9 9 | 41.6 10 | 77.2 3 | 62.9 3 | 55.7 4 | 82.1 1 | 64.4 13 | 43.5 16 | 80.0 11 | 29.0 154 | 36.1 11 | 42.3 15 | 33.8 18 | 46.7 14 | 50.8 160 |
NN-field [71] | 46.8 | 36.0 43 | 32.2 55 | 47.9 42 | 25.5 14 | 29.3 18 | 36.8 8 | 29.4 99 | 29.7 31 | 39.0 71 | 52.4 63 | 48.1 111 | 80.3 33 | 72.0 43 | 66.7 42 | 87.3 52 | 68.7 52 | 54.0 66 | 82.0 38 | 28.1 25 | 43.4 40 | 42.4 32 | 36.4 52 | 55.2 53 | 50.0 40 |
MS_RAFT+_RVC [195] | 48.6 | 36.2 59 | 32.3 58 | 48.2 93 | 26.1 33 | 31.7 62 | 37.0 20 | 28.5 27 | 29.4 28 | 38.4 12 | 51.8 25 | 46.3 41 | 80.3 33 | 72.3 111 | 67.0 82 | 87.4 78 | 68.7 52 | 53.7 48 | 82.1 66 | 27.8 17 | 41.6 26 | 42.4 32 | 36.3 41 | 56.1 107 | 49.5 15 |
ProbFlowFields [126] | 51.9 | 35.9 36 | 32.4 60 | 48.0 59 | 25.8 21 | 30.5 31 | 37.2 46 | 28.6 29 | 30.3 39 | 38.5 17 | 52.1 43 | 46.4 44 | 80.7 100 | 72.3 111 | 67.1 114 | 87.5 140 | 68.6 36 | 53.8 51 | 82.1 66 | 28.0 20 | 42.8 30 | 42.3 15 | 36.1 34 | 54.6 40 | 50.1 63 |
ADC [161] | 52.0 | 37.5 153 | 30.3 32 | 50.5 171 | 28.6 137 | 31.3 54 | 44.9 177 | 26.3 20 | 27.0 25 | 39.6 131 | 53.6 149 | 45.6 30 | 79.4 19 | 66.5 22 | 59.9 22 | 84.2 23 | 64.1 8 | 42.9 12 | 80.0 11 | 26.1 4 | 34.9 6 | 41.4 4 | 33.3 12 | 48.9 20 | 48.9 7 |
IROF++ [58] | 52.6 | 36.2 59 | 33.0 85 | 47.8 31 | 26.1 33 | 30.9 42 | 36.9 10 | 29.1 65 | 31.0 66 | 38.9 52 | 51.6 21 | 45.6 30 | 80.4 48 | 72.0 43 | 66.8 54 | 87.2 43 | 68.6 36 | 53.4 40 | 82.2 97 | 28.3 48 | 44.6 89 | 42.4 32 | 36.5 60 | 55.3 57 | 50.4 121 |
FGME [158] | 52.8 | 24.9 1 | 21.5 1 | 33.9 1 | 26.1 33 | 28.0 10 | 43.1 167 | 27.2 24 | 24.8 18 | 48.5 187 | 50.6 14 | 41.0 8 | 80.8 116 | 61.7 1 | 54.0 1 | 82.5 6 | 64.4 13 | 38.8 4 | 82.2 97 | 29.6 175 | 31.2 1 | 54.2 190 | 29.9 7 | 38.3 3 | 55.3 189 |
DSepConv [162] | 52.8 | 34.2 17 | 28.8 26 | 46.6 17 | 27.8 117 | 31.4 56 | 43.5 171 | 26.1 18 | 25.1 19 | 44.5 177 | 52.7 98 | 44.9 25 | 79.7 20 | 64.2 10 | 57.1 9 | 84.0 21 | 65.0 20 | 42.8 11 | 81.2 22 | 27.1 10 | 35.0 7 | 43.5 175 | 34.0 20 | 47.5 16 | 53.6 185 |
Sparse-NonSparse [56] | 54.6 | 36.2 59 | 32.8 78 | 48.0 59 | 25.9 25 | 30.4 28 | 37.0 20 | 29.0 55 | 30.9 62 | 38.8 35 | 52.0 35 | 46.1 36 | 80.6 75 | 72.1 58 | 66.8 54 | 87.3 52 | 68.9 88 | 54.6 105 | 82.1 66 | 28.3 48 | 44.0 62 | 42.4 32 | 36.4 52 | 55.4 64 | 50.1 63 |
CombBMOF [111] | 55.9 | 35.9 36 | 31.0 37 | 47.8 31 | 25.8 21 | 30.5 31 | 36.8 8 | 29.2 73 | 30.8 57 | 39.5 120 | 52.4 63 | 47.4 76 | 80.3 33 | 72.1 58 | 66.8 54 | 87.4 78 | 68.9 88 | 54.5 98 | 82.1 66 | 28.5 97 | 44.6 89 | 42.3 15 | 36.0 33 | 54.6 40 | 50.0 40 |
nLayers [57] | 58.2 | 36.4 91 | 32.0 50 | 48.2 93 | 26.0 28 | 30.4 28 | 37.3 53 | 28.7 37 | 29.4 28 | 38.8 35 | 52.2 51 | 46.8 55 | 80.4 48 | 72.3 111 | 67.1 114 | 87.4 78 | 68.8 74 | 54.7 110 | 82.0 38 | 28.3 48 | 43.7 52 | 42.4 32 | 36.4 52 | 55.4 64 | 49.9 28 |
AGIF+OF [84] | 58.5 | 36.2 59 | 32.8 78 | 47.9 42 | 26.1 33 | 30.8 39 | 37.1 31 | 29.0 55 | 30.7 53 | 38.9 52 | 51.8 25 | 46.2 39 | 80.1 24 | 72.3 111 | 67.2 134 | 87.3 52 | 68.9 88 | 55.2 137 | 81.9 28 | 28.3 48 | 43.6 46 | 42.4 32 | 36.6 72 | 56.0 98 | 49.9 28 |
GMFlow_RVC [196] | 59.5 | 36.0 43 | 32.6 70 | 47.9 42 | 26.1 33 | 31.7 62 | 37.2 46 | 28.7 37 | 30.6 48 | 38.5 17 | 52.3 56 | 47.8 94 | 80.3 33 | 72.4 145 | 67.1 114 | 87.3 52 | 68.8 74 | 54.7 110 | 82.0 38 | 28.2 36 | 43.4 40 | 42.5 95 | 36.4 52 | 55.5 70 | 49.8 21 |
2DHMM-SAS [90] | 60.9 | 36.4 91 | 33.9 127 | 47.9 42 | 27.1 92 | 32.6 83 | 37.0 20 | 28.5 27 | 30.4 44 | 38.9 52 | 51.8 25 | 45.6 30 | 80.4 48 | 72.1 58 | 66.9 67 | 87.4 78 | 68.8 74 | 54.5 98 | 82.0 38 | 28.3 48 | 44.2 71 | 42.3 15 | 36.7 87 | 56.1 107 | 50.0 40 |
NNF-EAC [101] | 62.0 | 36.3 78 | 32.4 60 | 48.0 59 | 26.6 65 | 31.7 62 | 37.1 31 | 29.3 84 | 30.2 36 | 39.0 71 | 52.4 63 | 46.9 58 | 81.1 150 | 72.0 43 | 66.7 42 | 87.4 78 | 68.7 52 | 53.7 48 | 82.1 66 | 28.2 36 | 43.9 56 | 42.4 32 | 36.7 87 | 55.9 92 | 50.0 40 |
Layers++ [37] | 62.7 | 36.3 78 | 32.4 60 | 48.2 93 | 25.7 17 | 29.2 17 | 37.3 53 | 28.9 51 | 30.6 48 | 38.9 52 | 52.0 35 | 46.4 44 | 80.4 48 | 72.2 76 | 67.0 82 | 87.5 140 | 68.9 88 | 55.2 137 | 82.0 38 | 28.3 48 | 44.0 62 | 42.4 32 | 36.6 72 | 55.5 70 | 50.1 63 |
RAFT-TF_RVC [179] | 62.9 | 35.8 30 | 32.6 70 | 47.6 20 | 26.1 33 | 31.4 56 | 37.1 31 | 28.7 37 | 30.8 57 | 38.5 17 | 52.4 63 | 48.4 130 | 80.4 48 | 72.3 111 | 67.1 114 | 87.3 52 | 70.6 189 | 54.4 91 | 83.9 187 | 28.0 20 | 42.9 33 | 42.4 32 | 35.8 32 | 54.4 37 | 49.7 19 |
PRAFlow_RVC [177] | 63.6 | 36.1 51 | 31.9 46 | 47.9 42 | 26.3 53 | 31.6 60 | 37.4 65 | 28.6 29 | 30.3 39 | 38.4 12 | 52.5 71 | 48.0 104 | 80.5 67 | 72.2 76 | 66.9 67 | 87.4 78 | 68.6 36 | 53.4 40 | 82.2 97 | 28.1 25 | 43.1 36 | 42.5 95 | 37.2 143 | 56.5 131 | 50.1 63 |
LSM [39] | 64.0 | 36.3 78 | 33.7 116 | 48.0 59 | 26.1 33 | 31.0 45 | 37.0 20 | 29.1 65 | 31.8 86 | 38.9 52 | 52.2 51 | 46.9 58 | 80.6 75 | 72.1 58 | 66.9 67 | 87.3 52 | 69.0 104 | 54.9 122 | 82.1 66 | 28.3 48 | 44.1 68 | 42.4 32 | 36.5 60 | 55.7 81 | 50.0 40 |
ComponentFusion [94] | 64.2 | 36.0 43 | 32.2 55 | 48.0 59 | 26.1 33 | 31.1 50 | 36.9 10 | 29.1 65 | 32.3 96 | 38.8 35 | 52.0 35 | 47.0 62 | 80.3 33 | 72.2 76 | 67.1 114 | 87.3 52 | 68.7 52 | 53.9 61 | 82.1 66 | 28.5 97 | 46.1 152 | 42.4 32 | 36.7 87 | 55.8 89 | 50.2 87 |
RAFT-it+_RVC [198] | 64.5 | 35.7 24 | 31.9 46 | 47.6 20 | 26.0 28 | 31.4 56 | 36.9 10 | 28.8 43 | 31.5 77 | 38.4 12 | 52.4 63 | 48.3 124 | 80.2 26 | 72.3 111 | 67.1 114 | 87.4 78 | 69.8 164 | 55.5 152 | 83.2 174 | 28.0 20 | 42.8 30 | 42.5 95 | 35.5 29 | 53.7 33 | 49.7 19 |
VCN_RVC [178] | 64.8 | 36.2 59 | 33.5 104 | 47.9 42 | 26.4 56 | 32.0 67 | 37.2 46 | 29.6 113 | 34.7 156 | 38.8 35 | 52.5 71 | 48.6 136 | 80.7 100 | 72.2 76 | 67.0 82 | 87.3 52 | 68.7 52 | 54.2 81 | 81.9 28 | 28.2 36 | 44.0 62 | 42.3 15 | 35.6 31 | 53.9 35 | 49.8 21 |
ProBoost-Net [191] | 65.7 | 25.7 3 | 23.5 4 | 34.6 3 | 26.8 73 | 29.9 24 | 41.8 160 | 26.9 22 | 25.4 20 | 48.0 185 | 52.2 51 | 43.8 20 | 82.2 175 | 66.9 23 | 60.5 23 | 85.2 27 | 67.0 27 | 46.5 23 | 83.0 170 | 28.6 116 | 37.4 15 | 45.9 187 | 34.4 23 | 47.4 15 | 54.9 188 |
FlowFields [108] | 65.8 | 36.0 43 | 32.7 75 | 47.9 42 | 26.4 56 | 32.0 67 | 37.3 53 | 29.0 55 | 32.6 105 | 38.7 28 | 52.5 71 | 47.9 99 | 80.7 100 | 72.3 111 | 67.0 82 | 87.5 140 | 68.6 36 | 54.4 91 | 82.0 38 | 28.2 36 | 44.0 62 | 42.4 32 | 36.3 41 | 55.2 53 | 50.1 63 |
CyclicGen [149] | 66.1 | 39.1 177 | 29.0 29 | 53.8 187 | 30.3 169 | 29.4 19 | 54.5 195 | 29.3 84 | 30.9 62 | 45.9 183 | 53.7 154 | 45.1 26 | 82.2 175 | 65.9 21 | 58.2 20 | 85.2 27 | 63.7 6 | 37.0 2 | 81.7 23 | 25.9 2 | 33.2 3 | 42.0 13 | 27.0 2 | 35.7 2 | 48.7 5 |
RAFT-it [194] | 66.1 | 35.7 24 | 31.9 46 | 47.6 20 | 25.7 17 | 30.6 34 | 36.7 7 | 28.6 29 | 30.5 47 | 38.4 12 | 52.3 56 | 47.9 99 | 80.2 26 | 72.3 111 | 67.0 82 | 87.4 78 | 70.3 185 | 54.6 105 | 83.9 187 | 28.0 20 | 42.7 29 | 42.4 32 | 37.3 150 | 57.7 173 | 49.6 17 |
S2F-IF [121] | 66.3 | 35.9 36 | 32.5 65 | 47.8 31 | 26.2 45 | 31.6 60 | 37.2 46 | 29.0 55 | 31.9 91 | 38.6 26 | 52.3 56 | 47.6 81 | 80.4 48 | 72.4 145 | 67.2 134 | 87.5 140 | 68.7 52 | 54.5 98 | 81.9 28 | 28.4 71 | 44.7 94 | 42.4 32 | 36.3 41 | 55.2 53 | 50.1 63 |
TV-L1-MCT [64] | 66.4 | 36.8 130 | 34.7 153 | 48.2 93 | 26.7 67 | 32.4 80 | 37.3 53 | 28.6 29 | 30.9 62 | 39.0 71 | 51.9 29 | 45.7 33 | 80.5 67 | 72.2 76 | 67.0 82 | 87.3 52 | 68.6 36 | 53.0 35 | 82.3 122 | 28.3 48 | 44.4 78 | 42.4 32 | 36.1 34 | 54.9 44 | 50.2 87 |
FlowFields+ [128] | 66.5 | 35.9 36 | 32.6 70 | 47.9 42 | 26.4 56 | 32.2 73 | 37.4 65 | 29.0 55 | 32.6 105 | 38.7 28 | 52.3 56 | 47.7 87 | 80.6 75 | 72.3 111 | 67.1 114 | 87.5 140 | 68.7 52 | 54.6 105 | 82.0 38 | 28.2 36 | 44.0 62 | 42.4 32 | 36.3 41 | 55.2 53 | 50.1 63 |
FeFlow [167] | 66.5 | 29.0 7 | 26.1 12 | 39.5 6 | 28.1 123 | 31.2 51 | 45.4 180 | 27.1 23 | 26.3 24 | 49.8 193 | 52.0 35 | 44.3 23 | 80.6 75 | 63.9 7 | 57.2 11 | 82.6 8 | 66.9 26 | 48.0 25 | 82.3 122 | 33.9 192 | 39.1 20 | 61.7 193 | 35.5 29 | 48.6 19 | 56.4 191 |
WLIF-Flow [91] | 67.6 | 36.1 51 | 32.5 65 | 47.8 31 | 26.3 53 | 31.2 51 | 37.1 31 | 29.1 65 | 30.7 53 | 39.1 81 | 52.0 35 | 46.4 44 | 80.6 75 | 72.1 58 | 66.8 54 | 87.4 78 | 69.0 104 | 54.9 122 | 82.3 122 | 28.3 48 | 43.9 56 | 42.5 95 | 36.8 96 | 55.9 92 | 50.1 63 |
MPRN [151] | 68.3 | 36.2 59 | 28.7 24 | 49.4 148 | 29.4 155 | 32.0 67 | 43.3 169 | 32.4 186 | 37.1 182 | 42.2 170 | 52.1 43 | 45.2 28 | 80.0 21 | 70.8 30 | 65.1 29 | 86.7 33 | 67.5 28 | 49.4 27 | 82.2 97 | 27.9 18 | 42.3 28 | 42.3 15 | 34.5 25 | 51.6 29 | 49.9 28 |
HCFN [157] | 68.9 | 35.7 24 | 31.7 42 | 47.6 20 | 26.6 65 | 32.8 88 | 37.0 20 | 29.0 55 | 32.4 99 | 38.7 28 | 52.2 51 | 47.3 68 | 80.6 75 | 72.1 58 | 66.8 54 | 87.4 78 | 69.8 164 | 53.8 51 | 83.5 182 | 28.4 71 | 44.7 94 | 42.5 95 | 36.4 52 | 55.3 57 | 50.1 63 |
COFM [59] | 69.7 | 36.1 51 | 32.0 50 | 48.1 75 | 26.1 33 | 30.8 39 | 37.1 31 | 28.8 43 | 30.3 39 | 38.8 35 | 51.7 23 | 46.0 34 | 80.0 21 | 72.2 76 | 67.2 134 | 87.2 43 | 68.9 88 | 56.1 171 | 81.7 23 | 28.1 25 | 42.8 30 | 43.1 168 | 37.1 134 | 56.9 149 | 50.7 158 |
LME [70] | 70.8 | 35.8 30 | 31.0 37 | 47.8 31 | 26.9 80 | 32.2 73 | 38.4 113 | 29.2 73 | 32.6 105 | 38.8 35 | 51.9 29 | 46.7 53 | 80.4 48 | 72.6 174 | 67.4 162 | 87.7 185 | 68.8 74 | 54.9 122 | 82.0 38 | 28.1 25 | 43.5 43 | 42.4 32 | 36.3 41 | 55.3 57 | 50.0 40 |
FMOF [92] | 70.9 | 36.5 103 | 33.7 116 | 48.2 93 | 25.9 25 | 30.3 26 | 37.1 31 | 29.3 84 | 30.7 53 | 39.0 71 | 52.5 71 | 47.5 77 | 80.2 26 | 72.2 76 | 67.0 82 | 87.5 140 | 69.0 104 | 55.1 132 | 82.0 38 | 28.1 25 | 43.4 40 | 42.4 32 | 36.8 96 | 56.0 98 | 50.1 63 |
OFLAF [78] | 71.0 | 35.8 30 | 31.5 40 | 47.8 31 | 25.7 17 | 29.8 23 | 37.0 20 | 29.0 55 | 31.2 69 | 38.7 28 | 52.0 35 | 46.8 55 | 80.1 24 | 72.4 145 | 67.3 150 | 87.4 78 | 68.9 88 | 55.3 142 | 82.0 38 | 28.6 116 | 45.4 133 | 42.4 32 | 37.1 134 | 57.1 158 | 50.1 63 |
RNLOD-Flow [119] | 71.7 | 36.3 78 | 33.5 104 | 48.0 59 | 26.8 73 | 32.6 83 | 37.1 31 | 29.2 73 | 31.8 86 | 38.8 35 | 52.1 43 | 46.9 58 | 80.2 26 | 72.2 76 | 67.0 82 | 87.3 52 | 69.0 104 | 55.2 137 | 82.1 66 | 28.3 48 | 44.2 71 | 42.4 32 | 37.1 134 | 56.9 149 | 49.8 21 |
DeepFlow2 [106] | 72.5 | 36.2 59 | 32.4 60 | 48.2 93 | 27.1 92 | 32.9 91 | 37.8 96 | 29.2 73 | 32.9 112 | 39.0 71 | 52.5 71 | 47.5 77 | 80.5 67 | 72.2 76 | 66.9 67 | 87.5 140 | 68.5 33 | 52.9 34 | 82.1 66 | 28.3 48 | 44.4 78 | 42.4 32 | 36.4 52 | 55.4 64 | 50.2 87 |
EAI-Flow [147] | 73.3 | 36.3 78 | 32.5 65 | 48.2 93 | 27.2 96 | 33.2 99 | 38.4 113 | 29.4 99 | 33.1 121 | 39.0 71 | 52.2 51 | 47.3 68 | 80.3 33 | 72.2 76 | 67.1 114 | 87.3 52 | 68.7 52 | 53.5 44 | 82.1 66 | 28.4 71 | 44.8 103 | 42.4 32 | 36.2 38 | 54.5 38 | 50.2 87 |
FF++_ROB [141] | 73.7 | 36.0 43 | 32.6 70 | 47.9 42 | 26.8 73 | 32.6 83 | 37.6 85 | 29.3 84 | 32.4 99 | 38.9 52 | 52.5 71 | 48.3 124 | 80.5 67 | 72.4 145 | 67.1 114 | 87.4 78 | 68.8 74 | 54.3 86 | 82.2 97 | 28.2 36 | 44.0 62 | 42.4 32 | 36.3 41 | 55.1 48 | 50.1 63 |
MAF-net [163] | 73.7 | 25.1 2 | 23.6 5 | 34.1 2 | 25.2 12 | 29.1 15 | 41.4 153 | 26.1 18 | 26.2 23 | 48.6 188 | 52.7 98 | 44.7 24 | 82.6 179 | 69.4 28 | 63.7 28 | 85.4 29 | 68.1 29 | 49.9 28 | 83.7 186 | 37.6 193 | 39.6 22 | 78.4 197 | 36.7 87 | 50.8 28 | 60.1 195 |
DeepFlow [85] | 73.9 | 36.1 51 | 31.8 45 | 48.1 75 | 27.3 99 | 32.9 91 | 38.4 113 | 29.3 84 | 33.3 127 | 39.1 81 | 52.6 87 | 47.0 62 | 80.7 100 | 72.2 76 | 66.8 54 | 87.5 140 | 68.7 52 | 52.8 33 | 82.5 147 | 28.1 25 | 43.6 46 | 42.3 15 | 36.2 38 | 55.0 46 | 50.2 87 |
Ramp [62] | 74.0 | 36.5 103 | 34.0 132 | 48.2 93 | 26.0 28 | 30.8 39 | 37.1 31 | 28.9 51 | 30.8 57 | 38.8 35 | 51.9 29 | 46.1 36 | 80.4 48 | 72.2 76 | 67.0 82 | 87.4 78 | 69.1 118 | 55.4 148 | 82.2 97 | 28.4 71 | 44.7 94 | 42.4 32 | 36.8 96 | 56.2 116 | 50.2 87 |
MDP-Flow [26] | 75.2 | 35.8 30 | 31.5 40 | 48.0 59 | 26.2 45 | 31.4 56 | 37.4 65 | 29.0 55 | 31.1 67 | 38.9 52 | 52.7 98 | 47.8 94 | 80.7 100 | 72.2 76 | 66.9 67 | 87.5 140 | 68.9 88 | 55.2 137 | 82.1 66 | 28.5 97 | 45.3 132 | 42.5 95 | 36.3 41 | 55.4 64 | 50.0 40 |
IROF-TV [53] | 75.6 | 36.3 78 | 33.6 112 | 48.2 93 | 26.2 45 | 31.0 45 | 37.0 20 | 29.3 84 | 33.6 134 | 39.1 81 | 51.9 29 | 46.5 48 | 80.8 116 | 72.3 111 | 67.0 82 | 87.6 175 | 68.5 33 | 53.9 61 | 81.9 28 | 28.3 48 | 44.9 108 | 42.3 15 | 36.6 72 | 55.6 76 | 50.4 121 |
SegFlow [156] | 75.7 | 36.2 59 | 33.4 100 | 48.1 75 | 26.5 60 | 32.3 79 | 37.5 75 | 29.2 73 | 32.5 103 | 38.9 52 | 52.3 56 | 47.9 99 | 80.6 75 | 72.3 111 | 67.0 82 | 87.5 140 | 68.6 36 | 54.1 73 | 82.1 66 | 28.3 48 | 44.4 78 | 42.4 32 | 36.5 60 | 55.4 64 | 50.4 121 |
Classic+NL [31] | 76.5 | 36.5 103 | 34.0 132 | 48.2 93 | 26.2 45 | 30.9 42 | 37.1 31 | 28.8 43 | 30.6 48 | 38.8 35 | 52.1 43 | 46.5 48 | 80.6 75 | 72.2 76 | 67.0 82 | 87.4 78 | 69.2 131 | 55.3 142 | 82.2 97 | 28.4 71 | 44.6 89 | 42.4 32 | 36.8 96 | 56.2 116 | 50.2 87 |
PGM-C [118] | 76.9 | 36.2 59 | 33.3 95 | 48.1 75 | 26.5 60 | 32.2 73 | 37.5 75 | 29.2 73 | 32.9 112 | 38.8 35 | 52.5 71 | 48.3 124 | 80.7 100 | 72.3 111 | 67.0 82 | 87.5 140 | 68.6 36 | 54.0 66 | 82.0 38 | 28.3 48 | 44.6 89 | 42.4 32 | 36.5 60 | 55.5 70 | 50.4 121 |
DF-Auto [113] | 77.9 | 36.8 130 | 31.9 46 | 48.9 138 | 28.5 134 | 33.7 114 | 40.8 144 | 28.8 43 | 30.3 39 | 38.7 28 | 52.5 71 | 47.3 68 | 80.4 48 | 72.1 58 | 66.7 42 | 87.4 78 | 68.6 36 | 53.8 51 | 82.0 38 | 28.4 71 | 44.7 94 | 42.5 95 | 36.8 96 | 56.3 121 | 50.2 87 |
FC-2Layers-FF [74] | 79.1 | 36.4 91 | 33.8 122 | 48.1 75 | 25.7 17 | 29.1 15 | 37.4 65 | 28.9 51 | 30.9 62 | 38.8 35 | 52.1 43 | 46.8 55 | 80.6 75 | 72.3 111 | 67.2 134 | 87.4 78 | 69.1 118 | 55.5 152 | 82.1 66 | 28.4 71 | 44.7 94 | 42.5 95 | 36.9 113 | 56.3 121 | 50.0 40 |
FRUCnet [153] | 80.0 | 42.4 190 | 29.5 30 | 59.4 196 | 29.8 163 | 31.2 51 | 48.2 188 | 29.6 113 | 28.0 26 | 50.5 194 | 54.0 164 | 46.1 36 | 80.3 33 | 65.1 20 | 58.2 20 | 83.4 16 | 64.8 17 | 43.4 13 | 81.0 21 | 27.9 18 | 36.4 14 | 44.1 185 | 33.4 14 | 46.6 13 | 53.3 184 |
PBOFVI [189] | 80.5 | 36.7 123 | 35.0 158 | 48.1 75 | 27.6 109 | 33.8 117 | 37.5 75 | 29.6 113 | 31.2 69 | 39.2 97 | 52.3 56 | 47.7 87 | 80.3 33 | 72.3 111 | 67.1 114 | 87.4 78 | 68.8 74 | 54.2 81 | 82.1 66 | 28.4 71 | 44.3 74 | 42.4 32 | 36.1 34 | 54.9 44 | 50.0 40 |
HAST [107] | 80.7 | 36.1 51 | 31.7 42 | 48.1 75 | 26.1 33 | 31.0 45 | 37.0 20 | 29.3 84 | 31.7 81 | 39.2 97 | 51.9 29 | 46.5 48 | 80.3 33 | 72.3 111 | 67.3 150 | 87.2 43 | 69.3 143 | 56.4 179 | 82.0 38 | 28.4 71 | 45.0 116 | 42.5 95 | 37.3 150 | 57.3 162 | 50.0 40 |
CPM-Flow [114] | 83.1 | 36.2 59 | 33.5 104 | 48.1 75 | 26.5 60 | 32.2 73 | 37.5 75 | 29.3 84 | 32.6 105 | 38.9 52 | 52.7 98 | 48.7 143 | 80.7 100 | 72.3 111 | 67.0 82 | 87.5 140 | 68.7 52 | 53.8 51 | 82.2 97 | 28.4 71 | 44.7 94 | 42.4 32 | 36.5 60 | 55.5 70 | 50.3 107 |
Classic+CPF [82] | 83.4 | 36.4 91 | 33.6 112 | 47.9 42 | 26.3 53 | 31.3 54 | 37.0 20 | 28.8 43 | 31.1 67 | 38.9 52 | 52.0 35 | 46.5 48 | 80.0 21 | 72.5 161 | 67.4 162 | 87.4 78 | 69.2 131 | 56.1 171 | 82.0 38 | 28.6 116 | 45.2 129 | 42.4 32 | 37.2 143 | 57.3 162 | 50.0 40 |
Second-order prior [8] | 83.8 | 36.2 59 | 32.1 53 | 48.1 75 | 27.9 120 | 34.1 125 | 37.4 65 | 29.9 137 | 34.6 153 | 39.7 136 | 52.4 63 | 47.2 66 | 80.6 75 | 71.9 38 | 66.6 36 | 87.5 140 | 68.7 52 | 54.0 66 | 82.1 66 | 28.5 97 | 45.2 129 | 42.4 32 | 36.5 60 | 55.7 81 | 50.2 87 |
UnDAF [187] | 83.8 | 36.1 51 | 33.0 85 | 47.8 31 | 26.7 67 | 32.7 86 | 37.0 20 | 29.6 113 | 35.6 172 | 38.7 28 | 53.6 149 | 52.2 187 | 80.7 100 | 72.1 58 | 66.7 42 | 87.3 52 | 68.8 74 | 54.4 91 | 82.1 66 | 28.4 71 | 45.0 116 | 42.5 95 | 36.8 96 | 56.3 121 | 50.0 40 |
Aniso. Huber-L1 [22] | 84.5 | 36.7 123 | 33.5 104 | 48.6 126 | 28.5 134 | 34.3 129 | 38.2 109 | 29.3 84 | 31.8 86 | 38.9 52 | 52.5 71 | 47.5 77 | 80.6 75 | 72.0 43 | 66.7 42 | 87.4 78 | 68.6 36 | 54.3 86 | 81.9 28 | 28.5 97 | 45.0 116 | 42.4 32 | 36.8 96 | 56.0 98 | 50.3 107 |
RFlow [88] | 86.0 | 36.2 59 | 33.0 85 | 48.2 93 | 27.6 109 | 33.7 114 | 37.1 31 | 29.3 84 | 32.5 103 | 39.2 97 | 52.6 87 | 47.8 94 | 80.6 75 | 72.0 43 | 66.8 54 | 87.3 52 | 68.6 36 | 53.8 51 | 81.9 28 | 28.5 97 | 45.5 138 | 42.6 135 | 37.2 143 | 56.9 149 | 50.3 107 |
EpicFlow [100] | 86.0 | 36.2 59 | 33.3 95 | 48.1 75 | 26.9 80 | 33.1 97 | 37.5 75 | 29.4 99 | 33.0 118 | 39.0 71 | 52.6 87 | 48.5 132 | 80.8 116 | 72.3 111 | 67.0 82 | 87.5 140 | 68.6 36 | 54.1 73 | 82.0 38 | 28.4 71 | 44.8 103 | 42.4 32 | 36.6 72 | 55.7 81 | 50.4 121 |
CtxSyn [134] | 86.9 | 26.8 4 | 25.3 9 | 36.2 4 | 23.8 7 | 27.2 7 | 39.5 126 | 26.3 20 | 26.1 22 | 48.0 185 | 51.4 20 | 44.1 21 | 82.1 172 | 71.6 34 | 66.0 34 | 87.1 35 | 70.2 180 | 54.2 81 | 84.5 194 | 39.3 196 | 45.6 142 | 77.2 195 | 38.0 174 | 52.3 31 | 59.7 193 |
DMF_ROB [135] | 87.2 | 36.2 59 | 32.6 70 | 48.1 75 | 27.4 102 | 33.5 109 | 37.7 90 | 30.2 150 | 34.4 149 | 39.6 131 | 52.7 98 | 47.6 81 | 80.6 75 | 72.1 58 | 66.7 42 | 87.6 175 | 68.3 30 | 53.2 36 | 82.0 38 | 28.6 116 | 44.1 68 | 43.0 164 | 36.3 41 | 55.1 48 | 50.2 87 |
Brox et al. [5] | 87.7 | 36.3 78 | 32.4 60 | 48.2 93 | 27.8 117 | 34.1 125 | 38.0 106 | 29.8 130 | 33.9 140 | 39.6 131 | 52.5 71 | 47.0 62 | 80.4 48 | 72.2 76 | 66.9 67 | 87.5 140 | 68.7 52 | 53.8 51 | 82.1 66 | 28.4 71 | 44.9 108 | 42.5 95 | 36.5 60 | 55.5 70 | 50.2 87 |
SepConv-v1 [125] | 88.1 | 27.1 5 | 27.5 19 | 36.4 5 | 24.9 11 | 31.0 45 | 40.3 135 | 27.6 25 | 28.4 27 | 48.9 189 | 54.0 164 | 47.3 68 | 83.0 186 | 72.0 43 | 66.7 42 | 87.1 35 | 69.1 118 | 52.6 32 | 83.6 183 | 32.2 190 | 43.9 56 | 55.7 191 | 37.0 122 | 53.8 34 | 55.4 190 |
FESL [72] | 88.3 | 36.6 112 | 33.9 127 | 48.0 59 | 26.4 56 | 31.7 62 | 37.3 53 | 29.1 65 | 31.3 71 | 38.9 52 | 52.6 87 | 47.6 81 | 80.3 33 | 72.4 145 | 67.3 150 | 87.4 78 | 69.3 143 | 55.9 164 | 82.1 66 | 28.4 71 | 44.9 108 | 42.3 15 | 37.0 122 | 56.6 137 | 50.1 63 |
PWC-Net_RVC [143] | 88.5 | 36.4 91 | 34.4 146 | 48.0 59 | 27.3 99 | 33.9 121 | 37.7 90 | 29.7 122 | 34.8 158 | 39.1 81 | 52.5 71 | 48.9 150 | 80.4 48 | 72.4 145 | 67.3 150 | 87.4 78 | 69.0 104 | 54.1 73 | 82.2 97 | 28.2 36 | 43.9 56 | 42.4 32 | 36.3 41 | 55.1 48 | 49.9 28 |
S2D-Matching [83] | 88.6 | 36.6 112 | 34.2 141 | 48.2 93 | 26.9 80 | 32.5 82 | 37.2 46 | 28.8 43 | 30.7 53 | 38.9 52 | 52.1 43 | 46.4 44 | 80.9 127 | 72.3 111 | 67.1 114 | 87.5 140 | 69.1 118 | 55.3 142 | 82.2 97 | 28.5 97 | 44.7 94 | 42.4 32 | 36.7 87 | 55.9 92 | 50.2 87 |
p-harmonic [29] | 89.7 | 35.9 36 | 32.1 53 | 47.9 42 | 28.2 125 | 34.3 129 | 37.8 96 | 29.4 99 | 34.2 145 | 39.4 113 | 53.0 124 | 47.7 87 | 80.7 100 | 72.2 76 | 67.0 82 | 87.3 52 | 68.8 74 | 54.1 73 | 82.3 122 | 28.5 97 | 45.5 138 | 42.4 32 | 36.6 72 | 56.0 98 | 50.2 87 |
LiteFlowNet [138] | 89.8 | 36.4 91 | 34.2 141 | 48.0 59 | 27.1 92 | 33.4 107 | 37.5 75 | 29.6 113 | 35.1 166 | 39.1 81 | 53.3 139 | 50.7 177 | 80.6 75 | 72.1 58 | 66.9 67 | 87.3 52 | 69.1 118 | 55.1 132 | 82.0 38 | 28.6 116 | 45.5 138 | 42.3 15 | 36.1 34 | 54.8 43 | 49.9 28 |
ComplOF-FED-GPU [35] | 91.0 | 36.3 78 | 33.4 100 | 48.0 59 | 26.8 73 | 33.0 94 | 37.3 53 | 30.4 155 | 34.0 141 | 39.6 131 | 52.5 71 | 48.1 111 | 80.9 127 | 72.1 58 | 66.8 54 | 87.4 78 | 68.7 52 | 54.3 86 | 82.1 66 | 28.5 97 | 45.1 124 | 42.5 95 | 36.8 96 | 56.0 98 | 50.2 87 |
TC-Flow [46] | 91.7 | 36.2 59 | 33.2 92 | 48.2 93 | 26.9 80 | 33.5 109 | 37.5 75 | 29.5 109 | 33.6 134 | 38.9 52 | 52.1 43 | 47.1 65 | 80.6 75 | 72.3 111 | 67.2 134 | 87.5 140 | 69.0 104 | 54.8 118 | 82.3 122 | 28.4 71 | 44.4 78 | 42.5 95 | 36.6 72 | 56.1 107 | 50.1 63 |
ProFlow_ROB [142] | 91.8 | 36.2 59 | 32.8 78 | 48.2 93 | 26.9 80 | 33.3 103 | 37.7 90 | 29.1 65 | 32.2 94 | 38.8 35 | 52.6 87 | 48.7 143 | 80.7 100 | 72.4 145 | 67.2 134 | 87.4 78 | 68.7 52 | 53.8 51 | 82.2 97 | 28.5 97 | 45.2 129 | 42.4 32 | 37.0 122 | 56.5 131 | 50.3 107 |
DPOF [18] | 92.5 | 36.7 123 | 34.5 148 | 48.6 126 | 26.1 33 | 30.6 34 | 37.6 85 | 29.8 130 | 31.4 72 | 39.3 107 | 52.8 110 | 48.6 136 | 80.8 116 | 72.0 43 | 66.8 54 | 87.3 52 | 69.1 118 | 55.3 142 | 81.9 28 | 28.5 97 | 44.5 86 | 42.5 95 | 36.9 113 | 56.5 131 | 50.0 40 |
EPPM w/o HM [86] | 92.7 | 35.8 30 | 32.3 58 | 47.6 20 | 26.7 67 | 33.0 94 | 36.9 10 | 30.0 141 | 35.5 170 | 39.4 113 | 52.6 87 | 48.9 150 | 80.4 48 | 72.2 76 | 67.1 114 | 87.4 78 | 69.3 143 | 55.9 164 | 82.3 122 | 28.4 71 | 44.9 108 | 42.5 95 | 36.8 96 | 56.1 107 | 50.1 63 |
JOF [136] | 93.1 | 36.9 136 | 34.2 141 | 48.7 131 | 26.0 28 | 30.3 26 | 37.3 53 | 28.8 43 | 30.2 36 | 38.9 52 | 52.3 56 | 46.7 53 | 81.0 139 | 72.4 145 | 67.2 134 | 87.5 140 | 69.2 131 | 55.5 152 | 82.2 97 | 28.2 36 | 43.8 55 | 42.5 95 | 36.9 113 | 56.3 121 | 50.4 121 |
OFH [38] | 94.4 | 36.4 91 | 33.8 122 | 48.2 93 | 27.4 102 | 33.3 103 | 37.4 65 | 29.7 122 | 35.0 162 | 39.0 71 | 52.5 71 | 48.3 124 | 80.9 127 | 72.2 76 | 67.0 82 | 87.4 78 | 68.7 52 | 54.2 81 | 82.1 66 | 28.6 116 | 45.4 133 | 42.5 95 | 36.6 72 | 56.0 98 | 50.1 63 |
Efficient-NL [60] | 94.7 | 36.5 103 | 33.6 112 | 48.0 59 | 26.7 67 | 32.0 67 | 37.1 31 | 29.9 137 | 31.4 72 | 39.3 107 | 52.7 98 | 47.7 87 | 80.4 48 | 72.2 76 | 67.0 82 | 87.3 52 | 69.5 154 | 57.0 184 | 81.9 28 | 28.6 116 | 45.9 148 | 42.4 32 | 37.9 170 | 58.1 179 | 50.1 63 |
PMF [73] | 97.3 | 35.9 36 | 32.0 50 | 47.7 27 | 26.9 80 | 33.5 109 | 36.9 10 | 29.6 113 | 34.5 151 | 39.1 81 | 52.5 71 | 47.8 94 | 80.4 48 | 72.5 161 | 67.5 169 | 87.4 78 | 69.2 131 | 55.0 130 | 82.4 136 | 28.5 97 | 45.0 116 | 42.5 95 | 37.3 150 | 57.3 162 | 50.0 40 |
Local-TV-L1 [65] | 98.2 | 37.5 153 | 33.0 85 | 49.7 159 | 29.3 153 | 34.5 137 | 40.3 135 | 29.2 73 | 31.6 79 | 39.1 81 | 53.3 139 | 47.3 68 | 83.1 189 | 72.1 58 | 66.9 67 | 87.4 78 | 69.3 143 | 53.4 40 | 83.2 174 | 28.2 36 | 43.9 56 | 42.4 32 | 36.4 52 | 55.1 48 | 50.4 121 |
OAR-Flow [123] | 98.5 | 36.5 103 | 33.0 85 | 48.4 114 | 27.0 87 | 33.0 94 | 37.8 96 | 29.2 73 | 33.3 127 | 38.9 52 | 52.1 43 | 47.6 81 | 80.5 67 | 72.4 145 | 67.3 150 | 87.6 175 | 68.9 88 | 54.5 98 | 82.2 97 | 28.5 97 | 44.7 94 | 42.4 32 | 36.9 113 | 56.5 131 | 50.4 121 |
LFNet_ROB [145] | 98.5 | 36.6 112 | 33.5 104 | 48.4 114 | 28.4 131 | 35.0 150 | 38.4 113 | 29.9 137 | 34.8 158 | 39.5 120 | 52.4 63 | 47.8 94 | 80.6 75 | 72.1 58 | 66.9 67 | 87.4 78 | 68.9 88 | 54.8 118 | 82.1 66 | 28.3 48 | 44.4 78 | 42.6 135 | 36.6 72 | 55.4 64 | 50.4 121 |
Sparse Occlusion [54] | 98.5 | 36.5 103 | 33.7 116 | 48.2 93 | 27.6 109 | 34.1 125 | 37.3 53 | 29.3 84 | 31.8 86 | 38.8 35 | 52.8 110 | 48.1 111 | 80.5 67 | 72.3 111 | 67.1 114 | 87.4 78 | 69.2 131 | 56.1 171 | 82.0 38 | 28.5 97 | 45.4 133 | 42.3 15 | 37.2 143 | 57.0 155 | 50.2 87 |
OFRI [154] | 98.6 | 38.3 170 | 27.4 18 | 53.7 186 | 31.4 173 | 31.8 66 | 56.5 198 | 27.8 26 | 25.4 20 | 54.3 198 | 51.1 16 | 43.1 14 | 81.2 155 | 64.8 18 | 58.1 18 | 83.8 19 | 68.4 31 | 51.8 31 | 83.4 180 | 41.6 198 | 42.9 33 | 81.5 199 | 38.1 176 | 50.1 25 | 63.8 198 |
TC/T-Flow [77] | 98.9 | 36.6 112 | 33.7 116 | 47.9 42 | 26.8 73 | 32.9 91 | 37.1 31 | 29.1 65 | 31.9 91 | 38.8 35 | 52.7 98 | 48.5 132 | 80.4 48 | 72.5 161 | 67.4 162 | 87.5 140 | 69.1 118 | 55.2 137 | 82.1 66 | 28.6 116 | 45.4 133 | 42.5 95 | 37.0 122 | 56.9 149 | 50.0 40 |
SRR-TVOF-NL [89] | 99.4 | 36.6 112 | 33.5 104 | 48.2 93 | 27.7 113 | 34.3 129 | 37.9 102 | 29.5 109 | 33.2 123 | 39.1 81 | 53.1 129 | 48.1 111 | 80.2 26 | 72.2 76 | 67.1 114 | 87.3 52 | 68.9 88 | 55.7 160 | 81.8 26 | 28.5 97 | 44.9 108 | 42.4 32 | 37.5 160 | 58.0 177 | 50.1 63 |
TF+OM [98] | 99.5 | 36.3 78 | 33.0 85 | 48.5 118 | 26.9 80 | 32.2 73 | 39.2 122 | 28.6 29 | 32.4 99 | 38.9 52 | 52.8 110 | 48.2 122 | 80.7 100 | 72.3 111 | 67.1 114 | 87.4 78 | 69.0 104 | 54.5 98 | 82.3 122 | 28.4 71 | 45.1 124 | 42.5 95 | 37.0 122 | 56.4 128 | 50.6 152 |
ALD-Flow [66] | 101.8 | 36.7 123 | 33.9 127 | 48.6 126 | 27.0 87 | 33.2 99 | 37.9 102 | 29.3 84 | 33.4 130 | 38.9 52 | 52.5 71 | 48.0 104 | 80.9 127 | 72.4 145 | 67.2 134 | 87.6 175 | 68.9 88 | 54.4 91 | 82.2 97 | 28.2 36 | 43.6 46 | 42.4 32 | 37.0 122 | 56.6 137 | 50.3 107 |
CLG-TV [48] | 101.8 | 36.6 112 | 33.4 100 | 48.5 118 | 28.2 125 | 34.4 135 | 38.2 109 | 29.7 122 | 33.6 134 | 39.4 113 | 52.8 110 | 48.0 104 | 80.9 127 | 72.2 76 | 66.9 67 | 87.5 140 | 68.7 52 | 54.0 66 | 82.1 66 | 28.4 71 | 45.1 124 | 42.4 32 | 37.0 122 | 56.5 131 | 50.2 87 |
MS-PFT [159] | 102.1 | 34.5 19 | 30.4 33 | 45.4 14 | 32.6 183 | 34.0 123 | 49.8 190 | 30.1 147 | 30.6 48 | 51.8 196 | 56.4 188 | 51.2 182 | 82.1 172 | 64.8 18 | 58.1 18 | 84.7 24 | 66.8 25 | 44.8 20 | 84.2 191 | 40.2 197 | 43.3 38 | 80.1 198 | 34.3 22 | 45.9 12 | 59.7 193 |
SIOF [67] | 102.3 | 36.7 123 | 34.1 136 | 48.2 93 | 29.1 148 | 35.4 159 | 39.7 129 | 29.4 99 | 32.9 112 | 39.1 81 | 52.7 98 | 47.7 87 | 80.9 127 | 71.9 38 | 66.6 36 | 87.4 78 | 69.1 118 | 54.3 86 | 82.4 136 | 28.3 48 | 44.6 89 | 42.4 32 | 37.3 150 | 56.8 145 | 50.3 107 |
SimpleFlow [49] | 102.8 | 36.5 103 | 34.2 141 | 48.2 93 | 27.2 96 | 32.8 88 | 37.3 53 | 30.1 147 | 31.7 81 | 39.4 113 | 52.0 35 | 46.3 41 | 80.7 100 | 72.3 111 | 67.2 134 | 87.4 78 | 69.0 104 | 55.4 148 | 82.0 38 | 28.7 134 | 47.1 164 | 42.6 135 | 37.0 122 | 56.8 145 | 50.1 63 |
AggregFlow [95] | 102.9 | 37.1 142 | 34.8 156 | 48.5 118 | 27.3 99 | 33.2 99 | 38.1 107 | 28.7 37 | 30.2 36 | 38.5 17 | 52.9 120 | 48.6 136 | 80.3 33 | 72.4 145 | 67.2 134 | 87.6 175 | 69.3 143 | 54.5 98 | 82.6 155 | 28.3 48 | 44.2 71 | 42.5 95 | 36.7 87 | 56.0 98 | 50.4 121 |
ContinualFlow_ROB [148] | 103.0 | 37.6 156 | 36.8 178 | 49.1 141 | 28.6 137 | 35.6 161 | 40.5 138 | 30.4 155 | 36.3 175 | 39.5 120 | 52.8 110 | 49.3 159 | 80.6 75 | 72.3 111 | 67.3 150 | 87.4 78 | 68.4 31 | 54.0 66 | 81.9 28 | 28.3 48 | 44.4 78 | 42.3 15 | 36.3 41 | 55.9 92 | 49.9 28 |
Complementary OF [21] | 103.2 | 36.1 51 | 33.3 95 | 47.8 31 | 26.7 67 | 33.2 99 | 37.3 53 | 30.4 155 | 32.9 112 | 39.5 120 | 52.8 110 | 48.7 143 | 81.1 150 | 72.3 111 | 67.2 134 | 87.3 52 | 68.8 74 | 54.7 110 | 82.2 97 | 28.7 134 | 45.6 142 | 42.5 95 | 36.8 96 | 56.7 140 | 50.3 107 |
SuperSlomo [130] | 103.5 | 32.1 13 | 27.9 20 | 42.8 10 | 29.9 165 | 32.2 73 | 48.3 189 | 31.1 173 | 30.8 57 | 49.0 190 | 53.4 144 | 45.1 26 | 82.8 183 | 70.9 31 | 65.3 31 | 86.6 31 | 69.5 154 | 51.7 30 | 84.0 190 | 32.2 190 | 42.2 27 | 55.7 191 | 37.2 143 | 52.2 30 | 57.3 192 |
F-TV-L1 [15] | 104.7 | 37.4 151 | 34.6 150 | 49.2 144 | 28.8 143 | 34.9 148 | 38.3 111 | 29.7 122 | 34.1 143 | 39.5 120 | 52.7 98 | 47.6 81 | 81.0 139 | 71.7 35 | 66.5 35 | 87.4 78 | 68.8 74 | 53.5 44 | 82.4 136 | 28.3 48 | 44.3 74 | 42.4 32 | 37.1 134 | 56.3 121 | 50.6 152 |
LDOF [28] | 105.0 | 37.1 142 | 33.7 116 | 48.8 135 | 29.5 156 | 35.3 157 | 40.6 142 | 30.0 141 | 34.3 147 | 39.7 136 | 52.8 110 | 47.9 99 | 80.9 127 | 72.2 76 | 66.9 67 | 87.4 78 | 68.8 74 | 53.6 46 | 82.3 122 | 28.3 48 | 44.5 86 | 42.4 32 | 36.6 72 | 55.8 89 | 50.4 121 |
MLDP_OF [87] | 105.4 | 36.2 59 | 32.9 83 | 48.0 59 | 27.0 87 | 32.7 86 | 37.2 46 | 29.1 65 | 31.8 86 | 38.8 35 | 52.6 87 | 47.3 68 | 80.8 116 | 72.3 111 | 67.1 114 | 87.5 140 | 70.5 188 | 56.6 180 | 83.6 183 | 28.6 116 | 44.8 103 | 42.8 155 | 36.9 113 | 56.1 107 | 50.5 142 |
MCPFlow_RVC [197] | 106.3 | 37.1 142 | 35.2 164 | 48.5 118 | 27.5 106 | 33.5 109 | 39.1 120 | 29.0 55 | 32.8 111 | 38.6 26 | 52.8 110 | 48.5 132 | 80.6 75 | 72.6 174 | 67.6 173 | 87.4 78 | 69.1 118 | 56.3 178 | 82.1 66 | 28.2 36 | 43.6 46 | 42.5 95 | 36.9 113 | 59.8 191 | 49.5 15 |
Classic++ [32] | 107.0 | 36.4 91 | 33.5 104 | 48.4 114 | 27.4 102 | 33.7 114 | 37.6 85 | 29.6 113 | 33.6 134 | 39.2 97 | 52.7 98 | 47.3 68 | 80.9 127 | 72.2 76 | 67.0 82 | 87.5 140 | 69.1 118 | 54.5 98 | 82.5 147 | 28.5 97 | 44.9 108 | 42.6 135 | 36.8 96 | 56.2 116 | 50.3 107 |
LSM_FLOW_RVC [182] | 107.0 | 37.2 148 | 36.5 175 | 48.6 126 | 28.9 145 | 36.7 173 | 39.3 124 | 29.8 130 | 36.2 174 | 39.0 71 | 53.0 124 | 50.3 172 | 80.4 48 | 72.2 76 | 67.0 82 | 87.3 52 | 68.7 52 | 54.0 66 | 82.1 66 | 28.7 134 | 45.9 148 | 42.4 32 | 36.6 72 | 55.3 57 | 50.4 121 |
IAOF [50] | 107.5 | 38.0 168 | 34.2 141 | 49.8 160 | 31.7 176 | 37.9 178 | 41.1 147 | 28.9 51 | 32.6 105 | 39.4 113 | 53.7 154 | 48.1 111 | 80.8 116 | 72.0 43 | 66.7 42 | 87.5 140 | 68.9 88 | 54.1 73 | 82.2 97 | 28.3 48 | 45.1 124 | 42.3 15 | 36.8 96 | 56.1 107 | 50.2 87 |
C-RAFT_RVC [181] | 108.2 | 37.9 162 | 36.6 176 | 49.1 141 | 28.0 121 | 34.7 140 | 39.2 122 | 29.7 122 | 33.5 133 | 39.2 97 | 53.1 129 | 49.6 164 | 80.6 75 | 72.2 76 | 67.0 82 | 87.2 43 | 69.0 104 | 55.1 132 | 82.0 38 | 28.4 71 | 44.5 86 | 42.5 95 | 36.7 87 | 55.7 81 | 50.4 121 |
CostFilter [40] | 108.7 | 35.9 36 | 32.7 75 | 47.6 20 | 26.8 73 | 33.5 109 | 37.1 31 | 29.7 122 | 35.6 172 | 39.2 97 | 52.9 120 | 49.4 161 | 80.3 33 | 72.6 174 | 67.6 173 | 87.4 78 | 69.6 160 | 54.8 118 | 83.1 173 | 28.6 116 | 45.6 142 | 42.6 135 | 37.0 122 | 56.7 140 | 49.9 28 |
Fusion [6] | 109.0 | 36.0 43 | 32.7 75 | 47.8 31 | 26.8 73 | 32.1 71 | 37.5 75 | 29.5 109 | 31.5 77 | 39.5 120 | 53.5 145 | 48.6 136 | 80.7 100 | 72.6 174 | 68.0 186 | 87.1 35 | 69.3 143 | 57.6 191 | 81.8 26 | 28.7 134 | 47.1 164 | 42.5 95 | 38.2 179 | 59.9 193 | 50.0 40 |
FlowNetS+ft+v [110] | 109.4 | 36.8 130 | 33.0 85 | 48.7 131 | 29.5 156 | 35.6 161 | 40.5 138 | 29.8 130 | 34.3 147 | 39.5 120 | 52.8 110 | 48.2 122 | 80.8 116 | 72.2 76 | 67.0 82 | 87.4 78 | 68.7 52 | 53.9 61 | 82.1 66 | 28.6 116 | 45.9 148 | 42.5 95 | 36.7 87 | 56.0 98 | 50.4 121 |
Shiralkar [42] | 109.6 | 36.5 103 | 34.6 150 | 48.1 75 | 28.3 129 | 34.3 129 | 37.2 46 | 29.8 130 | 36.9 181 | 40.0 147 | 53.9 160 | 49.0 153 | 80.5 67 | 71.8 36 | 66.6 36 | 87.2 43 | 69.2 131 | 55.1 132 | 82.4 136 | 29.2 161 | 48.0 175 | 42.5 95 | 36.6 72 | 55.7 81 | 50.1 63 |
SVFilterOh [109] | 109.8 | 36.3 78 | 32.2 55 | 48.1 75 | 26.2 45 | 30.9 42 | 37.4 65 | 29.2 73 | 30.6 48 | 39.3 107 | 52.6 87 | 47.5 77 | 81.0 139 | 72.6 174 | 67.6 173 | 87.6 175 | 69.3 143 | 55.9 164 | 82.3 122 | 28.5 97 | 43.7 52 | 43.3 172 | 37.3 150 | 57.1 158 | 51.0 163 |
Occlusion-TV-L1 [63] | 110.1 | 36.6 112 | 33.8 122 | 48.5 118 | 28.4 131 | 34.8 145 | 37.7 90 | 29.5 109 | 33.0 118 | 39.5 120 | 53.0 124 | 48.1 111 | 81.1 150 | 72.1 58 | 66.8 54 | 87.5 140 | 68.9 88 | 53.4 40 | 82.4 136 | 29.0 154 | 44.7 94 | 42.6 135 | 36.8 96 | 55.6 76 | 50.4 121 |
TriFlow [93] | 110.2 | 37.0 139 | 35.3 165 | 48.8 135 | 28.7 141 | 34.5 137 | 41.0 145 | 29.2 73 | 33.4 130 | 38.8 35 | 53.0 124 | 48.8 149 | 80.4 48 | 72.3 111 | 67.3 150 | 87.4 78 | 69.2 131 | 55.5 152 | 82.1 66 | 28.5 97 | 44.8 103 | 42.4 32 | 36.9 113 | 56.4 128 | 50.1 63 |
TOF-M [150] | 110.7 | 31.5 10 | 27.3 17 | 42.1 9 | 28.6 137 | 32.8 88 | 46.1 184 | 31.1 173 | 31.9 91 | 50.6 195 | 53.6 149 | 46.3 41 | 82.8 183 | 71.2 33 | 65.6 33 | 87.1 35 | 70.3 185 | 53.7 48 | 85.0 195 | 38.0 194 | 43.3 38 | 76.6 194 | 39.1 190 | 54.5 38 | 61.2 197 |
3DFlow [133] | 111.5 | 36.4 91 | 33.8 122 | 47.9 42 | 26.5 60 | 32.1 71 | 37.1 31 | 29.8 130 | 31.7 81 | 39.1 81 | 52.5 71 | 47.7 87 | 80.6 75 | 72.5 161 | 67.3 150 | 88.0 189 | 70.0 169 | 57.8 192 | 82.2 97 | 29.1 159 | 47.4 168 | 42.5 95 | 37.4 157 | 57.6 169 | 49.9 28 |
CRTflow [81] | 111.6 | 36.7 123 | 33.8 122 | 48.5 118 | 27.7 113 | 33.8 117 | 37.4 65 | 30.7 165 | 35.3 167 | 40.9 165 | 52.9 120 | 48.1 111 | 81.8 169 | 72.2 76 | 66.9 67 | 87.4 78 | 68.9 88 | 54.1 73 | 82.3 122 | 28.4 71 | 44.9 108 | 42.5 95 | 36.8 96 | 56.1 107 | 50.5 142 |
CNN-flow-warp+ref [115] | 111.7 | 36.3 78 | 31.7 42 | 48.7 131 | 28.5 134 | 34.7 140 | 39.5 126 | 30.4 155 | 35.0 162 | 39.8 140 | 54.0 164 | 48.1 111 | 81.2 155 | 72.3 111 | 67.0 82 | 87.4 78 | 68.6 36 | 53.2 36 | 82.4 136 | 28.8 144 | 47.1 164 | 42.5 95 | 36.6 72 | 55.7 81 | 50.3 107 |
FLAVR [188] | 113.2 | 45.2 195 | 36.2 174 | 56.9 193 | 40.6 197 | 38.1 180 | 54.5 195 | 32.0 185 | 32.9 112 | 47.2 184 | 63.8 197 | 58.4 196 | 80.8 116 | 63.8 6 | 57.1 9 | 82.1 1 | 63.7 6 | 41.8 8 | 79.8 5 | 32.0 189 | 44.3 74 | 48.0 189 | 31.9 10 | 44.0 8 | 50.2 87 |
CVENG22+RIC [199] | 113.6 | 36.6 112 | 34.1 136 | 48.3 113 | 27.4 102 | 34.0 123 | 37.8 96 | 29.6 113 | 34.2 145 | 39.2 97 | 53.1 129 | 49.5 163 | 80.9 127 | 72.3 111 | 67.1 114 | 87.4 78 | 68.9 88 | 54.7 110 | 82.2 97 | 28.6 116 | 45.6 142 | 42.4 32 | 37.0 122 | 56.7 140 | 50.4 121 |
FlowNet2 [120] | 114.8 | 39.4 179 | 38.2 185 | 50.4 168 | 29.2 151 | 34.8 145 | 41.9 162 | 30.0 141 | 34.6 153 | 39.4 113 | 53.3 139 | 51.0 181 | 80.6 75 | 72.5 161 | 67.4 162 | 87.4 78 | 68.8 74 | 54.3 86 | 82.0 38 | 28.4 71 | 45.0 116 | 42.3 15 | 36.5 60 | 55.7 81 | 49.8 21 |
TCOF [69] | 114.8 | 36.6 112 | 33.9 127 | 48.1 75 | 29.1 148 | 35.7 164 | 38.3 111 | 29.0 55 | 31.4 72 | 38.7 28 | 52.8 110 | 48.7 143 | 80.6 75 | 72.2 76 | 67.1 114 | 87.4 78 | 69.3 143 | 56.0 167 | 82.1 66 | 28.7 134 | 46.2 154 | 42.5 95 | 38.2 179 | 58.7 188 | 50.5 142 |
Adaptive [20] | 115.2 | 36.8 130 | 34.4 146 | 48.5 118 | 28.8 143 | 35.2 156 | 37.7 90 | 29.4 99 | 33.2 123 | 39.2 97 | 52.6 87 | 47.6 81 | 80.6 75 | 72.3 111 | 67.0 82 | 87.5 140 | 69.1 118 | 54.7 110 | 82.3 122 | 28.7 134 | 46.0 151 | 42.4 32 | 37.3 150 | 56.9 149 | 50.4 121 |
ResPWCR_ROB [140] | 115.2 | 36.4 91 | 34.0 132 | 48.1 75 | 28.2 125 | 34.9 148 | 38.9 118 | 30.7 165 | 35.0 162 | 39.7 136 | 53.7 154 | 50.6 174 | 81.5 163 | 71.8 36 | 66.6 36 | 87.0 34 | 70.7 191 | 56.0 167 | 84.3 192 | 28.4 71 | 44.9 108 | 42.5 95 | 36.5 60 | 55.9 92 | 50.0 40 |
AugFNG_ROB [139] | 115.7 | 37.7 158 | 35.6 168 | 49.6 154 | 29.5 156 | 36.0 166 | 41.4 153 | 30.4 155 | 37.7 185 | 40.1 152 | 53.5 145 | 50.5 173 | 81.0 139 | 72.5 161 | 67.5 169 | 87.4 78 | 68.7 52 | 54.4 91 | 82.0 38 | 28.5 97 | 44.4 78 | 42.4 32 | 35.3 27 | 54.0 36 | 49.4 14 |
Modified CLG [34] | 115.8 | 36.9 136 | 32.8 78 | 49.4 148 | 30.9 172 | 36.3 171 | 42.8 164 | 30.0 141 | 34.8 158 | 39.9 143 | 53.0 124 | 47.9 99 | 80.7 100 | 72.2 76 | 66.9 67 | 87.5 140 | 68.7 52 | 53.8 51 | 82.2 97 | 28.4 71 | 45.1 124 | 42.5 95 | 36.9 113 | 56.2 116 | 50.5 142 |
EPMNet [131] | 116.5 | 38.9 175 | 38.5 188 | 49.9 163 | 29.0 147 | 34.2 128 | 41.2 148 | 30.0 141 | 34.6 153 | 39.4 113 | 53.9 160 | 52.7 190 | 80.6 75 | 72.5 161 | 67.4 162 | 87.4 78 | 69.0 104 | 55.5 152 | 82.0 38 | 28.4 71 | 45.0 116 | 42.3 15 | 36.3 41 | 55.3 57 | 49.8 21 |
IIOF-NLDP [129] | 117.0 | 36.3 78 | 33.3 95 | 47.7 27 | 27.6 109 | 34.3 129 | 37.4 65 | 29.8 130 | 31.7 81 | 39.2 97 | 53.3 139 | 48.7 143 | 81.2 155 | 72.2 76 | 67.0 82 | 87.5 140 | 69.8 164 | 56.8 181 | 82.2 97 | 29.4 166 | 50.8 193 | 42.8 155 | 37.1 134 | 56.8 145 | 49.9 28 |
Steered-L1 [116] | 118.6 | 36.0 43 | 32.9 83 | 47.9 42 | 27.0 87 | 33.3 103 | 37.7 90 | 30.3 153 | 32.3 96 | 39.9 143 | 53.2 133 | 48.0 104 | 81.0 139 | 72.5 161 | 67.5 169 | 87.5 140 | 68.9 88 | 55.0 130 | 82.2 97 | 28.8 144 | 46.7 161 | 42.7 149 | 37.0 122 | 57.3 162 | 50.3 107 |
Nguyen [33] | 120.5 | 39.6 180 | 33.9 127 | 52.6 184 | 32.5 181 | 37.9 178 | 43.3 169 | 30.0 141 | 35.5 170 | 40.2 153 | 54.1 169 | 49.0 153 | 80.9 127 | 72.0 43 | 66.8 54 | 87.4 78 | 68.6 36 | 53.8 51 | 82.0 38 | 28.8 144 | 47.8 173 | 42.4 32 | 36.8 96 | 56.1 107 | 50.3 107 |
StereoOF-V1MT [117] | 120.7 | 36.8 130 | 35.3 165 | 48.1 75 | 28.3 129 | 35.1 153 | 36.9 10 | 31.4 177 | 36.6 177 | 40.5 156 | 54.6 179 | 48.6 136 | 81.3 159 | 72.0 43 | 66.8 54 | 87.2 43 | 69.5 154 | 54.9 122 | 82.6 155 | 29.7 178 | 48.8 182 | 42.7 149 | 36.5 60 | 55.1 48 | 50.1 63 |
BriefMatch [122] | 120.8 | 36.3 78 | 33.3 95 | 48.0 59 | 27.2 96 | 33.4 107 | 38.5 117 | 30.6 163 | 32.6 105 | 40.6 158 | 54.0 164 | 48.6 136 | 82.8 183 | 72.4 145 | 67.3 150 | 87.3 52 | 70.2 180 | 55.6 158 | 83.9 187 | 28.3 48 | 44.3 74 | 42.7 149 | 36.6 72 | 55.7 81 | 50.5 142 |
CompactFlow_ROB [155] | 121.0 | 37.2 148 | 35.3 165 | 48.8 135 | 28.9 145 | 35.6 161 | 41.4 153 | 30.3 153 | 36.8 179 | 39.1 81 | 53.5 145 | 50.7 177 | 81.0 139 | 72.2 76 | 67.0 82 | 87.4 78 | 69.2 131 | 56.0 167 | 82.0 38 | 28.6 116 | 45.8 147 | 42.4 32 | 36.8 96 | 56.0 98 | 50.1 63 |
SPSA-learn [13] | 124.8 | 37.4 151 | 33.6 112 | 49.4 148 | 29.8 163 | 35.1 153 | 41.4 153 | 30.9 169 | 33.2 123 | 40.7 159 | 53.5 145 | 47.2 66 | 80.4 48 | 72.2 76 | 67.0 82 | 87.4 78 | 68.8 74 | 54.1 73 | 82.2 97 | 29.5 171 | 52.2 196 | 42.9 161 | 37.1 134 | 57.0 155 | 50.3 107 |
GraphCuts [14] | 125.2 | 38.0 168 | 35.1 161 | 49.5 153 | 28.4 131 | 33.9 121 | 41.3 150 | 31.3 176 | 30.8 57 | 40.7 159 | 53.7 154 | 48.3 124 | 81.0 139 | 72.1 58 | 67.1 114 | 87.1 35 | 68.6 36 | 54.9 122 | 81.7 23 | 28.8 144 | 46.3 155 | 42.8 155 | 37.7 164 | 58.5 184 | 50.4 121 |
Dynamic MRF [7] | 126.2 | 36.2 59 | 34.1 136 | 48.0 59 | 27.5 106 | 34.6 139 | 37.4 65 | 30.9 169 | 36.8 179 | 40.4 155 | 54.5 177 | 49.3 159 | 81.9 170 | 71.9 38 | 66.8 54 | 87.2 43 | 69.4 152 | 55.5 152 | 82.5 147 | 29.0 154 | 47.8 173 | 42.5 95 | 37.5 160 | 56.8 145 | 50.5 142 |
ROF-ND [105] | 126.7 | 37.0 139 | 32.8 78 | 48.1 75 | 27.7 113 | 34.7 140 | 37.6 85 | 29.7 122 | 32.3 96 | 39.1 81 | 54.2 172 | 51.4 183 | 80.4 48 | 72.4 145 | 67.3 150 | 87.4 78 | 69.5 154 | 56.9 182 | 82.0 38 | 29.7 178 | 49.0 185 | 43.2 170 | 37.8 168 | 57.7 173 | 50.2 87 |
IRR-PWC_RVC [180] | 127.0 | 38.3 170 | 37.5 180 | 49.6 154 | 29.2 151 | 35.5 160 | 41.6 158 | 30.5 160 | 38.0 188 | 39.5 120 | 54.1 169 | 52.1 186 | 80.7 100 | 72.6 174 | 67.5 169 | 87.4 78 | 69.1 118 | 55.4 148 | 82.1 66 | 28.4 71 | 44.8 103 | 42.3 15 | 36.6 72 | 56.3 121 | 49.6 17 |
HBpMotionGpu [43] | 127.3 | 38.8 174 | 35.9 170 | 50.9 177 | 32.1 178 | 38.2 181 | 44.4 175 | 29.2 73 | 31.7 81 | 39.3 107 | 53.9 160 | 49.6 164 | 81.5 163 | 72.1 58 | 67.0 82 | 87.1 35 | 69.5 154 | 54.9 122 | 82.4 136 | 28.3 48 | 44.4 78 | 42.5 95 | 37.3 150 | 56.5 131 | 51.1 164 |
2D-CLG [1] | 127.8 | 37.9 162 | 33.5 104 | 50.5 171 | 32.5 181 | 37.4 175 | 45.0 178 | 30.8 168 | 34.8 158 | 40.7 159 | 53.7 154 | 48.3 124 | 80.5 67 | 72.3 111 | 67.1 114 | 87.6 175 | 68.6 36 | 53.2 36 | 82.2 97 | 28.8 144 | 46.7 161 | 42.5 95 | 36.9 113 | 55.6 76 | 50.3 107 |
Black & Anandan [4] | 127.8 | 37.9 162 | 34.1 136 | 49.6 154 | 30.7 170 | 36.0 166 | 41.2 148 | 31.0 171 | 34.7 156 | 40.3 154 | 53.9 160 | 48.6 136 | 80.7 100 | 72.3 111 | 67.0 82 | 87.4 78 | 69.0 104 | 53.8 51 | 82.5 147 | 28.8 144 | 46.5 156 | 42.4 32 | 37.0 122 | 56.1 107 | 50.4 121 |
TV-L1-improved [17] | 128.0 | 36.6 112 | 34.1 136 | 48.4 114 | 28.6 137 | 35.1 153 | 37.8 96 | 30.5 160 | 33.2 123 | 40.0 147 | 52.7 98 | 48.0 104 | 80.9 127 | 72.3 111 | 67.2 134 | 87.4 78 | 69.1 118 | 54.9 122 | 82.3 122 | 28.8 144 | 47.3 167 | 42.6 135 | 37.2 143 | 56.7 140 | 50.6 152 |
CBF [12] | 129.5 | 36.4 91 | 32.5 65 | 48.9 138 | 27.5 106 | 33.8 117 | 37.9 102 | 29.3 84 | 31.6 79 | 39.1 81 | 53.2 133 | 48.1 111 | 82.6 179 | 72.4 145 | 67.2 134 | 87.7 185 | 69.2 131 | 55.3 142 | 82.3 122 | 28.7 134 | 46.1 152 | 42.9 161 | 37.9 170 | 57.7 173 | 51.7 173 |
TVL1_RVC [175] | 130.6 | 39.9 183 | 35.0 158 | 52.5 183 | 33.3 185 | 38.7 185 | 45.0 178 | 29.7 122 | 34.1 143 | 39.8 140 | 54.0 164 | 48.1 111 | 81.2 155 | 72.2 76 | 67.0 82 | 87.4 78 | 69.0 104 | 53.6 46 | 82.5 147 | 28.7 134 | 46.5 156 | 42.5 95 | 36.8 96 | 55.9 92 | 50.4 121 |
Correlation Flow [76] | 131.9 | 36.2 59 | 33.4 100 | 47.7 27 | 27.7 113 | 34.3 129 | 37.3 53 | 29.4 99 | 31.4 72 | 38.8 35 | 53.1 129 | 48.5 132 | 81.3 159 | 72.8 183 | 67.6 173 | 88.6 197 | 70.1 172 | 57.1 185 | 82.6 155 | 29.4 166 | 48.8 182 | 43.0 164 | 37.7 164 | 57.9 176 | 50.5 142 |
Rannacher [23] | 132.3 | 36.7 123 | 34.5 148 | 48.7 131 | 28.7 141 | 35.3 157 | 38.1 107 | 30.5 160 | 34.0 141 | 39.9 143 | 52.7 98 | 48.0 104 | 80.8 116 | 72.4 145 | 67.2 134 | 87.5 140 | 69.0 104 | 54.6 105 | 82.3 122 | 28.8 144 | 47.0 163 | 42.6 135 | 37.1 134 | 56.4 128 | 50.6 152 |
UnFlow [127] | 133.0 | 39.2 178 | 37.9 182 | 50.6 174 | 32.3 179 | 38.9 188 | 41.3 150 | 31.6 182 | 38.5 189 | 40.8 164 | 53.2 133 | 48.7 143 | 80.9 127 | 72.0 43 | 66.7 42 | 87.4 78 | 69.5 154 | 54.6 105 | 82.4 136 | 28.2 36 | 43.2 37 | 42.4 32 | 39.3 193 | 58.3 181 | 51.2 165 |
HBM-GC [103] | 133.4 | 37.7 158 | 34.7 153 | 49.8 160 | 27.1 92 | 32.4 80 | 37.9 102 | 28.8 43 | 29.6 30 | 39.2 97 | 52.6 87 | 47.3 68 | 80.8 116 | 73.2 189 | 68.1 187 | 88.2 192 | 70.0 169 | 57.3 187 | 82.7 159 | 28.9 153 | 45.0 116 | 43.5 175 | 37.6 162 | 57.2 160 | 51.3 167 |
TriangleFlow [30] | 133.8 | 37.0 139 | 34.9 157 | 48.5 118 | 28.0 121 | 34.7 140 | 37.5 75 | 30.2 150 | 33.0 118 | 39.9 143 | 53.2 133 | 49.0 153 | 81.1 150 | 72.0 43 | 66.9 67 | 87.1 35 | 69.8 164 | 56.1 171 | 82.4 136 | 29.2 161 | 48.5 179 | 42.8 155 | 38.1 176 | 58.5 184 | 50.5 142 |
SegOF [10] | 135.7 | 37.6 156 | 33.2 92 | 50.0 164 | 29.1 148 | 34.7 140 | 41.0 145 | 31.4 177 | 35.3 167 | 40.7 159 | 53.6 149 | 50.7 177 | 80.6 75 | 72.3 111 | 67.2 134 | 87.5 140 | 69.0 104 | 55.3 142 | 82.2 97 | 29.0 154 | 48.6 180 | 42.7 149 | 36.7 87 | 55.8 89 | 50.4 121 |
WRT [146] | 136.4 | 36.6 112 | 34.0 132 | 47.9 42 | 28.1 123 | 33.8 117 | 37.5 75 | 31.1 173 | 31.4 72 | 39.6 131 | 53.2 133 | 48.4 130 | 80.8 116 | 72.7 181 | 67.7 181 | 87.8 187 | 70.1 172 | 58.7 195 | 82.2 97 | 29.8 181 | 53.4 198 | 42.9 161 | 37.6 162 | 58.4 182 | 49.8 21 |
BlockOverlap [61] | 136.8 | 38.5 173 | 33.2 92 | 51.3 178 | 30.0 167 | 34.4 135 | 42.8 164 | 29.4 99 | 30.4 44 | 40.0 147 | 53.2 133 | 46.9 58 | 83.0 186 | 72.9 186 | 67.6 173 | 88.3 193 | 69.7 162 | 54.1 73 | 83.3 179 | 28.7 134 | 44.1 68 | 43.5 175 | 37.1 134 | 55.3 57 | 51.8 174 |
IAOF2 [51] | 138.5 | 37.9 162 | 35.9 170 | 49.1 141 | 29.6 160 | 36.1 169 | 40.0 132 | 29.3 84 | 33.4 130 | 40.0 147 | 54.1 169 | 50.2 171 | 81.0 139 | 72.4 145 | 67.4 162 | 87.4 78 | 69.2 131 | 54.9 122 | 82.4 136 | 28.6 116 | 45.5 138 | 42.4 32 | 37.9 170 | 57.6 169 | 50.6 152 |
Ad-TV-NDC [36] | 140.0 | 40.4 186 | 35.1 161 | 53.1 185 | 31.9 177 | 36.7 173 | 43.8 173 | 29.4 99 | 32.9 112 | 39.1 81 | 54.5 177 | 49.2 158 | 82.1 172 | 72.5 161 | 67.3 150 | 87.5 140 | 69.3 143 | 53.9 61 | 82.7 159 | 28.6 116 | 45.4 133 | 42.4 32 | 37.2 143 | 56.2 116 | 50.6 152 |
OFRF [132] | 145.2 | 38.9 175 | 36.1 173 | 50.4 168 | 29.5 156 | 35.0 150 | 40.5 138 | 29.6 113 | 34.4 149 | 39.0 71 | 53.3 139 | 48.9 150 | 81.1 150 | 72.6 174 | 67.7 181 | 87.3 52 | 70.1 172 | 57.3 187 | 82.5 147 | 29.1 159 | 47.6 171 | 42.6 135 | 37.4 157 | 58.0 177 | 50.0 40 |
LocallyOriented [52] | 148.8 | 37.5 153 | 35.9 170 | 49.2 144 | 29.6 160 | 36.2 170 | 39.1 120 | 30.1 147 | 33.8 138 | 39.5 120 | 53.7 154 | 50.0 169 | 81.3 159 | 72.3 111 | 67.2 134 | 87.5 140 | 70.2 180 | 56.2 177 | 82.9 168 | 28.8 144 | 45.6 142 | 42.5 95 | 37.7 164 | 57.6 169 | 50.5 142 |
ACK-Prior [27] | 149.2 | 36.4 91 | 33.7 116 | 48.1 75 | 26.7 67 | 33.1 97 | 37.1 31 | 30.7 165 | 33.3 127 | 39.7 136 | 53.6 149 | 50.0 169 | 81.0 139 | 73.5 193 | 68.6 190 | 88.3 193 | 70.8 192 | 59.8 196 | 82.7 159 | 29.7 178 | 48.7 181 | 43.6 179 | 39.5 194 | 62.1 196 | 51.3 167 |
AdaConv-v1 [124] | 149.6 | 37.2 148 | 36.6 176 | 47.5 18 | 34.3 189 | 39.1 190 | 51.1 193 | 36.1 194 | 39.4 191 | 52.9 197 | 58.2 192 | 53.1 191 | 83.8 191 | 70.9 31 | 65.4 32 | 86.6 31 | 69.7 162 | 54.7 110 | 84.4 193 | 38.6 195 | 46.5 156 | 77.4 196 | 38.2 179 | 54.6 40 | 60.3 196 |
Horn & Schunck [3] | 151.0 | 37.9 162 | 35.1 161 | 49.6 154 | 31.4 173 | 37.7 177 | 41.8 160 | 31.7 183 | 37.4 184 | 41.5 167 | 55.8 183 | 50.6 174 | 81.3 159 | 72.2 76 | 67.0 82 | 87.4 78 | 69.2 131 | 54.2 81 | 82.7 159 | 29.5 171 | 48.9 184 | 42.6 135 | 37.8 168 | 57.2 160 | 50.9 162 |
StereoFlow [44] | 151.3 | 46.3 197 | 45.9 198 | 54.3 188 | 38.3 196 | 45.4 198 | 45.7 182 | 29.3 84 | 33.8 138 | 39.1 81 | 52.9 120 | 47.7 87 | 81.0 139 | 74.4 197 | 70.5 198 | 87.6 175 | 72.0 196 | 66.3 198 | 82.4 136 | 28.4 71 | 45.0 116 | 42.4 32 | 38.0 174 | 59.1 189 | 50.5 142 |
WOLF_ROB [144] | 151.3 | 38.3 170 | 38.0 183 | 49.0 140 | 29.6 160 | 35.9 165 | 39.0 119 | 30.6 163 | 35.0 162 | 39.8 140 | 54.4 176 | 52.4 189 | 82.0 171 | 72.5 161 | 67.6 173 | 87.4 78 | 69.8 164 | 55.4 148 | 82.8 165 | 29.4 166 | 49.1 186 | 42.5 95 | 37.1 134 | 56.6 137 | 50.2 87 |
Filter Flow [19] | 152.8 | 37.8 161 | 34.6 150 | 49.8 160 | 30.8 171 | 36.0 166 | 44.3 174 | 29.4 99 | 32.4 99 | 39.5 120 | 54.2 172 | 48.1 111 | 82.2 175 | 72.7 181 | 67.7 181 | 87.6 175 | 69.2 131 | 55.1 132 | 82.5 147 | 28.7 134 | 46.5 156 | 42.6 135 | 38.3 185 | 58.4 182 | 51.4 170 |
TI-DOFE [24] | 154.6 | 42.0 189 | 37.5 180 | 54.8 191 | 35.2 191 | 41.1 195 | 46.8 186 | 31.4 177 | 37.7 185 | 41.6 169 | 56.1 185 | 50.6 174 | 81.6 165 | 72.0 43 | 66.9 67 | 87.2 43 | 69.4 152 | 54.4 91 | 82.6 155 | 29.2 161 | 47.6 171 | 42.6 135 | 38.2 179 | 57.5 167 | 50.8 160 |
SILK [80] | 156.9 | 39.6 180 | 38.1 184 | 51.5 181 | 32.4 180 | 38.5 184 | 43.6 172 | 32.4 186 | 37.2 183 | 41.5 167 | 55.4 181 | 49.7 166 | 83.0 186 | 72.2 76 | 67.0 82 | 87.4 78 | 70.0 169 | 54.7 110 | 83.4 180 | 29.0 154 | 46.5 156 | 42.8 155 | 37.4 157 | 56.7 140 | 50.7 158 |
Bartels [41] | 157.7 | 37.1 142 | 35.0 158 | 49.3 147 | 28.2 125 | 34.8 145 | 40.5 138 | 29.9 137 | 33.1 121 | 40.5 156 | 54.2 172 | 49.7 166 | 83.9 192 | 73.0 187 | 67.6 173 | 88.7 198 | 71.8 195 | 56.1 171 | 85.6 197 | 28.6 116 | 43.9 56 | 43.6 179 | 38.1 176 | 57.0 155 | 53.2 183 |
NL-TV-NCC [25] | 167.0 | 37.1 142 | 35.7 169 | 48.0 59 | 27.8 117 | 35.0 150 | 37.6 85 | 31.0 171 | 35.4 169 | 40.0 147 | 56.0 184 | 54.2 194 | 82.6 179 | 73.8 195 | 68.6 190 | 89.1 199 | 70.6 189 | 58.4 194 | 82.5 147 | 30.4 186 | 50.0 190 | 44.0 184 | 39.8 195 | 60.2 194 | 52.4 180 |
SLK [47] | 167.4 | 41.6 188 | 38.7 189 | 54.4 189 | 33.0 184 | 38.3 183 | 45.5 181 | 33.3 188 | 38.6 190 | 42.8 172 | 57.8 190 | 51.8 185 | 83.5 190 | 72.1 58 | 67.3 150 | 86.5 30 | 70.1 172 | 55.8 162 | 82.7 159 | 30.0 182 | 51.4 194 | 43.0 164 | 38.2 179 | 57.5 167 | 51.5 171 |
Learning Flow [11] | 170.2 | 37.7 158 | 37.0 179 | 49.2 144 | 29.9 165 | 37.5 176 | 39.7 129 | 31.5 181 | 36.3 175 | 40.7 159 | 55.4 181 | 51.6 184 | 82.6 179 | 72.8 183 | 67.8 184 | 87.8 187 | 69.6 160 | 55.7 160 | 82.8 165 | 29.3 164 | 48.4 177 | 42.7 149 | 39.2 191 | 59.8 191 | 51.2 165 |
GroupFlow [9] | 170.4 | 40.3 185 | 40.1 191 | 51.3 178 | 31.5 175 | 38.9 188 | 42.6 163 | 33.5 190 | 39.5 192 | 43.8 174 | 54.7 180 | 52.3 188 | 81.0 139 | 73.2 189 | 68.6 190 | 87.6 175 | 70.4 187 | 57.3 187 | 83.0 170 | 29.3 164 | 48.1 176 | 42.5 95 | 37.9 170 | 58.2 180 | 50.1 63 |
FFV1MT [104] | 170.4 | 39.6 180 | 40.8 193 | 50.3 167 | 34.8 190 | 38.8 186 | 46.6 185 | 36.5 195 | 45.8 196 | 44.6 178 | 56.2 186 | 49.0 153 | 81.7 166 | 72.5 161 | 67.4 162 | 87.4 78 | 70.2 180 | 54.7 110 | 83.2 174 | 30.1 184 | 49.3 188 | 42.8 155 | 38.6 186 | 57.6 169 | 51.3 167 |
Heeger++ [102] | 171.5 | 40.6 187 | 42.5 195 | 50.4 168 | 33.5 186 | 38.2 181 | 43.0 166 | 37.6 196 | 48.1 197 | 44.9 179 | 56.2 186 | 49.0 153 | 81.7 166 | 73.4 192 | 68.9 195 | 87.5 140 | 70.1 172 | 56.0 167 | 82.8 165 | 30.3 185 | 49.1 186 | 42.6 135 | 37.7 164 | 56.9 149 | 50.3 107 |
2bit-BM-tele [96] | 171.9 | 37.9 162 | 34.7 153 | 50.1 166 | 30.1 168 | 36.4 172 | 41.7 159 | 30.2 150 | 32.2 94 | 41.3 166 | 54.3 175 | 49.4 161 | 84.1 194 | 73.3 191 | 68.1 187 | 88.3 193 | 72.2 197 | 57.2 186 | 85.5 196 | 30.4 186 | 52.7 197 | 44.4 186 | 38.2 179 | 56.3 121 | 54.1 187 |
H+S_RVC [176] | 173.5 | 39.9 183 | 38.4 187 | 51.3 178 | 33.9 188 | 38.8 186 | 44.8 176 | 35.6 193 | 44.0 195 | 45.8 182 | 59.3 194 | 49.8 168 | 82.3 178 | 72.5 161 | 67.8 184 | 87.1 35 | 70.1 172 | 55.6 158 | 82.7 159 | 30.6 188 | 49.8 189 | 43.4 173 | 39.8 195 | 57.4 166 | 51.9 175 |
FOLKI [16] | 177.2 | 44.6 194 | 40.4 192 | 58.4 195 | 35.7 192 | 42.3 196 | 47.3 187 | 33.3 188 | 40.7 193 | 44.9 179 | 59.4 196 | 53.6 192 | 86.5 197 | 72.5 161 | 67.6 173 | 87.3 52 | 70.1 172 | 55.8 162 | 83.2 174 | 29.4 166 | 48.4 177 | 43.1 168 | 38.7 187 | 58.5 184 | 52.0 176 |
Pyramid LK [2] | 182.7 | 46.1 196 | 38.9 190 | 61.0 197 | 36.7 195 | 40.4 193 | 50.9 192 | 39.9 197 | 36.6 177 | 49.4 191 | 64.1 198 | 61.2 198 | 87.7 198 | 73.1 188 | 68.6 190 | 87.4 78 | 70.1 172 | 56.1 171 | 83.0 170 | 29.6 175 | 50.7 192 | 43.2 170 | 39.2 191 | 61.2 195 | 51.5 171 |
Adaptive flow [45] | 183.0 | 43.8 192 | 38.2 185 | 56.5 192 | 35.8 193 | 40.5 194 | 50.2 191 | 31.4 177 | 34.5 151 | 42.5 171 | 56.5 189 | 50.9 180 | 83.9 192 | 73.5 193 | 68.7 194 | 88.1 191 | 70.2 180 | 57.4 190 | 82.9 168 | 29.4 166 | 47.5 169 | 43.6 179 | 39.0 189 | 59.1 189 | 52.0 176 |
PGAM+LK [55] | 184.5 | 42.5 191 | 41.4 194 | 54.6 190 | 33.7 187 | 40.1 192 | 45.8 183 | 33.9 191 | 41.1 194 | 43.3 173 | 59.3 194 | 55.2 195 | 85.5 196 | 72.8 183 | 68.1 187 | 87.5 140 | 70.8 192 | 56.9 182 | 83.6 183 | 29.6 175 | 50.0 190 | 43.0 164 | 38.7 187 | 58.6 187 | 52.1 179 |
HCIC-L [97] | 188.5 | 49.1 198 | 42.6 196 | 63.0 198 | 35.8 193 | 39.4 191 | 52.5 194 | 34.6 192 | 37.7 185 | 43.9 175 | 58.0 191 | 53.9 193 | 81.7 166 | 74.0 196 | 69.3 196 | 88.5 196 | 71.7 194 | 60.5 197 | 83.2 174 | 29.5 171 | 47.5 169 | 43.9 183 | 40.5 197 | 62.9 197 | 52.8 181 |
Periodicity [79] | 193.9 | 44.4 193 | 43.3 197 | 56.9 193 | 42.8 198 | 43.4 197 | 56.2 197 | 40.9 198 | 49.1 198 | 49.5 192 | 58.9 193 | 58.6 197 | 84.9 195 | 74.4 197 | 70.2 197 | 88.0 189 | 73.1 198 | 57.9 193 | 86.2 198 | 30.0 182 | 51.5 195 | 43.5 175 | 41.8 198 | 63.4 198 | 53.7 186 |
AVG_FLOW_ROB [137] | 196.1 | 76.9 199 | 76.7 199 | 78.2 199 | 71.8 199 | 68.8 199 | 76.4 199 | 64.0 199 | 60.2 199 | 65.8 199 | 82.9 199 | 80.9 199 | 91.0 199 | 80.9 199 | 79.6 199 | 87.5 140 | 83.9 199 | 84.0 199 | 86.6 199 | 53.7 199 | 65.3 199 | 47.7 188 | 62.3 199 | 71.1 199 | 70.4 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |