Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
A50 angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
Epistemic [84] | 9.7 | 1.24 2 | 2.24 6 | 1.15 2 | 0.66 4 | 1.61 4 | 0.79 5 | 0.78 1 | 1.37 2 | 0.88 1 | 0.43 3 | 1.27 21 | 0.37 2 | 0.77 7 | 1.18 13 | 0.64 5 | 0.64 11 | 3.07 32 | 0.71 8 | 1.66 20 | 2.85 40 | 0.98 8 | 0.55 11 | 0.78 17 | 0.56 8 |
TC/T-Flow [80] | 9.8 | 1.17 1 | 2.19 5 | 1.07 1 | 0.63 2 | 2.28 28 | 0.68 2 | 0.81 2 | 1.52 10 | 0.91 4 | 0.42 1 | 1.13 12 | 0.37 2 | 0.71 5 | 1.17 12 | 0.61 3 | 0.44 2 | 2.23 12 | 0.52 3 | 1.21 2 | 1.83 1 | 2.10 55 | 0.63 20 | 0.94 29 | 0.67 22 |
ALD-Flow [68] | 9.9 | 1.35 5 | 2.24 6 | 1.41 9 | 0.64 3 | 1.62 5 | 0.76 3 | 0.81 2 | 1.45 6 | 0.97 8 | 0.48 6 | 1.00 5 | 0.44 7 | 0.67 3 | 1.13 8 | 0.61 3 | 0.45 3 | 2.21 11 | 0.57 4 | 1.46 9 | 2.22 3 | 2.09 54 | 0.62 16 | 0.95 30 | 0.68 29 |
ComplexFlow [81] | 11.2 | 1.29 3 | 2.06 2 | 1.24 3 | 0.66 4 | 1.96 14 | 0.77 4 | 0.84 6 | 1.53 11 | 0.91 4 | 0.61 27 | 1.09 8 | 0.56 28 | 0.77 7 | 1.04 5 | 0.75 10 | 0.71 23 | 2.07 8 | 0.92 35 | 1.55 13 | 2.27 5 | 1.37 24 | 0.49 7 | 0.75 13 | 0.44 5 |
NN-field [73] | 11.5 | 1.36 7 | 2.10 3 | 1.32 5 | 0.74 8 | 2.17 24 | 0.86 11 | 0.85 8 | 1.48 8 | 0.93 6 | 0.50 8 | 1.10 9 | 0.43 6 | 0.76 6 | 1.03 4 | 0.71 8 | 0.71 23 | 1.57 2 | 0.79 15 | 1.93 36 | 2.58 21 | 1.79 36 | 0.49 7 | 0.74 10 | 0.37 4 |
ADF [67] | 13.6 | 1.36 7 | 2.98 30 | 1.31 4 | 0.73 7 | 1.75 7 | 0.83 6 | 0.84 6 | 1.56 14 | 1.02 11 | 0.43 3 | 1.27 21 | 0.36 1 | 0.85 17 | 1.33 25 | 0.70 7 | 0.61 7 | 2.30 15 | 0.69 7 | 1.74 29 | 2.56 19 | 1.63 33 | 0.62 16 | 0.87 23 | 0.61 11 |
nLayers [57] | 14.3 | 1.35 5 | 1.80 1 | 1.44 10 | 1.07 52 | 2.03 18 | 1.33 58 | 0.88 9 | 1.47 7 | 1.14 31 | 0.42 1 | 0.70 1 | 0.38 4 | 0.62 1 | 0.81 1 | 0.55 1 | 0.57 6 | 1.73 3 | 0.68 6 | 1.73 26 | 2.67 28 | 1.53 29 | 0.62 16 | 0.73 8 | 0.67 22 |
TC-Flow [46] | 15.4 | 1.44 10 | 2.66 23 | 1.55 14 | 0.56 1 | 1.52 2 | 0.65 1 | 0.81 2 | 1.53 11 | 0.89 2 | 0.54 11 | 0.85 2 | 0.51 22 | 0.79 9 | 1.31 23 | 0.76 12 | 0.63 9 | 2.77 26 | 0.76 12 | 1.32 5 | 2.34 9 | 1.83 40 | 0.68 34 | 1.09 42 | 0.82 48 |
Layers++ [37] | 17.2 | 1.55 21 | 2.42 14 | 1.77 27 | 0.94 40 | 2.05 21 | 1.14 44 | 0.90 11 | 1.42 4 | 1.10 23 | 0.49 7 | 0.89 3 | 0.44 7 | 0.64 2 | 0.82 2 | 0.56 2 | 0.64 11 | 2.04 6 | 0.72 9 | 1.98 41 | 2.87 42 | 1.80 37 | 0.61 15 | 0.70 7 | 0.63 16 |
COFM [59] | 19.1 | 1.29 3 | 2.43 15 | 1.33 6 | 0.70 6 | 1.82 10 | 0.83 6 | 0.81 2 | 1.56 14 | 1.08 20 | 0.43 3 | 1.01 6 | 0.39 5 | 0.82 12 | 1.20 16 | 1.16 42 | 0.67 16 | 1.98 5 | 0.79 15 | 1.57 14 | 2.33 8 | 2.20 59 | 0.97 62 | 1.06 40 | 1.44 73 |
Sparse-NonSparse [56] | 19.2 | 1.48 11 | 2.64 22 | 1.62 17 | 0.84 21 | 2.37 31 | 1.03 29 | 0.91 14 | 1.79 23 | 1.11 24 | 0.51 9 | 1.20 18 | 0.45 10 | 0.84 14 | 1.29 20 | 0.85 14 | 0.63 9 | 2.55 19 | 0.74 10 | 1.81 31 | 2.29 6 | 2.12 58 | 0.63 20 | 0.74 10 | 0.67 22 |
OFLADF [82] | 19.2 | 1.67 26 | 2.34 11 | 1.68 23 | 0.76 10 | 1.65 6 | 0.85 10 | 0.90 11 | 1.31 1 | 0.98 9 | 0.63 29 | 0.93 4 | 0.55 27 | 0.67 3 | 0.89 3 | 0.65 6 | 0.92 48 | 1.83 4 | 0.99 40 | 1.63 18 | 2.53 16 | 1.70 34 | 0.76 47 | 0.90 27 | 0.83 49 |
IROF++ [58] | 19.8 | 1.54 20 | 2.55 17 | 1.63 18 | 0.82 17 | 2.51 39 | 1.01 27 | 0.94 19 | 1.80 24 | 1.14 31 | 0.56 17 | 1.17 15 | 0.50 18 | 0.86 20 | 1.24 18 | 0.89 20 | 0.66 14 | 3.01 30 | 0.78 14 | 1.47 10 | 2.47 14 | 0.83 3 | 0.65 27 | 0.84 20 | 0.67 22 |
MDP-Flow2 [70] | 19.8 | 1.91 33 | 2.84 26 | 1.84 31 | 0.75 9 | 1.58 3 | 0.84 8 | 0.95 24 | 1.39 3 | 0.96 7 | 0.70 31 | 1.06 7 | 0.64 36 | 0.96 25 | 1.22 17 | 0.90 23 | 0.76 34 | 2.07 8 | 0.81 17 | 1.58 15 | 2.70 30 | 1.20 16 | 0.68 34 | 0.89 24 | 0.62 14 |
LME [72] | 20.1 | 1.74 28 | 2.59 20 | 1.51 11 | 0.77 12 | 1.49 1 | 0.87 13 | 0.95 24 | 1.49 9 | 1.04 14 | 0.70 31 | 1.47 30 | 0.64 36 | 0.99 28 | 1.32 24 | 0.96 27 | 0.66 14 | 2.39 17 | 0.76 12 | 1.67 22 | 2.50 15 | 1.36 23 | 0.66 32 | 0.89 24 | 0.63 16 |
Efficient-NL [60] | 21.0 | 1.39 9 | 2.12 4 | 1.38 8 | 0.84 21 | 2.75 47 | 0.96 22 | 0.90 11 | 1.53 11 | 1.08 20 | 0.51 9 | 1.12 11 | 0.44 7 | 0.80 10 | 1.16 10 | 0.75 10 | 0.82 36 | 2.43 18 | 0.84 23 | 1.95 38 | 2.53 16 | 2.04 51 | 0.72 40 | 0.91 28 | 0.77 44 |
LSM [39] | 23.0 | 1.50 15 | 2.56 18 | 1.64 19 | 0.86 24 | 2.42 35 | 1.07 35 | 0.93 18 | 1.68 21 | 1.13 26 | 0.55 13 | 1.15 14 | 0.49 13 | 0.85 17 | 1.24 18 | 0.89 20 | 0.70 21 | 2.55 19 | 0.81 17 | 2.08 48 | 2.46 13 | 2.31 65 | 0.63 20 | 0.75 13 | 0.68 29 |
SCR [74] | 23.2 | 1.50 15 | 2.30 10 | 1.65 21 | 0.85 23 | 2.65 42 | 1.04 31 | 0.92 15 | 1.60 17 | 1.18 44 | 0.57 20 | 1.34 25 | 0.50 18 | 0.83 13 | 1.18 13 | 0.87 17 | 0.69 20 | 2.36 16 | 0.82 21 | 2.13 52 | 2.74 33 | 2.26 61 | 0.60 14 | 0.67 6 | 0.61 11 |
FC-2Layers-FF [77] | 23.5 | 1.53 19 | 2.41 13 | 1.66 22 | 0.87 26 | 2.35 30 | 1.06 33 | 0.92 15 | 1.44 5 | 1.13 26 | 0.57 20 | 1.11 10 | 0.51 22 | 0.80 10 | 1.05 6 | 0.85 14 | 0.74 28 | 2.26 13 | 0.86 28 | 2.24 56 | 2.87 42 | 2.31 65 | 0.63 20 | 0.75 13 | 0.68 29 |
Ramp [62] | 23.7 | 1.49 14 | 2.69 24 | 1.61 16 | 0.87 26 | 2.37 31 | 1.08 37 | 0.94 19 | 1.70 22 | 1.14 31 | 0.57 20 | 1.18 16 | 0.50 18 | 0.87 21 | 1.29 20 | 0.90 23 | 0.72 26 | 2.66 21 | 0.84 23 | 1.95 38 | 2.21 2 | 2.27 62 | 0.63 20 | 0.80 18 | 0.65 21 |
Levin3 [90] | 24.2 | 1.48 11 | 2.25 8 | 1.52 12 | 0.86 24 | 2.71 46 | 1.06 33 | 0.94 19 | 1.64 19 | 1.11 24 | 0.55 13 | 1.14 13 | 0.49 13 | 0.84 14 | 1.18 13 | 0.87 17 | 0.71 23 | 2.72 22 | 0.81 17 | 2.30 59 | 2.73 31 | 2.32 67 | 0.65 27 | 0.86 22 | 0.69 34 |
FESL [75] | 25.9 | 1.52 18 | 2.27 9 | 1.77 27 | 0.94 40 | 2.76 48 | 1.08 37 | 0.92 15 | 1.59 16 | 1.13 26 | 0.61 27 | 1.30 24 | 0.56 28 | 0.84 14 | 1.16 10 | 0.90 23 | 0.75 32 | 2.14 10 | 0.96 38 | 2.05 47 | 3.16 53 | 2.08 52 | 0.57 12 | 0.64 5 | 0.61 11 |
Adaptive [20] | 27.4 | 1.50 15 | 2.72 25 | 1.34 7 | 0.88 31 | 2.24 26 | 1.00 26 | 1.03 32 | 2.29 39 | 1.13 26 | 0.57 20 | 1.65 37 | 0.49 13 | 2.18 79 | 2.69 76 | 2.56 76 | 0.45 3 | 2.26 13 | 0.49 2 | 1.73 26 | 2.94 47 | 1.23 17 | 0.54 10 | 0.63 4 | 0.56 8 |
TV-L1-MCT [64] | 27.4 | 1.48 11 | 2.45 16 | 1.52 12 | 1.00 45 | 2.95 55 | 1.16 47 | 0.94 19 | 1.67 20 | 1.18 44 | 0.56 17 | 1.28 23 | 0.49 13 | 0.96 25 | 1.37 27 | 1.11 39 | 0.74 28 | 2.87 29 | 0.90 33 | 1.60 17 | 2.62 24 | 1.05 11 | 0.71 36 | 0.85 21 | 0.80 46 |
SimpleFlow [49] | 27.5 | 1.56 23 | 2.63 21 | 1.74 26 | 0.94 40 | 2.69 44 | 1.18 49 | 0.98 28 | 1.96 27 | 1.20 48 | 0.56 17 | 1.23 20 | 0.50 18 | 0.92 24 | 1.36 26 | 1.02 35 | 0.85 39 | 2.74 23 | 0.89 30 | 1.85 33 | 2.38 10 | 1.71 35 | 0.62 16 | 0.73 8 | 0.64 19 |
Classic+NL [31] | 27.6 | 1.55 21 | 2.35 12 | 1.70 24 | 0.88 31 | 2.41 34 | 1.08 37 | 0.94 19 | 1.62 18 | 1.15 37 | 0.58 25 | 1.19 17 | 0.52 24 | 0.90 23 | 1.30 22 | 0.96 27 | 0.74 28 | 2.76 24 | 0.85 26 | 2.23 55 | 2.64 26 | 2.27 62 | 0.63 20 | 0.76 16 | 0.69 34 |
Occlusion-TV-L1 [63] | 30.8 | 1.82 31 | 3.15 31 | 1.64 19 | 0.91 36 | 2.12 23 | 1.04 31 | 1.13 48 | 2.49 41 | 1.19 47 | 0.70 31 | 1.75 38 | 0.62 31 | 1.28 44 | 1.97 47 | 1.44 51 | 0.61 7 | 2.77 26 | 0.83 22 | 1.59 16 | 2.65 27 | 1.05 11 | 0.65 27 | 1.00 35 | 0.64 19 |
OFH [38] | 31.6 | 2.14 47 | 3.60 37 | 2.44 53 | 0.76 10 | 1.81 9 | 0.87 13 | 0.88 9 | 2.28 37 | 0.90 3 | 0.55 13 | 1.20 18 | 0.52 24 | 1.20 35 | 1.83 40 | 1.37 49 | 0.84 37 | 4.30 55 | 1.05 42 | 1.37 7 | 2.85 40 | 1.49 28 | 0.76 47 | 1.35 50 | 0.96 56 |
Classic++ [32] | 32.0 | 1.57 24 | 2.57 19 | 1.72 25 | 0.87 26 | 2.03 18 | 1.08 37 | 0.96 27 | 1.98 29 | 1.15 37 | 0.58 25 | 1.41 27 | 0.52 24 | 1.03 30 | 1.80 39 | 1.04 36 | 0.75 32 | 3.62 43 | 0.86 28 | 2.32 62 | 2.84 38 | 2.48 71 | 0.64 26 | 0.89 24 | 0.67 22 |
IROF-TV [53] | 32.3 | 1.69 27 | 2.85 27 | 1.84 31 | 0.90 35 | 2.58 41 | 1.10 41 | 0.95 24 | 1.86 26 | 1.15 37 | 0.74 39 | 1.80 41 | 0.68 40 | 1.41 52 | 1.71 35 | 1.51 54 | 0.90 45 | 3.88 48 | 1.03 41 | 1.30 3 | 2.41 12 | 0.82 2 | 0.65 27 | 0.80 18 | 0.68 29 |
MDP-Flow [26] | 32.4 | 1.90 32 | 3.71 40 | 1.94 36 | 0.92 38 | 1.90 11 | 1.15 45 | 1.01 30 | 2.00 31 | 1.14 31 | 0.70 31 | 1.76 39 | 0.64 36 | 1.06 31 | 1.59 29 | 0.96 27 | 0.68 17 | 3.58 41 | 0.84 23 | 1.68 23 | 3.01 48 | 1.19 15 | 0.75 45 | 1.33 49 | 0.68 29 |
PMF [76] | 33.0 | 2.05 40 | 2.90 28 | 1.89 33 | 0.87 26 | 1.97 15 | 0.96 22 | 1.05 36 | 1.83 25 | 1.15 37 | 0.87 47 | 1.45 28 | 0.80 47 | 0.85 17 | 1.08 7 | 0.73 9 | 0.98 49 | 3.46 37 | 1.10 47 | 3.02 77 | 4.28 80 | 2.92 78 | 0.36 4 | 0.60 2 | 0.27 2 |
Correlation Flow [79] | 33.5 | 1.96 35 | 2.90 28 | 2.04 42 | 0.82 17 | 2.03 18 | 0.88 16 | 1.04 34 | 1.99 30 | 1.02 11 | 0.75 41 | 1.51 31 | 0.68 40 | 1.12 33 | 1.58 28 | 0.98 31 | 1.04 50 | 3.01 30 | 1.14 51 | 2.01 42 | 2.61 23 | 2.35 68 | 0.71 36 | 0.98 34 | 0.69 34 |
Direct ZNCC [66] | 35.1 | 1.98 36 | 3.15 31 | 2.05 43 | 0.81 16 | 1.98 16 | 0.87 13 | 1.03 32 | 2.07 32 | 1.01 10 | 0.75 41 | 1.40 26 | 0.68 40 | 1.22 37 | 1.83 40 | 1.09 38 | 1.08 52 | 3.46 37 | 1.19 53 | 2.03 45 | 2.62 24 | 2.45 70 | 0.72 40 | 1.02 37 | 0.69 34 |
TV-L1-improved [17] | 38.3 | 1.58 25 | 3.18 33 | 1.55 14 | 0.78 13 | 1.98 16 | 0.90 17 | 0.99 29 | 2.28 37 | 1.07 18 | 0.55 13 | 1.52 32 | 0.48 12 | 1.32 48 | 2.10 53 | 1.01 32 | 1.82 79 | 6.46 74 | 2.25 80 | 2.59 70 | 3.51 66 | 2.52 73 | 0.65 27 | 1.17 45 | 0.62 14 |
CostFilter [40] | 39.6 | 2.22 50 | 3.43 35 | 2.15 45 | 0.96 44 | 2.10 22 | 1.07 35 | 1.10 43 | 2.13 34 | 1.17 41 | 1.10 60 | 1.58 36 | 1.06 61 | 0.88 22 | 1.13 8 | 0.85 14 | 1.07 51 | 3.96 50 | 1.24 54 | 3.04 78 | 4.87 86 | 3.15 79 | 0.15 1 | 0.34 1 | 0.15 1 |
Sparse Occlusion [54] | 42.5 | 2.04 38 | 3.32 34 | 1.92 34 | 1.08 55 | 2.38 33 | 1.27 56 | 1.11 46 | 2.16 35 | 1.18 44 | 0.74 39 | 1.56 35 | 0.65 39 | 1.21 36 | 1.76 37 | 0.81 13 | 0.91 46 | 2.84 28 | 0.98 39 | 3.84 85 | 4.85 85 | 2.41 69 | 0.71 36 | 1.08 41 | 0.63 16 |
LDOF [28] | 43.8 | 2.07 41 | 4.67 52 | 2.39 51 | 0.92 38 | 3.01 58 | 1.03 29 | 1.22 58 | 3.52 59 | 1.22 50 | 0.73 38 | 3.52 65 | 0.62 31 | 1.18 34 | 1.94 45 | 1.25 45 | 0.68 17 | 4.07 54 | 0.74 10 | 1.70 25 | 2.87 42 | 1.29 20 | 0.89 59 | 1.82 70 | 1.08 59 |
Second-order prior [8] | 43.8 | 1.95 34 | 4.68 53 | 2.03 40 | 0.79 14 | 2.65 42 | 0.84 8 | 1.10 43 | 3.80 62 | 1.14 31 | 0.54 11 | 1.52 32 | 0.47 11 | 1.42 53 | 2.45 70 | 0.94 26 | 0.88 42 | 6.63 75 | 0.89 30 | 2.87 76 | 3.46 65 | 2.67 76 | 0.77 51 | 1.60 61 | 0.80 46 |
EP-PM [83] | 44.2 | 2.15 49 | 5.62 67 | 2.03 40 | 0.88 31 | 2.76 48 | 0.91 19 | 1.06 39 | 3.03 51 | 1.08 20 | 0.89 50 | 2.04 50 | 0.83 52 | 1.22 37 | 1.66 33 | 1.12 40 | 1.19 57 | 5.06 62 | 1.37 58 | 2.25 57 | 3.56 67 | 3.98 85 | 0.51 9 | 1.00 35 | 0.48 6 |
Deep-Matching [85] | 45.6 | 2.67 63 | 5.07 58 | 4.04 72 | 1.07 52 | 2.57 40 | 1.26 55 | 1.30 62 | 3.89 63 | 1.62 62 | 1.02 57 | 2.09 51 | 0.99 58 | 0.96 25 | 1.65 32 | 0.88 19 | 0.55 5 | 3.58 41 | 0.67 5 | 1.53 12 | 2.29 6 | 1.85 41 | 1.04 70 | 1.84 71 | 1.51 75 |
Aniso. Huber-L1 [22] | 45.8 | 1.79 29 | 3.70 39 | 1.82 30 | 1.37 62 | 3.01 58 | 1.79 62 | 1.19 53 | 3.00 49 | 1.68 63 | 0.79 44 | 2.49 55 | 0.70 43 | 1.26 42 | 1.96 46 | 0.96 27 | 0.81 35 | 3.19 33 | 0.95 37 | 2.54 68 | 3.34 59 | 1.99 50 | 0.71 36 | 1.03 39 | 0.73 39 |
Rannacher [23] | 46.0 | 2.22 50 | 4.10 47 | 2.36 50 | 1.02 49 | 2.44 36 | 1.20 52 | 1.23 59 | 3.15 52 | 1.29 53 | 0.70 31 | 1.88 44 | 0.62 31 | 1.37 51 | 2.27 58 | 1.16 42 | 1.14 54 | 5.21 64 | 1.11 49 | 2.21 54 | 2.88 46 | 1.97 49 | 0.66 32 | 0.95 30 | 0.67 22 |
F-TV-L1 [15] | 46.6 | 3.66 73 | 6.22 69 | 4.52 77 | 1.19 59 | 2.78 50 | 1.40 59 | 1.21 55 | 3.24 56 | 1.31 54 | 1.15 61 | 2.69 57 | 1.07 62 | 1.70 67 | 2.30 60 | 1.86 63 | 0.72 26 | 3.33 35 | 0.90 33 | 1.76 30 | 2.74 33 | 1.44 26 | 0.46 5 | 0.61 3 | 0.48 6 |
Complementary OF [21] | 46.8 | 2.60 62 | 5.23 61 | 2.96 64 | 0.83 19 | 1.75 7 | 0.93 20 | 1.12 47 | 2.23 36 | 1.20 48 | 1.05 58 | 1.52 32 | 1.02 60 | 1.24 39 | 1.79 38 | 1.56 56 | 1.21 58 | 4.83 58 | 1.25 55 | 1.73 26 | 2.60 22 | 1.87 43 | 1.07 71 | 1.69 66 | 1.55 76 |
ComplOF-FED-GPU [35] | 47.5 | 2.48 59 | 5.29 63 | 2.73 59 | 0.79 14 | 2.20 25 | 0.86 11 | 1.07 40 | 2.73 43 | 1.04 14 | 0.88 49 | 1.46 29 | 0.83 52 | 1.30 47 | 2.00 50 | 1.31 48 | 1.28 62 | 5.12 63 | 1.32 56 | 2.33 64 | 3.03 50 | 2.54 74 | 0.85 57 | 1.43 54 | 0.99 57 |
TCOF [71] | 48.2 | 2.27 54 | 4.40 49 | 2.56 56 | 1.07 52 | 2.95 55 | 1.19 50 | 1.24 60 | 3.15 52 | 1.50 59 | 1.30 64 | 1.99 47 | 1.40 65 | 1.49 59 | 2.38 64 | 1.06 37 | 0.70 21 | 2.06 7 | 0.89 30 | 2.63 71 | 3.64 70 | 1.25 18 | 0.76 47 | 1.30 47 | 0.67 22 |
Brox et al. [5] | 48.3 | 2.11 44 | 5.20 60 | 2.91 62 | 1.01 48 | 2.81 52 | 1.19 50 | 1.13 48 | 3.02 50 | 1.17 41 | 0.71 36 | 2.49 55 | 0.63 35 | 1.45 56 | 2.09 52 | 2.27 72 | 0.84 37 | 4.00 51 | 1.05 42 | 1.69 24 | 3.01 48 | 0.95 7 | 0.92 61 | 1.81 69 | 1.08 59 |
SuperFlow [89] | 48.7 | 1.79 29 | 3.74 41 | 1.80 29 | 1.37 62 | 3.00 57 | 1.90 63 | 1.05 36 | 2.84 46 | 1.75 64 | 1.38 67 | 3.64 66 | 1.48 68 | 1.25 41 | 1.71 35 | 1.94 65 | 0.68 17 | 3.53 40 | 0.85 26 | 2.30 59 | 3.28 58 | 1.41 25 | 0.79 52 | 1.64 64 | 1.01 58 |
TriangleFlow [30] | 49.0 | 2.07 41 | 3.84 43 | 2.12 44 | 0.94 40 | 2.79 51 | 0.98 25 | 1.10 43 | 2.81 45 | 1.06 17 | 0.57 20 | 1.81 42 | 0.49 13 | 1.81 71 | 2.82 78 | 1.91 64 | 1.43 66 | 4.91 60 | 1.66 67 | 2.08 48 | 3.66 71 | 1.93 46 | 0.84 56 | 1.62 62 | 1.15 62 |
LocallyOriented [52] | 49.2 | 2.04 38 | 3.52 36 | 1.97 38 | 1.12 56 | 3.79 69 | 1.25 54 | 1.21 55 | 3.59 61 | 1.33 55 | 0.87 47 | 1.77 40 | 0.82 49 | 1.47 57 | 2.21 55 | 1.45 53 | 0.88 42 | 2.76 24 | 1.06 44 | 2.03 45 | 3.17 55 | 1.96 48 | 0.81 53 | 1.47 56 | 0.88 52 |
Local-TV-L1 [65] | 49.7 | 2.87 66 | 5.15 59 | 3.73 68 | 1.72 65 | 3.02 60 | 2.23 66 | 1.52 66 | 4.41 66 | 1.84 65 | 1.19 62 | 2.74 58 | 1.20 63 | 1.01 29 | 1.60 30 | 1.01 32 | 0.65 13 | 3.50 39 | 0.81 17 | 1.52 11 | 2.38 10 | 1.80 37 | 1.00 66 | 1.90 72 | 1.43 72 |
ACK-Prior [27] | 50.3 | 2.81 65 | 3.93 46 | 2.98 65 | 0.91 36 | 1.91 12 | 0.97 24 | 1.09 42 | 1.97 28 | 1.13 26 | 0.97 56 | 1.85 43 | 0.85 55 | 1.24 39 | 1.67 34 | 1.30 47 | 1.56 73 | 3.87 47 | 1.53 63 | 3.14 79 | 3.16 53 | 4.47 87 | 1.08 72 | 1.41 52 | 1.27 64 |
Bartels [41] | 50.7 | 2.42 57 | 3.60 37 | 3.08 66 | 1.15 58 | 1.94 13 | 1.41 60 | 1.17 51 | 2.07 32 | 1.34 56 | 1.33 65 | 1.96 46 | 1.33 64 | 1.28 44 | 1.87 44 | 1.81 61 | 1.22 61 | 3.82 46 | 1.86 75 | 2.65 73 | 3.84 72 | 3.33 81 | 0.57 12 | 0.96 32 | 0.57 10 |
FastOF [78] | 51.1 | 2.22 50 | 4.64 50 | 2.52 55 | 1.06 51 | 3.39 64 | 1.22 53 | 1.21 55 | 3.53 60 | 1.47 58 | 0.69 30 | 2.11 53 | 0.60 30 | 1.32 48 | 1.83 40 | 1.66 59 | 1.18 56 | 6.09 70 | 1.41 60 | 2.19 53 | 2.73 31 | 1.88 44 | 0.83 55 | 1.37 51 | 0.85 50 |
DPOF [18] | 51.1 | 2.25 53 | 5.04 57 | 1.92 34 | 1.05 50 | 3.43 65 | 1.15 45 | 1.14 50 | 2.94 47 | 1.24 51 | 0.92 52 | 3.04 61 | 0.82 49 | 1.09 32 | 1.83 40 | 0.89 20 | 1.08 52 | 3.79 44 | 1.10 47 | 2.34 67 | 2.80 37 | 5.03 88 | 1.01 67 | 1.47 56 | 1.17 63 |
CBF [12] | 51.4 | 2.11 44 | 4.34 48 | 2.45 54 | 1.74 66 | 2.70 45 | 2.64 69 | 1.08 41 | 2.57 42 | 1.25 52 | 0.71 36 | 2.03 49 | 0.62 31 | 1.44 54 | 2.08 51 | 1.22 44 | 0.89 44 | 3.26 34 | 1.09 45 | 3.31 81 | 3.98 75 | 2.65 75 | 0.82 54 | 1.31 48 | 0.88 52 |
CRTflow [88] | 51.5 | 2.07 41 | 4.91 55 | 1.98 39 | 1.00 45 | 2.45 37 | 1.12 42 | 1.05 36 | 3.25 57 | 1.05 16 | 0.79 44 | 1.91 45 | 0.73 45 | 1.29 46 | 1.97 47 | 1.28 46 | 2.16 81 | 6.87 76 | 2.90 83 | 2.02 43 | 3.44 63 | 1.95 47 | 1.03 68 | 1.78 68 | 1.30 67 |
SIOF [69] | 52.0 | 2.51 60 | 3.80 42 | 2.39 51 | 1.00 45 | 2.31 29 | 1.12 42 | 1.41 64 | 2.99 48 | 1.58 61 | 1.34 66 | 2.32 54 | 1.41 66 | 1.48 58 | 2.11 54 | 1.59 57 | 1.14 54 | 3.81 45 | 1.37 58 | 1.94 37 | 2.69 29 | 1.35 22 | 1.15 77 | 1.48 58 | 1.36 70 |
CLG-TV [48] | 52.3 | 2.12 46 | 3.91 45 | 2.20 46 | 1.56 64 | 2.93 54 | 2.16 64 | 1.36 63 | 3.36 58 | 1.84 65 | 1.09 59 | 3.37 64 | 0.98 57 | 1.44 54 | 2.22 56 | 1.37 49 | 0.85 39 | 4.38 56 | 1.12 50 | 2.30 59 | 3.06 51 | 1.54 31 | 0.72 40 | 1.11 43 | 0.74 42 |
Dynamic MRF [7] | 52.4 | 2.47 58 | 5.33 64 | 2.82 61 | 0.83 19 | 2.26 27 | 0.90 17 | 1.02 31 | 3.21 54 | 1.02 11 | 0.79 44 | 2.10 52 | 0.74 46 | 1.68 66 | 2.40 67 | 2.10 68 | 1.48 70 | 7.55 79 | 1.71 68 | 1.96 40 | 2.87 42 | 2.82 77 | 0.98 63 | 1.63 63 | 1.39 71 |
NL-TV-NCC [25] | 54.5 | 2.32 56 | 3.85 44 | 2.27 47 | 1.13 57 | 3.05 61 | 1.16 47 | 1.18 52 | 2.31 40 | 1.17 41 | 0.93 53 | 2.02 48 | 0.80 47 | 1.54 60 | 2.41 68 | 1.01 32 | 1.44 68 | 4.66 57 | 1.52 62 | 2.32 62 | 4.08 78 | 2.30 64 | 0.90 60 | 1.43 54 | 0.85 50 |
p-harmonic [29] | 56.0 | 2.52 61 | 7.07 73 | 2.78 60 | 1.19 59 | 2.87 53 | 1.29 57 | 1.46 65 | 4.64 67 | 1.46 57 | 0.91 51 | 3.66 67 | 0.82 49 | 1.66 64 | 2.25 57 | 1.82 62 | 0.86 41 | 5.52 67 | 1.14 51 | 2.29 58 | 3.36 60 | 1.80 37 | 0.75 45 | 1.14 44 | 0.73 39 |
Learning Flow [11] | 57.6 | 2.14 47 | 4.65 51 | 2.28 48 | 1.32 61 | 3.15 62 | 1.63 61 | 1.27 61 | 3.23 55 | 1.52 60 | 0.94 54 | 3.23 62 | 0.83 52 | 1.86 73 | 2.85 79 | 2.31 73 | 1.21 58 | 4.99 61 | 1.36 57 | 2.33 64 | 3.44 63 | 2.08 52 | 0.73 44 | 1.23 46 | 0.72 38 |
Fusion [6] | 58.6 | 2.02 37 | 6.55 71 | 2.28 48 | 0.87 26 | 2.50 38 | 1.01 27 | 1.04 34 | 2.76 44 | 1.14 31 | 0.78 43 | 2.85 59 | 0.72 44 | 1.87 74 | 2.39 66 | 2.25 71 | 1.62 75 | 5.52 67 | 2.03 79 | 3.47 83 | 4.40 82 | 2.25 60 | 1.98 86 | 2.15 78 | 2.60 84 |
StereoFlow [44] | 59.6 | 11.7 90 | 23.3 90 | 12.9 88 | 10.4 90 | 17.4 90 | 9.59 86 | 10.3 90 | 21.5 90 | 5.63 86 | 14.7 90 | 21.8 88 | 12.3 89 | 2.66 82 | 3.01 80 | 2.67 77 | 0.23 1 | 1.30 1 | 0.31 1 | 0.88 1 | 2.22 3 | 0.54 1 | 0.72 40 | 0.96 32 | 0.79 45 |
SegOF [10] | 61.6 | 2.88 67 | 5.24 62 | 1.95 37 | 3.25 78 | 5.52 78 | 4.24 78 | 2.17 73 | 5.82 71 | 3.40 77 | 1.77 69 | 4.89 72 | 1.51 69 | 1.94 75 | 2.32 61 | 2.83 79 | 1.36 63 | 6.92 77 | 1.59 64 | 1.32 5 | 3.10 52 | 0.93 6 | 0.87 58 | 1.42 53 | 0.95 55 |
Shiralkar [42] | 61.6 | 2.29 55 | 9.09 79 | 2.70 58 | 0.89 34 | 3.49 66 | 0.95 21 | 1.20 54 | 5.92 72 | 1.07 18 | 0.96 55 | 3.95 68 | 0.92 56 | 1.60 62 | 2.47 72 | 1.60 58 | 1.66 77 | 7.74 80 | 1.83 74 | 2.63 71 | 3.41 61 | 3.86 83 | 0.99 65 | 2.01 75 | 1.28 65 |
Ad-TV-NDC [36] | 62.8 | 4.41 81 | 6.97 72 | 7.36 83 | 3.30 79 | 4.58 74 | 4.69 80 | 2.60 76 | 6.97 74 | 3.33 76 | 2.16 73 | 4.56 71 | 2.33 74 | 1.26 42 | 1.99 49 | 1.14 41 | 0.91 46 | 3.37 36 | 1.09 45 | 1.88 35 | 2.74 33 | 1.62 32 | 1.09 74 | 2.40 82 | 1.93 79 |
Modified CLG [34] | 62.9 | 3.61 72 | 7.80 74 | 3.85 69 | 2.69 75 | 4.23 72 | 3.87 76 | 2.73 78 | 9.13 77 | 3.49 78 | 2.34 74 | 5.73 75 | 2.33 74 | 1.57 61 | 2.45 70 | 2.02 67 | 0.74 28 | 5.44 66 | 0.93 36 | 1.64 19 | 2.84 38 | 1.12 14 | 1.08 72 | 2.09 77 | 1.33 68 |
BlockOverlap [61] | 63.6 | 4.29 78 | 5.43 65 | 4.08 73 | 2.37 72 | 3.20 63 | 3.03 73 | 2.32 75 | 4.36 65 | 2.64 69 | 2.44 76 | 2.87 60 | 2.58 77 | 1.34 50 | 1.60 30 | 2.16 70 | 1.68 78 | 3.89 49 | 1.75 69 | 4.00 86 | 4.80 84 | 4.06 86 | 0.30 2 | 1.02 37 | 0.73 39 |
Filter Flow [19] | 63.7 | 3.22 68 | 5.46 66 | 2.91 62 | 1.91 68 | 4.47 73 | 2.45 67 | 1.99 69 | 5.00 68 | 2.64 69 | 2.64 79 | 7.42 79 | 2.52 76 | 2.02 77 | 2.47 72 | 2.90 80 | 1.54 71 | 5.42 65 | 1.80 72 | 4.36 87 | 5.78 88 | 2.11 56 | 0.31 3 | 0.74 10 | 0.32 3 |
IAOF2 [51] | 66.8 | 2.79 64 | 4.89 54 | 2.69 57 | 1.86 67 | 3.78 68 | 2.57 68 | 1.57 67 | 4.12 64 | 2.00 67 | 4.95 82 | 6.55 77 | 6.90 85 | 1.75 69 | 2.49 74 | 1.54 55 | 1.60 74 | 4.88 59 | 1.78 71 | 3.14 79 | 3.92 73 | 1.91 45 | 0.98 63 | 1.55 60 | 1.10 61 |
HBpMotionGpu [43] | 67.3 | 3.50 69 | 5.01 56 | 3.35 67 | 3.02 77 | 4.08 70 | 4.11 77 | 2.06 70 | 5.55 70 | 2.91 72 | 1.90 71 | 3.25 63 | 1.85 70 | 1.71 68 | 2.29 59 | 2.31 73 | 1.43 66 | 4.05 52 | 1.81 73 | 3.49 84 | 4.03 76 | 2.51 72 | 0.76 47 | 1.50 59 | 0.89 54 |
GroupFlow [9] | 67.9 | 4.01 76 | 8.96 77 | 5.33 79 | 4.08 82 | 10.0 85 | 5.03 81 | 2.71 77 | 11.2 78 | 3.56 80 | 1.47 68 | 4.31 69 | 1.41 66 | 2.46 80 | 3.47 83 | 1.68 60 | 2.65 86 | 8.76 81 | 3.71 86 | 1.30 3 | 2.56 19 | 0.92 5 | 1.03 68 | 1.90 72 | 1.34 69 |
2D-CLG [1] | 69.3 | 4.35 80 | 11.2 82 | 3.92 70 | 4.00 81 | 5.65 79 | 6.06 83 | 4.79 86 | 14.1 83 | 5.16 84 | 6.50 86 | 14.0 86 | 6.55 84 | 1.76 70 | 2.41 68 | 2.94 81 | 1.21 58 | 6.32 73 | 1.62 66 | 1.40 8 | 2.55 18 | 0.90 4 | 1.27 78 | 2.20 79 | 1.69 77 |
SPSA-learn [13] | 69.4 | 3.57 71 | 9.65 80 | 4.33 76 | 2.13 71 | 4.20 71 | 2.79 71 | 2.06 70 | 6.85 73 | 2.87 71 | 1.88 70 | 5.24 73 | 1.95 71 | 1.82 72 | 2.38 64 | 2.35 75 | 1.54 71 | 6.21 72 | 1.94 76 | 2.02 43 | 3.22 56 | 1.47 27 | 1.41 80 | 2.22 80 | 2.28 81 |
IAOF [50] | 69.5 | 3.55 70 | 6.41 70 | 4.27 75 | 2.52 74 | 3.73 67 | 3.48 75 | 2.09 72 | 7.46 75 | 2.47 68 | 2.56 77 | 5.54 74 | 3.29 80 | 1.62 63 | 2.36 63 | 1.44 51 | 1.46 69 | 5.99 69 | 1.44 61 | 2.79 74 | 3.42 62 | 2.11 56 | 1.12 76 | 1.94 74 | 1.49 74 |
Black & Anandan [4] | 70.3 | 3.90 75 | 8.79 76 | 5.34 80 | 2.10 70 | 4.91 76 | 2.68 70 | 2.24 74 | 7.98 76 | 2.91 72 | 1.98 72 | 6.06 76 | 2.01 72 | 1.97 76 | 2.68 75 | 2.11 69 | 1.38 64 | 6.99 78 | 1.59 64 | 2.55 69 | 3.97 74 | 1.10 13 | 1.11 75 | 2.04 76 | 1.28 65 |
GraphCuts [14] | 71.0 | 3.73 74 | 6.14 68 | 4.13 74 | 1.95 69 | 5.36 77 | 2.22 65 | 1.84 68 | 5.39 69 | 3.06 74 | 1.23 63 | 4.38 70 | 0.99 58 | 1.67 65 | 2.32 61 | 1.95 66 | 2.18 82 | 4.06 53 | 1.96 77 | 3.32 82 | 4.15 79 | 3.73 82 | 1.67 83 | 1.68 65 | 2.14 80 |
Nguyen [33] | 74.4 | 4.50 82 | 8.30 75 | 4.64 78 | 6.04 85 | 4.82 75 | 11.0 87 | 3.37 81 | 12.8 80 | 4.28 82 | 6.23 85 | 9.23 81 | 7.98 86 | 2.07 78 | 2.73 77 | 3.19 82 | 1.38 64 | 6.12 71 | 1.76 70 | 2.12 51 | 3.24 57 | 1.34 21 | 1.34 79 | 2.23 81 | 1.90 78 |
SILK [87] | 75.2 | 4.92 85 | 10.7 81 | 7.59 84 | 3.66 80 | 8.19 81 | 4.66 79 | 3.10 80 | 12.4 79 | 3.75 81 | 2.78 80 | 7.03 78 | 2.83 79 | 2.79 84 | 3.42 82 | 3.35 83 | 2.18 82 | 9.05 82 | 2.40 81 | 1.66 20 | 2.78 36 | 1.85 41 | 1.44 81 | 2.57 83 | 2.47 83 |
Horn & Schunck [3] | 77.0 | 4.32 79 | 13.5 84 | 5.90 81 | 2.42 73 | 7.53 80 | 2.88 72 | 2.91 79 | 13.4 82 | 3.32 75 | 2.58 78 | 9.94 82 | 2.71 78 | 2.62 81 | 3.37 81 | 2.79 78 | 1.64 76 | 10.2 84 | 1.98 78 | 2.82 75 | 4.37 81 | 1.28 19 | 1.68 84 | 3.07 85 | 2.30 82 |
Periodicity [86] | 77.8 | 4.83 84 | 9.05 78 | 3.96 71 | 2.71 76 | 9.89 83 | 3.14 74 | 6.02 88 | 13.1 81 | 6.02 88 | 2.38 75 | 8.20 80 | 2.32 73 | 5.70 89 | 9.33 90 | 4.34 89 | 4.45 89 | 24.5 90 | 4.11 88 | 1.87 34 | 4.04 77 | 1.02 10 | 1.75 85 | 4.56 89 | 2.87 86 |
Adaptive flow [45] | 80.2 | 9.90 89 | 13.2 83 | 12.5 87 | 6.60 86 | 8.42 82 | 8.27 85 | 4.70 85 | 14.5 85 | 5.85 87 | 5.26 84 | 12.1 84 | 5.52 83 | 3.21 88 | 3.56 86 | 3.59 84 | 4.42 88 | 11.0 85 | 4.71 89 | 9.00 90 | 7.86 90 | 15.7 90 | 0.46 5 | 1.74 67 | 0.74 42 |
SLK [47] | 80.8 | 4.20 77 | 17.7 88 | 6.35 82 | 7.25 87 | 11.8 89 | 11.0 87 | 4.27 84 | 18.2 88 | 5.29 85 | 10.8 89 | 13.4 85 | 16.5 90 | 3.11 87 | 3.74 87 | 4.22 88 | 2.43 84 | 11.4 88 | 3.32 84 | 1.83 32 | 3.60 69 | 1.53 29 | 2.53 88 | 3.59 86 | 4.73 87 |
TI-DOFE [24] | 81.0 | 8.79 88 | 16.1 86 | 13.8 89 | 8.00 88 | 10.2 86 | 11.4 89 | 7.45 89 | 19.0 89 | 7.28 89 | 9.61 88 | 16.2 87 | 11.2 88 | 2.78 83 | 3.54 85 | 3.59 84 | 1.94 80 | 10.1 83 | 2.84 82 | 2.10 50 | 3.58 68 | 0.98 8 | 2.55 89 | 3.92 88 | 4.92 88 |
FOLKI [16] | 83.9 | 4.72 83 | 16.7 87 | 8.10 85 | 4.62 84 | 11.0 88 | 8.17 84 | 3.43 82 | 16.8 87 | 3.51 79 | 3.53 81 | 10.3 83 | 4.31 81 | 2.89 85 | 3.80 88 | 3.81 86 | 2.60 85 | 13.1 89 | 4.02 87 | 2.33 64 | 4.53 83 | 3.23 80 | 2.39 87 | 3.89 87 | 7.04 89 |
PGAM+LK [55] | 85.4 | 6.47 86 | 18.3 89 | 8.42 86 | 4.08 82 | 10.7 87 | 5.38 82 | 3.66 83 | 14.4 84 | 4.35 83 | 5.05 83 | 29.1 90 | 5.23 82 | 2.92 86 | 3.48 84 | 3.99 87 | 3.48 87 | 11.1 87 | 3.57 85 | 5.90 89 | 5.96 89 | 5.68 89 | 1.57 82 | 2.70 84 | 2.60 84 |
Pyramid LK [2] | 88.1 | 8.02 87 | 14.1 85 | 14.8 90 | 8.54 89 | 9.96 84 | 16.3 90 | 5.59 87 | 14.6 86 | 8.07 90 | 7.36 87 | 22.2 89 | 9.72 87 | 5.85 90 | 7.94 89 | 7.95 90 | 7.37 90 | 11.0 85 | 8.48 90 | 4.42 88 | 4.94 87 | 3.92 84 | 5.06 90 | 8.31 90 | 17.6 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |