Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
R2.0 normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
EAFI [186] | 1.7 | 0.10 1 | 0.27 1 | 0.09 3 | 0.35 1 | 0.85 1 | 0.10 1 | 0.18 1 | 0.62 1 | 0.15 1 | 2.12 1 | 1.73 1 | 4.09 1 | 1.34 4 | 1.47 6 | 1.40 1 | 0.62 1 | 1.16 2 | 0.58 1 | 0.34 2 | 1.21 3 | 0.23 1 | 0.52 3 | 1.29 2 | 0.06 1 |
SoftsplatAug [190] | 3.2 | 0.10 1 | 0.36 2 | 0.08 1 | 0.44 2 | 1.17 2 | 0.14 2 | 0.26 4 | 0.92 5 | 0.16 3 | 2.30 3 | 1.92 3 | 4.62 5 | 1.30 2 | 1.32 2 | 1.60 4 | 0.74 3 | 1.43 3 | 0.72 5 | 0.37 5 | 1.27 4 | 0.31 9 | 0.51 2 | 1.29 2 | 0.07 2 |
SoftSplat [169] | 4.4 | 0.17 5 | 0.50 6 | 0.15 8 | 0.68 5 | 1.87 6 | 0.22 4 | 0.23 3 | 0.81 3 | 0.17 4 | 2.21 2 | 1.89 2 | 4.41 3 | 1.40 6 | 1.45 5 | 1.56 2 | 0.72 2 | 1.48 4 | 0.68 3 | 0.38 7 | 1.28 5 | 0.30 7 | 0.58 5 | 1.45 6 | 0.07 2 |
DistillNet [184] | 7.5 | 0.14 3 | 0.48 4 | 0.12 6 | 0.52 3 | 1.37 3 | 0.17 3 | 0.28 5 | 0.84 4 | 0.21 5 | 2.33 4 | 2.05 4 | 4.56 4 | 1.40 6 | 1.48 7 | 1.62 6 | 0.99 16 | 2.42 20 | 0.85 12 | 0.41 12 | 1.44 9 | 0.28 6 | 0.66 11 | 1.65 11 | 0.11 15 |
IFRNet [193] | 8.8 | 0.18 6 | 0.45 3 | 0.20 13 | 0.57 4 | 1.48 4 | 0.25 5 | 0.20 2 | 0.65 2 | 0.15 1 | 2.66 8 | 2.23 6 | 5.79 19 | 1.87 22 | 1.93 24 | 2.43 21 | 0.90 11 | 1.59 5 | 0.95 18 | 0.38 7 | 1.42 8 | 0.27 5 | 0.58 5 | 1.44 5 | 0.08 6 |
IDIAL [192] | 12.0 | 0.18 6 | 0.69 8 | 0.13 7 | 0.99 10 | 2.62 19 | 0.25 5 | 0.69 11 | 1.29 9 | 0.56 38 | 2.62 7 | 2.40 10 | 4.76 6 | 1.63 15 | 1.77 18 | 1.98 13 | 0.82 5 | 1.81 8 | 0.74 7 | 0.46 19 | 1.68 21 | 0.32 11 | 0.67 12 | 1.66 12 | 0.10 12 |
FGME [158] | 12.2 | 0.14 3 | 0.49 5 | 0.08 1 | 1.21 30 | 2.59 16 | 0.53 72 | 0.69 11 | 1.17 8 | 0.46 13 | 2.82 12 | 2.25 8 | 6.13 24 | 1.23 1 | 1.24 1 | 1.61 5 | 0.97 15 | 1.63 6 | 1.02 22 | 0.33 1 | 1.02 2 | 0.30 7 | 0.60 8 | 1.51 9 | 0.10 12 |
EDSC [173] | 15.2 | 0.24 13 | 0.93 16 | 0.15 8 | 0.99 10 | 2.59 16 | 0.36 13 | 0.73 14 | 1.69 18 | 0.54 29 | 3.04 19 | 3.15 21 | 5.50 16 | 1.83 19 | 1.86 22 | 2.29 19 | 0.95 13 | 2.20 16 | 0.81 9 | 0.40 9 | 1.46 11 | 0.33 13 | 0.77 17 | 1.93 19 | 0.08 6 |
SepConv++ [185] | 17.0 | 0.35 17 | 1.29 22 | 0.26 19 | 0.84 8 | 2.26 10 | 0.27 8 | 0.96 21 | 1.58 13 | 0.68 96 | 2.92 17 | 3.03 19 | 5.16 12 | 1.59 12 | 1.64 12 | 1.97 12 | 0.87 9 | 2.17 15 | 0.69 4 | 0.45 17 | 1.77 24 | 0.32 11 | 0.71 13 | 1.78 14 | 0.07 2 |
STSR [170] | 17.5 | 0.20 9 | 0.84 13 | 0.15 8 | 0.68 5 | 1.74 5 | 0.26 7 | 0.69 11 | 1.66 17 | 0.44 9 | 2.91 15 | 2.63 13 | 5.92 22 | 1.89 23 | 1.95 25 | 2.32 20 | 1.26 24 | 2.64 27 | 1.21 24 | 0.49 23 | 1.79 25 | 0.41 23 | 0.82 21 | 2.05 22 | 0.14 28 |
BMBC [171] | 18.0 | 0.32 15 | 0.80 11 | 0.26 19 | 0.91 9 | 2.19 8 | 0.45 41 | 1.73 62 | 2.43 27 | 0.85 133 | 2.57 5 | 2.20 5 | 4.93 7 | 1.44 9 | 1.51 9 | 1.64 7 | 0.85 7 | 1.81 8 | 0.87 14 | 0.37 5 | 1.30 6 | 0.26 3 | 0.58 5 | 1.47 7 | 0.09 9 |
STAR-Net [164] | 18.3 | 0.22 11 | 0.69 8 | 0.21 15 | 1.41 60 | 3.33 50 | 0.58 86 | 0.93 20 | 1.34 10 | 0.64 82 | 2.60 6 | 2.44 11 | 4.32 2 | 1.30 2 | 1.35 3 | 1.58 3 | 0.87 9 | 2.07 12 | 0.74 7 | 0.40 9 | 1.50 12 | 0.26 3 | 0.60 8 | 1.49 8 | 0.07 2 |
AdaCoF [165] | 19.1 | 0.44 28 | 1.34 25 | 0.35 60 | 1.04 14 | 2.59 16 | 0.34 9 | 1.29 26 | 1.87 21 | 0.60 60 | 3.34 22 | 3.13 20 | 5.35 13 | 1.93 24 | 1.83 21 | 2.64 25 | 0.83 6 | 1.86 10 | 0.72 5 | 0.40 9 | 1.44 9 | 0.31 9 | 0.63 10 | 1.58 10 | 0.08 6 |
MV_VFI [183] | 19.2 | 0.35 17 | 1.21 19 | 0.29 27 | 1.06 18 | 2.66 21 | 0.49 57 | 0.65 8 | 1.62 15 | 0.42 7 | 2.87 13 | 3.01 17 | 5.11 10 | 1.73 16 | 1.73 16 | 2.17 15 | 1.09 22 | 2.42 20 | 0.99 21 | 0.46 19 | 1.73 23 | 0.34 17 | 0.82 21 | 2.04 21 | 0.12 21 |
TC-GAN [166] | 19.6 | 0.36 20 | 1.21 19 | 0.29 27 | 1.05 16 | 2.67 22 | 0.48 51 | 0.66 9 | 1.60 14 | 0.42 7 | 2.87 13 | 3.01 17 | 5.07 9 | 1.73 16 | 1.73 16 | 2.17 15 | 1.07 20 | 2.43 24 | 0.96 19 | 0.48 21 | 1.79 25 | 0.35 20 | 0.83 24 | 2.06 25 | 0.12 21 |
DAIN [152] | 20.7 | 0.38 22 | 1.28 21 | 0.31 34 | 1.08 22 | 2.74 29 | 0.47 49 | 0.66 9 | 1.76 19 | 0.45 11 | 2.81 11 | 2.92 16 | 5.00 8 | 1.77 18 | 1.78 19 | 2.25 17 | 1.08 21 | 2.42 20 | 0.98 20 | 0.48 21 | 1.83 28 | 0.34 17 | 0.82 21 | 2.05 22 | 0.12 21 |
CtxSyn [134] | 24.1 | 0.27 14 | 0.91 15 | 0.21 15 | 0.79 7 | 2.12 7 | 0.34 9 | 0.82 17 | 1.36 11 | 0.65 88 | 3.14 20 | 2.79 15 | 6.88 28 | 2.28 31 | 2.13 30 | 3.99 32 | 1.76 29 | 2.72 28 | 2.00 28 | 0.52 29 | 1.56 16 | 0.48 38 | 0.86 29 | 2.13 28 | 0.11 15 |
MEMC-Net+ [160] | 24.8 | 0.35 17 | 0.96 18 | 0.32 38 | 1.17 28 | 2.68 23 | 0.53 72 | 1.00 22 | 1.95 23 | 0.70 100 | 2.91 15 | 2.51 12 | 5.15 11 | 1.62 14 | 1.67 13 | 2.05 14 | 1.00 17 | 2.32 17 | 0.85 12 | 0.51 26 | 2.07 32 | 0.34 17 | 0.76 16 | 1.91 16 | 0.12 21 |
FeFlow [167] | 25.2 | 0.23 12 | 0.83 12 | 0.17 11 | 1.39 56 | 3.23 43 | 0.59 89 | 0.81 16 | 1.62 15 | 0.81 131 | 2.92 17 | 2.64 14 | 5.46 14 | 1.42 8 | 1.48 7 | 1.72 10 | 0.96 14 | 2.10 14 | 0.87 14 | 0.45 17 | 1.51 13 | 0.33 13 | 0.83 24 | 2.09 26 | 0.11 15 |
ProBoost-Net [191] | 26.1 | 0.19 8 | 0.75 10 | 0.10 4 | 1.74 94 | 3.79 70 | 0.56 83 | 0.74 15 | 1.49 12 | 0.45 11 | 3.39 23 | 3.16 22 | 7.26 30 | 1.86 21 | 1.72 15 | 3.09 27 | 1.39 26 | 2.34 18 | 1.48 27 | 0.44 15 | 1.63 19 | 0.37 22 | 0.78 20 | 1.95 20 | 0.11 15 |
DAI [168] | 26.8 | 0.55 51 | 0.52 7 | 0.79 176 | 1.42 62 | 3.08 36 | 0.99 151 | 0.32 6 | 0.92 5 | 0.32 6 | 2.70 9 | 2.23 6 | 6.02 23 | 1.48 10 | 1.58 11 | 1.64 7 | 0.85 7 | 1.65 7 | 0.82 10 | 0.35 3 | 1.31 7 | 0.24 2 | 0.77 17 | 1.91 16 | 0.09 9 |
DSepConv [162] | 28.3 | 0.39 24 | 1.48 30 | 0.24 17 | 1.24 38 | 2.96 33 | 0.58 86 | 1.01 23 | 1.77 20 | 0.59 56 | 3.60 39 | 3.58 28 | 5.83 20 | 1.84 20 | 1.81 20 | 2.57 23 | 1.05 19 | 2.47 25 | 0.89 17 | 0.44 15 | 1.67 20 | 0.35 20 | 0.87 30 | 2.18 30 | 0.13 26 |
OFRI [154] | 31.4 | 0.41 26 | 0.87 14 | 0.46 120 | 1.28 42 | 2.72 26 | 0.78 131 | 0.60 7 | 0.98 7 | 0.51 25 | 2.73 10 | 2.39 9 | 5.47 15 | 1.54 11 | 1.51 9 | 2.28 18 | 1.22 23 | 2.38 19 | 1.31 25 | 0.59 33 | 1.53 14 | 0.55 117 | 0.71 13 | 1.75 13 | 0.13 26 |
ADC [161] | 31.6 | 0.49 34 | 1.34 25 | 0.38 80 | 1.21 30 | 2.72 26 | 0.69 114 | 1.53 31 | 2.29 25 | 0.62 70 | 3.67 49 | 3.44 25 | 5.88 21 | 1.95 26 | 1.91 23 | 2.58 24 | 0.93 12 | 2.07 12 | 0.82 10 | 0.43 13 | 1.62 18 | 0.33 13 | 0.85 28 | 2.13 28 | 0.12 21 |
MAF-net [163] | 33.6 | 0.21 10 | 0.94 17 | 0.11 5 | 1.47 67 | 3.36 53 | 0.48 51 | 0.86 18 | 2.31 26 | 0.70 100 | 3.84 93 | 3.61 29 | 7.23 29 | 2.15 28 | 2.11 29 | 3.03 26 | 1.46 27 | 2.88 29 | 1.43 26 | 0.51 26 | 1.81 27 | 0.46 29 | 0.77 17 | 1.91 16 | 0.14 28 |
GDCN [172] | 39.1 | 0.32 15 | 1.30 23 | 0.20 13 | 1.89 110 | 3.92 79 | 0.59 89 | 0.87 19 | 1.88 22 | 0.83 132 | 3.85 96 | 3.19 23 | 5.51 17 | 1.93 24 | 1.99 27 | 2.52 22 | 1.32 25 | 3.17 31 | 1.14 23 | 0.50 25 | 1.85 29 | 0.42 25 | 0.84 27 | 2.10 27 | 0.11 15 |
PMMST [112] | 41.2 | 0.48 32 | 1.85 35 | 0.32 38 | 1.36 51 | 3.31 48 | 0.45 41 | 1.55 33 | 2.89 31 | 0.44 9 | 3.53 28 | 3.89 39 | 7.51 51 | 2.71 39 | 2.65 38 | 4.22 52 | 2.27 36 | 4.31 36 | 2.43 61 | 0.60 39 | 2.35 43 | 0.51 68 | 1.40 46 | 3.51 47 | 0.20 49 |
MDP-Flow2 [68] | 41.5 | 0.45 30 | 1.84 34 | 0.30 31 | 1.24 38 | 3.23 43 | 0.38 14 | 1.57 35 | 3.09 38 | 0.48 16 | 3.54 30 | 3.96 42 | 7.46 43 | 2.68 35 | 2.62 36 | 4.24 60 | 2.61 70 | 5.64 70 | 2.47 77 | 0.59 33 | 2.33 41 | 0.49 46 | 1.40 46 | 3.51 47 | 0.19 40 |
FRUCnet [153] | 42.5 | 0.98 168 | 1.31 24 | 1.24 190 | 1.23 34 | 2.71 25 | 0.77 130 | 1.10 24 | 2.03 24 | 1.00 155 | 3.29 21 | 3.19 23 | 5.76 18 | 1.61 13 | 1.70 14 | 1.96 11 | 1.03 18 | 2.63 26 | 0.88 16 | 0.43 13 | 1.55 15 | 0.33 13 | 0.74 15 | 1.85 15 | 0.11 15 |
MPRN [151] | 45.1 | 0.41 26 | 1.62 32 | 0.26 19 | 1.39 56 | 3.58 59 | 0.52 65 | 2.01 126 | 4.71 146 | 0.70 100 | 3.53 28 | 3.74 33 | 6.71 27 | 2.41 32 | 2.31 32 | 3.71 31 | 1.84 30 | 2.96 30 | 2.06 29 | 0.54 30 | 2.06 31 | 0.46 29 | 0.94 32 | 2.36 32 | 0.14 28 |
GMFlow_RVC [196] | 46.0 | 0.53 44 | 2.50 75 | 0.30 31 | 1.04 14 | 2.70 24 | 0.40 20 | 1.58 36 | 2.96 33 | 0.46 13 | 3.58 36 | 4.01 46 | 7.63 78 | 2.86 58 | 2.88 57 | 4.27 64 | 2.60 66 | 5.93 84 | 2.34 47 | 0.61 41 | 2.40 47 | 0.52 83 | 1.31 37 | 3.29 37 | 0.17 32 |
CoT-AMFlow [174] | 46.0 | 0.47 31 | 1.92 37 | 0.31 34 | 1.26 40 | 3.30 46 | 0.40 20 | 1.64 43 | 3.37 53 | 0.49 19 | 3.57 34 | 4.01 46 | 7.53 56 | 2.73 40 | 2.67 39 | 4.22 52 | 2.63 76 | 5.83 83 | 2.50 86 | 0.60 39 | 2.32 40 | 0.47 32 | 1.44 53 | 3.62 56 | 0.20 49 |
NNF-Local [75] | 48.1 | 0.44 28 | 1.93 38 | 0.28 25 | 1.02 13 | 2.54 13 | 0.40 20 | 1.56 34 | 2.97 34 | 0.47 15 | 3.79 80 | 4.58 107 | 7.48 47 | 2.69 37 | 2.61 35 | 4.16 41 | 2.81 97 | 6.47 105 | 2.56 100 | 0.61 41 | 2.42 48 | 0.52 83 | 1.36 40 | 3.42 42 | 0.17 32 |
CombBMOF [111] | 50.0 | 0.58 58 | 2.00 40 | 0.38 80 | 1.21 30 | 3.19 41 | 0.39 16 | 1.78 78 | 3.38 54 | 0.75 121 | 3.70 56 | 4.15 60 | 7.59 65 | 2.79 46 | 2.82 49 | 4.16 41 | 2.35 40 | 4.57 41 | 2.34 47 | 0.62 49 | 2.42 48 | 0.48 38 | 1.26 35 | 3.18 36 | 0.16 31 |
NN-field [71] | 50.4 | 0.49 34 | 2.19 46 | 0.31 34 | 1.06 18 | 2.64 20 | 0.38 14 | 1.84 97 | 3.00 35 | 0.53 27 | 3.92 106 | 5.00 136 | 7.52 53 | 2.68 35 | 2.60 34 | 4.18 43 | 2.64 80 | 5.76 75 | 2.46 72 | 0.59 33 | 2.30 38 | 0.51 68 | 1.36 40 | 3.41 40 | 0.17 32 |
FLAVR [188] | 52.7 | 0.64 89 | 1.45 29 | 0.43 109 | 1.50 71 | 2.32 11 | 1.09 159 | 1.48 27 | 2.55 28 | 1.12 164 | 6.56 190 | 7.53 193 | 6.32 25 | 1.35 5 | 1.42 4 | 1.70 9 | 0.79 4 | 1.92 11 | 0.67 2 | 0.61 41 | 1.87 30 | 0.49 46 | 0.53 4 | 1.31 4 | 0.09 9 |
PH-Flow [99] | 54.1 | 0.56 53 | 2.14 43 | 0.37 70 | 1.13 24 | 2.87 31 | 0.44 37 | 1.60 38 | 3.16 43 | 0.56 38 | 3.52 27 | 3.84 34 | 7.48 47 | 2.69 37 | 2.67 39 | 4.12 38 | 2.86 102 | 7.09 138 | 2.53 93 | 0.63 56 | 2.57 66 | 0.50 58 | 1.43 51 | 3.56 51 | 0.22 84 |
TOF-M [150] | 54.1 | 0.39 24 | 1.41 27 | 0.27 24 | 1.98 119 | 4.14 87 | 1.14 163 | 1.48 27 | 3.06 36 | 0.94 149 | 3.78 78 | 3.48 27 | 7.60 69 | 2.61 33 | 2.55 33 | 4.19 44 | 2.16 34 | 3.49 33 | 2.35 49 | 0.51 26 | 1.72 22 | 0.50 58 | 1.07 34 | 2.62 34 | 0.21 69 |
Layers++ [37] | 57.0 | 0.58 58 | 2.27 54 | 0.40 96 | 1.06 18 | 2.51 12 | 0.42 29 | 1.68 51 | 3.47 59 | 0.61 64 | 3.59 38 | 4.04 52 | 7.44 42 | 2.94 81 | 3.06 88 | 4.28 66 | 2.87 106 | 6.80 123 | 2.51 88 | 0.58 32 | 2.21 33 | 0.44 27 | 1.37 42 | 3.41 40 | 0.21 69 |
CyclicGen [149] | 57.0 | 0.87 157 | 1.41 27 | 1.00 185 | 1.74 94 | 2.23 9 | 3.18 196 | 1.52 29 | 3.15 42 | 1.09 162 | 3.97 117 | 3.46 26 | 8.01 144 | 2.14 27 | 1.98 26 | 3.32 28 | 1.48 28 | 1.11 1 | 2.06 29 | 0.36 4 | 1.01 1 | 0.41 23 | 0.33 1 | 0.80 1 | 0.10 12 |
SuperSlomo [130] | 59.2 | 0.69 113 | 1.64 33 | 0.65 165 | 2.00 120 | 3.84 73 | 1.61 177 | 1.52 29 | 3.09 38 | 0.63 75 | 3.92 106 | 3.61 29 | 7.83 123 | 2.24 30 | 2.09 28 | 3.67 30 | 1.87 31 | 2.42 20 | 2.24 34 | 0.49 23 | 1.61 17 | 0.47 32 | 0.89 31 | 2.21 31 | 0.17 32 |
nLayers [57] | 60.8 | 0.55 51 | 2.17 45 | 0.37 70 | 1.23 34 | 3.14 37 | 0.41 25 | 1.62 42 | 2.92 32 | 0.51 25 | 3.60 39 | 4.00 45 | 7.49 50 | 2.99 103 | 3.10 97 | 4.42 108 | 2.85 100 | 6.56 109 | 2.66 120 | 0.62 49 | 2.28 35 | 0.55 117 | 1.37 42 | 3.43 43 | 0.19 40 |
IROF++ [58] | 61.2 | 0.53 44 | 2.21 49 | 0.33 49 | 1.42 62 | 3.64 64 | 0.44 37 | 1.81 85 | 3.57 64 | 0.67 92 | 3.56 32 | 3.85 37 | 7.56 60 | 2.77 43 | 2.85 53 | 4.11 37 | 2.47 45 | 5.30 53 | 2.36 53 | 0.69 90 | 2.86 94 | 0.51 68 | 1.52 69 | 3.81 70 | 0.24 118 |
FMOF [92] | 61.4 | 0.69 113 | 2.59 81 | 0.43 109 | 1.32 47 | 3.32 49 | 0.41 25 | 1.86 102 | 3.57 64 | 0.74 115 | 3.81 86 | 4.40 83 | 7.39 38 | 2.80 50 | 2.81 48 | 4.23 56 | 2.54 57 | 5.43 61 | 2.40 59 | 0.57 31 | 2.23 34 | 0.43 26 | 1.42 50 | 3.54 50 | 0.19 40 |
MS-PFT [159] | 61.6 | 0.37 21 | 1.50 31 | 0.24 17 | 1.38 54 | 3.34 51 | 0.69 114 | 1.64 43 | 3.13 41 | 1.67 187 | 3.89 103 | 4.69 115 | 6.65 26 | 2.16 29 | 2.23 31 | 3.33 29 | 2.06 33 | 3.55 34 | 2.33 45 | 0.70 94 | 2.82 92 | 0.76 174 | 0.99 33 | 2.45 33 | 0.20 49 |
RAFT-it+_RVC [198] | 64.0 | 0.50 38 | 2.43 67 | 0.26 19 | 1.05 16 | 2.72 26 | 0.34 9 | 1.64 43 | 3.23 46 | 0.49 19 | 3.61 42 | 4.10 56 | 7.52 53 | 2.81 52 | 2.76 45 | 4.42 108 | 5.11 194 | 6.54 108 | 6.09 195 | 0.61 41 | 2.45 52 | 0.51 68 | 1.51 66 | 3.80 67 | 0.23 106 |
COFM [59] | 65.9 | 0.59 63 | 2.35 60 | 0.41 101 | 1.38 54 | 3.49 56 | 0.45 41 | 1.66 48 | 3.36 51 | 0.61 64 | 3.57 34 | 3.96 42 | 7.39 38 | 2.78 44 | 2.85 53 | 4.06 34 | 2.90 111 | 7.73 168 | 2.39 56 | 0.65 67 | 2.60 69 | 0.58 136 | 1.44 53 | 3.61 54 | 0.22 84 |
MS_RAFT+_RVC [195] | 65.9 | 0.54 47 | 2.24 51 | 0.36 67 | 1.15 26 | 3.07 34 | 0.39 16 | 1.54 32 | 2.80 29 | 0.49 19 | 3.48 25 | 3.61 29 | 7.47 45 | 3.02 118 | 3.12 101 | 4.50 141 | 2.21 35 | 4.10 35 | 2.26 35 | 0.61 41 | 2.42 48 | 0.52 83 | 2.77 192 | 7.00 192 | 0.26 140 |
VCN_RVC [178] | 67.2 | 0.66 102 | 3.25 158 | 0.32 38 | 1.20 29 | 3.16 39 | 0.39 16 | 1.83 94 | 4.20 111 | 0.58 51 | 3.73 63 | 4.50 94 | 7.80 116 | 2.89 65 | 2.96 72 | 4.22 52 | 2.44 44 | 5.32 54 | 2.27 37 | 0.63 56 | 2.52 57 | 0.50 58 | 1.55 75 | 3.91 83 | 0.20 49 |
SepConv-v1 [125] | 67.4 | 0.38 22 | 1.91 36 | 0.18 12 | 1.69 89 | 3.97 82 | 0.64 105 | 1.23 25 | 3.17 44 | 1.03 158 | 4.39 154 | 4.38 80 | 8.06 148 | 2.73 40 | 2.63 37 | 4.29 68 | 1.90 32 | 3.17 31 | 2.06 29 | 0.71 99 | 2.78 86 | 0.67 162 | 0.83 24 | 2.05 22 | 0.17 32 |
PRAFlow_RVC [177] | 67.9 | 0.50 38 | 2.20 48 | 0.28 25 | 1.23 34 | 3.21 42 | 0.41 25 | 1.61 41 | 3.07 37 | 0.49 19 | 3.68 51 | 4.08 55 | 7.81 118 | 2.85 55 | 2.83 51 | 4.49 137 | 2.49 50 | 5.14 46 | 2.43 61 | 0.63 56 | 2.55 61 | 0.53 91 | 1.81 157 | 4.50 160 | 0.29 171 |
HAST [107] | 68.6 | 0.53 44 | 2.07 42 | 0.36 67 | 1.23 34 | 3.15 38 | 0.43 33 | 1.90 107 | 3.84 94 | 0.63 75 | 3.46 24 | 3.70 32 | 7.34 33 | 2.92 74 | 3.07 91 | 4.14 39 | 2.99 128 | 7.61 160 | 2.46 72 | 0.65 67 | 2.71 81 | 0.47 32 | 1.64 114 | 4.09 116 | 0.20 49 |
RAFT-it [194] | 70.9 | 0.58 58 | 2.76 103 | 0.32 38 | 0.99 10 | 2.55 14 | 0.34 9 | 1.60 38 | 3.11 40 | 0.48 16 | 3.55 31 | 3.90 40 | 7.60 69 | 2.78 44 | 2.73 42 | 4.23 56 | 5.46 196 | 6.24 94 | 6.47 197 | 0.59 33 | 2.30 38 | 0.47 32 | 2.87 193 | 7.25 193 | 0.24 118 |
NNF-EAC [101] | 71.0 | 0.76 141 | 2.27 54 | 0.54 143 | 1.48 68 | 3.71 68 | 0.48 51 | 1.71 56 | 3.30 47 | 0.58 51 | 3.88 100 | 4.24 67 | 8.30 164 | 2.80 50 | 2.82 49 | 4.20 47 | 2.27 36 | 4.36 37 | 2.35 49 | 0.65 67 | 2.64 74 | 0.57 132 | 1.43 51 | 3.59 52 | 0.20 49 |
TV-L1-MCT [64] | 71.6 | 0.65 97 | 2.58 80 | 0.38 80 | 1.74 94 | 4.52 99 | 0.53 72 | 1.77 74 | 3.83 92 | 0.62 70 | 3.63 46 | 4.04 52 | 7.48 47 | 2.96 91 | 3.12 101 | 4.20 47 | 2.55 59 | 5.40 57 | 2.47 77 | 0.65 67 | 2.68 76 | 0.51 68 | 1.39 44 | 3.48 44 | 0.22 84 |
LME [70] | 73.6 | 0.48 32 | 1.98 39 | 0.32 38 | 1.46 65 | 3.68 66 | 0.70 121 | 1.77 74 | 4.14 109 | 0.57 46 | 3.64 48 | 4.24 67 | 7.62 77 | 3.14 156 | 3.32 154 | 4.87 182 | 2.66 82 | 6.03 86 | 2.46 72 | 0.59 33 | 2.28 35 | 0.48 38 | 1.44 53 | 3.62 56 | 0.18 38 |
UnDAF [187] | 74.4 | 0.54 47 | 2.38 64 | 0.34 58 | 1.51 73 | 3.96 81 | 0.45 41 | 1.76 73 | 4.29 117 | 0.56 38 | 3.83 90 | 4.84 125 | 7.81 118 | 2.79 46 | 2.78 46 | 4.20 47 | 2.73 89 | 6.17 90 | 2.57 102 | 0.64 61 | 2.58 67 | 0.55 117 | 1.53 72 | 3.84 74 | 0.20 49 |
RAFT-TF_RVC [179] | 74.7 | 0.54 47 | 2.57 79 | 0.26 19 | 1.15 26 | 3.07 34 | 0.40 20 | 1.67 49 | 3.35 50 | 0.59 56 | 3.67 49 | 4.24 67 | 7.74 106 | 2.81 52 | 2.79 47 | 4.28 66 | 5.18 195 | 6.22 93 | 5.89 194 | 0.62 49 | 2.49 54 | 0.48 38 | 1.86 163 | 4.70 170 | 0.21 69 |
2DHMM-SAS [90] | 75.4 | 0.65 97 | 2.43 67 | 0.40 96 | 2.14 130 | 5.02 124 | 0.58 86 | 1.73 62 | 3.60 69 | 0.62 70 | 3.69 53 | 4.10 56 | 7.61 73 | 2.86 58 | 2.93 66 | 4.32 80 | 2.50 53 | 5.43 61 | 2.32 44 | 0.66 73 | 2.59 68 | 0.53 91 | 1.60 91 | 3.98 93 | 0.20 49 |
WLIF-Flow [91] | 75.5 | 0.54 47 | 2.22 50 | 0.35 60 | 1.51 73 | 3.90 78 | 0.52 65 | 1.69 53 | 3.36 51 | 0.54 29 | 3.75 67 | 3.97 44 | 8.06 148 | 2.88 61 | 2.92 63 | 4.45 125 | 3.19 150 | 7.37 148 | 2.93 160 | 0.61 41 | 2.35 43 | 0.49 46 | 1.47 62 | 3.68 63 | 0.22 84 |
ComponentFusion [94] | 77.4 | 0.52 42 | 2.30 57 | 0.33 49 | 1.31 46 | 3.50 57 | 0.42 29 | 1.77 74 | 3.60 69 | 0.63 75 | 3.58 36 | 4.06 54 | 7.39 38 | 2.99 103 | 3.06 88 | 4.31 74 | 2.63 76 | 5.74 74 | 2.50 86 | 0.81 143 | 3.51 149 | 0.60 139 | 1.66 123 | 4.15 127 | 0.20 49 |
Sparse-NonSparse [56] | 77.5 | 0.58 58 | 2.36 62 | 0.37 70 | 1.41 60 | 3.60 60 | 0.46 45 | 1.75 69 | 3.62 74 | 0.58 51 | 3.72 61 | 4.16 61 | 7.61 73 | 2.91 71 | 2.99 76 | 4.29 68 | 2.96 124 | 6.88 127 | 2.65 116 | 0.74 116 | 3.05 118 | 0.50 58 | 1.62 103 | 4.02 100 | 0.19 40 |
DPOF [18] | 79.8 | 0.71 123 | 3.29 161 | 0.45 116 | 1.14 25 | 2.90 32 | 0.41 25 | 2.18 153 | 3.65 77 | 0.92 146 | 3.83 90 | 4.56 106 | 7.74 106 | 2.79 46 | 2.85 53 | 4.19 44 | 2.60 66 | 5.78 76 | 2.31 42 | 0.66 73 | 2.56 63 | 0.52 83 | 1.52 69 | 3.81 70 | 0.21 69 |
FlowFields+ [128] | 80.7 | 0.59 63 | 2.70 96 | 0.32 38 | 1.28 42 | 3.42 54 | 0.43 33 | 1.75 69 | 3.88 98 | 0.57 46 | 3.77 76 | 4.55 104 | 7.69 96 | 3.00 106 | 3.12 101 | 4.40 104 | 2.93 119 | 6.96 132 | 2.68 125 | 0.62 49 | 2.49 54 | 0.53 91 | 1.60 91 | 4.02 100 | 0.20 49 |
JOF [136] | 80.7 | 0.69 113 | 2.60 83 | 0.50 133 | 1.32 47 | 3.29 45 | 0.48 51 | 1.65 46 | 3.32 49 | 0.58 51 | 3.86 98 | 4.17 62 | 8.11 154 | 2.95 86 | 3.00 78 | 4.56 155 | 3.05 137 | 7.12 140 | 2.68 125 | 0.59 33 | 2.29 37 | 0.47 32 | 1.53 72 | 3.81 70 | 0.19 40 |
FlowFields [108] | 80.8 | 0.61 74 | 2.80 109 | 0.35 60 | 1.33 49 | 3.57 58 | 0.43 33 | 1.75 69 | 3.76 86 | 0.56 38 | 3.83 90 | 4.66 113 | 7.83 123 | 2.91 71 | 2.95 70 | 4.32 80 | 2.87 106 | 6.73 118 | 2.65 116 | 0.63 56 | 2.53 59 | 0.53 91 | 1.59 89 | 4.01 97 | 0.22 84 |
EAI-Flow [147] | 82.6 | 0.72 129 | 2.90 127 | 0.41 101 | 1.70 92 | 4.30 92 | 0.59 89 | 1.90 107 | 4.46 130 | 0.61 64 | 3.70 56 | 4.40 83 | 7.26 30 | 2.90 67 | 2.97 73 | 4.30 71 | 2.51 54 | 5.50 64 | 2.39 56 | 0.75 120 | 3.21 129 | 0.60 139 | 1.35 39 | 3.38 39 | 0.17 32 |
AGIF+OF [84] | 82.8 | 0.62 80 | 2.49 74 | 0.33 49 | 1.50 71 | 3.86 75 | 0.52 65 | 1.77 74 | 3.49 60 | 0.69 98 | 3.60 39 | 3.87 38 | 7.36 36 | 3.10 146 | 3.27 146 | 4.41 107 | 2.99 128 | 7.51 155 | 2.49 83 | 0.68 84 | 2.53 59 | 0.46 29 | 1.63 109 | 4.07 114 | 0.21 69 |
S2F-IF [121] | 83.5 | 0.59 63 | 2.71 98 | 0.33 49 | 1.26 40 | 3.35 52 | 0.42 29 | 1.75 69 | 3.88 98 | 0.57 46 | 3.68 51 | 4.42 85 | 7.47 45 | 3.00 106 | 3.11 100 | 4.43 114 | 2.90 111 | 6.83 125 | 2.67 123 | 0.67 78 | 2.79 88 | 0.56 125 | 1.60 91 | 4.02 100 | 0.24 118 |
HCFN [157] | 83.9 | 0.57 56 | 2.75 102 | 0.30 31 | 1.52 75 | 4.08 84 | 0.46 45 | 1.73 62 | 3.68 81 | 0.54 29 | 3.72 61 | 4.31 75 | 7.66 87 | 2.83 54 | 2.90 62 | 4.20 47 | 4.47 191 | 5.82 82 | 5.31 193 | 0.74 116 | 3.08 120 | 0.54 109 | 1.61 99 | 4.03 104 | 0.20 49 |
DeepFlow2 [106] | 84.1 | 0.66 102 | 2.63 87 | 0.47 125 | 1.95 116 | 4.94 120 | 0.69 114 | 1.79 80 | 4.36 125 | 0.61 64 | 3.90 104 | 4.43 87 | 7.66 87 | 2.88 61 | 2.87 56 | 4.47 132 | 2.35 40 | 4.36 37 | 2.48 79 | 0.64 61 | 2.61 71 | 0.51 68 | 1.46 59 | 3.64 60 | 0.22 84 |
SRR-TVOF-NL [89] | 84.4 | 0.75 140 | 2.87 123 | 0.50 133 | 1.89 110 | 4.81 112 | 0.70 121 | 1.73 62 | 3.57 64 | 0.61 64 | 3.62 44 | 4.01 46 | 7.35 35 | 2.98 98 | 3.19 127 | 4.32 80 | 2.47 45 | 5.81 81 | 2.21 33 | 0.64 61 | 2.55 61 | 0.50 58 | 1.65 119 | 4.13 125 | 0.22 84 |
FC-2Layers-FF [74] | 84.7 | 0.60 70 | 2.53 76 | 0.37 70 | 1.07 21 | 2.58 15 | 0.46 45 | 1.67 49 | 3.59 67 | 0.56 38 | 3.63 46 | 4.03 51 | 7.58 61 | 3.00 106 | 3.15 117 | 4.44 118 | 3.19 150 | 7.90 173 | 2.78 146 | 0.79 136 | 3.22 131 | 0.52 83 | 1.60 91 | 3.94 88 | 0.22 84 |
MDP-Flow [26] | 84.8 | 0.52 42 | 2.40 66 | 0.32 38 | 1.34 50 | 3.60 60 | 0.46 45 | 1.68 51 | 3.30 47 | 0.61 64 | 4.10 131 | 4.91 129 | 7.80 116 | 2.88 61 | 2.93 66 | 4.46 127 | 3.32 161 | 8.61 183 | 2.83 150 | 0.66 73 | 2.68 76 | 0.56 125 | 1.51 66 | 3.80 67 | 0.19 40 |
OFLAF [78] | 85.6 | 0.49 34 | 2.06 41 | 0.32 38 | 1.11 23 | 2.84 30 | 0.40 20 | 1.69 53 | 3.49 60 | 0.48 16 | 3.50 26 | 3.84 34 | 7.28 32 | 3.00 106 | 3.12 101 | 4.49 137 | 3.14 147 | 8.10 177 | 2.67 123 | 1.02 173 | 4.49 174 | 0.64 153 | 1.71 137 | 4.23 136 | 0.22 84 |
Ramp [62] | 85.9 | 0.64 89 | 2.59 81 | 0.41 101 | 1.48 68 | 3.80 71 | 0.53 72 | 1.72 61 | 3.61 71 | 0.54 29 | 3.62 44 | 4.02 49 | 7.52 53 | 2.93 78 | 3.02 81 | 4.36 90 | 3.18 148 | 7.72 167 | 2.79 147 | 0.73 110 | 2.96 109 | 0.48 38 | 1.67 129 | 4.15 127 | 0.20 49 |
PMF [73] | 86.0 | 0.49 34 | 2.14 43 | 0.32 38 | 1.39 56 | 3.66 65 | 0.42 29 | 1.94 116 | 4.81 147 | 0.71 105 | 3.69 53 | 4.21 66 | 7.64 81 | 3.01 113 | 3.12 101 | 4.27 64 | 2.93 119 | 5.59 67 | 3.04 167 | 0.68 84 | 2.81 90 | 0.53 91 | 1.68 131 | 4.22 134 | 0.21 69 |
LSM [39] | 86.3 | 0.61 74 | 2.46 70 | 0.38 80 | 1.46 65 | 3.69 67 | 0.48 51 | 1.79 80 | 3.86 97 | 0.60 60 | 3.75 67 | 4.19 64 | 7.64 81 | 2.96 91 | 3.08 95 | 4.34 87 | 2.97 126 | 7.04 136 | 2.62 109 | 0.75 120 | 3.08 120 | 0.51 68 | 1.63 109 | 4.07 114 | 0.19 40 |
Aniso. Huber-L1 [22] | 87.5 | 0.73 132 | 2.79 106 | 0.53 140 | 2.74 154 | 5.84 153 | 0.78 131 | 1.92 112 | 3.61 71 | 0.73 111 | 3.80 82 | 4.31 75 | 7.66 87 | 2.87 60 | 2.93 66 | 4.31 74 | 2.40 42 | 5.24 49 | 2.28 39 | 0.64 61 | 2.52 57 | 0.49 46 | 1.45 57 | 3.61 54 | 0.26 140 |
ProbFlowFields [126] | 87.5 | 0.62 80 | 2.96 136 | 0.39 87 | 1.28 42 | 3.44 55 | 0.39 16 | 1.65 46 | 3.45 58 | 0.55 35 | 3.85 96 | 4.63 110 | 7.81 118 | 3.02 118 | 3.13 110 | 4.65 167 | 3.05 137 | 7.41 150 | 2.75 138 | 0.63 56 | 2.56 63 | 0.54 109 | 1.39 44 | 3.49 45 | 0.22 84 |
DeepFlow [85] | 89.0 | 0.64 89 | 2.56 78 | 0.42 104 | 2.01 121 | 4.98 121 | 0.82 135 | 1.82 90 | 4.50 132 | 0.63 75 | 4.02 122 | 4.44 89 | 7.78 114 | 2.91 71 | 2.92 63 | 4.53 149 | 2.55 59 | 4.48 39 | 2.76 139 | 0.62 49 | 2.47 53 | 0.49 46 | 1.45 57 | 3.62 56 | 0.22 84 |
Classic+NL [31] | 90.5 | 0.70 120 | 2.67 94 | 0.48 129 | 1.54 76 | 3.84 73 | 0.52 65 | 1.71 56 | 3.71 83 | 0.57 46 | 3.74 66 | 4.29 72 | 7.72 101 | 2.94 81 | 3.03 83 | 4.38 96 | 3.03 136 | 7.04 136 | 2.71 130 | 0.73 110 | 2.99 111 | 0.50 58 | 1.62 103 | 4.04 107 | 0.19 40 |
SegFlow [156] | 90.8 | 0.63 84 | 2.90 127 | 0.37 70 | 1.42 62 | 3.80 71 | 0.50 60 | 1.81 85 | 4.00 104 | 0.54 29 | 3.75 67 | 4.54 102 | 7.63 78 | 2.98 98 | 3.07 91 | 4.48 134 | 2.82 98 | 6.42 102 | 2.74 136 | 0.71 99 | 2.95 107 | 0.54 109 | 1.56 79 | 3.90 81 | 0.23 106 |
SVFilterOh [109] | 90.9 | 0.59 63 | 2.19 46 | 0.43 109 | 1.29 45 | 3.30 46 | 0.47 49 | 1.81 85 | 3.40 55 | 0.60 60 | 3.76 73 | 4.12 59 | 8.42 170 | 3.20 164 | 3.30 150 | 4.93 183 | 2.86 102 | 6.39 100 | 2.63 111 | 0.62 49 | 2.34 42 | 0.56 125 | 1.56 79 | 3.87 77 | 0.26 140 |
PGM-C [118] | 91.2 | 0.62 80 | 2.83 115 | 0.37 70 | 1.37 52 | 3.62 63 | 0.49 57 | 1.92 112 | 4.18 110 | 0.56 38 | 3.80 82 | 4.71 117 | 7.58 61 | 2.98 98 | 3.07 91 | 4.48 134 | 2.68 83 | 5.97 85 | 2.56 100 | 0.71 99 | 2.99 111 | 0.51 68 | 1.66 123 | 4.18 133 | 0.23 106 |
AggregFlow [95] | 91.4 | 0.79 147 | 3.07 145 | 0.50 133 | 1.73 93 | 4.44 96 | 0.65 108 | 1.60 38 | 3.19 45 | 0.49 19 | 3.82 88 | 4.53 101 | 7.65 85 | 2.90 67 | 2.88 57 | 4.51 143 | 2.74 90 | 5.17 48 | 2.85 153 | 0.73 110 | 3.01 114 | 0.55 117 | 1.49 64 | 3.73 64 | 0.21 69 |
C-RAFT_RVC [181] | 91.6 | 0.74 137 | 2.87 123 | 0.43 109 | 1.56 81 | 4.11 86 | 0.60 94 | 1.89 105 | 4.08 107 | 0.77 123 | 3.73 63 | 4.30 74 | 7.85 126 | 2.79 46 | 2.75 44 | 4.26 62 | 2.74 90 | 6.40 101 | 2.45 69 | 0.61 41 | 2.38 45 | 0.49 46 | 1.75 144 | 4.38 150 | 0.25 133 |
ALD-Flow [66] | 92.2 | 0.71 123 | 2.79 106 | 0.48 129 | 1.77 97 | 4.67 107 | 0.62 100 | 1.83 94 | 4.35 121 | 0.60 60 | 3.76 73 | 4.38 80 | 7.90 134 | 2.95 86 | 3.02 81 | 4.55 154 | 2.55 59 | 4.75 43 | 2.68 125 | 0.62 49 | 2.42 48 | 0.49 46 | 1.66 123 | 4.14 126 | 0.20 49 |
EPPM w/o HM [86] | 92.2 | 0.50 38 | 2.26 53 | 0.29 27 | 1.55 78 | 4.22 90 | 0.44 37 | 2.24 159 | 5.31 166 | 0.90 142 | 3.77 76 | 4.54 102 | 7.51 51 | 2.85 55 | 2.89 60 | 4.32 80 | 2.79 95 | 6.25 95 | 2.57 102 | 0.77 130 | 3.34 141 | 0.63 149 | 1.61 99 | 4.03 104 | 0.22 84 |
DF-Auto [113] | 92.8 | 0.67 107 | 2.47 72 | 0.50 133 | 2.20 137 | 5.04 125 | 1.05 156 | 1.71 56 | 3.43 56 | 0.54 29 | 3.93 110 | 4.55 104 | 7.67 94 | 2.88 61 | 2.88 57 | 4.46 127 | 2.47 45 | 5.15 47 | 2.52 90 | 0.71 99 | 2.95 107 | 0.54 109 | 1.57 83 | 3.91 83 | 0.26 140 |
RNLOD-Flow [119] | 92.8 | 0.56 53 | 2.33 58 | 0.38 80 | 1.89 110 | 4.91 119 | 0.52 65 | 1.85 101 | 4.05 105 | 0.78 124 | 3.61 42 | 3.95 41 | 7.54 58 | 3.02 118 | 3.21 132 | 4.32 80 | 2.95 121 | 6.99 134 | 2.63 111 | 0.67 78 | 2.56 63 | 0.54 109 | 1.67 129 | 4.15 127 | 0.21 69 |
Brox et al. [5] | 93.7 | 0.69 113 | 2.80 109 | 0.40 96 | 1.91 115 | 4.80 111 | 0.65 108 | 2.01 126 | 4.92 155 | 0.76 122 | 3.86 98 | 4.19 64 | 7.60 69 | 2.94 81 | 2.99 76 | 4.44 118 | 2.72 88 | 6.17 90 | 2.48 79 | 0.72 107 | 3.02 115 | 0.51 68 | 1.40 46 | 3.49 45 | 0.20 49 |
FESL [72] | 94.4 | 0.64 89 | 2.38 64 | 0.39 87 | 1.48 68 | 3.86 75 | 0.48 51 | 1.81 85 | 3.73 84 | 0.72 107 | 3.76 73 | 4.25 70 | 7.61 73 | 3.03 126 | 3.15 117 | 4.46 127 | 3.10 143 | 7.65 163 | 2.72 133 | 0.71 99 | 2.96 109 | 0.47 32 | 1.62 103 | 4.03 104 | 0.22 84 |
CPM-Flow [114] | 95.2 | 0.63 84 | 2.83 115 | 0.39 87 | 1.40 59 | 3.71 68 | 0.51 63 | 1.84 97 | 3.99 103 | 0.56 38 | 4.01 119 | 5.11 148 | 7.73 103 | 2.97 93 | 3.05 86 | 4.52 144 | 2.61 70 | 5.41 58 | 2.62 109 | 0.72 107 | 3.02 115 | 0.54 109 | 1.57 83 | 3.93 86 | 0.26 140 |
Efficient-NL [60] | 95.4 | 0.57 56 | 2.25 52 | 0.35 60 | 1.78 99 | 4.51 98 | 0.53 72 | 2.29 160 | 3.78 88 | 1.08 160 | 3.75 67 | 4.25 70 | 7.53 56 | 2.89 65 | 2.98 74 | 4.30 71 | 2.92 116 | 7.43 151 | 2.46 72 | 0.77 130 | 3.18 126 | 0.53 91 | 1.81 157 | 4.38 150 | 0.20 49 |
MCPFlow_RVC [197] | 95.7 | 0.64 89 | 2.74 101 | 0.33 49 | 1.21 30 | 3.16 39 | 0.52 65 | 1.71 56 | 3.78 88 | 0.53 27 | 3.71 59 | 4.18 63 | 7.79 115 | 2.90 67 | 2.94 69 | 4.40 104 | 3.26 156 | 8.40 181 | 2.57 102 | 0.67 78 | 2.72 83 | 0.52 83 | 5.09 198 | 12.9 198 | 0.48 196 |
Second-order prior [8] | 97.1 | 0.73 132 | 2.73 99 | 0.55 145 | 2.51 149 | 5.74 150 | 0.66 111 | 2.31 161 | 5.29 163 | 0.94 149 | 3.80 82 | 4.39 82 | 7.41 41 | 2.90 67 | 3.00 78 | 4.31 74 | 2.49 50 | 5.42 59 | 2.45 69 | 0.66 73 | 2.68 76 | 0.48 38 | 1.57 83 | 3.90 81 | 0.24 118 |
IROF-TV [53] | 98.0 | 0.69 113 | 2.91 129 | 0.46 120 | 1.58 83 | 3.95 80 | 0.49 57 | 1.90 107 | 4.86 151 | 0.69 98 | 3.71 59 | 4.34 77 | 7.82 121 | 3.07 134 | 3.19 127 | 4.66 170 | 2.63 76 | 6.35 98 | 2.31 42 | 0.68 84 | 2.81 90 | 0.52 83 | 1.46 59 | 3.64 60 | 0.25 133 |
S2D-Matching [83] | 98.0 | 0.67 107 | 2.70 96 | 0.42 104 | 2.02 122 | 5.10 128 | 0.59 89 | 1.73 62 | 3.59 67 | 0.64 82 | 3.75 67 | 4.10 56 | 7.93 137 | 3.02 118 | 3.18 123 | 4.31 74 | 3.19 150 | 7.90 173 | 2.76 139 | 0.68 84 | 2.60 69 | 0.48 38 | 1.60 91 | 3.98 93 | 0.22 84 |
LFNet_ROB [145] | 98.7 | 0.64 89 | 3.00 139 | 0.33 49 | 1.87 106 | 4.83 113 | 0.61 96 | 2.01 126 | 5.38 168 | 0.68 96 | 3.92 106 | 5.01 139 | 7.37 37 | 2.97 93 | 3.14 114 | 4.21 51 | 3.00 133 | 7.70 165 | 2.48 79 | 0.64 61 | 2.62 72 | 0.49 46 | 1.52 69 | 3.80 67 | 0.27 154 |
SIOF [67] | 99.4 | 0.82 151 | 2.94 133 | 0.57 151 | 2.85 159 | 6.23 172 | 1.15 164 | 1.83 94 | 4.11 108 | 0.72 107 | 3.84 93 | 4.51 97 | 7.59 65 | 2.74 42 | 2.74 43 | 4.22 52 | 2.52 55 | 5.33 55 | 2.49 83 | 0.66 73 | 2.68 76 | 0.53 91 | 1.62 103 | 4.02 100 | 0.24 118 |
TC/T-Flow [77] | 99.5 | 0.71 123 | 2.62 86 | 0.40 96 | 1.77 97 | 4.61 105 | 0.54 79 | 1.74 67 | 3.65 77 | 0.57 46 | 3.78 78 | 4.37 79 | 7.73 103 | 3.04 130 | 3.18 123 | 4.54 152 | 2.61 70 | 5.54 65 | 2.51 88 | 0.97 169 | 3.95 163 | 0.63 149 | 1.61 99 | 4.04 107 | 0.18 38 |
Classic+CPF [82] | 100.4 | 0.61 74 | 2.36 62 | 0.35 60 | 1.58 83 | 4.01 83 | 0.51 63 | 1.79 80 | 3.80 91 | 0.66 90 | 3.56 32 | 3.84 34 | 7.34 33 | 3.25 170 | 3.54 177 | 4.43 114 | 3.20 153 | 8.18 178 | 2.64 114 | 0.83 147 | 3.31 139 | 0.49 46 | 1.77 150 | 4.41 153 | 0.22 84 |
3DFlow [133] | 100.8 | 0.58 58 | 2.46 70 | 0.36 67 | 1.54 76 | 4.14 87 | 0.52 65 | 2.04 133 | 3.44 57 | 0.64 82 | 3.70 56 | 4.02 49 | 7.89 131 | 2.94 81 | 2.92 63 | 4.79 177 | 3.50 172 | 8.80 186 | 2.93 160 | 0.77 130 | 3.04 117 | 0.55 117 | 1.59 89 | 3.96 91 | 0.23 106 |
ProFlow_ROB [142] | 101.2 | 0.61 74 | 2.66 93 | 0.37 70 | 1.68 88 | 4.58 103 | 0.55 81 | 1.82 90 | 3.85 95 | 0.58 51 | 3.88 100 | 4.91 129 | 7.89 131 | 3.10 146 | 3.28 147 | 4.48 134 | 2.33 39 | 4.53 40 | 2.36 53 | 0.80 141 | 3.34 141 | 0.56 125 | 1.70 135 | 4.24 138 | 0.22 84 |
CLG-TV [48] | 101.2 | 0.70 120 | 2.82 111 | 0.52 139 | 2.57 151 | 5.88 155 | 0.76 129 | 2.02 130 | 4.55 136 | 0.92 146 | 3.94 111 | 4.49 92 | 7.82 121 | 2.94 81 | 3.01 80 | 4.35 89 | 2.43 43 | 4.87 44 | 2.46 72 | 0.64 61 | 2.62 72 | 0.50 58 | 1.55 75 | 3.84 74 | 0.26 140 |
CostFilter [40] | 102.7 | 0.51 41 | 2.34 59 | 0.29 27 | 1.37 52 | 3.61 62 | 0.43 33 | 2.06 140 | 5.38 168 | 0.74 115 | 3.79 80 | 4.49 92 | 7.55 59 | 3.12 149 | 3.29 149 | 4.43 114 | 3.28 159 | 5.79 78 | 3.61 185 | 0.73 110 | 3.10 123 | 0.53 91 | 1.78 152 | 4.48 158 | 0.21 69 |
PWC-Net_RVC [143] | 104.1 | 0.67 107 | 3.35 168 | 0.31 34 | 1.61 85 | 4.34 93 | 0.44 37 | 1.84 97 | 4.39 127 | 0.62 70 | 3.73 63 | 4.48 91 | 7.64 81 | 3.20 164 | 3.43 169 | 4.52 144 | 3.08 142 | 6.70 116 | 2.76 139 | 0.65 67 | 2.66 75 | 0.51 68 | 1.70 135 | 4.28 142 | 0.22 84 |
p-harmonic [29] | 104.6 | 0.60 70 | 2.63 87 | 0.39 87 | 2.63 153 | 5.89 156 | 0.82 135 | 1.98 123 | 4.94 156 | 0.89 138 | 4.13 137 | 4.86 126 | 7.68 95 | 2.95 86 | 3.06 88 | 4.38 96 | 2.58 63 | 5.68 72 | 2.52 90 | 0.70 94 | 2.92 103 | 0.54 109 | 1.49 64 | 3.74 65 | 0.24 118 |
TCOF [69] | 106.3 | 0.64 89 | 2.61 85 | 0.39 87 | 2.92 161 | 6.38 174 | 0.86 140 | 1.69 53 | 3.65 77 | 0.50 24 | 3.82 88 | 4.51 97 | 7.88 130 | 2.97 93 | 3.09 96 | 4.26 62 | 2.91 114 | 7.16 143 | 2.48 79 | 0.79 136 | 3.39 145 | 0.49 46 | 1.76 147 | 4.40 152 | 0.25 133 |
CBF [12] | 106.6 | 0.60 70 | 2.64 90 | 0.45 116 | 2.17 133 | 5.10 128 | 0.75 126 | 1.91 111 | 3.73 84 | 0.72 107 | 4.20 145 | 4.50 94 | 9.33 180 | 2.92 74 | 2.84 52 | 5.05 186 | 2.57 62 | 5.58 66 | 2.53 93 | 0.71 99 | 2.87 95 | 0.60 139 | 1.48 63 | 3.66 62 | 0.32 184 |
CompactFlow_ROB [155] | 107.5 | 0.70 120 | 3.22 155 | 0.38 80 | 1.87 106 | 4.77 109 | 0.90 142 | 2.12 147 | 5.55 172 | 0.64 82 | 4.35 149 | 6.01 176 | 8.07 151 | 2.85 55 | 2.89 60 | 4.25 61 | 2.61 70 | 6.38 99 | 2.27 37 | 0.69 90 | 2.90 100 | 0.50 58 | 1.66 123 | 4.17 132 | 0.23 106 |
OAR-Flow [123] | 107.7 | 0.71 123 | 2.83 115 | 0.44 115 | 1.87 106 | 4.84 114 | 0.67 113 | 1.81 85 | 4.28 116 | 0.59 56 | 3.69 53 | 4.46 90 | 7.63 78 | 3.03 126 | 3.14 114 | 4.56 155 | 2.90 111 | 6.65 112 | 2.73 134 | 0.90 157 | 3.63 153 | 0.57 132 | 1.56 79 | 3.88 79 | 0.21 69 |
ComplOF-FED-GPU [35] | 108.0 | 0.65 97 | 2.82 111 | 0.39 87 | 1.69 89 | 4.52 99 | 0.57 84 | 2.33 162 | 4.35 121 | 0.98 154 | 3.80 82 | 4.69 115 | 7.75 109 | 2.95 86 | 3.07 91 | 4.37 93 | 2.70 86 | 6.17 90 | 2.54 96 | 0.76 126 | 3.06 119 | 0.53 91 | 1.74 142 | 4.31 144 | 0.24 118 |
DMF_ROB [135] | 110.1 | 0.73 132 | 2.91 129 | 0.47 125 | 2.06 124 | 5.15 131 | 0.62 100 | 2.55 169 | 5.57 174 | 1.03 158 | 4.01 119 | 4.80 121 | 7.60 69 | 2.95 86 | 3.03 83 | 4.52 144 | 2.60 66 | 5.80 79 | 2.44 66 | 0.72 107 | 2.87 95 | 0.55 117 | 1.58 87 | 3.97 92 | 0.21 69 |
LDOF [28] | 111.1 | 0.90 160 | 2.91 129 | 0.69 170 | 2.17 133 | 4.58 103 | 1.40 171 | 2.14 149 | 5.04 158 | 0.91 144 | 4.10 131 | 5.00 136 | 7.97 139 | 2.92 74 | 2.95 70 | 4.44 118 | 2.48 49 | 5.10 45 | 2.42 60 | 0.70 94 | 2.93 105 | 0.53 91 | 1.55 75 | 3.88 79 | 0.22 84 |
PBOFVI [189] | 111.3 | 0.72 129 | 3.22 155 | 0.35 60 | 2.36 142 | 5.62 145 | 0.75 126 | 2.05 136 | 3.76 86 | 0.66 90 | 3.88 100 | 4.61 109 | 7.76 111 | 2.97 93 | 3.05 86 | 4.56 155 | 2.70 86 | 5.33 55 | 2.55 98 | 0.90 157 | 3.70 157 | 0.59 138 | 1.60 91 | 4.01 97 | 0.21 69 |
Sparse Occlusion [54] | 111.6 | 0.66 102 | 2.83 115 | 0.45 116 | 2.18 135 | 5.57 144 | 0.59 89 | 1.78 78 | 3.53 63 | 0.73 111 | 3.84 93 | 4.52 99 | 7.65 85 | 3.04 130 | 3.18 123 | 4.42 108 | 3.06 139 | 7.39 149 | 2.73 134 | 0.76 126 | 3.21 129 | 0.45 28 | 1.66 123 | 4.15 127 | 0.25 133 |
TC-Flow [46] | 112.8 | 0.59 63 | 2.60 83 | 0.39 87 | 1.83 103 | 4.90 117 | 0.61 96 | 1.95 118 | 4.37 126 | 0.62 70 | 4.11 133 | 5.04 141 | 8.05 147 | 3.07 134 | 3.22 133 | 4.50 141 | 2.96 124 | 6.72 117 | 2.82 149 | 0.67 78 | 2.70 80 | 0.51 68 | 1.71 137 | 4.30 143 | 0.24 118 |
HBM-GC [103] | 112.8 | 0.69 113 | 2.73 99 | 0.53 140 | 1.86 105 | 4.86 115 | 0.61 96 | 1.58 36 | 2.85 30 | 0.56 38 | 4.09 129 | 4.59 108 | 8.15 156 | 3.32 175 | 3.43 169 | 5.14 189 | 3.62 176 | 9.31 191 | 3.00 165 | 0.65 67 | 2.50 56 | 0.53 91 | 1.51 66 | 3.74 65 | 0.25 133 |
MLDP_OF [87] | 113.0 | 0.56 53 | 2.27 54 | 0.35 60 | 1.90 114 | 4.87 116 | 0.53 72 | 1.71 56 | 3.62 74 | 0.55 35 | 4.07 125 | 4.34 77 | 8.25 160 | 3.07 134 | 3.20 131 | 4.68 172 | 3.80 182 | 7.63 161 | 3.75 186 | 0.73 110 | 2.88 98 | 0.61 143 | 1.63 109 | 4.05 113 | 0.30 176 |
TF+OM [98] | 113.9 | 0.66 102 | 2.76 103 | 0.45 116 | 1.55 78 | 3.89 77 | 0.82 135 | 1.95 118 | 4.46 130 | 0.67 92 | 4.07 125 | 4.87 127 | 7.86 128 | 3.05 133 | 3.18 123 | 4.54 152 | 2.74 90 | 5.80 79 | 2.69 128 | 0.77 130 | 3.30 136 | 0.58 136 | 1.56 79 | 3.87 77 | 0.26 140 |
EpicFlow [100] | 114.8 | 0.62 80 | 2.83 115 | 0.38 80 | 1.80 101 | 4.77 109 | 0.57 84 | 1.89 105 | 4.29 117 | 0.59 56 | 3.95 112 | 5.00 136 | 7.84 125 | 3.01 113 | 3.12 101 | 4.45 125 | 2.80 96 | 6.73 118 | 2.58 106 | 0.86 151 | 3.57 150 | 0.62 147 | 1.82 159 | 4.58 162 | 0.23 106 |
LiteFlowNet [138] | 115.1 | 0.65 97 | 3.16 148 | 0.33 49 | 1.55 78 | 4.17 89 | 0.53 72 | 1.84 97 | 4.59 142 | 0.55 35 | 4.50 161 | 6.40 181 | 8.23 159 | 3.07 134 | 3.30 150 | 4.39 100 | 2.92 116 | 7.45 152 | 2.39 56 | 0.96 166 | 4.07 166 | 0.65 158 | 1.57 83 | 3.95 90 | 0.22 84 |
LSM_FLOW_RVC [182] | 117.0 | 0.91 162 | 4.29 187 | 0.42 104 | 2.13 128 | 5.47 140 | 0.71 123 | 2.02 130 | 5.30 165 | 0.64 82 | 3.98 118 | 5.43 158 | 7.46 43 | 2.97 93 | 3.13 110 | 4.29 68 | 2.75 93 | 6.62 111 | 2.43 61 | 0.68 84 | 2.80 89 | 0.51 68 | 1.80 156 | 4.49 159 | 0.30 176 |
ResPWCR_ROB [140] | 117.5 | 0.67 107 | 2.84 120 | 0.40 96 | 1.85 104 | 4.90 117 | 0.60 94 | 2.05 136 | 4.58 141 | 0.65 88 | 4.18 142 | 5.46 159 | 8.34 165 | 2.92 74 | 3.15 117 | 4.23 56 | 4.59 192 | 6.44 103 | 5.27 192 | 0.67 78 | 2.74 85 | 0.51 68 | 1.88 167 | 4.69 169 | 0.20 49 |
FF++_ROB [141] | 118.1 | 0.59 63 | 2.64 90 | 0.32 38 | 1.57 82 | 4.09 85 | 0.50 60 | 1.92 112 | 4.42 129 | 0.71 105 | 4.02 122 | 4.93 131 | 7.89 131 | 3.13 152 | 3.34 157 | 4.42 108 | 3.44 169 | 7.09 138 | 3.34 180 | 0.75 120 | 3.11 124 | 0.56 125 | 1.64 114 | 4.12 123 | 0.30 176 |
FlowNet2 [120] | 118.9 | 1.16 179 | 3.96 182 | 0.64 162 | 1.88 109 | 4.53 101 | 0.84 139 | 2.04 133 | 4.35 121 | 0.80 128 | 3.92 106 | 5.12 150 | 7.70 99 | 3.08 140 | 3.25 140 | 4.44 118 | 2.61 70 | 5.71 73 | 2.44 66 | 0.76 126 | 3.22 131 | 0.53 91 | 1.54 74 | 3.85 76 | 0.26 140 |
RFlow [88] | 119.1 | 0.65 97 | 2.85 121 | 0.46 120 | 2.58 152 | 6.04 165 | 0.69 114 | 1.92 112 | 4.55 136 | 0.73 111 | 4.08 128 | 5.11 148 | 7.77 112 | 3.02 118 | 3.23 134 | 4.32 80 | 2.61 70 | 6.28 96 | 2.35 49 | 0.75 120 | 3.26 135 | 0.54 109 | 1.75 144 | 4.34 147 | 0.26 140 |
ContinualFlow_ROB [148] | 120.9 | 0.74 137 | 3.29 161 | 0.39 87 | 1.95 116 | 4.98 121 | 0.86 140 | 2.06 140 | 4.88 153 | 0.74 115 | 3.91 105 | 5.06 143 | 7.70 99 | 3.21 167 | 3.52 176 | 4.42 108 | 2.49 50 | 5.78 76 | 2.26 35 | 0.71 99 | 2.93 105 | 0.49 46 | 2.15 180 | 5.41 181 | 0.28 161 |
ROF-ND [105] | 121.0 | 0.66 102 | 2.35 60 | 0.37 70 | 2.10 126 | 5.37 137 | 0.61 96 | 1.74 67 | 3.66 80 | 0.63 75 | 4.70 169 | 6.43 182 | 7.86 128 | 2.93 78 | 2.98 74 | 4.46 127 | 3.06 139 | 7.88 172 | 2.58 106 | 0.88 153 | 3.58 151 | 0.64 153 | 2.06 177 | 5.02 176 | 0.23 106 |
Fusion [6] | 121.2 | 0.68 112 | 3.27 159 | 0.39 87 | 1.67 87 | 4.22 90 | 0.54 79 | 1.82 90 | 3.68 81 | 0.78 124 | 4.24 147 | 5.23 155 | 7.66 87 | 3.07 134 | 3.44 172 | 4.14 39 | 2.99 128 | 8.18 178 | 2.44 66 | 0.84 149 | 3.75 158 | 0.56 125 | 1.78 152 | 4.46 157 | 0.27 154 |
IAOF [50] | 123.1 | 1.07 175 | 3.34 166 | 0.69 170 | 4.58 195 | 7.97 197 | 1.63 178 | 2.16 151 | 4.59 142 | 0.87 136 | 4.35 149 | 4.52 99 | 7.69 96 | 2.98 98 | 3.12 101 | 4.38 96 | 2.68 83 | 6.31 97 | 2.43 61 | 0.69 90 | 2.92 103 | 0.51 68 | 1.60 91 | 3.99 95 | 0.24 118 |
AugFNG_ROB [139] | 123.5 | 0.71 123 | 2.94 133 | 0.46 120 | 2.22 138 | 5.13 130 | 0.98 150 | 2.19 154 | 6.28 181 | 0.74 115 | 4.24 147 | 5.80 167 | 7.75 109 | 3.20 164 | 3.46 174 | 4.43 114 | 2.47 45 | 5.24 49 | 2.33 45 | 0.82 145 | 3.37 143 | 0.56 125 | 1.63 109 | 4.09 116 | 0.21 69 |
FlowNetS+ft+v [110] | 123.7 | 0.83 152 | 2.85 121 | 0.66 167 | 2.95 164 | 6.18 169 | 1.43 172 | 1.98 123 | 4.82 148 | 0.74 115 | 3.96 114 | 4.66 113 | 7.91 135 | 3.09 142 | 3.25 140 | 4.59 163 | 2.58 63 | 5.61 68 | 2.53 93 | 0.81 143 | 3.50 148 | 0.53 91 | 1.58 87 | 3.94 88 | 0.20 49 |
Local-TV-L1 [65] | 124.4 | 0.98 168 | 3.10 147 | 0.80 179 | 3.02 174 | 5.97 161 | 1.46 173 | 1.82 90 | 3.79 90 | 0.63 75 | 4.45 158 | 4.74 119 | 9.64 184 | 3.00 106 | 3.10 97 | 4.60 164 | 3.42 168 | 5.46 63 | 3.82 187 | 0.67 78 | 2.78 86 | 0.51 68 | 1.41 49 | 3.51 47 | 0.27 154 |
Modified CLG [34] | 124.9 | 0.63 84 | 2.53 76 | 0.49 131 | 3.29 179 | 6.18 169 | 1.69 179 | 2.21 155 | 6.06 177 | 0.96 153 | 4.13 137 | 5.03 140 | 7.73 103 | 3.02 118 | 3.13 110 | 4.44 118 | 2.86 102 | 6.65 112 | 2.66 120 | 0.69 90 | 2.88 98 | 0.53 91 | 1.61 99 | 3.99 95 | 0.28 161 |
TriFlow [93] | 125.0 | 0.78 145 | 3.43 170 | 0.49 131 | 2.42 143 | 5.49 142 | 1.16 165 | 1.88 103 | 4.51 133 | 0.67 92 | 3.95 112 | 4.82 124 | 7.58 61 | 3.19 162 | 3.43 169 | 4.58 161 | 2.89 110 | 6.47 105 | 2.52 90 | 0.74 116 | 3.08 120 | 0.55 117 | 1.64 114 | 4.01 97 | 0.24 118 |
F-TV-L1 [15] | 126.5 | 0.94 164 | 3.18 151 | 0.74 174 | 2.81 158 | 6.05 166 | 0.96 147 | 2.11 146 | 4.90 154 | 1.02 157 | 4.12 135 | 4.96 134 | 8.14 155 | 3.01 113 | 3.26 143 | 4.09 36 | 2.63 76 | 5.42 59 | 2.65 116 | 0.79 136 | 3.30 136 | 0.61 143 | 1.44 53 | 3.59 52 | 0.25 133 |
EPMNet [131] | 126.7 | 1.10 177 | 4.09 185 | 0.55 145 | 1.82 102 | 4.34 93 | 0.78 131 | 2.04 133 | 4.35 121 | 0.80 128 | 4.36 151 | 6.61 186 | 7.69 96 | 3.08 140 | 3.25 140 | 4.44 118 | 2.76 94 | 6.46 104 | 2.43 61 | 0.76 126 | 3.22 131 | 0.53 91 | 1.69 132 | 4.24 138 | 0.24 118 |
OFH [38] | 128.2 | 0.72 129 | 2.82 111 | 0.47 125 | 2.15 131 | 5.09 127 | 0.65 108 | 2.09 143 | 5.22 162 | 0.70 100 | 3.81 86 | 4.73 118 | 7.66 87 | 3.02 118 | 3.19 127 | 4.31 74 | 2.92 116 | 6.97 133 | 2.74 136 | 1.05 175 | 4.43 173 | 0.64 153 | 1.88 167 | 4.71 171 | 0.23 106 |
Complementary OF [21] | 129.0 | 0.63 84 | 3.05 142 | 0.33 49 | 1.69 89 | 4.57 102 | 0.55 81 | 2.83 180 | 4.32 120 | 1.35 175 | 3.96 114 | 4.94 133 | 7.85 126 | 3.09 142 | 3.32 154 | 4.31 74 | 2.88 108 | 6.87 126 | 2.66 120 | 1.04 174 | 4.35 170 | 0.61 143 | 2.26 184 | 5.68 187 | 0.24 118 |
Occlusion-TV-L1 [63] | 129.2 | 0.69 113 | 2.82 111 | 0.57 151 | 2.80 157 | 6.49 177 | 0.82 135 | 1.94 116 | 4.87 152 | 0.85 133 | 4.36 151 | 5.61 161 | 8.07 151 | 2.93 78 | 3.03 83 | 4.36 90 | 3.02 134 | 6.74 120 | 2.91 157 | 0.90 157 | 2.91 101 | 0.79 178 | 1.66 123 | 4.12 123 | 0.20 49 |
Classic++ [32] | 129.8 | 0.73 132 | 2.95 135 | 0.54 143 | 2.23 139 | 5.44 139 | 0.69 114 | 2.00 125 | 4.52 135 | 0.78 124 | 4.21 146 | 5.06 143 | 7.97 139 | 3.02 118 | 3.14 114 | 4.39 100 | 3.20 153 | 6.95 131 | 3.15 174 | 0.75 120 | 3.14 125 | 0.53 91 | 1.65 119 | 4.09 116 | 0.26 140 |
IIOF-NLDP [129] | 130.5 | 0.60 70 | 2.47 72 | 0.33 49 | 2.10 126 | 5.40 138 | 0.63 103 | 2.13 148 | 3.85 95 | 0.72 107 | 4.12 135 | 4.50 94 | 8.37 167 | 2.98 98 | 3.13 110 | 4.34 87 | 3.76 178 | 9.15 188 | 3.14 173 | 1.93 195 | 9.90 196 | 1.44 195 | 1.93 171 | 4.65 167 | 0.21 69 |
AdaConv-v1 [124] | 130.6 | 1.36 189 | 3.88 180 | 1.03 187 | 2.98 168 | 5.28 135 | 2.45 193 | 3.19 185 | 6.26 180 | 2.19 193 | 6.11 189 | 7.09 190 | 9.70 186 | 2.66 34 | 2.68 41 | 4.08 35 | 2.31 38 | 4.65 42 | 2.29 40 | 0.91 160 | 3.87 160 | 0.90 185 | 1.27 36 | 3.17 35 | 0.27 154 |
CRTflow [81] | 132.2 | 0.85 154 | 3.17 150 | 0.63 161 | 2.56 150 | 5.92 157 | 0.80 134 | 2.15 150 | 5.29 163 | 1.01 156 | 4.07 125 | 4.64 112 | 8.61 172 | 3.09 142 | 3.24 136 | 4.53 149 | 2.60 66 | 5.29 51 | 2.65 116 | 0.75 120 | 3.20 128 | 0.57 132 | 1.62 103 | 4.04 107 | 0.26 140 |
Steered-L1 [116] | 133.2 | 0.61 74 | 2.96 136 | 0.37 70 | 1.78 99 | 4.71 108 | 0.66 111 | 2.46 165 | 4.22 112 | 1.21 169 | 4.53 164 | 5.21 154 | 8.54 171 | 3.15 157 | 3.35 163 | 4.42 108 | 2.95 121 | 6.77 121 | 2.85 153 | 0.83 147 | 3.63 153 | 0.66 159 | 1.65 119 | 4.11 122 | 0.26 140 |
GraphCuts [14] | 133.5 | 1.07 175 | 3.93 181 | 0.60 156 | 1.97 118 | 4.46 97 | 1.07 158 | 3.51 189 | 3.64 76 | 1.45 182 | 4.47 159 | 5.20 153 | 8.18 157 | 2.99 103 | 3.12 101 | 4.19 44 | 2.59 65 | 6.58 110 | 2.16 32 | 0.89 155 | 3.92 162 | 0.70 168 | 1.77 150 | 4.41 153 | 0.28 161 |
SimpleFlow [49] | 133.6 | 0.67 107 | 2.79 106 | 0.42 104 | 2.16 132 | 5.07 126 | 0.63 103 | 2.79 177 | 4.51 133 | 1.32 173 | 3.75 67 | 4.29 72 | 7.74 106 | 3.01 113 | 3.15 117 | 4.39 100 | 3.36 167 | 8.79 185 | 2.77 144 | 1.46 191 | 7.29 193 | 1.11 193 | 2.11 179 | 5.29 179 | 0.19 40 |
BlockOverlap [61] | 135.2 | 0.96 166 | 3.02 140 | 0.85 180 | 2.94 163 | 5.79 152 | 1.60 176 | 1.90 107 | 3.50 62 | 0.90 142 | 4.65 167 | 4.80 121 | 10.2 189 | 3.22 168 | 3.16 121 | 5.42 193 | 3.34 162 | 6.09 88 | 3.55 184 | 0.70 94 | 2.73 84 | 0.63 149 | 1.34 38 | 3.33 38 | 0.28 161 |
Adaptive [20] | 136.5 | 0.80 148 | 3.21 154 | 0.60 156 | 2.98 168 | 6.54 182 | 0.92 144 | 2.03 132 | 4.56 139 | 0.89 138 | 4.03 124 | 4.79 120 | 7.91 135 | 3.09 142 | 3.26 143 | 4.37 93 | 2.99 128 | 6.78 122 | 2.80 148 | 0.79 136 | 3.38 144 | 0.49 46 | 1.72 139 | 4.27 140 | 0.27 154 |
HBpMotionGpu [43] | 136.5 | 1.20 182 | 3.99 183 | 0.94 182 | 3.63 184 | 7.12 190 | 1.71 182 | 1.79 80 | 3.83 92 | 0.63 75 | 4.63 166 | 5.92 171 | 8.41 169 | 3.03 126 | 3.24 136 | 4.46 127 | 3.10 143 | 7.03 135 | 2.87 155 | 0.61 41 | 2.39 46 | 0.48 38 | 1.79 154 | 4.37 148 | 0.29 171 |
Black & Anandan [4] | 136.5 | 1.02 173 | 3.18 151 | 0.73 173 | 3.65 185 | 6.67 185 | 1.36 168 | 2.81 178 | 5.56 173 | 1.38 179 | 4.43 157 | 5.07 145 | 7.61 73 | 3.13 152 | 3.30 150 | 4.57 158 | 2.54 57 | 5.63 69 | 2.38 55 | 0.78 134 | 3.24 134 | 0.53 91 | 1.60 91 | 3.92 85 | 0.28 161 |
Nguyen [33] | 137.0 | 1.00 171 | 3.06 144 | 0.79 176 | 4.07 190 | 6.92 188 | 1.78 183 | 2.22 157 | 6.36 182 | 0.95 151 | 4.71 170 | 5.33 157 | 7.72 101 | 3.01 113 | 3.19 127 | 4.30 71 | 2.68 83 | 6.52 107 | 2.35 49 | 0.99 170 | 4.61 175 | 0.68 164 | 1.62 103 | 4.04 107 | 0.20 49 |
ACK-Prior [27] | 137.1 | 0.59 63 | 2.67 94 | 0.32 38 | 1.61 85 | 4.38 95 | 0.50 60 | 2.71 175 | 4.06 106 | 1.37 176 | 4.11 133 | 4.89 128 | 8.03 146 | 3.30 173 | 3.36 165 | 5.18 190 | 3.48 171 | 7.75 169 | 3.17 177 | 0.82 145 | 3.30 136 | 0.67 162 | 1.86 163 | 4.62 164 | 0.30 176 |
Correlation Flow [76] | 137.2 | 0.61 74 | 2.63 87 | 0.34 58 | 2.48 147 | 6.02 163 | 0.64 105 | 1.79 80 | 3.61 71 | 0.64 82 | 4.01 119 | 4.43 87 | 8.36 166 | 3.33 177 | 3.34 157 | 5.77 194 | 3.76 178 | 9.14 187 | 2.99 164 | 1.07 176 | 4.88 176 | 0.77 175 | 1.87 165 | 4.62 164 | 0.26 140 |
2D-CLG [1] | 138.0 | 0.81 149 | 2.89 126 | 0.59 154 | 3.59 183 | 6.36 173 | 1.88 187 | 2.65 173 | 5.32 167 | 1.30 170 | 4.54 165 | 5.09 146 | 7.59 65 | 3.00 106 | 3.10 97 | 4.44 118 | 2.84 99 | 6.94 129 | 2.64 114 | 0.94 164 | 4.26 169 | 0.62 147 | 1.65 119 | 3.93 86 | 0.23 106 |
IRR-PWC_RVC [180] | 138.4 | 1.00 171 | 4.43 189 | 0.53 140 | 2.02 122 | 5.00 123 | 0.99 151 | 2.21 155 | 6.21 179 | 0.67 92 | 4.39 154 | 6.35 180 | 7.66 87 | 3.19 162 | 3.45 173 | 4.52 144 | 2.85 100 | 6.80 123 | 2.49 83 | 0.80 141 | 3.40 146 | 0.50 58 | 2.19 182 | 5.53 183 | 0.22 84 |
IAOF2 [51] | 138.8 | 0.99 170 | 3.48 172 | 0.65 165 | 3.05 176 | 6.85 186 | 1.13 162 | 1.88 103 | 4.31 119 | 0.70 100 | 4.39 154 | 5.13 151 | 8.06 148 | 3.44 182 | 3.87 185 | 4.49 137 | 3.10 143 | 7.70 165 | 2.57 102 | 0.70 94 | 2.87 95 | 0.50 58 | 1.72 139 | 4.27 140 | 0.22 84 |
Ad-TV-NDC [36] | 140.2 | 1.54 191 | 3.33 165 | 1.43 192 | 3.73 186 | 6.52 179 | 1.78 183 | 1.96 121 | 4.57 140 | 0.85 133 | 4.78 173 | 4.93 131 | 8.94 176 | 3.25 170 | 3.34 157 | 4.64 166 | 2.91 114 | 5.29 51 | 3.06 168 | 0.71 99 | 2.91 101 | 0.52 83 | 1.46 59 | 3.62 56 | 0.29 171 |
TriangleFlow [30] | 141.7 | 0.84 153 | 3.27 159 | 0.56 150 | 2.34 141 | 5.47 140 | 0.69 114 | 2.05 136 | 4.27 115 | 0.88 137 | 4.19 143 | 5.13 151 | 8.28 163 | 3.00 106 | 3.17 122 | 4.23 56 | 3.06 139 | 7.45 152 | 2.61 108 | 1.09 178 | 5.06 179 | 0.84 182 | 2.27 186 | 5.56 184 | 0.23 106 |
CNN-flow-warp+ref [115] | 142.5 | 0.63 84 | 2.43 67 | 0.50 133 | 2.42 143 | 5.68 147 | 0.97 148 | 2.47 167 | 5.75 175 | 1.08 160 | 5.30 181 | 6.00 174 | 9.01 179 | 3.10 146 | 3.23 134 | 4.73 176 | 2.86 102 | 6.69 115 | 2.71 130 | 1.08 177 | 4.97 177 | 0.70 168 | 1.64 114 | 4.09 116 | 0.23 106 |
CVENG22+RIC [199] | 143.2 | 0.71 123 | 2.87 123 | 0.46 120 | 2.06 124 | 5.26 134 | 0.62 100 | 2.09 143 | 5.13 161 | 0.74 115 | 4.38 153 | 6.00 174 | 7.98 142 | 3.12 149 | 3.30 150 | 4.67 171 | 2.99 128 | 7.18 145 | 2.69 128 | 0.93 162 | 3.96 164 | 0.60 139 | 2.26 184 | 5.66 186 | 0.24 118 |
OFRF [132] | 143.8 | 1.19 180 | 3.23 157 | 0.91 181 | 2.86 160 | 5.76 151 | 1.36 168 | 1.97 122 | 4.55 136 | 0.73 111 | 3.96 114 | 4.42 85 | 7.95 138 | 3.12 149 | 3.35 163 | 4.39 100 | 3.35 166 | 7.65 163 | 2.97 163 | 0.89 155 | 3.63 153 | 0.55 117 | 1.76 147 | 4.43 155 | 0.24 118 |
BriefMatch [122] | 144.8 | 0.77 143 | 2.78 105 | 0.55 145 | 1.89 110 | 4.66 106 | 1.10 161 | 2.46 165 | 3.90 100 | 1.34 174 | 5.30 181 | 5.70 165 | 10.5 191 | 3.04 130 | 3.12 101 | 4.79 177 | 4.37 190 | 7.13 141 | 4.74 190 | 0.74 116 | 3.00 113 | 0.64 153 | 1.69 132 | 4.16 131 | 0.27 154 |
Shiralkar [42] | 148.0 | 0.81 149 | 3.32 164 | 0.47 125 | 2.78 155 | 5.92 157 | 0.74 124 | 2.56 170 | 6.86 185 | 1.11 163 | 4.89 176 | 6.32 179 | 7.64 81 | 3.03 126 | 3.34 157 | 4.00 33 | 3.22 155 | 7.57 159 | 2.91 157 | 1.21 183 | 5.44 185 | 0.70 168 | 2.03 174 | 5.06 177 | 0.20 49 |
Filter Flow [19] | 148.6 | 0.88 158 | 2.99 138 | 0.67 168 | 3.21 177 | 6.22 171 | 1.70 180 | 2.06 140 | 4.41 128 | 0.89 138 | 4.69 168 | 4.81 123 | 8.97 177 | 3.15 157 | 3.24 136 | 4.94 184 | 2.88 108 | 6.13 89 | 2.77 144 | 0.79 136 | 3.33 140 | 0.61 143 | 1.72 139 | 4.23 136 | 0.35 188 |
TV-L1-improved [17] | 150.0 | 0.74 137 | 3.05 142 | 0.55 145 | 2.97 167 | 6.52 179 | 0.95 146 | 2.45 164 | 4.22 112 | 1.18 168 | 4.09 129 | 4.99 135 | 8.00 143 | 3.16 159 | 3.34 157 | 4.38 96 | 3.12 146 | 7.30 147 | 2.76 139 | 1.12 181 | 5.32 183 | 0.78 177 | 1.74 142 | 4.32 146 | 0.28 161 |
LocallyOriented [52] | 150.7 | 0.85 154 | 3.04 141 | 0.64 162 | 3.00 172 | 6.41 176 | 1.01 153 | 2.23 158 | 4.84 149 | 0.80 128 | 4.47 159 | 5.61 161 | 8.25 160 | 3.07 134 | 3.26 143 | 4.32 80 | 3.55 174 | 7.16 143 | 3.51 183 | 0.88 153 | 3.63 153 | 0.57 132 | 1.76 147 | 4.37 148 | 0.27 154 |
TVL1_RVC [175] | 153.6 | 1.19 180 | 3.34 166 | 0.96 184 | 4.10 191 | 7.21 191 | 1.82 186 | 2.17 152 | 5.52 171 | 0.95 151 | 4.79 175 | 5.47 160 | 8.02 145 | 3.16 159 | 3.37 166 | 4.52 144 | 2.95 121 | 6.92 128 | 2.63 111 | 0.99 170 | 4.39 171 | 0.68 164 | 1.63 109 | 4.04 107 | 0.22 84 |
Bartels [41] | 154.4 | 0.90 160 | 3.30 163 | 0.74 174 | 2.13 128 | 5.53 143 | 1.01 153 | 1.95 118 | 4.26 114 | 0.91 144 | 4.98 177 | 5.87 169 | 10.9 194 | 3.59 186 | 3.28 147 | 6.74 198 | 5.60 197 | 7.64 162 | 6.55 198 | 0.73 110 | 2.71 81 | 0.79 178 | 1.64 114 | 4.04 107 | 0.39 191 |
Horn & Schunck [3] | 154.5 | 0.92 163 | 3.16 148 | 0.61 158 | 3.79 187 | 6.91 187 | 1.51 174 | 2.98 181 | 6.57 184 | 1.59 184 | 5.15 179 | 5.92 171 | 7.97 139 | 3.25 170 | 3.50 175 | 4.58 161 | 2.64 80 | 6.07 87 | 2.45 69 | 0.91 160 | 3.87 160 | 0.64 153 | 1.75 144 | 4.22 134 | 0.28 161 |
TI-DOFE [24] | 155.0 | 1.46 190 | 3.65 177 | 1.28 191 | 4.57 193 | 7.55 194 | 2.30 192 | 2.65 173 | 6.94 186 | 1.30 170 | 5.46 184 | 5.88 170 | 8.37 167 | 3.13 152 | 3.42 168 | 4.47 132 | 2.52 55 | 5.64 70 | 2.30 41 | 0.84 149 | 3.58 151 | 0.66 159 | 1.79 154 | 4.10 120 | 0.31 182 |
WRT [146] | 156.0 | 0.64 89 | 2.65 92 | 0.37 70 | 2.46 146 | 5.21 133 | 0.74 124 | 3.23 186 | 3.92 102 | 1.42 181 | 4.19 143 | 4.63 110 | 8.10 153 | 3.32 175 | 3.58 178 | 4.69 173 | 3.84 186 | 10.3 195 | 3.03 166 | 2.30 198 | 12.1 198 | 1.81 197 | 2.93 194 | 7.40 194 | 0.28 161 |
NL-TV-NCC [25] | 156.2 | 0.77 143 | 2.93 132 | 0.43 109 | 2.18 135 | 5.65 146 | 0.64 105 | 2.09 143 | 4.68 145 | 0.93 148 | 4.72 171 | 5.82 168 | 9.36 181 | 3.56 184 | 3.34 157 | 6.58 197 | 3.26 156 | 8.02 176 | 2.83 150 | 0.96 166 | 3.86 159 | 0.72 172 | 1.83 160 | 4.53 161 | 0.33 186 |
SegOF [10] | 158.8 | 0.76 141 | 3.08 146 | 0.51 138 | 2.42 143 | 5.35 136 | 0.97 148 | 3.17 184 | 5.83 176 | 1.57 183 | 4.52 162 | 6.66 187 | 7.66 87 | 3.13 152 | 3.33 156 | 4.57 158 | 3.31 160 | 8.43 182 | 2.87 155 | 1.38 188 | 6.82 192 | 1.03 189 | 1.90 169 | 4.75 172 | 0.23 106 |
StereoOF-V1MT [117] | 158.8 | 0.86 156 | 3.62 176 | 0.43 109 | 2.50 148 | 5.73 148 | 0.75 126 | 2.99 182 | 6.55 183 | 1.41 180 | 5.71 187 | 6.70 188 | 8.82 174 | 3.37 180 | 3.73 182 | 4.37 93 | 3.68 177 | 7.84 171 | 3.42 181 | 1.18 182 | 5.29 181 | 0.96 187 | 1.69 132 | 4.10 120 | 0.21 69 |
StereoFlow [44] | 159.0 | 2.07 193 | 5.46 197 | 1.08 188 | 3.85 189 | 7.22 192 | 1.51 174 | 2.01 126 | 5.12 160 | 0.79 127 | 4.13 137 | 5.04 141 | 7.77 112 | 4.97 196 | 6.41 196 | 4.80 180 | 3.89 187 | 11.3 198 | 2.76 139 | 0.68 84 | 2.85 93 | 0.53 91 | 2.09 178 | 5.25 178 | 0.28 161 |
Rannacher [23] | 160.2 | 0.78 145 | 3.18 151 | 0.59 154 | 3.00 172 | 6.62 183 | 0.90 142 | 2.56 170 | 4.96 157 | 1.37 176 | 4.13 137 | 5.27 156 | 8.18 157 | 3.18 161 | 3.37 166 | 4.49 137 | 3.18 148 | 7.49 154 | 2.83 150 | 1.10 179 | 5.20 180 | 0.77 175 | 1.84 161 | 4.59 163 | 0.29 171 |
SPSA-learn [13] | 163.1 | 0.97 167 | 3.54 173 | 0.64 162 | 3.02 174 | 6.01 162 | 1.36 168 | 3.01 183 | 5.38 168 | 1.62 185 | 4.74 172 | 5.09 146 | 7.59 65 | 3.34 178 | 3.71 181 | 4.53 149 | 2.98 127 | 7.52 156 | 2.55 98 | 2.11 197 | 11.0 197 | 1.87 198 | 3.18 195 | 7.90 196 | 0.24 118 |
UnFlow [127] | 164.9 | 1.04 174 | 4.08 184 | 0.62 159 | 2.95 164 | 6.08 167 | 1.05 156 | 2.57 172 | 7.05 187 | 1.16 167 | 4.15 141 | 5.62 163 | 7.58 61 | 3.57 185 | 4.08 189 | 4.57 158 | 3.55 174 | 9.38 192 | 2.71 130 | 0.95 165 | 4.07 166 | 0.63 149 | 2.64 190 | 6.00 188 | 0.30 176 |
Dynamic MRF [7] | 166.2 | 0.73 132 | 3.46 171 | 0.42 104 | 2.27 140 | 5.93 159 | 0.69 114 | 2.82 179 | 7.28 190 | 1.37 176 | 5.71 187 | 7.07 189 | 9.50 182 | 3.24 169 | 3.59 179 | 4.36 90 | 3.79 181 | 9.86 194 | 3.13 171 | 1.29 187 | 5.96 187 | 0.89 184 | 2.04 175 | 4.77 173 | 0.30 176 |
2bit-BM-tele [96] | 169.1 | 1.12 178 | 3.60 175 | 0.94 182 | 2.95 164 | 6.65 184 | 1.22 166 | 2.05 136 | 3.90 100 | 1.13 165 | 5.13 178 | 5.96 173 | 10.8 193 | 3.74 191 | 3.76 183 | 6.21 195 | 4.96 193 | 9.26 190 | 5.02 191 | 1.93 195 | 9.67 195 | 1.56 196 | 1.55 75 | 3.82 73 | 0.35 188 |
H+S_RVC [176] | 171.8 | 0.94 164 | 3.37 169 | 0.55 145 | 3.44 181 | 5.96 160 | 1.70 180 | 3.86 194 | 9.89 195 | 2.20 194 | 6.97 193 | 6.55 185 | 8.66 173 | 3.54 183 | 3.84 184 | 4.71 174 | 3.02 134 | 7.80 170 | 2.54 96 | 1.21 183 | 5.33 184 | 0.95 186 | 1.92 170 | 4.31 144 | 0.31 182 |
HCIC-L [97] | 172.0 | 3.01 197 | 5.27 196 | 3.31 198 | 2.98 168 | 5.18 132 | 2.23 191 | 2.76 176 | 5.07 159 | 1.13 165 | 5.22 180 | 5.73 166 | 8.87 175 | 3.30 173 | 3.24 136 | 5.33 192 | 3.45 170 | 7.55 157 | 3.09 169 | 0.86 151 | 3.48 147 | 0.68 164 | 2.61 189 | 6.30 190 | 0.34 187 |
WOLF_ROB [144] | 173.7 | 1.34 187 | 5.20 194 | 0.70 172 | 3.22 178 | 6.39 175 | 1.04 155 | 2.47 167 | 4.84 149 | 0.89 138 | 4.52 162 | 6.24 177 | 9.00 178 | 3.43 181 | 3.87 185 | 4.65 167 | 3.96 188 | 9.16 189 | 3.33 179 | 1.11 180 | 5.01 178 | 0.70 168 | 2.16 181 | 5.31 180 | 0.28 161 |
Learning Flow [11] | 175.4 | 0.89 159 | 3.59 174 | 0.62 159 | 2.93 162 | 6.52 179 | 0.92 144 | 3.33 188 | 7.23 188 | 1.64 186 | 5.36 183 | 6.54 184 | 9.51 183 | 3.75 193 | 4.10 190 | 5.32 191 | 3.34 162 | 7.55 157 | 3.12 170 | 1.01 172 | 4.41 172 | 0.74 173 | 2.04 175 | 4.85 175 | 0.37 190 |
Adaptive flow [45] | 175.6 | 1.98 192 | 4.23 186 | 1.80 193 | 4.57 193 | 7.46 193 | 3.10 195 | 2.35 163 | 4.62 144 | 1.30 170 | 5.62 186 | 5.69 164 | 10.7 192 | 3.74 191 | 4.07 188 | 5.06 187 | 3.81 183 | 9.47 193 | 3.13 171 | 0.78 134 | 3.18 126 | 0.69 167 | 1.87 165 | 4.67 168 | 0.29 171 |
GroupFlow [9] | 177.5 | 1.35 188 | 4.96 193 | 0.79 176 | 2.79 156 | 5.84 153 | 1.31 167 | 3.68 192 | 7.72 191 | 2.05 190 | 4.78 173 | 6.45 183 | 8.26 162 | 3.88 195 | 4.56 195 | 4.65 167 | 3.77 180 | 10.3 195 | 2.91 157 | 1.24 186 | 5.48 186 | 0.66 159 | 2.47 188 | 6.17 189 | 0.26 140 |
SILK [80] | 178.1 | 1.24 183 | 3.81 178 | 1.00 185 | 4.12 192 | 6.98 189 | 1.91 188 | 3.56 190 | 7.27 189 | 1.82 188 | 5.59 185 | 6.31 178 | 9.67 185 | 3.35 179 | 3.67 180 | 4.72 175 | 3.82 184 | 6.94 129 | 4.15 189 | 0.93 162 | 3.99 165 | 0.82 180 | 1.85 162 | 4.43 155 | 0.32 184 |
Heeger++ [102] | 180.5 | 1.32 185 | 4.80 192 | 0.58 153 | 2.99 171 | 5.73 148 | 1.09 159 | 4.83 195 | 10.4 196 | 2.28 195 | 6.73 191 | 7.16 191 | 9.92 187 | 3.72 189 | 4.28 193 | 4.79 177 | 3.83 185 | 8.26 180 | 3.31 178 | 1.52 192 | 6.36 188 | 0.85 183 | 2.32 187 | 5.62 185 | 0.25 133 |
SLK [47] | 182.0 | 1.33 186 | 3.87 179 | 1.14 189 | 3.84 188 | 6.17 168 | 2.07 189 | 3.83 193 | 7.77 192 | 2.10 192 | 7.08 194 | 7.94 194 | 10.2 189 | 3.75 193 | 4.39 194 | 4.40 104 | 3.34 162 | 7.98 175 | 2.96 162 | 1.39 189 | 6.69 190 | 1.03 189 | 2.23 183 | 5.47 182 | 0.43 192 |
FOLKI [16] | 184.7 | 2.60 195 | 4.64 191 | 2.99 195 | 4.63 196 | 7.59 195 | 2.71 194 | 3.30 187 | 8.65 194 | 2.07 191 | 7.97 196 | 7.95 195 | 13.7 197 | 3.69 188 | 4.22 192 | 4.86 181 | 3.34 162 | 6.66 114 | 3.47 182 | 1.22 185 | 5.31 182 | 1.07 192 | 1.96 172 | 4.62 164 | 0.46 193 |
FFV1MT [104] | 184.9 | 1.24 183 | 4.63 190 | 0.68 169 | 3.40 180 | 6.02 163 | 1.79 185 | 4.86 196 | 11.9 197 | 2.45 196 | 6.73 191 | 7.16 191 | 9.92 187 | 3.73 190 | 4.12 191 | 4.97 185 | 3.54 173 | 7.22 146 | 3.16 176 | 1.59 193 | 6.61 189 | 1.01 188 | 2.70 191 | 6.37 191 | 0.51 197 |
PGAM+LK [55] | 186.3 | 2.08 194 | 5.24 195 | 1.91 194 | 3.50 182 | 6.51 178 | 2.09 190 | 3.61 191 | 7.85 193 | 2.01 189 | 7.70 195 | 8.44 196 | 13.1 196 | 3.61 187 | 3.95 187 | 5.07 188 | 4.07 189 | 8.65 184 | 3.90 188 | 0.96 166 | 4.24 168 | 0.83 181 | 1.99 173 | 4.84 174 | 0.46 193 |
Pyramid LK [2] | 188.6 | 2.73 196 | 4.32 188 | 3.06 196 | 5.47 197 | 7.60 196 | 3.83 197 | 6.84 197 | 6.09 178 | 3.76 197 | 12.2 198 | 16.6 198 | 16.4 198 | 5.05 197 | 6.65 197 | 4.62 165 | 3.26 156 | 7.14 142 | 3.15 174 | 1.40 190 | 6.78 191 | 1.04 191 | 3.71 197 | 9.32 197 | 0.46 193 |
Periodicity [79] | 196.8 | 3.07 198 | 6.73 198 | 3.09 197 | 7.28 198 | 8.40 198 | 5.04 198 | 7.68 198 | 13.2 198 | 5.81 198 | 9.03 197 | 16.0 197 | 12.5 195 | 6.13 198 | 7.92 198 | 6.46 196 | 6.09 198 | 10.5 197 | 6.23 196 | 1.72 194 | 8.02 194 | 1.33 194 | 3.56 196 | 7.62 195 | 1.32 198 |
AVG_FLOW_ROB [137] | 199.0 | 18.1 199 | 26.3 199 | 12.5 199 | 18.3 199 | 16.8 199 | 15.0 199 | 20.3 199 | 21.6 199 | 13.7 199 | 26.8 199 | 34.6 199 | 23.2 199 | 10.4 199 | 13.8 199 | 7.03 199 | 13.2 199 | 33.6 199 | 7.37 199 | 6.22 199 | 13.5 199 | 2.80 199 | 12.9 199 | 16.4 199 | 10.5 199 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication.) | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication.) | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | Tarik Arici and Vural Aksakalli. Energy minimization based motion estimation using adaptive smoothness priors. VISAPP 2012. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | Duc Dung Nguyen and Jae Wook Jeon. Enhancing accuracy and sharpness of motion field with adaptive scheme and occlusion-aware filter. IET Image Processing 7.2 (2013): 144-153. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | Alper Ayvaci, Michalis Raptis, and Stefano Soatto. Sparse occlusion detection with optical flow. IJCV 97(3):322-338, 2012. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | Zhuoyuan Chen, Jiang Wang, and Ying Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | Michael Santoro, Ghassan AlRegib, and Yucel Altunbasak. Motion estimation using block overlap minimization. MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[67] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[68] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[69] TCOF | 1421 | all | gray | J. Sanchez, A. Salgado, and N. Monzon. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013. | |
[70] LME | 476 | 2 | color | W. Li, D. Cosker, M. Brown, and R. Tang. Optical flow estimation using Laplacian mesh energy. CVPR 2013. | |
[71] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[72] FESL | 3310 | 2 | color | Weisheng Dong, Guangming Shi, Xiaocheng Hu, and Yi Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. IEEE TIP 23(10):4527-4538, 2014. | |
[73] PMF | 35 | 2 | color | J. Lu, H. Yang, D. Min, and M. Do. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013. | |
[74] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[75] NNF-Local | 673 | 2 | color | Zhuoyuan Chen, Hailin Jin, Zhe Lin, Scott Cohen, and Ying Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[76] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. TIP 2013. Matlab code. | |
[77] TC/T-Flow | 341 | 5 | color | M. Stoll, S. Volz, and A. Bruhn. Joint trilateral filtering for multiframe optical flow. ICIP 2013. | |
[78] OFLAF | 1530 | 2 | color | T. Kim, H. Lee, and K. Lee. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013. | |
[79] Periodicity | 8000 | 4 | color | Georgii Khachaturov, Silvia Gonzalez-Brambila, and Jesus Gonzalez-Trejo. Periodicity-based computation of optical flow. Computacion y Sistemas (CyS) 2014. | |
[80] SILK | 572 | 2 | gray | Pascal Zille, Thomas Corpetti, Liang Shao, and Xu Chen. Observation model based on scale interactions for optical flow estimation. IEEE TIP 23(8):3281-3293, 2014. | |
[81] CRTflow | 13 | 3 | color | O. Demetz, D. Hafner, and J. Weickert. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013. | |
[82] Classic+CPF | 640 | 2 | gray | Zhigang Tu, Nico van der Aa, Coert Van Gemeren, and Remco Veltkamp. A combined post-filtering method to improve accuracy of variational optical flow estimation. Pattern Recognition 47(5):1926-1940, 2014. | |
[83] S2D-Matching | 1200 | 2 | color | Marius Leordeanu, Andrei Zanfir, and Cristian Sminchisescu. Locally affine sparse-to-dense matching for motion and occlusion estimation. ICCV 2013. | |
[84] AGIF+OF | 438 | 2 | gray | Zhigang Tu, Ronald Poppe, and Remco Veltkamp. Adaptive guided image filter for warping in variational optical flow computation. Signal Processing 127:253-265, 2016. | |
[85] DeepFlow | 13 | 2 | color | P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[86] EPPM w/o HM | 2.5 | 2 | color | L. Bao, Q. Yang, and H. Jin. Fast edge-preserving PatchMatch for large displacement optical flow. CVPR 2014. | |
[87] MLDP_OF | 165 | 2 | gray | M. Mohamed, H. Rashwan, B. Mertsching, M. Garcia, and D. Puig. Illumination-robust optical flow approach using local directional pattern. IEEE TCSVT 24(9):1499-1508, 2014. | |
[88] RFlow | 20 | 2 | gray | S. Ali, C. Daul, and W. Blondel. Robust and accurate optical flow estimation for weak texture and varying illumination condition: Application to cystoscopy. IPTA 2014. | |
[89] SRR-TVOF-NL | 32 | all | color | P. Pohl, M. Sirotenko, E. Tolstaya, and V. Bucha. Edge preserving motion estimation with occlusions correction for assisted 2D to 3D conversion. IS&T/SPIE Electronic Imaging 2014. | |
[90] 2DHMM-SAS | 157 | 2 | color | M.-C. Shih, R. Shenoy, and K. Rose. A two-dimensional hidden Markov model with spatially-adaptive states with application of optical flow. ICIP 2014 submission. | |
[91] WLIF-Flow | 700 | 2 | color | Z. Tu, R. Veltkamp, N. van der Aa, and C. Van Gemeren. Weighted local intensity fusion method for variational optical flow estimation. Submitted to TIP 2014. | |
[92] FMOF | 215 | 2 | color | N. Jith, A. Ramakanth, and V. Babu. Optical flow estimation using approximate nearest neighbor field fusion. ICASSP 2014. | |
[93] TriFlow | 150 | 2 | color | TriFlow. Optical flow with geometric occlusion estimation and fusion of multiple frames. ECCV 2014 submission 914. | |
[94] ComponentFusion | 6.5 | 2 | color | Anonymous. Fast optical flow by component fusion. ECCV 2014 submission 941. | |
[95] AggregFlow | 1642 | 2 | color | D. Fortun, P. Bouthemy, and C. Kervrann. Aggregation of local parametric candidates and exemplar-based occlusion handling for optical flow. Preprint arXiv:1407.5759. | |
[96] 2bit-BM-tele | 124 | 2 | gray | R. Xu and D. Taubman. Robust dense block-based motion estimation using a two-bit transform on a Laplacian pyramid. ICIP 2013. | |
[97] HCIC-L | 330 | 2 | color | Anonymous. Globally-optimal image correspondence using a hierarchical graphical model. NIPS 2014 submission 114. | |
[98] TF+OM | 600 | 2 | color | R. Kennedy and C. Taylor. Optical flow with geometric occlusion estimation and fusion of multiple frames. EMMCVPR 2015. | |
[99] PH-Flow | 800 | 2 | color | J. Yang and H. Li. Dense, accurate optical flow estimation with piecewise parametric model. CVPR 2015. | |
[100] EpicFlow | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: edge-preserving interpolation of correspondences for optical flow. CVPR 2015. | |
[101] NNF-EAC | 380 | 2 | color | Anonymous. Variational method for joint optical flow estimation and edge-aware image restoration. CVPR 2015 submission 2336. | |
[102] Heeger++ | 6600 | 5 | gray | Anonymous. A context aware biologically inspired algorithm for optical flow (updated results). CVPR 2015 submission 2238. | |
[103] HBM-GC | 330 | 2 | color | A. Zheng and Y. Yuan. Motion estimation via hierarchical block matching and graph cut. Submitted to ICIP 2015. | |
[104] FFV1MT | 358 | 5 | gray | F. Solari, M. Chessa, N. Medathati, and P. Kornprobst. What can we expect from a V1-MT feedforward architecture for optical flow estimation? Submitted to Signal Processing: Image Communication 2015. | |
[105] ROF-ND | 4 | 2 | color | S. Ali, C. Daul, E. Galbrun, and W. Blondel. Illumination invariant large displacement optical flow using robust neighbourhood descriptors. Submitted to CVIU 2015. | |
[106] DeepFlow2 | 16 | 2 | color | J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. Deep convolutional matching. Submitted to IJCV, 2015. | |
[107] HAST | 2667 | 2 | color | Anonymous. Highly accurate optical flow estimation on superpixel tree. ICCV 2015 submission 2221. | |
[108] FlowFields | 15 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow Fields: Dense unregularized correspondence fields for highly accurate large displacement optical flow estimation. ICCV 2015. | |
[109] SVFilterOh | 1.56 | 2 | color | Anonymous. Fast estimation of large displacement optical flow using PatchMatch and dominant motion patterns. CVPR 2016 submission 1788. | |
[110] FlowNetS+ft+v | 0.5 | 2 | color | Anonymous. Learning optical flow with convolutional neural networks. ICCV 2015 submission 235. | |
[111] CombBMOF | 51 | 2 | color | M. Brüggemann, R. Kays, P. Springer, and O. Erdler. Combined block-matching and adaptive differential motion estimation in a hierarchical multi-scale framework. ICGIP 2014. (Method improved since publication.) | |
[112] PMMST | 182 | 2 | color | F. Zhang, S. Xu, and X. Zhang. High accuracy correspondence field estimation via MST based patch matching. Submitted to TIP 2015. | |
[113] DF-Auto | 70 | 2 | color | N. Monzon, A. Salgado, and J. Sanchez. Regularization strategies for discontinuity-preserving optical flow methods. Submitted to TIP 2015. | |
[114] CPM-Flow | 3 | 2 | color | Anonymous. Efficient coarse-to-fine PatchMatch for large displacement optical flow. CVPR 2016 submission 241. | |
[115] CNN-flow-warp+ref | 1.4 | 3 | color | D. Teney and M. Hebert. Learning to extract motion from videos in convolutional neural networks. ArXiv 1601.07532, 2016. | |
[116] Steered-L1 | 804 | 2 | color | Anonymous. Optical flow estimation via steered-L1 norm. Submitted to WSCG 2016. | |
[117] StereoOF-V1MT | 343 | 2 | gray | Anonymous. Visual features for action-oriented tasks: a cortical-like model for disparity and optic flow computation. BMVC 2016 submission 132. | |
[118] PGM-C | 5 | 2 | color | Y. Li. Pyramidal gradient matching for optical flow estimation. Submitted to PAMI 2016. | |
[119] RNLOD-Flow | 1040 | 2 | gray | C. Zhang, Z. Chen, M. Wang, M. Li, and S. Jiang. Robust non-local TV-L1 optical flow estimation with occlusion detection. IEEE TIP 26(8):4055-4067, 2017. | |
[120] FlowNet2 | 0.091 | 2 | color | Anonymous. FlowNet 2.0: Evolution of optical flow estimation with deep networks. CVPR 2017 submission 900. | |
[121] S2F-IF | 20 | 2 | color | Anonymous. S2F-IF: Slow-to-fast interpolator flow. CVPR 2017 submission 765. | |
[122] BriefMatch | 0.068 | 2 | gray | G. Eilertsen, P.-E. Forssen, and J. Unger. Dense binary feature matching for real-time optical flow estimation. SCIA 2017 submission 62. | |
[123] OAR-Flow | 60 | 2 | color | Anonymous. Order-adaptive regularisation for variational optical flow: global, local and in between. SSVM 2017 submission 20. | |
[124] AdaConv-v1 | 2.8 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive convolution. CVPR 2017. | |
[125] SepConv-v1 | 0.2 | 2 | color | Simon Niklaus, Long Mai, and Feng Liu. (Interpolation results only.) Video frame interpolation via adaptive separable convolution. ICCV 2017. | |
[126] ProbFlowFields | 37 | 2 | color | A. Wannenwetsch, M. Keuper, and S. Roth. ProbFlow: joint optical flow and uncertainty estimation. ICCV 2017. | |
[127] UnFlow | 0.12 | 2 | color | Anonymous. UnFlow: Unsupervised learning of optical flow with a bidirectional census loss. Submitted to AAAI 2018. | |
[128] FlowFields+ | 10.5 | 2 | color | C. Bailer, B. Taetz, and D. Stricker. Flow fields: Dense correspondence fields for highly accurate large displacement optical flow estimation. Submitted to PAMI 2017. | |
[129] IIOF-NLDP | 150 | 2 | color | D.-H. Trinh, W. Blondel, and C. Daul. A general form of illumination-invariant descriptors in variational optical flow estimation. ICIP 2017. | |
[130] SuperSlomo | 0.5 | 2 | color | Anonymous. (Interpolation results only.) Super SloMo: High quality estimation of multiple intermediate frames for video interpolation. CVPR 2018 submission 325. | |
[131] EPMNet | 0.061 | 2 | color | Anonymous. EPM-convolution multilayer-network for optical flow estimation. ICME 2018 submission 1119. | |
[132] OFRF | 90 | 2 | color | Tan Khoa Mai, Michele Gouiffes, and Samia Bouchafa. Optical flow refinement using iterative propagation under colour, proximity and flow reliability constraints. IET Image Processing 2020. | |
[133] 3DFlow | 328 | 2 | color | J. Chen, Z. Cai, J. Lai, and X. Xie. A filtering based framework for optical flow estimation. IEEE TCSVT 2018. | |
[134] CtxSyn | 0.07 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Context-aware synthesis for video frame interpolation. CVPR 2018. | |
[135] DMF_ROB | 10 | 2 | color | ROB 2018 baseline submission, based on: P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: large displacement optical flow with deep matching. ICCV 2013. | |
[136] JOF | 657 | 2 | gray | C. Zhang, L. Ge, Z. Chen, M. Li, W. Liu, and H. Chen. Refined TV-L1 optical flow estimation using joint filtering. Submitted to IEEE TMM, 2018. | |
[137] AVG_FLOW_ROB | N/A | 2 | N/A | Average flow field of ROB 2018 training set. | |
[138] LiteFlowNet | 0.06 | 2 | color | T.-W. Hui, X. Tang, and C. C. Loy. LiteFlowNet: A lightweight convolutional neural network for optical flow estimation. CVPR 2018. | |
[139] AugFNG_ROB | 0.10 | all | color | Anonymous. FusionNet and AugmentedFlowNet: Selective proxy ground truth for training on unlabeled images. ECCV 2018 submission 2834. | |
[140] ResPWCR_ROB | 0.2 | 2 | color | Anonymous. Learning optical flow with residual connections. ROB 2018 submission. | |
[141] FF++_ROB | 17.43 | 2 | color | R. Schuster, C. Bailer, O. Wasenmueller, D. Stricker. FlowFields++: Accurate optical flow correspondences meet robust interpolation. ICIP 2018. Submitted to ROB 2018. | |
[142] ProFlow_ROB | 76 | 3 | color | Anonymous. ProFlow: Learning to predict optical flow. BMVC 2018 submission 277. | |
[143] PWC-Net_RVC | 0.069 | 2 | color | D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. CVPR 2018. Also RVC 2020 baseline submission. | |
[144] WOLF_ROB | 0.02 | 2 | color | Anonymous. Reversed deep neural network for optical flow. ROB 2018 submission. | |
[145] LFNet_ROB | 0.068 | 2 | color | Anonymous. Learning a flow network. ROB 2018 submission. | |
[146] WRT | 9 | 2 | color | L. Mei, J. Lai, X. Xie, J. Zhu, and J. Chen. Illumination-invariance optical flow estimation using weighted regularization transform. Submitted to IEEE TCSVT 2018. | |
[147] EAI-Flow | 2.1 | 2 | color | Anonymous. Hierarchical coherency sensitive hashing and interpolation with RANSAC for large displacement optical flow. CVIU 2018 submission 17-678. | |
[148] ContinualFlow_ROB | 0.5 | all | color | Michal Neoral, Jan Sochman, and Jiri Matas. Continual occlusions and optical flow estimation. ACCV 2018. | |
[149] CyclicGen | 0.088 | 2 | color | Anonymous. (Interpolation results only.) Deep video frame interpolation using cyclic frame generation. AAAI 2019 submission 323. | |
[150] TOF-M | 0.393 | 2 | color | Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William Freeman. Video enhancement with task-oriented flow. arXiv 1711.09078, 2017. | |
[151] MPRN | 0.32 | 4 | color | Anonymous. (Interpolation results only.) Multi-frame pyramid refinement network for video frame interpolation. CVPR 2019 submission 1361. | |
[152] DAIN | 0.13 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) DAIN: Depth-aware video frame interpolation. CVPR 2019. | |
[153] FRUCnet | 0.65 | 2 | color | Van Thang Nguyen, Kyujoong Lee, and Hyuk-Jae Lee. (Interpolation results only.) A stacked deep MEMC network for frame rate up conversion and its application to HEVC. Submitted to IEEE TCSVT 2019. | |
[154] OFRI | 0.31 | 2 | color | Anonymous. (Interpolation results only.) Efficient video frame interpolation via optical flow refinement. CVPR 2019 submission 6743. | |
[155] CompactFlow_ROB | 0.05 | 2 | color | Anonymous. CompactFlow: spatially shiftable window revisited. CVPR 2019 submission 1387. | |
[156] SegFlow | 3.2 | 2 | color | Jun Chen, Zemin Cai, Jianhuang Lai, and Xiaohua Xie. Efficient segmentation-based PatchMatch for large displacement optical flow estimation. IEEE TCSVT 2018. | |
[157] HCFN | 0.18 | 2 | color | Anonymous. Practical coarse-to-fine optical flow with deep networks. ICCV 2019 submission 116. | |
[158] FGME | 0.23 | 2 | color | Bo Yan, Weimin Tan, Chuming Lin, and Liquan Shen. (Interpolation results only.) Fine-grained motion estimation for video frame interpolation. IEEE Transactions on Broadcasting, 2020. | |
[159] MS-PFT | 0.44 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) A multi-scale position feature transform network for video frame interpolation. IEEE TCSVT 2020. | |
[160] MEMC-Net+ | 0.12 | 2 | color | Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. (Interpolation results only.) MEMC-Net: Motion estimation and motion compensation driven neural network for video interpolation and enhancement. Submitted to PAMI 2018. | |
[161] ADC | 0.01 | 2 | color | Anonymous. (Interpolation results only.) Learning spatial transform for video frame interpolation. ICCV 2019 submission 5424. | |
[162] DSepConv | 0.3 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Video frame interpolation via deformable separable convolution. AAAI 2020. | |
[163] MAF-net | 0.3 | 2 | color | Mengshun Hu, Jing Xiao, Liang Liao, Zheng Wang, Chia-Wen Lin, Mi Wang, and Shinichi Satoh. Capturing small, fast-moving objects: Frame interpolation via recurrent motion enhancement. IEEE TCSVT 2021. | |
[164] STAR-Net | 0.049 | 2 | color | Anonymous. (Interpolation results only.) Space-time-aware multiple resolution for video enhancement. CPVR 2020 submission 430. | |
[165] AdaCoF | 0.03 | 2 | color | Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun Pak, Yuseok Ban, and Sangyoun Lee. (Interpolation results only.) AdaCoF: Adaptive collaboration of flows for video frame interpolation. CVPR 2020. Code available. | |
[166] TC-GAN | 0.13 | 2 | color | Anonymous. (Interpolation results only.) A temporal and contextual generative adversarial network for video frame interpolation. CVPR 2020 submission 111. | |
[167] FeFlow | 0.52 | 2 | color | Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao. (Interpolation results only.) |
|
[168] DAI | 0.23 | 2 | color | Anonymous. (Interpolation results only.) Deep animation inbetweening. CVPR 2020 submission 6404. | |
[169] SoftSplat | 0.1 | 2 | color | Simon Niklaus and Feng Liu. (Interpolation results only.) Softmax splatting for video frame interpolation. CVPR 2020. | |
[170] STSR | 5.35 | 2 | color | Anonymous. (Interpolation results only.) Spatial and temporal video super-resolution with a frequency domain loss. ECCV 2020 submission 2340. | |
[171] BMBC | 0.77 | 2 | color | Anonymous. (Interpolation results only.) BMBC: Bilateral motion estimation with bilateral cost volume for video interpolation. ECCV 2020 submission 2095. | |
[172] GDCN | 1.0 | 2 | color | Anonymous. (Interpolation results only.) Video interpolation via generalized deformable convolution. ECCV 2020 submission 4347. | |
[173] EDSC | 0.56 | 2 | color | Xianhang Cheng and Zhenzhong Chen. (Interpolation results only.) Multiple video frame interpolation via enhanced deformable separable convolution. Submitted to PAMI 2020. | |
[174] CoT-AMFlow | 0.04 | 2 | color | Anonymous. CoT-AMFlow: Adaptive modulation network with co-teaching strategy for unsupervised optical flow estimation. CoRL 2020 submission 36. | |
[175] TVL1_RVC | 11.6 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Javier Sanchez, Enric Meinhardt-Llopis, and Gabriele Facciolo. TV-L1 optical flow estimation. IPOL 3:137-150, 2013. | |
[176] H+S_RVC | 44.7 | 2 | color | RVC 2020 baseline submission by Toby Weed, based on: Enric Meinhardt-Llopis, Javier Sanchez, and Daniel Kondermann. Horn-Schunck optical flow with a multi-scale strategy. IPOL 3:151–172, 2013. | |
[177] PRAFlow_RVC | 0.34 | 2 | color | Zhexiong Wan, Yuxin Mao, and Yuchao Dai. Pyramid recurrent all-pairs flow. RVC 2020 submission. | |
[178] VCN_RVC | 0.84 | 2 | color | Gengshan Yang and Deva Ramanan. Volumetric correspondence networks for optical flow. NeurIPS 2019. RVC 2020 submission. | |
[179] RAFT-TF_RVC | 1.51 | 2 | color | Deqing Sun, Charles Herrmann, Varun Jampani, Mike Krainin, Forrester Cole, Austin Stone, Rico Jonschkowski, Ramin Zabih, William Freeman, and Ce Liu. A TensorFlow implementation of RAFT (Zachary Teed and Jia Deng. RAFT: Recurrent all-pairs field transforms for optical flow. ECCV 2020.) RVC 2020 submission. | |
[180] IRR-PWC_RVC | 0.18 | 2 | color | Junhwa Hur and Stefan Roth. Iterative residual refinement for joint optical flow and occlusion estimation. CVPR 2019. RVC 2020 submission. | |
[181] C-RAFT_RVC | 0.60 | 2 | color | Henrique Morimitsu and Xiangyang Ji. Classification RAFT. RVC 2020 submission. | |
[182] LSM_FLOW_RVC | 0.2 | 2 | color | Chengzhou Tang, Lu Yuan, and Ping Tan. LSM: Learning subspace minimization for low-level vision. CVPR 2020. RVC 2020 submission. | |
[183] MV_VFI | 0.23 | 2 | color | Zhenfang Wang, Yanjiang Wang, and Baodi Liu. (Interpolation results only.) Multi-view based video interpolation algorithm. ICASSP 2021 submission. | |
[184] DistillNet | 0.12 | 2 | color | Anonymous. (Interpolation results only.) A teacher-student optical-flow distillation framework for video frame interpolation. CVPR 2021 submission 7534. | |
[185] SepConv++ | 0.1 | 2 | color | Simon Niklaus, Long Mai, and Oliver Wang. (Interpolation results only.) Revisiting adaptive convolutions for video frame interpolation. WACV 2021. | |
[186] EAFI | 0.18 | 2 | color | Anonymous. (Interpolation results only.) Error-aware spatial ensembles for video frame interpolation. ICCV 2021 submission 8020. | |
[187] UnDAF | 0.04 | 2 | color | Anonymous. UnDAF: A general unsupervised domain adaptation framework for disparity, optical flow or scene flow estimation. CVPR 2021 submission 236. | |
[188] FLAVR | 0.029 | all | color | Anonymous. (Interpolation results only.) FLAVR frame interpolation. NeurIPS 2021 submission 1300. | |
[189] PBOFVI | 150 | 2 | color | Zemin Cai, Jianhuang Lai, Xiaoxin Liao, and Xucong Chen. Physics-based optical flow under varying illumination. Submitted to IEEE TCSVT 2021. | |
[190] SoftsplatAug | 0.17 | 2 | color | Anonymous. (Interpolation results only.) Transformation data augmentation for sports video frame interpolation. ICCV 2021 submission 3245. |