Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
Average angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 3.4 | 2.69 1 | 7.56 2 | 1.98 2 | 1.97 3 | 7.01 3 | 1.59 4 | 2.18 1 | 5.36 2 | 1.53 3 | 1.87 2 | 9.14 3 | 1.06 3 | 2.28 1 | 2.94 1 | 1.57 1 | 2.39 4 | 6.78 2 | 2.15 5 | 2.00 11 | 3.36 12 | 1.62 11 | 0.99 1 | 2.16 1 | 0.57 2 |
NN-field [73] | 6.9 | 2.89 6 | 8.13 11 | 2.11 4 | 2.10 5 | 7.15 6 | 1.77 12 | 2.27 3 | 5.59 4 | 1.61 7 | 1.58 1 | 8.52 2 | 0.79 1 | 2.35 3 | 3.05 4 | 1.60 2 | 1.89 1 | 5.20 1 | 1.37 1 | 2.43 31 | 3.70 33 | 1.95 23 | 1.01 2 | 2.25 2 | 0.53 1 |
OFLADF [82] | 8.3 | 3.04 12 | 7.80 5 | 2.40 12 | 2.14 6 | 7.02 4 | 1.72 8 | 2.25 2 | 5.32 1 | 1.56 4 | 2.62 10 | 13.7 14 | 1.37 14 | 2.35 3 | 3.13 5 | 1.62 3 | 2.98 10 | 7.73 6 | 2.57 11 | 2.08 14 | 3.27 8 | 2.05 25 | 1.33 8 | 2.43 4 | 1.40 11 |
nLayers [57] | 11.2 | 2.80 4 | 7.42 1 | 2.20 6 | 2.71 20 | 7.24 7 | 2.55 41 | 2.61 8 | 6.24 7 | 2.45 37 | 2.30 6 | 12.7 8 | 1.16 5 | 2.30 2 | 3.02 2 | 1.70 4 | 2.62 7 | 6.95 3 | 2.09 4 | 2.29 24 | 3.46 17 | 1.89 20 | 1.38 11 | 3.06 15 | 1.29 10 |
MDP-Flow2 [70] | 12.2 | 3.23 24 | 7.93 8 | 2.60 17 | 1.92 1 | 6.64 1 | 1.52 1 | 2.46 6 | 5.91 6 | 1.56 4 | 3.05 27 | 15.8 30 | 1.51 27 | 2.77 17 | 3.50 12 | 2.16 17 | 2.86 9 | 8.58 10 | 2.70 17 | 2.00 11 | 3.50 22 | 1.59 9 | 1.28 6 | 2.67 7 | 0.89 4 |
Epistemic [84] | 12.4 | 2.78 3 | 8.20 12 | 2.05 3 | 2.04 4 | 7.31 8 | 1.66 7 | 2.55 7 | 6.78 10 | 1.61 7 | 2.24 5 | 13.1 9 | 1.01 2 | 2.71 14 | 3.56 14 | 2.10 15 | 3.55 31 | 12.4 31 | 3.22 37 | 2.19 20 | 3.60 27 | 1.54 8 | 1.32 7 | 2.91 10 | 1.13 6 |
TC/T-Flow [80] | 14.9 | 2.69 1 | 7.75 4 | 1.87 1 | 2.76 23 | 10.2 29 | 1.73 9 | 3.33 16 | 9.01 22 | 1.49 1 | 2.86 22 | 16.7 37 | 1.21 7 | 2.60 9 | 3.49 11 | 1.90 8 | 2.21 2 | 7.65 4 | 2.04 3 | 1.84 6 | 3.23 6 | 3.14 63 | 2.03 31 | 4.53 29 | 1.49 14 |
ADF [67] | 15.8 | 2.98 9 | 8.32 15 | 2.28 7 | 2.27 9 | 8.35 15 | 1.81 13 | 3.55 23 | 9.74 25 | 2.17 22 | 3.15 33 | 16.8 38 | 1.29 10 | 2.64 12 | 3.55 13 | 1.81 6 | 3.02 11 | 9.08 13 | 2.38 8 | 2.29 24 | 3.48 19 | 2.07 27 | 1.34 9 | 3.03 12 | 1.11 5 |
FC-2Layers-FF [77] | 16.7 | 3.02 11 | 7.87 7 | 2.61 18 | 2.72 21 | 9.35 23 | 2.29 27 | 2.36 4 | 5.47 3 | 2.15 21 | 2.48 7 | 12.6 7 | 1.28 8 | 2.49 6 | 3.19 6 | 2.03 13 | 3.39 24 | 8.92 12 | 2.83 26 | 2.83 49 | 3.92 44 | 2.80 45 | 1.25 5 | 2.57 6 | 1.20 8 |
Layers++ [37] | 18.0 | 3.11 14 | 8.22 13 | 2.79 29 | 2.43 14 | 7.02 4 | 2.24 23 | 2.43 5 | 5.77 5 | 2.18 25 | 2.13 4 | 9.71 4 | 1.15 4 | 2.35 3 | 3.02 2 | 1.96 9 | 3.81 34 | 11.4 27 | 3.22 37 | 2.74 44 | 4.01 50 | 2.35 33 | 1.45 13 | 3.05 14 | 1.79 23 |
LME [72] | 18.8 | 3.15 18 | 8.04 10 | 2.31 10 | 1.95 2 | 6.65 2 | 1.59 4 | 4.03 33 | 9.31 23 | 4.57 61 | 2.69 15 | 13.6 12 | 1.42 15 | 2.85 23 | 3.61 18 | 2.42 30 | 3.47 28 | 12.8 34 | 3.17 34 | 2.12 17 | 3.53 25 | 1.73 13 | 1.34 9 | 2.75 8 | 1.18 7 |
Efficient-NL [60] | 19.2 | 2.99 10 | 8.23 14 | 2.28 7 | 2.72 21 | 8.95 20 | 2.25 25 | 3.81 28 | 9.87 27 | 2.07 19 | 2.77 20 | 14.3 19 | 1.46 20 | 2.61 10 | 3.48 10 | 1.96 9 | 3.31 20 | 8.33 8 | 2.59 13 | 2.60 38 | 3.75 34 | 2.54 40 | 1.60 19 | 3.02 11 | 1.66 18 |
FESL [75] | 19.6 | 2.96 8 | 7.70 3 | 2.54 15 | 3.26 45 | 10.4 30 | 2.56 42 | 3.25 14 | 8.39 14 | 2.17 22 | 2.56 9 | 13.2 10 | 1.31 11 | 2.57 8 | 3.40 9 | 2.12 16 | 2.60 6 | 7.65 4 | 2.30 6 | 2.64 42 | 4.22 56 | 2.47 36 | 1.75 23 | 3.49 21 | 1.71 20 |
ALD-Flow [68] | 19.8 | 2.82 5 | 7.86 6 | 2.16 5 | 2.84 27 | 10.1 27 | 1.86 16 | 3.73 26 | 10.4 29 | 1.67 11 | 3.10 29 | 16.8 38 | 1.28 8 | 2.69 13 | 3.60 17 | 1.85 7 | 2.79 8 | 11.3 26 | 2.32 7 | 2.07 13 | 3.25 7 | 3.10 61 | 2.03 31 | 5.11 33 | 1.94 25 |
IROF++ [58] | 20.6 | 3.17 20 | 8.69 21 | 2.61 18 | 2.79 24 | 9.61 24 | 2.33 28 | 3.43 18 | 8.86 19 | 2.38 31 | 2.87 23 | 14.8 23 | 1.52 28 | 2.74 15 | 3.57 15 | 2.19 18 | 3.20 17 | 9.70 19 | 2.71 19 | 1.96 9 | 3.45 16 | 1.22 5 | 1.80 25 | 4.06 25 | 2.50 35 |
SCR [74] | 20.9 | 3.12 15 | 8.48 18 | 2.59 16 | 2.95 33 | 10.4 30 | 2.35 29 | 3.19 12 | 8.09 12 | 2.43 35 | 2.63 11 | 13.9 16 | 1.35 12 | 2.81 19 | 3.64 19 | 2.30 21 | 3.02 11 | 8.29 7 | 2.39 10 | 2.77 47 | 3.79 37 | 2.89 53 | 1.39 12 | 2.85 9 | 1.60 17 |
TC-Flow [46] | 22.0 | 2.91 7 | 8.00 9 | 2.34 11 | 2.18 7 | 8.77 17 | 1.52 1 | 3.84 30 | 10.7 33 | 1.49 1 | 3.13 30 | 16.6 36 | 1.46 20 | 2.78 18 | 3.73 23 | 1.96 9 | 3.08 13 | 11.4 27 | 2.66 14 | 1.94 7 | 3.43 15 | 3.20 66 | 3.06 38 | 7.04 37 | 4.08 58 |
Sparse-NonSparse [56] | 22.4 | 3.14 17 | 8.75 23 | 2.76 28 | 3.02 36 | 10.6 33 | 2.43 34 | 3.45 20 | 8.96 20 | 2.36 29 | 2.66 13 | 13.7 14 | 1.42 15 | 2.85 23 | 3.75 24 | 2.33 23 | 3.28 19 | 9.40 16 | 2.73 20 | 2.42 30 | 3.31 9 | 2.69 43 | 1.47 14 | 3.07 16 | 1.66 18 |
Correlation Flow [79] | 23.4 | 3.38 29 | 8.40 16 | 2.64 22 | 2.23 8 | 7.54 10 | 1.56 3 | 5.14 40 | 13.1 39 | 1.60 6 | 2.09 3 | 8.15 1 | 1.35 12 | 3.12 31 | 4.09 34 | 2.34 24 | 4.01 40 | 11.5 29 | 4.00 50 | 2.59 37 | 3.61 28 | 3.00 59 | 1.49 15 | 3.04 13 | 1.42 12 |
LSM [39] | 24.0 | 3.12 15 | 8.62 20 | 2.75 27 | 3.00 35 | 10.5 32 | 2.44 36 | 3.43 18 | 8.85 18 | 2.35 28 | 2.66 13 | 13.6 12 | 1.44 17 | 2.82 20 | 3.68 20 | 2.36 25 | 3.38 23 | 9.41 17 | 2.81 24 | 2.69 43 | 3.52 23 | 2.84 48 | 1.59 18 | 3.38 20 | 1.80 24 |
Ramp [62] | 24.7 | 3.18 22 | 8.83 24 | 2.73 26 | 2.89 30 | 10.1 27 | 2.44 36 | 3.27 15 | 8.43 15 | 2.38 31 | 2.74 19 | 14.2 18 | 1.46 20 | 2.82 20 | 3.69 22 | 2.29 20 | 3.37 22 | 9.31 15 | 2.93 28 | 2.62 40 | 3.38 14 | 3.19 65 | 1.54 16 | 3.21 17 | 2.24 31 |
Levin3 [90] | 24.8 | 3.06 13 | 8.40 16 | 2.45 13 | 3.13 39 | 10.9 42 | 2.38 30 | 3.47 22 | 8.79 16 | 2.21 26 | 2.70 17 | 13.2 10 | 1.47 24 | 2.75 16 | 3.57 15 | 2.19 18 | 3.11 15 | 8.62 11 | 2.70 17 | 3.09 59 | 3.92 44 | 3.30 69 | 1.57 17 | 3.21 17 | 2.10 28 |
PMF [76] | 25.2 | 3.61 34 | 9.07 26 | 2.62 20 | 2.40 11 | 8.05 11 | 1.83 14 | 2.61 8 | 6.27 8 | 1.65 10 | 3.35 38 | 15.4 27 | 1.58 31 | 2.54 7 | 3.27 7 | 1.71 5 | 3.59 32 | 11.1 25 | 3.46 41 | 4.07 76 | 6.18 83 | 4.02 75 | 1.06 3 | 2.38 3 | 1.25 9 |
COFM [59] | 25.3 | 3.17 20 | 9.90 39 | 2.46 14 | 2.41 13 | 8.34 14 | 1.92 17 | 3.77 27 | 10.5 30 | 2.54 39 | 2.71 18 | 14.9 25 | 1.19 6 | 3.08 30 | 3.92 28 | 3.25 56 | 3.83 35 | 10.9 22 | 3.15 33 | 2.20 22 | 3.35 10 | 2.91 56 | 1.62 21 | 2.56 5 | 2.09 27 |
Classic+NL [31] | 27.2 | 3.20 23 | 8.72 22 | 2.81 30 | 3.02 36 | 10.6 33 | 2.44 36 | 3.46 21 | 8.84 17 | 2.38 31 | 2.78 21 | 14.3 19 | 1.46 20 | 2.83 22 | 3.68 20 | 2.31 22 | 3.40 25 | 9.09 14 | 2.76 22 | 2.87 51 | 3.82 39 | 2.86 51 | 1.67 22 | 3.53 22 | 2.26 33 |
TV-L1-MCT [64] | 27.2 | 3.16 19 | 8.48 18 | 2.71 25 | 3.28 46 | 10.8 40 | 2.60 46 | 3.95 32 | 10.5 30 | 2.38 31 | 2.69 15 | 13.9 16 | 1.45 19 | 2.94 26 | 3.79 25 | 2.63 40 | 3.50 29 | 9.75 20 | 3.06 31 | 2.08 14 | 3.35 10 | 2.29 31 | 1.95 28 | 3.89 24 | 2.71 38 |
SimpleFlow [49] | 29.5 | 3.35 26 | 9.20 29 | 2.98 34 | 3.18 41 | 10.7 37 | 2.71 48 | 5.06 39 | 12.6 38 | 2.70 41 | 2.95 25 | 15.1 26 | 1.58 31 | 2.91 25 | 3.79 25 | 2.47 32 | 3.59 32 | 9.49 18 | 2.99 29 | 2.39 28 | 3.46 17 | 2.24 30 | 1.60 19 | 3.56 23 | 1.57 15 |
CostFilter [40] | 30.3 | 3.84 37 | 9.64 36 | 3.06 36 | 2.55 19 | 8.09 12 | 2.03 19 | 2.69 10 | 6.47 9 | 1.88 15 | 3.66 43 | 16.8 38 | 1.88 41 | 2.62 11 | 3.34 8 | 1.99 12 | 4.05 41 | 11.0 24 | 3.65 47 | 4.16 78 | 7.18 88 | 4.66 77 | 1.16 4 | 3.36 19 | 0.87 3 |
Direct ZNCC [66] | 31.0 | 3.50 32 | 8.96 25 | 2.70 24 | 2.46 16 | 9.21 22 | 1.83 14 | 5.20 41 | 13.2 41 | 1.61 7 | 2.48 7 | 10.2 5 | 1.49 26 | 3.32 41 | 4.34 43 | 2.60 37 | 4.60 50 | 14.6 48 | 4.31 58 | 2.62 40 | 3.64 31 | 3.09 60 | 1.96 29 | 4.70 30 | 1.58 16 |
MDP-Flow [26] | 31.2 | 3.48 31 | 9.46 33 | 3.10 38 | 2.45 15 | 7.36 9 | 2.41 31 | 3.21 13 | 8.31 13 | 2.78 44 | 3.18 34 | 17.8 44 | 1.70 36 | 3.03 28 | 3.87 27 | 2.60 37 | 3.43 26 | 12.6 33 | 2.81 24 | 2.19 20 | 3.88 42 | 1.60 10 | 4.13 51 | 9.96 54 | 3.86 55 |
IROF-TV [53] | 32.7 | 3.40 30 | 9.29 31 | 2.95 33 | 2.99 34 | 11.1 44 | 2.53 40 | 3.81 28 | 9.81 26 | 2.44 36 | 3.25 36 | 16.9 41 | 1.78 39 | 3.27 39 | 4.10 35 | 2.93 49 | 4.47 46 | 16.0 55 | 3.53 43 | 1.70 3 | 3.21 5 | 1.12 3 | 1.91 27 | 4.75 31 | 2.19 30 |
OFH [38] | 35.1 | 3.90 40 | 9.77 38 | 3.62 52 | 2.84 27 | 11.0 43 | 2.04 20 | 5.52 44 | 14.4 45 | 1.89 16 | 3.52 39 | 20.5 54 | 1.60 34 | 3.18 34 | 4.06 33 | 2.82 45 | 3.86 36 | 14.1 46 | 3.59 44 | 1.77 5 | 3.62 29 | 1.81 16 | 2.64 35 | 7.08 39 | 2.15 29 |
NL-TV-NCC [25] | 35.6 | 3.89 39 | 9.16 28 | 2.98 34 | 2.87 29 | 9.69 25 | 1.99 18 | 4.44 35 | 11.6 35 | 1.76 12 | 2.64 12 | 11.8 6 | 1.48 25 | 3.49 53 | 4.60 59 | 2.47 32 | 4.67 54 | 13.5 40 | 4.26 57 | 2.83 49 | 4.57 64 | 2.84 48 | 2.62 34 | 6.00 35 | 2.25 32 |
Sparse Occlusion [54] | 35.6 | 3.62 35 | 9.12 27 | 2.90 31 | 2.92 31 | 9.08 21 | 2.56 42 | 4.49 36 | 11.8 36 | 2.11 20 | 3.14 31 | 15.8 30 | 1.57 30 | 3.26 38 | 4.22 40 | 2.36 25 | 3.52 30 | 10.9 22 | 2.66 14 | 5.10 86 | 6.32 84 | 3.15 64 | 2.02 30 | 4.92 32 | 1.71 20 |
Occlusion-TV-L1 [63] | 35.8 | 3.59 33 | 9.61 34 | 2.64 22 | 2.93 32 | 10.6 33 | 2.41 31 | 6.16 48 | 15.2 46 | 2.70 41 | 3.32 37 | 17.0 42 | 1.68 35 | 3.38 45 | 4.44 49 | 2.82 45 | 3.10 14 | 13.2 38 | 2.68 16 | 2.17 18 | 3.52 23 | 1.46 6 | 4.63 58 | 11.1 65 | 3.53 47 |
EP-PM [83] | 36.8 | 4.25 51 | 11.1 47 | 3.13 39 | 2.36 10 | 8.35 15 | 1.76 11 | 3.72 25 | 10.2 28 | 1.81 13 | 3.24 35 | 14.5 22 | 1.94 42 | 3.16 32 | 3.94 29 | 2.82 45 | 4.78 56 | 12.9 35 | 4.32 59 | 3.64 69 | 4.54 63 | 5.73 81 | 1.76 24 | 4.11 26 | 1.94 25 |
Complementary OF [21] | 36.9 | 4.44 56 | 11.2 50 | 4.04 58 | 2.51 18 | 9.77 26 | 1.74 10 | 3.93 31 | 10.6 32 | 2.04 18 | 3.87 47 | 18.8 46 | 2.19 46 | 3.17 33 | 4.00 31 | 2.92 48 | 4.64 52 | 13.8 43 | 3.64 46 | 2.17 18 | 3.36 12 | 2.51 38 | 3.08 39 | 7.04 37 | 3.65 50 |
Adaptive [20] | 38.0 | 3.29 25 | 9.43 32 | 2.28 7 | 3.10 38 | 11.4 46 | 2.46 39 | 6.58 51 | 15.7 52 | 2.52 38 | 3.14 31 | 15.6 28 | 1.56 29 | 3.67 60 | 4.46 51 | 3.48 62 | 3.32 21 | 13.0 37 | 2.38 8 | 2.76 46 | 4.39 60 | 1.93 22 | 3.58 44 | 8.18 44 | 2.88 40 |
ACK-Prior [27] | 39.0 | 4.19 48 | 9.27 30 | 3.60 50 | 2.40 11 | 8.21 13 | 1.65 6 | 3.40 17 | 8.96 20 | 1.84 14 | 2.87 23 | 14.4 21 | 1.44 17 | 3.36 44 | 4.15 36 | 3.07 52 | 6.35 72 | 16.1 57 | 4.90 62 | 4.21 79 | 4.80 68 | 6.03 83 | 3.29 41 | 5.99 34 | 2.82 39 |
DPOF [18] | 40.4 | 4.67 63 | 12.6 60 | 3.30 42 | 3.57 51 | 10.6 33 | 3.12 55 | 3.09 11 | 7.50 11 | 2.32 27 | 3.06 28 | 14.8 23 | 1.82 40 | 3.21 36 | 4.18 39 | 2.79 44 | 4.47 46 | 12.5 32 | 3.33 39 | 4.09 77 | 3.92 44 | 6.96 85 | 2.09 33 | 4.39 28 | 1.74 22 |
TCOF [71] | 41.5 | 4.17 46 | 10.4 44 | 3.71 54 | 3.17 40 | 10.7 37 | 2.59 45 | 6.58 51 | 15.7 52 | 3.82 57 | 3.69 45 | 16.1 34 | 2.37 51 | 3.78 62 | 4.95 73 | 2.47 32 | 2.59 5 | 8.47 9 | 2.58 12 | 3.66 70 | 4.83 69 | 2.67 42 | 1.83 26 | 4.20 27 | 1.46 13 |
ComplOF-FED-GPU [35] | 43.4 | 4.28 52 | 11.3 51 | 3.70 53 | 3.25 43 | 13.0 52 | 2.16 21 | 4.06 34 | 11.2 34 | 1.95 17 | 3.91 48 | 19.2 48 | 2.01 43 | 3.20 35 | 4.15 36 | 2.64 41 | 4.61 51 | 16.1 57 | 3.90 49 | 2.98 57 | 3.77 36 | 3.69 71 | 2.85 36 | 7.44 41 | 2.53 36 |
Aniso. Huber-L1 [22] | 44.7 | 3.71 36 | 10.1 40 | 3.08 37 | 4.36 58 | 13.0 52 | 3.77 59 | 6.92 55 | 15.3 48 | 3.60 55 | 3.54 40 | 15.9 32 | 2.04 44 | 3.38 45 | 4.45 50 | 2.47 32 | 3.88 37 | 12.9 35 | 2.74 21 | 3.37 64 | 4.36 59 | 2.85 50 | 3.16 40 | 7.52 43 | 2.90 41 |
Classic++ [32] | 46.5 | 3.37 28 | 9.67 37 | 2.91 32 | 3.28 46 | 12.1 48 | 2.61 47 | 5.46 43 | 14.1 44 | 3.00 46 | 3.63 42 | 20.2 52 | 1.70 36 | 3.24 37 | 4.34 43 | 2.60 37 | 4.65 53 | 16.0 55 | 3.60 45 | 3.09 59 | 3.94 48 | 3.28 68 | 4.64 59 | 10.4 60 | 3.71 52 |
TV-L1-improved [17] | 47.1 | 3.36 27 | 9.63 35 | 2.62 20 | 2.82 25 | 10.7 37 | 2.23 22 | 6.50 50 | 15.8 55 | 2.73 43 | 3.80 46 | 21.3 58 | 1.76 38 | 3.34 43 | 4.38 48 | 2.39 27 | 5.97 66 | 18.1 66 | 5.67 69 | 3.57 66 | 4.92 72 | 3.43 70 | 4.01 49 | 9.84 53 | 3.44 46 |
SIOF [69] | 47.5 | 4.23 49 | 10.2 41 | 3.31 43 | 3.97 54 | 14.5 60 | 2.97 52 | 7.81 64 | 16.4 58 | 7.48 63 | 4.82 58 | 20.1 51 | 2.96 57 | 3.54 56 | 4.49 53 | 3.12 53 | 4.31 44 | 13.5 40 | 4.13 53 | 2.36 27 | 3.59 26 | 1.68 12 | 3.46 43 | 7.39 40 | 3.37 44 |
Deep-Matching [85] | 47.6 | 5.07 64 | 12.5 58 | 5.09 67 | 5.18 63 | 13.5 55 | 4.31 63 | 6.92 55 | 15.7 52 | 6.43 62 | 5.53 63 | 23.4 68 | 3.47 64 | 2.96 27 | 3.98 30 | 2.07 14 | 3.21 18 | 13.4 39 | 2.77 23 | 1.98 10 | 3.01 2 | 2.48 37 | 6.34 70 | 11.4 67 | 6.64 72 |
LocallyOriented [52] | 48.0 | 4.54 58 | 12.8 62 | 3.27 41 | 4.73 61 | 14.8 62 | 3.73 58 | 7.77 62 | 18.3 67 | 3.44 52 | 3.56 41 | 15.6 28 | 2.22 47 | 3.46 50 | 4.47 52 | 2.69 42 | 3.15 16 | 10.2 21 | 3.19 36 | 2.61 39 | 4.20 55 | 2.52 39 | 4.39 53 | 8.52 45 | 5.23 65 |
Brox et al. [5] | 49.5 | 4.44 56 | 12.4 56 | 4.22 63 | 3.72 52 | 13.5 55 | 3.06 53 | 4.97 38 | 13.3 42 | 3.11 47 | 4.58 56 | 22.0 59 | 2.37 51 | 3.79 64 | 4.60 59 | 4.33 76 | 3.91 38 | 17.0 62 | 3.45 40 | 2.22 23 | 3.79 37 | 1.19 4 | 4.62 57 | 10.0 55 | 3.38 45 |
TriangleFlow [30] | 49.7 | 4.12 43 | 10.6 45 | 3.47 48 | 3.47 50 | 13.1 54 | 2.41 31 | 6.00 46 | 15.2 46 | 2.17 22 | 2.99 26 | 16.0 33 | 1.58 31 | 4.46 78 | 5.79 82 | 4.15 72 | 5.42 61 | 13.9 45 | 5.24 63 | 3.10 62 | 5.47 78 | 2.90 55 | 3.02 37 | 6.82 36 | 3.64 49 |
CRTflow [88] | 50.5 | 4.18 47 | 11.8 55 | 3.20 40 | 3.22 42 | 10.8 40 | 2.43 34 | 6.20 49 | 15.5 50 | 2.63 40 | 4.21 52 | 22.0 59 | 2.24 48 | 3.32 41 | 4.34 43 | 2.44 31 | 7.43 78 | 19.3 71 | 8.15 80 | 2.55 35 | 4.09 52 | 2.59 41 | 4.60 56 | 11.2 66 | 4.45 61 |
Rannacher [23] | 51.2 | 4.13 44 | 11.0 46 | 3.61 51 | 3.39 48 | 12.3 50 | 2.80 50 | 7.26 58 | 17.4 63 | 3.59 54 | 4.40 54 | 23.1 65 | 2.24 48 | 3.43 49 | 4.54 56 | 2.56 36 | 5.41 60 | 18.5 67 | 4.23 55 | 2.92 53 | 3.91 43 | 2.82 46 | 3.45 42 | 9.14 48 | 3.27 43 |
F-TV-L1 [15] | 51.3 | 5.44 67 | 12.5 58 | 5.69 71 | 5.46 65 | 15.0 65 | 4.03 60 | 7.48 59 | 16.3 57 | 3.42 51 | 5.08 61 | 23.3 66 | 2.81 56 | 3.42 48 | 4.34 43 | 3.03 50 | 4.05 41 | 15.1 52 | 3.18 35 | 2.43 31 | 3.92 44 | 1.87 17 | 3.90 46 | 9.35 51 | 2.61 37 |
Local-TV-L1 [65] | 52.2 | 5.33 65 | 12.6 60 | 5.19 69 | 6.90 70 | 15.7 69 | 6.22 68 | 10.0 69 | 18.2 66 | 8.89 64 | 5.81 66 | 24.7 70 | 3.70 66 | 3.05 29 | 4.00 31 | 2.39 27 | 4.05 41 | 14.6 48 | 3.09 32 | 1.95 8 | 3.11 3 | 2.15 28 | 5.85 66 | 10.8 63 | 7.34 74 |
SuperFlow [89] | 52.7 | 4.16 45 | 11.1 47 | 3.32 44 | 4.80 62 | 12.2 49 | 4.68 64 | 7.80 63 | 16.0 56 | 10.6 69 | 5.16 62 | 22.4 63 | 3.24 62 | 3.39 47 | 4.24 41 | 3.71 66 | 3.44 27 | 13.7 42 | 2.91 27 | 3.19 63 | 4.62 66 | 1.87 17 | 4.74 60 | 10.6 62 | 4.24 60 |
FastOF [78] | 53.2 | 4.32 53 | 11.5 52 | 4.09 60 | 5.30 64 | 15.2 66 | 4.07 61 | 8.42 66 | 16.5 59 | 9.35 66 | 4.50 55 | 16.4 35 | 3.08 61 | 3.30 40 | 4.16 38 | 3.28 57 | 5.66 63 | 19.1 70 | 5.58 68 | 2.92 53 | 3.63 30 | 2.44 35 | 4.05 50 | 7.49 42 | 2.46 34 |
CLG-TV [48] | 53.3 | 4.00 41 | 10.3 43 | 3.40 46 | 4.33 57 | 12.3 50 | 4.08 62 | 6.78 53 | 15.5 50 | 3.64 56 | 4.07 49 | 17.7 43 | 2.39 53 | 3.79 64 | 4.86 70 | 3.23 55 | 4.48 48 | 16.5 60 | 3.80 48 | 3.55 65 | 4.65 67 | 2.89 53 | 4.00 48 | 10.1 57 | 3.18 42 |
CBF [12] | 54.0 | 3.88 38 | 10.2 41 | 3.50 49 | 4.60 59 | 11.3 45 | 5.06 65 | 5.43 42 | 13.1 39 | 3.39 50 | 4.09 50 | 21.2 57 | 2.16 45 | 3.80 67 | 4.72 68 | 3.52 63 | 4.33 45 | 14.4 47 | 3.01 30 | 4.97 84 | 5.51 79 | 4.93 79 | 3.99 47 | 9.27 50 | 3.91 57 |
p-harmonic [29] | 55.8 | 4.64 61 | 13.0 63 | 4.43 64 | 3.41 49 | 11.9 47 | 2.93 51 | 7.60 60 | 18.1 65 | 3.96 59 | 4.65 57 | 21.0 56 | 2.97 58 | 3.46 50 | 4.33 42 | 3.34 58 | 4.75 55 | 17.5 63 | 4.60 61 | 3.05 58 | 4.17 54 | 2.15 28 | 5.09 63 | 10.9 64 | 3.77 53 |
Bartels [41] | 55.9 | 4.43 54 | 11.1 47 | 4.17 62 | 2.83 26 | 8.84 18 | 2.56 42 | 4.54 37 | 12.5 37 | 2.80 45 | 4.87 59 | 22.1 61 | 3.05 59 | 3.58 57 | 4.35 47 | 4.15 72 | 5.55 62 | 17.5 63 | 5.78 70 | 3.74 71 | 5.02 73 | 5.98 82 | 5.21 64 | 11.9 69 | 5.20 64 |
Fusion [6] | 57.1 | 4.43 54 | 13.7 67 | 4.08 59 | 2.47 17 | 8.91 19 | 2.24 23 | 3.70 24 | 9.68 24 | 3.12 48 | 3.68 44 | 19.8 49 | 2.54 55 | 4.26 75 | 5.16 77 | 4.31 75 | 6.32 69 | 16.8 61 | 6.15 74 | 4.55 82 | 5.78 81 | 3.10 61 | 7.12 77 | 13.6 77 | 7.86 78 |
Dynamic MRF [7] | 57.5 | 4.58 59 | 12.4 56 | 4.14 61 | 3.25 43 | 13.9 57 | 2.27 26 | 6.02 47 | 16.8 60 | 2.36 29 | 4.39 53 | 22.6 64 | 2.51 54 | 3.61 58 | 4.55 57 | 3.46 60 | 6.81 74 | 22.2 81 | 6.78 77 | 2.41 29 | 3.48 19 | 3.69 71 | 9.26 82 | 17.8 84 | 10.2 80 |
SegOF [10] | 57.6 | 5.85 68 | 13.5 66 | 3.98 57 | 7.40 71 | 14.9 63 | 8.13 76 | 8.55 67 | 17.3 62 | 9.01 65 | 6.50 70 | 18.1 45 | 5.14 71 | 3.90 71 | 4.53 55 | 4.81 79 | 6.57 73 | 21.7 79 | 6.81 78 | 1.65 2 | 3.49 21 | 1.08 2 | 3.71 45 | 9.23 49 | 3.63 48 |
LDOF [28] | 58.3 | 4.60 60 | 13.0 63 | 3.77 55 | 4.67 60 | 15.5 68 | 3.67 57 | 5.63 45 | 14.0 43 | 4.21 60 | 5.80 65 | 27.1 78 | 3.43 63 | 3.52 55 | 4.50 54 | 3.46 60 | 4.84 58 | 17.8 65 | 4.04 51 | 2.46 33 | 4.14 53 | 3.25 67 | 4.85 62 | 12.0 70 | 3.78 54 |
Second-order prior [8] | 59.1 | 4.03 42 | 11.6 53 | 3.35 45 | 3.88 53 | 14.0 59 | 3.08 54 | 7.21 57 | 17.6 64 | 3.57 53 | 4.14 51 | 19.9 50 | 2.31 50 | 3.66 59 | 4.86 70 | 2.73 43 | 7.32 76 | 21.2 77 | 6.76 76 | 4.02 74 | 4.58 65 | 4.01 74 | 4.27 52 | 10.4 60 | 5.12 62 |
Ad-TV-NDC [36] | 62.2 | 8.36 80 | 14.0 69 | 11.1 83 | 12.9 81 | 19.9 78 | 12.8 81 | 14.4 79 | 23.1 73 | 12.1 71 | 7.40 72 | 20.6 55 | 6.33 72 | 3.47 52 | 4.66 64 | 2.39 27 | 3.95 39 | 13.8 43 | 3.51 42 | 2.48 34 | 3.75 34 | 2.05 25 | 9.75 83 | 12.1 71 | 16.7 85 |
StereoFlow [44] | 62.3 | 17.1 90 | 28.1 90 | 17.9 89 | 18.7 88 | 29.7 89 | 16.5 83 | 20.1 87 | 30.9 87 | 17.5 84 | 21.2 88 | 38.3 89 | 17.9 87 | 4.60 79 | 5.05 75 | 5.52 80 | 2.38 3 | 11.5 29 | 1.77 2 | 1.25 1 | 2.92 1 | 0.71 1 | 4.49 55 | 10.3 59 | 4.23 59 |
Shiralkar [42] | 65.1 | 4.64 61 | 14.1 70 | 3.94 56 | 4.29 56 | 16.9 71 | 2.77 49 | 7.75 61 | 18.8 69 | 3.19 49 | 5.54 64 | 25.0 72 | 3.56 65 | 3.51 54 | 4.55 57 | 3.04 51 | 7.41 77 | 20.1 75 | 6.41 75 | 3.76 72 | 4.35 58 | 5.28 80 | 6.56 73 | 14.4 80 | 5.30 67 |
Learning Flow [11] | 65.2 | 4.23 49 | 11.7 54 | 3.41 47 | 4.16 55 | 15.3 67 | 3.42 56 | 6.78 53 | 16.9 61 | 3.83 58 | 6.41 69 | 25.3 73 | 4.25 68 | 4.66 81 | 6.01 86 | 4.00 69 | 6.33 71 | 20.7 76 | 5.30 64 | 3.09 59 | 4.84 70 | 2.91 56 | 7.08 76 | 15.0 81 | 5.27 66 |
IAOF2 [51] | 65.6 | 5.38 66 | 13.7 67 | 4.50 65 | 5.95 67 | 14.6 61 | 5.61 67 | 8.80 68 | 18.8 69 | 9.40 67 | 12.2 81 | 23.8 69 | 13.1 83 | 3.86 68 | 4.89 72 | 3.12 53 | 5.21 59 | 14.9 50 | 4.54 60 | 4.33 80 | 5.15 75 | 3.93 73 | 4.39 53 | 8.57 46 | 3.87 56 |
Modified CLG [34] | 66.5 | 7.17 76 | 17.1 78 | 6.47 74 | 6.85 69 | 14.9 63 | 7.48 72 | 14.0 76 | 24.8 76 | 15.7 81 | 8.35 75 | 27.3 79 | 6.36 73 | 3.96 72 | 4.99 74 | 4.08 70 | 4.54 49 | 19.3 71 | 4.15 54 | 2.33 26 | 3.86 41 | 2.40 34 | 6.00 67 | 13.8 79 | 5.40 68 |
Filter Flow [19] | 67.2 | 6.48 70 | 14.6 72 | 4.96 66 | 5.73 66 | 15.7 69 | 5.07 66 | 10.1 70 | 18.6 68 | 14.3 77 | 9.04 77 | 23.3 66 | 7.80 77 | 3.98 73 | 4.71 66 | 4.21 74 | 5.86 65 | 15.0 51 | 5.41 67 | 4.98 85 | 6.87 86 | 2.78 44 | 4.82 61 | 8.66 47 | 3.65 50 |
GraphCuts [14] | 67.6 | 6.25 69 | 14.3 71 | 5.53 70 | 8.60 74 | 20.1 79 | 6.61 70 | 7.91 65 | 15.4 49 | 10.9 70 | 4.88 60 | 19.0 47 | 3.05 59 | 3.78 62 | 4.71 66 | 3.94 67 | 8.74 82 | 16.4 59 | 5.39 66 | 4.04 75 | 4.87 71 | 4.85 78 | 6.35 71 | 12.2 72 | 6.05 70 |
2D-CLG [1] | 67.7 | 10.1 82 | 22.6 84 | 7.59 79 | 9.84 78 | 16.9 71 | 11.1 80 | 16.9 82 | 28.2 83 | 18.8 86 | 14.1 84 | 31.1 82 | 13.1 83 | 3.86 68 | 4.62 62 | 4.53 77 | 5.98 67 | 21.2 77 | 5.97 72 | 1.76 4 | 3.14 4 | 1.46 6 | 6.29 69 | 12.9 76 | 5.81 69 |
SPSA-learn [13] | 68.0 | 6.84 75 | 16.7 76 | 6.74 75 | 8.47 73 | 19.4 76 | 7.49 73 | 12.5 72 | 23.1 73 | 13.1 75 | 8.40 76 | 25.8 75 | 7.08 75 | 3.87 70 | 4.66 64 | 4.10 71 | 6.32 69 | 18.8 68 | 6.89 79 | 2.56 36 | 3.85 40 | 1.79 14 | 7.29 78 | 12.5 74 | 7.47 76 |
HBpMotionGpu [43] | 68.8 | 6.57 72 | 15.0 74 | 5.17 68 | 8.29 72 | 18.0 73 | 8.29 77 | 14.1 77 | 26.5 79 | 13.2 76 | 6.12 68 | 25.3 73 | 3.94 67 | 3.79 64 | 4.62 62 | 3.97 68 | 4.80 57 | 15.7 53 | 4.11 52 | 4.40 81 | 5.20 76 | 2.87 52 | 6.28 68 | 11.7 68 | 7.31 73 |
GroupFlow [9] | 69.2 | 8.00 78 | 18.6 79 | 8.09 80 | 11.1 80 | 23.7 84 | 10.3 78 | 12.6 73 | 25.6 77 | 12.8 73 | 5.84 67 | 20.3 53 | 4.39 69 | 4.69 82 | 5.81 83 | 3.67 64 | 9.29 83 | 22.4 82 | 10.1 85 | 2.11 16 | 3.99 49 | 2.29 31 | 5.75 65 | 10.0 55 | 7.39 75 |
IAOF [50] | 69.5 | 6.49 71 | 14.6 72 | 6.42 73 | 9.22 77 | 18.5 74 | 7.94 75 | 16.4 81 | 27.4 81 | 13.0 74 | 8.22 73 | 22.2 62 | 7.73 76 | 3.77 61 | 4.76 69 | 3.42 59 | 6.84 75 | 18.8 68 | 4.23 55 | 3.59 67 | 4.46 61 | 2.83 47 | 7.51 79 | 10.1 57 | 10.6 81 |
Black & Anandan [4] | 69.9 | 6.81 74 | 15.4 75 | 7.43 77 | 8.77 75 | 19.5 77 | 7.35 71 | 13.0 74 | 22.9 72 | 12.5 72 | 8.29 74 | 26.1 76 | 6.77 74 | 4.18 74 | 5.28 78 | 3.69 65 | 6.19 68 | 20.0 74 | 5.34 65 | 3.63 68 | 5.05 74 | 1.79 14 | 6.45 72 | 12.2 72 | 5.17 63 |
BlockOverlap [61] | 71.8 | 6.67 73 | 13.1 65 | 5.87 72 | 6.62 68 | 13.9 57 | 6.53 69 | 10.6 71 | 19.5 71 | 10.1 68 | 6.97 71 | 24.9 71 | 5.13 70 | 4.38 76 | 4.61 61 | 6.37 85 | 7.47 79 | 15.7 53 | 6.05 73 | 6.23 87 | 6.41 85 | 13.0 89 | 6.92 75 | 9.60 52 | 12.2 83 |
Nguyen [33] | 72.4 | 7.88 77 | 16.8 77 | 7.02 76 | 13.4 82 | 19.0 75 | 15.3 82 | 17.6 83 | 28.9 84 | 17.2 83 | 12.0 80 | 26.9 77 | 11.6 82 | 4.38 76 | 5.07 76 | 5.58 83 | 5.69 64 | 19.7 73 | 5.93 71 | 2.75 45 | 4.02 51 | 1.91 21 | 6.59 74 | 12.5 74 | 6.52 71 |
Horn & Schunck [3] | 77.1 | 8.01 79 | 19.9 80 | 8.38 81 | 9.13 76 | 23.2 83 | 7.71 74 | 14.2 78 | 25.9 78 | 14.6 79 | 12.4 82 | 30.6 81 | 11.3 81 | 4.64 80 | 5.64 80 | 4.60 78 | 8.21 81 | 24.4 84 | 8.45 81 | 4.01 73 | 5.41 77 | 1.95 23 | 9.16 81 | 17.5 82 | 8.86 79 |
SILK [87] | 77.6 | 9.34 81 | 20.4 81 | 10.5 82 | 10.4 79 | 21.9 80 | 10.3 78 | 16.0 80 | 27.5 82 | 14.5 78 | 10.3 78 | 29.0 80 | 8.54 78 | 4.81 83 | 5.65 81 | 5.56 82 | 9.41 84 | 25.4 86 | 8.74 82 | 2.79 48 | 3.68 32 | 4.62 76 | 10.9 84 | 17.8 84 | 12.3 84 |
TI-DOFE [24] | 79.9 | 13.4 88 | 23.2 85 | 16.5 88 | 16.5 85 | 24.1 85 | 18.2 87 | 20.2 88 | 31.1 88 | 20.6 87 | 19.9 87 | 32.9 85 | 20.8 88 | 4.89 84 | 5.90 84 | 5.54 81 | 8.04 80 | 23.9 83 | 8.81 83 | 2.97 56 | 4.34 57 | 1.88 19 | 10.9 84 | 17.7 83 | 11.9 82 |
SLK [47] | 82.7 | 11.6 85 | 26.0 88 | 14.6 87 | 15.3 84 | 25.0 87 | 17.5 85 | 17.8 85 | 30.1 86 | 18.1 85 | 25.4 90 | 33.6 86 | 28.0 90 | 5.25 85 | 5.90 84 | 7.03 86 | 10.3 86 | 27.4 88 | 10.6 86 | 2.89 52 | 4.47 62 | 2.94 58 | 14.9 87 | 20.7 87 | 18.8 86 |
Adaptive flow [45] | 84.0 | 13.2 87 | 20.8 82 | 14.0 86 | 17.1 87 | 22.0 81 | 17.9 86 | 18.1 86 | 27.1 80 | 22.8 89 | 11.8 79 | 31.1 82 | 10.5 79 | 6.35 88 | 7.13 88 | 6.25 84 | 9.87 85 | 21.8 80 | 9.44 84 | 12.6 90 | 11.4 90 | 20.0 90 | 7.75 80 | 13.6 77 | 7.73 77 |
PGAM+LK [55] | 84.9 | 11.8 86 | 25.6 86 | 13.9 85 | 14.8 83 | 24.4 86 | 16.7 84 | 13.2 75 | 24.0 75 | 15.0 80 | 16.2 86 | 41.2 90 | 15.3 85 | 5.40 86 | 5.45 79 | 8.10 87 | 12.3 88 | 26.5 87 | 12.1 87 | 7.42 89 | 8.24 89 | 7.87 86 | 13.2 86 | 18.3 86 | 19.4 87 |
Periodicity [86] | 85.8 | 11.2 84 | 27.0 89 | 7.46 78 | 16.6 86 | 29.8 90 | 18.2 87 | 25.3 90 | 31.2 90 | 24.9 90 | 12.7 83 | 35.7 88 | 11.1 80 | 31.7 90 | 41.4 90 | 25.1 90 | 23.8 90 | 41.5 90 | 23.8 90 | 2.92 53 | 5.62 80 | 6.90 84 | 18.6 89 | 33.1 90 | 22.3 88 |
FOLKI [16] | 86.2 | 10.5 83 | 25.6 86 | 11.9 84 | 20.9 89 | 26.2 88 | 26.1 89 | 17.6 83 | 31.1 88 | 16.5 82 | 15.4 85 | 32.6 84 | 16.0 86 | 6.16 87 | 6.53 87 | 9.07 88 | 12.2 87 | 29.7 89 | 13.0 88 | 4.67 83 | 5.83 82 | 9.41 87 | 18.2 88 | 22.8 88 | 25.1 89 |
Pyramid LK [2] | 88.0 | 13.9 89 | 20.9 83 | 21.4 90 | 24.1 90 | 23.1 82 | 30.2 90 | 20.9 89 | 29.5 85 | 21.9 88 | 22.2 89 | 34.6 87 | 25.0 89 | 18.7 89 | 23.1 89 | 20.2 89 | 21.2 89 | 24.5 85 | 21.0 89 | 6.41 88 | 7.02 87 | 10.8 88 | 25.6 90 | 31.5 89 | 34.5 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |