Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
A95 angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 6.3 | 7.47 1 | 40.1 6 | 3.98 2 | 6.49 11 | 30.3 2 | 5.60 14 | 5.82 3 | 26.1 2 | 4.68 11 | 3.86 6 | 53.5 2 | 2.99 12 | 9.77 1 | 12.4 1 | 5.36 2 | 8.67 3 | 31.8 2 | 7.03 3 | 5.10 9 | 10.1 38 | 3.70 6 | 2.31 6 | 5.34 6 | 1.21 2 |
NN-field [73] | 8.8 | 8.38 10 | 43.1 20 | 4.19 3 | 7.34 17 | 28.7 1 | 6.26 20 | 5.82 3 | 28.9 4 | 4.68 11 | 2.94 1 | 54.1 3 | 2.16 1 | 10.4 3 | 13.2 3 | 5.24 1 | 6.12 1 | 17.5 1 | 4.46 1 | 6.24 30 | 10.6 47 | 4.10 7 | 2.35 9 | 6.44 14 | 1.14 1 |
MDP-Flow2 [70] | 9.8 | 8.02 5 | 38.6 4 | 5.75 14 | 5.17 1 | 31.1 3 | 4.55 2 | 5.48 2 | 30.8 7 | 4.22 8 | 4.49 12 | 99.9 26 | 3.27 16 | 11.3 11 | 13.4 4 | 8.04 13 | 10.8 8 | 54.4 21 | 10.5 16 | 4.84 6 | 9.33 21 | 4.31 9 | 2.69 20 | 4.85 2 | 2.20 3 |
OFLADF [82] | 10.8 | 7.70 3 | 39.8 5 | 4.74 7 | 6.40 10 | 32.5 6 | 5.82 18 | 4.73 1 | 25.3 1 | 3.96 4 | 4.47 11 | 99.9 26 | 3.55 27 | 10.2 2 | 13.0 2 | 6.29 4 | 13.3 19 | 42.1 12 | 9.90 14 | 5.10 9 | 8.01 9 | 4.66 17 | 2.75 21 | 5.59 10 | 6.33 21 |
nLayers [57] | 16.0 | 8.19 7 | 45.3 38 | 4.62 5 | 9.65 41 | 31.7 5 | 8.88 48 | 8.87 11 | 33.6 9 | 8.22 42 | 3.62 3 | 99.9 26 | 2.93 10 | 10.5 4 | 13.6 6 | 6.52 5 | 11.3 12 | 33.4 3 | 9.45 11 | 6.02 25 | 8.56 11 | 4.99 20 | 2.31 6 | 6.80 18 | 5.53 18 |
ADF [67] | 16.8 | 9.55 21 | 40.5 9 | 5.99 17 | 6.34 9 | 43.0 21 | 5.51 12 | 11.6 27 | 51.5 27 | 5.54 18 | 4.05 8 | 99.9 26 | 2.25 3 | 10.9 7 | 13.6 6 | 6.73 6 | 14.3 26 | 50.4 20 | 11.8 22 | 6.21 29 | 9.26 20 | 5.65 28 | 2.41 12 | 6.03 13 | 4.79 16 |
Epistemic [84] | 17.1 | 8.30 9 | 49.1 52 | 5.87 16 | 5.69 4 | 35.4 10 | 5.40 11 | 7.24 7 | 35.3 10 | 4.99 15 | 3.69 4 | 99.9 26 | 2.32 4 | 11.7 15 | 14.1 12 | 8.75 19 | 15.8 32 | 66.6 32 | 15.0 44 | 5.71 18 | 8.88 14 | 5.09 22 | 2.64 19 | 5.25 5 | 3.68 11 |
FESL [75] | 18.8 | 7.69 2 | 40.2 8 | 4.90 8 | 11.0 50 | 48.5 32 | 9.07 50 | 10.5 19 | 42.1 14 | 6.42 28 | 3.60 2 | 99.9 26 | 2.55 5 | 10.9 7 | 13.6 6 | 8.86 20 | 11.1 11 | 36.4 4 | 10.6 17 | 6.73 40 | 10.2 40 | 5.95 30 | 2.51 16 | 5.37 8 | 3.35 7 |
FC-2Layers-FF [77] | 19.0 | 8.26 8 | 41.4 12 | 6.27 20 | 8.85 28 | 37.9 15 | 7.81 30 | 6.02 6 | 31.8 8 | 6.25 26 | 3.91 7 | 88.8 19 | 2.86 8 | 11.0 10 | 13.7 9 | 7.20 8 | 16.5 40 | 40.4 7 | 16.3 54 | 7.14 47 | 10.7 49 | 6.61 36 | 2.15 3 | 3.87 1 | 2.77 4 |
TC/T-Flow [80] | 19.3 | 9.01 13 | 38.1 2 | 3.81 1 | 6.64 12 | 55.1 45 | 4.62 3 | 8.13 10 | 46.4 23 | 4.20 7 | 5.32 19 | 99.9 26 | 2.88 9 | 11.5 13 | 14.1 12 | 7.28 10 | 8.85 4 | 38.5 6 | 9.44 10 | 5.85 21 | 10.7 49 | 10.0 67 | 3.61 30 | 10.0 31 | 8.53 40 |
LME [72] | 19.5 | 7.85 4 | 42.7 18 | 6.01 18 | 5.33 2 | 34.6 8 | 4.91 6 | 14.6 34 | 54.5 28 | 40.7 63 | 4.66 15 | 73.0 7 | 3.25 15 | 11.5 13 | 13.8 10 | 9.65 38 | 11.6 14 | 70.4 37 | 12.1 24 | 5.14 11 | 9.97 36 | 4.51 15 | 2.86 22 | 6.45 15 | 4.29 14 |
ALD-Flow [68] | 21.2 | 8.18 6 | 41.6 16 | 4.51 4 | 6.32 7 | 54.8 43 | 5.03 8 | 10.7 21 | 61.8 34 | 4.24 9 | 4.24 10 | 99.9 26 | 2.61 6 | 11.7 15 | 14.3 14 | 7.21 9 | 10.8 8 | 61.4 26 | 9.93 15 | 5.96 24 | 9.55 25 | 9.77 66 | 3.87 32 | 15.7 35 | 9.38 50 |
PMF [76] | 21.8 | 9.38 20 | 48.9 51 | 4.67 6 | 7.10 14 | 37.5 13 | 5.58 13 | 7.91 8 | 30.0 6 | 4.06 5 | 4.89 18 | 99.9 26 | 3.29 17 | 10.6 6 | 14.0 11 | 5.76 3 | 12.4 18 | 54.8 22 | 11.5 20 | 11.2 73 | 17.9 87 | 11.1 69 | 2.06 1 | 4.95 4 | 4.00 12 |
Layers++ [37] | 21.9 | 9.07 16 | 44.4 27 | 8.41 40 | 8.47 25 | 31.5 4 | 8.03 36 | 5.85 5 | 37.9 11 | 6.02 23 | 3.76 5 | 62.6 5 | 2.79 7 | 10.5 4 | 13.5 5 | 8.22 15 | 17.6 49 | 55.0 23 | 14.5 41 | 7.44 51 | 10.9 53 | 5.70 29 | 2.27 4 | 4.86 3 | 9.14 44 |
Efficient-NL [60] | 22.8 | 8.40 11 | 43.6 24 | 5.38 11 | 9.12 31 | 37.4 12 | 7.83 31 | 11.1 24 | 56.6 29 | 6.16 24 | 5.71 23 | 99.9 26 | 3.32 18 | 11.3 11 | 14.7 19 | 7.66 11 | 16.6 42 | 37.6 5 | 12.7 31 | 6.93 44 | 10.8 51 | 5.98 31 | 2.89 24 | 5.47 9 | 2.90 5 |
TC-Flow [46] | 22.9 | 8.59 12 | 41.0 11 | 5.12 10 | 5.47 3 | 45.6 26 | 4.31 1 | 10.2 17 | 94.7 44 | 3.49 1 | 6.08 31 | 99.9 26 | 3.50 25 | 11.9 17 | 14.5 16 | 7.90 12 | 11.9 16 | 61.7 27 | 11.5 20 | 5.72 19 | 9.85 32 | 11.5 72 | 4.02 34 | 15.0 33 | 9.14 44 |
IROF++ [58] | 24.8 | 9.29 18 | 45.0 36 | 6.30 21 | 9.55 38 | 43.0 21 | 8.20 41 | 10.8 22 | 43.1 18 | 7.57 37 | 6.28 35 | 99.9 26 | 3.90 34 | 12.2 19 | 14.8 21 | 9.41 33 | 15.2 30 | 44.1 16 | 14.5 41 | 5.27 12 | 9.48 24 | 3.69 5 | 2.62 18 | 6.48 17 | 4.14 13 |
SCR [74] | 24.8 | 9.02 14 | 46.0 39 | 6.24 19 | 9.55 38 | 48.0 30 | 7.99 33 | 7.99 9 | 42.3 16 | 6.18 25 | 4.63 14 | 99.9 26 | 2.99 12 | 12.3 22 | 15.5 34 | 9.34 31 | 13.5 21 | 41.2 10 | 12.4 29 | 6.93 44 | 10.4 44 | 6.61 36 | 2.28 5 | 6.47 16 | 7.37 29 |
Correlation Flow [79] | 24.8 | 9.27 17 | 38.3 3 | 5.40 12 | 6.33 8 | 36.7 11 | 4.85 5 | 18.4 38 | 99.9 49 | 3.58 2 | 4.87 17 | 35.8 1 | 3.47 22 | 12.9 37 | 15.8 42 | 9.17 27 | 16.0 34 | 68.6 33 | 16.5 59 | 6.59 38 | 9.85 32 | 7.93 55 | 2.88 23 | 7.57 25 | 3.06 6 |
CostFilter [40] | 28.0 | 10.5 32 | 46.8 45 | 6.98 25 | 7.51 18 | 38.1 16 | 6.31 22 | 9.22 13 | 29.7 5 | 4.74 13 | 5.86 27 | 99.9 26 | 3.97 37 | 10.9 7 | 14.3 14 | 6.77 7 | 13.4 20 | 56.1 24 | 12.3 26 | 11.6 76 | 20.5 89 | 14.2 77 | 2.12 2 | 8.52 27 | 6.71 25 |
Sparse-NonSparse [56] | 28.1 | 9.96 24 | 44.2 26 | 8.85 46 | 9.39 35 | 50.6 35 | 8.08 38 | 10.1 16 | 43.7 21 | 7.21 33 | 6.10 32 | 88.2 17 | 3.41 21 | 12.5 27 | 15.5 34 | 8.96 21 | 16.3 36 | 41.9 11 | 16.2 52 | 6.48 35 | 9.05 16 | 6.27 33 | 2.33 8 | 7.33 22 | 7.76 35 |
LSM [39] | 28.8 | 10.0 26 | 42.9 19 | 8.48 41 | 9.36 34 | 49.6 33 | 7.99 33 | 10.5 19 | 43.6 19 | 6.80 31 | 5.80 24 | 88.6 18 | 3.38 20 | 12.5 27 | 15.4 32 | 9.03 23 | 16.5 40 | 42.3 14 | 16.3 54 | 6.94 46 | 9.84 29 | 6.71 38 | 2.42 13 | 7.96 26 | 7.72 33 |
Levin3 [90] | 29.1 | 9.04 15 | 42.5 17 | 5.79 15 | 10.1 44 | 52.9 38 | 8.26 43 | 9.05 12 | 43.6 19 | 6.57 29 | 6.10 32 | 78.7 11 | 3.58 28 | 12.5 27 | 15.4 32 | 8.26 16 | 15.9 33 | 40.6 8 | 15.9 50 | 8.10 57 | 11.5 57 | 8.00 57 | 2.43 14 | 6.80 18 | 6.92 27 |
Ramp [62] | 29.4 | 10.2 28 | 44.4 27 | 8.09 37 | 9.47 36 | 46.1 28 | 8.17 40 | 9.51 14 | 42.4 17 | 6.88 32 | 5.40 21 | 99.9 26 | 3.53 26 | 12.5 27 | 15.2 28 | 9.71 39 | 16.7 43 | 42.1 12 | 16.5 59 | 6.76 41 | 10.0 37 | 7.07 43 | 2.46 15 | 5.84 12 | 5.24 17 |
MDP-Flow [26] | 30.7 | 11.2 37 | 43.1 20 | 9.86 57 | 8.14 24 | 35.1 9 | 8.21 42 | 11.2 25 | 42.1 14 | 9.44 45 | 6.41 36 | 99.9 26 | 4.20 41 | 12.2 19 | 14.6 17 | 10.0 44 | 11.7 15 | 63.6 30 | 9.60 12 | 5.56 16 | 10.9 53 | 4.39 10 | 5.78 42 | 99.9 61 | 8.99 41 |
Direct ZNCC [66] | 30.7 | 9.82 23 | 40.1 6 | 5.65 13 | 6.79 13 | 41.6 20 | 5.27 9 | 18.7 39 | 99.9 49 | 3.62 3 | 5.39 20 | 60.4 4 | 3.64 29 | 13.0 40 | 16.3 61 | 9.57 35 | 17.5 47 | 86.8 55 | 17.6 62 | 6.82 42 | 10.1 38 | 8.37 60 | 3.50 27 | 11.2 32 | 3.45 9 |
OFH [38] | 31.0 | 12.6 43 | 43.4 22 | 9.45 53 | 7.30 16 | 64.4 51 | 5.27 9 | 27.6 44 | 99.9 49 | 4.87 14 | 6.60 38 | 99.9 26 | 3.74 31 | 12.4 25 | 14.7 19 | 9.62 37 | 15.5 31 | 74.1 41 | 15.6 48 | 4.60 5 | 9.39 22 | 4.64 16 | 5.39 40 | 26.0 40 | 6.68 24 |
Classic+NL [31] | 31.4 | 10.1 27 | 44.9 34 | 8.90 47 | 9.49 37 | 51.6 37 | 7.87 32 | 9.93 15 | 43.9 22 | 7.31 36 | 6.07 30 | 99.9 26 | 3.78 33 | 12.5 27 | 15.3 30 | 9.06 24 | 17.1 46 | 41.0 9 | 15.8 49 | 7.32 50 | 10.8 51 | 6.80 40 | 2.35 9 | 5.62 11 | 7.69 32 |
TV-L1-MCT [64] | 31.4 | 9.57 22 | 44.7 31 | 8.66 43 | 10.9 49 | 48.1 31 | 9.11 51 | 11.8 28 | 58.1 31 | 6.61 30 | 4.74 16 | 99.9 26 | 3.34 19 | 12.9 37 | 15.2 28 | 9.89 42 | 17.8 52 | 47.8 17 | 16.0 51 | 5.28 13 | 8.09 10 | 7.71 50 | 3.33 26 | 7.26 21 | 7.53 30 |
IROF-TV [53] | 31.5 | 10.4 30 | 44.5 29 | 8.16 38 | 9.69 42 | 51.1 36 | 8.44 46 | 12.6 29 | 46.8 24 | 7.27 35 | 6.80 39 | 87.5 16 | 3.93 36 | 13.0 40 | 15.7 39 | 10.4 46 | 18.3 55 | 86.9 56 | 13.7 36 | 4.44 4 | 7.40 5 | 3.05 4 | 2.60 17 | 7.55 24 | 7.56 31 |
COFM [59] | 31.7 | 9.37 19 | 55.5 69 | 6.86 23 | 7.28 15 | 44.2 24 | 6.17 19 | 14.3 33 | 47.6 26 | 8.22 42 | 4.15 9 | 99.9 26 | 2.23 2 | 13.2 45 | 16.2 59 | 12.2 62 | 17.6 49 | 75.4 43 | 15.5 47 | 6.20 28 | 8.77 13 | 7.35 46 | 3.62 31 | 5.35 7 | 6.43 23 |
NL-TV-NCC [25] | 31.9 | 10.7 34 | 40.8 10 | 6.45 22 | 8.52 26 | 41.1 19 | 6.30 21 | 11.2 25 | 93.6 43 | 4.18 6 | 5.99 29 | 75.9 10 | 4.02 38 | 13.2 45 | 16.2 59 | 10.1 45 | 16.7 43 | 70.9 38 | 16.3 54 | 6.56 37 | 9.91 35 | 7.05 42 | 4.76 38 | 16.9 36 | 3.56 10 |
Adaptive [20] | 32.9 | 10.2 28 | 46.1 40 | 4.95 9 | 9.63 40 | 55.4 46 | 7.80 29 | 36.7 55 | 99.9 49 | 7.64 38 | 6.15 34 | 78.7 11 | 2.96 11 | 12.1 18 | 14.8 21 | 9.09 25 | 12.3 17 | 85.8 54 | 6.06 2 | 8.72 61 | 12.5 66 | 4.97 19 | 3.55 29 | 34.8 44 | 9.13 43 |
Complementary OF [21] | 34.0 | 13.6 48 | 46.2 41 | 9.35 50 | 6.20 6 | 50.4 34 | 4.92 7 | 12.8 30 | 58.8 33 | 5.45 17 | 7.89 43 | 99.9 26 | 5.59 53 | 12.3 22 | 14.6 17 | 9.99 43 | 18.9 57 | 69.9 36 | 14.3 39 | 5.44 14 | 7.80 8 | 7.78 52 | 6.13 44 | 26.9 41 | 9.66 55 |
Occlusion-TV-L1 [63] | 34.5 | 10.4 30 | 44.9 34 | 6.90 24 | 8.77 27 | 53.3 40 | 7.54 26 | 33.8 51 | 99.9 49 | 7.96 39 | 5.88 28 | 99.9 26 | 3.48 24 | 13.6 56 | 16.3 61 | 10.6 49 | 9.50 5 | 80.1 47 | 8.60 8 | 6.12 27 | 8.69 12 | 4.39 10 | 6.52 47 | 99.9 61 | 9.37 47 |
Sparse Occlusion [54] | 34.6 | 9.98 25 | 41.5 15 | 7.82 30 | 9.00 30 | 40.5 18 | 8.28 44 | 13.5 32 | 85.5 40 | 5.96 22 | 5.82 25 | 99.9 26 | 3.90 34 | 13.0 40 | 15.9 43 | 9.77 41 | 13.8 23 | 49.9 19 | 12.3 26 | 13.6 84 | 15.7 82 | 7.81 53 | 3.51 28 | 9.05 28 | 6.42 22 |
SimpleFlow [49] | 35.4 | 11.3 39 | 46.6 43 | 9.79 56 | 10.7 47 | 45.0 25 | 9.15 52 | 23.1 40 | 99.9 49 | 8.38 44 | 8.00 45 | 99.9 26 | 3.72 30 | 12.7 34 | 15.5 34 | 9.36 32 | 16.3 36 | 42.6 15 | 15.3 46 | 5.91 23 | 9.61 26 | 5.39 25 | 2.39 11 | 7.08 20 | 9.41 51 |
ACK-Prior [27] | 36.5 | 10.7 34 | 37.9 1 | 7.90 32 | 6.01 5 | 38.5 17 | 4.80 4 | 10.2 17 | 41.5 12 | 4.35 10 | 4.56 13 | 99.9 26 | 3.75 32 | 13.2 45 | 15.9 43 | 11.3 56 | 27.3 72 | 82.2 50 | 23.1 72 | 11.6 76 | 14.9 79 | 16.2 81 | 6.43 46 | 15.5 34 | 6.11 20 |
EP-PM [83] | 37.8 | 15.3 57 | 41.4 12 | 8.08 36 | 7.60 19 | 33.9 7 | 5.66 16 | 13.0 31 | 47.0 25 | 5.57 19 | 8.73 48 | 99.9 26 | 4.81 50 | 12.6 32 | 15.7 39 | 10.8 51 | 18.6 56 | 62.9 29 | 16.4 57 | 11.9 81 | 12.5 66 | 17.2 82 | 3.20 25 | 7.49 23 | 6.00 19 |
ComplOF-FED-GPU [35] | 38.3 | 13.2 45 | 44.7 31 | 7.95 33 | 9.18 32 | 82.6 63 | 5.63 15 | 15.3 35 | 58.5 32 | 5.67 20 | 7.59 41 | 99.9 26 | 4.68 46 | 12.3 22 | 14.8 21 | 9.20 28 | 18.2 54 | 83.8 51 | 16.4 57 | 7.54 52 | 9.84 29 | 11.1 69 | 5.44 41 | 31.6 43 | 7.74 34 |
TCOF [71] | 42.2 | 13.6 48 | 44.8 33 | 8.02 35 | 9.90 43 | 54.6 42 | 8.02 35 | 31.3 48 | 99.9 49 | 15.4 58 | 6.49 37 | 82.4 13 | 4.76 48 | 14.9 72 | 18.0 76 | 9.50 34 | 9.71 6 | 48.3 18 | 12.6 30 | 10.1 68 | 12.7 68 | 8.96 61 | 4.29 36 | 9.21 29 | 6.80 26 |
F-TV-L1 [15] | 42.2 | 15.6 58 | 47.4 48 | 13.4 68 | 18.8 63 | 99.1 73 | 11.6 57 | 43.1 64 | 99.9 49 | 11.3 51 | 14.7 56 | 99.9 26 | 7.03 60 | 12.2 19 | 14.9 24 | 9.00 22 | 13.5 21 | 99.9 67 | 7.56 5 | 6.41 33 | 10.5 46 | 4.23 8 | 3.91 33 | 80.3 55 | 3.38 8 |
DPOF [18] | 42.4 | 17.4 66 | 49.1 52 | 7.77 29 | 12.3 51 | 45.6 26 | 8.91 49 | 10.9 23 | 26.6 3 | 8.09 41 | 7.81 42 | 99.3 25 | 5.31 52 | 13.5 52 | 16.0 50 | 11.0 54 | 17.5 47 | 61.8 28 | 12.2 25 | 13.1 83 | 10.9 53 | 18.1 83 | 5.04 39 | 9.50 30 | 4.49 15 |
Aniso. Huber-L1 [22] | 42.7 | 11.7 40 | 43.8 25 | 8.16 38 | 13.6 54 | 66.3 52 | 12.0 59 | 35.9 52 | 99.9 49 | 10.5 47 | 10.0 51 | 72.9 6 | 5.00 51 | 13.4 50 | 16.3 61 | 9.61 36 | 15.1 29 | 63.7 31 | 7.96 6 | 8.96 62 | 11.6 59 | 7.95 56 | 4.02 34 | 26.9 41 | 7.97 36 |
SIOF [69] | 43.3 | 10.6 33 | 49.7 56 | 7.01 26 | 14.8 56 | 85.9 66 | 8.40 45 | 49.7 66 | 98.3 48 | 49.2 66 | 12.0 54 | 99.9 26 | 5.88 55 | 13.5 52 | 15.9 43 | 10.8 51 | 16.3 36 | 74.2 42 | 13.6 35 | 5.51 15 | 9.02 15 | 4.42 13 | 6.52 47 | 19.5 37 | 9.85 57 |
TV-L1-improved [17] | 44.2 | 10.9 36 | 45.2 37 | 7.42 27 | 8.12 22 | 54.0 41 | 6.79 23 | 36.5 53 | 99.9 49 | 7.26 34 | 5.84 26 | 99.9 26 | 3.15 14 | 13.2 45 | 15.9 43 | 9.11 26 | 22.1 65 | 99.9 67 | 20.8 67 | 9.59 66 | 13.3 73 | 9.04 62 | 6.19 45 | 88.8 57 | 9.71 56 |
Brox et al. [5] | 45.8 | 16.0 59 | 49.2 54 | 12.0 63 | 12.3 51 | 80.4 61 | 10.3 55 | 23.7 41 | 73.1 37 | 13.2 53 | 24.2 63 | 99.9 26 | 4.23 42 | 14.7 69 | 16.8 67 | 15.4 79 | 10.7 7 | 96.7 61 | 9.71 13 | 5.88 22 | 9.05 16 | 3.01 3 | 8.78 58 | 67.7 51 | 9.37 47 |
CRTflow [88] | 45.9 | 15.0 55 | 46.3 42 | 7.89 31 | 8.87 29 | 54.9 44 | 7.15 24 | 30.1 46 | 99.9 49 | 8.03 40 | 9.30 50 | 99.9 26 | 4.50 45 | 13.0 40 | 15.7 39 | 8.05 14 | 32.5 75 | 99.9 67 | 34.3 81 | 6.62 39 | 9.72 28 | 7.52 48 | 9.30 61 | 99.9 61 | 14.7 67 |
LocallyOriented [52] | 46.7 | 17.0 65 | 55.7 70 | 8.00 34 | 17.0 60 | 82.3 62 | 12.1 61 | 42.4 63 | 99.9 49 | 14.8 56 | 9.13 49 | 89.2 20 | 4.79 49 | 13.4 50 | 16.1 54 | 9.20 28 | 10.8 8 | 58.1 25 | 11.8 22 | 6.89 43 | 10.6 47 | 7.14 45 | 7.78 56 | 74.9 52 | 9.42 52 |
Deep-Matching [85] | 47.8 | 16.7 62 | 50.2 57 | 12.8 65 | 18.3 61 | 82.9 64 | 13.8 63 | 36.6 54 | 99.9 49 | 32.7 61 | 32.0 68 | 99.9 26 | 9.53 67 | 12.4 25 | 15.0 26 | 8.49 17 | 14.0 25 | 73.0 39 | 14.8 43 | 5.08 7 | 7.46 6 | 7.58 49 | 23.3 76 | 99.9 61 | 28.2 76 |
Dynamic MRF [7] | 48.2 | 14.0 52 | 50.7 58 | 9.58 55 | 7.75 20 | 85.7 65 | 5.76 17 | 31.5 49 | 99.9 49 | 5.23 16 | 7.97 44 | 99.9 26 | 4.10 39 | 13.0 40 | 15.6 38 | 10.7 50 | 30.4 74 | 99.9 67 | 29.5 80 | 5.64 17 | 7.52 7 | 9.61 65 | 67.3 84 | 99.9 61 | 66.7 84 |
Classic++ [32] | 48.3 | 11.2 37 | 49.4 55 | 9.13 48 | 9.34 33 | 68.4 54 | 8.11 39 | 30.7 47 | 95.1 46 | 10.2 46 | 5.59 22 | 99.9 26 | 3.47 22 | 13.5 52 | 16.1 54 | 10.4 46 | 19.7 60 | 99.9 67 | 17.6 62 | 8.38 58 | 11.5 57 | 8.30 59 | 7.20 55 | 99.9 61 | 9.54 54 |
SuperFlow [89] | 49.3 | 14.3 53 | 47.0 47 | 9.26 49 | 19.5 64 | 58.7 48 | 17.9 65 | 45.9 65 | 99.9 49 | 56.1 69 | 19.0 61 | 99.9 26 | 5.88 55 | 13.3 49 | 16.1 54 | 12.6 66 | 11.5 13 | 74.0 40 | 8.27 7 | 9.24 63 | 12.9 70 | 4.70 18 | 8.27 57 | 89.2 59 | 8.28 37 |
Rannacher [23] | 49.9 | 13.8 51 | 47.5 49 | 10.8 61 | 10.5 46 | 62.0 50 | 8.84 47 | 41.1 60 | 99.9 49 | 11.0 49 | 8.49 46 | 99.9 26 | 4.28 43 | 13.5 52 | 16.1 54 | 9.72 40 | 22.5 68 | 99.9 67 | 17.0 61 | 7.66 53 | 9.88 34 | 7.82 54 | 4.72 37 | 75.1 53 | 9.37 47 |
CBF [12] | 50.0 | 12.2 42 | 41.4 12 | 8.65 42 | 16.5 58 | 47.1 29 | 16.6 64 | 24.7 42 | 88.1 42 | 12.9 52 | 11.0 53 | 99.9 26 | 4.18 40 | 14.9 72 | 17.5 71 | 14.0 75 | 15.0 28 | 79.8 46 | 8.97 9 | 14.9 86 | 15.1 80 | 15.9 80 | 5.78 42 | 63.0 50 | 10.1 58 |
Local-TV-L1 [65] | 50.1 | 16.5 61 | 52.3 60 | 11.7 62 | 27.7 70 | 96.9 70 | 22.5 69 | 68.8 72 | 99.9 49 | 47.5 64 | 34.6 70 | 99.9 26 | 7.04 61 | 12.6 32 | 15.0 26 | 9.25 30 | 17.7 51 | 84.7 52 | 13.7 36 | 5.09 8 | 7.36 4 | 5.03 21 | 20.7 73 | 88.8 57 | 29.4 78 |
p-harmonic [29] | 50.4 | 15.1 56 | 48.5 50 | 14.1 70 | 10.4 45 | 53.1 39 | 9.31 53 | 41.9 61 | 99.9 49 | 15.1 57 | 19.4 62 | 99.9 26 | 10.6 68 | 12.7 34 | 14.9 24 | 11.8 59 | 18.0 53 | 85.6 53 | 18.4 65 | 7.85 55 | 10.4 44 | 5.46 26 | 6.98 53 | 99.9 61 | 9.28 46 |
CLG-TV [48] | 51.1 | 12.1 41 | 43.5 23 | 9.42 52 | 14.1 55 | 60.9 49 | 13.2 62 | 33.2 50 | 99.9 49 | 11.2 50 | 10.8 52 | 84.7 15 | 5.82 54 | 14.8 71 | 17.9 74 | 12.1 60 | 13.8 23 | 99.9 67 | 11.3 19 | 10.9 71 | 14.2 76 | 9.22 63 | 6.69 50 | 99.9 61 | 8.52 39 |
SegOF [10] | 52.4 | 22.8 74 | 54.8 66 | 15.4 72 | 27.9 71 | 56.0 47 | 27.4 74 | 39.3 57 | 87.9 41 | 33.2 62 | 37.5 71 | 75.4 9 | 22.3 71 | 14.4 67 | 16.3 61 | 14.7 77 | 21.7 63 | 99.9 67 | 24.5 74 | 4.09 2 | 7.28 2 | 2.18 2 | 6.79 51 | 48.3 48 | 6.93 28 |
TriangleFlow [30] | 53.4 | 13.2 45 | 46.8 45 | 9.41 51 | 10.8 48 | 73.2 58 | 7.30 25 | 26.1 43 | 99.9 49 | 5.70 21 | 7.23 40 | 99.9 26 | 4.46 44 | 17.0 82 | 21.3 85 | 15.2 78 | 23.0 69 | 69.8 35 | 22.9 71 | 9.71 67 | 16.1 83 | 9.40 64 | 6.89 52 | 23.8 39 | 11.5 62 |
Bartels [41] | 53.9 | 13.3 47 | 55.0 67 | 10.2 58 | 8.13 23 | 43.2 23 | 7.67 27 | 18.1 37 | 69.0 36 | 6.30 27 | 8.49 46 | 99.9 26 | 6.05 58 | 13.9 61 | 16.1 54 | 13.9 73 | 21.8 64 | 99.9 67 | 21.5 70 | 10.6 70 | 13.5 74 | 20.3 84 | 12.3 66 | 99.9 61 | 26.9 75 |
FastOF [78] | 54.2 | 13.0 44 | 56.9 74 | 13.1 66 | 20.5 66 | 90.6 68 | 12.0 59 | 59.8 69 | 97.7 47 | 69.1 80 | 15.5 57 | 99.9 26 | 9.19 66 | 12.8 36 | 15.3 30 | 11.6 57 | 22.2 66 | 89.1 58 | 19.6 66 | 7.73 54 | 9.68 27 | 6.31 34 | 9.10 59 | 19.7 38 | 9.50 53 |
Fusion [6] | 55.4 | 16.3 60 | 53.8 65 | 12.5 64 | 7.93 21 | 37.7 14 | 7.75 28 | 15.6 36 | 41.8 13 | 13.2 53 | 13.5 55 | 83.1 14 | 7.77 63 | 15.4 75 | 18.5 79 | 14.2 76 | 33.1 76 | 89.0 57 | 24.8 76 | 11.8 79 | 14.7 77 | 8.27 58 | 11.4 65 | 99.9 61 | 13.3 65 |
StereoFlow [44] | 55.4 | 48.0 88 | 74.6 89 | 41.1 87 | 61.0 84 | 99.9 74 | 51.6 83 | 71.4 73 | 99.9 49 | 63.9 73 | 65.6 83 | 99.9 26 | 61.2 83 | 16.2 79 | 15.9 43 | 22.6 84 | 7.22 2 | 77.8 45 | 7.39 4 | 3.38 1 | 7.35 3 | 1.99 1 | 7.18 54 | 99.9 61 | 11.4 61 |
LDOF [28] | 56.5 | 17.9 68 | 53.5 64 | 8.72 44 | 18.7 62 | 92.6 69 | 11.8 58 | 29.5 45 | 67.1 35 | 20.9 60 | 29.0 67 | 99.9 26 | 8.92 65 | 14.2 65 | 16.4 65 | 13.7 71 | 18.9 57 | 97.5 65 | 15.0 44 | 6.26 32 | 10.3 42 | 10.1 68 | 10.4 63 | 99.9 61 | 10.3 59 |
Shiralkar [42] | 57.5 | 16.8 63 | 44.6 30 | 9.46 54 | 16.5 58 | 98.8 72 | 8.05 37 | 42.0 62 | 99.9 49 | 10.8 48 | 18.4 60 | 99.9 26 | 8.02 64 | 12.9 37 | 15.5 34 | 10.4 46 | 30.2 73 | 99.9 67 | 25.1 77 | 11.4 75 | 11.8 62 | 15.8 79 | 22.2 75 | 99.9 61 | 17.5 72 |
Ad-TV-NDC [36] | 58.0 | 31.0 80 | 53.3 63 | 33.1 84 | 70.2 85 | 99.9 74 | 49.0 82 | 93.2 82 | 99.9 49 | 54.0 68 | 38.9 73 | 95.0 23 | 29.4 74 | 13.8 60 | 17.3 70 | 8.71 18 | 14.7 27 | 77.1 44 | 13.0 33 | 6.24 30 | 9.84 29 | 5.19 24 | 46.4 82 | 76.4 54 | 54.0 83 |
Learning Flow [11] | 58.1 | 13.7 50 | 52.8 61 | 7.67 28 | 12.9 53 | 87.1 67 | 10.0 54 | 40.5 59 | 95.0 45 | 13.4 55 | 38.1 72 | 99.9 26 | 4.74 47 | 17.1 84 | 21.7 86 | 12.5 65 | 24.2 71 | 99.9 67 | 13.5 34 | 7.95 56 | 12.7 68 | 6.98 41 | 23.9 77 | 99.9 61 | 14.9 68 |
Filter Flow [19] | 58.5 | 21.6 72 | 57.7 75 | 14.4 71 | 24.6 68 | 77.5 60 | 18.1 66 | 54.3 68 | 80.8 38 | 66.3 77 | 52.8 78 | 91.0 21 | 46.5 79 | 13.6 56 | 16.0 50 | 12.3 63 | 17.0 45 | 69.6 34 | 14.2 38 | 12.0 82 | 16.1 83 | 7.39 47 | 6.58 49 | 37.5 45 | 8.36 38 |
Second-order prior [8] | 59.5 | 14.3 53 | 46.7 44 | 8.79 45 | 15.2 57 | 72.5 57 | 10.5 56 | 39.2 56 | 99.9 49 | 16.6 59 | 17.5 58 | 99.9 26 | 6.01 57 | 14.4 67 | 17.5 71 | 10.8 51 | 38.6 82 | 99.9 67 | 24.7 75 | 11.3 74 | 12.2 64 | 11.2 71 | 9.13 60 | 89.5 60 | 15.6 70 |
GraphCuts [14] | 60.5 | 21.7 73 | 52.8 61 | 10.4 59 | 39.2 76 | 99.9 74 | 23.1 70 | 39.7 58 | 58.0 30 | 49.6 67 | 25.6 65 | 74.6 8 | 7.31 62 | 13.6 56 | 15.9 43 | 13.2 69 | 37.8 79 | 97.6 66 | 16.2 52 | 9.36 64 | 11.4 56 | 11.7 73 | 10.3 62 | 99.9 61 | 15.0 69 |
2D-CLG [1] | 60.8 | 46.1 86 | 67.5 87 | 28.2 81 | 39.5 77 | 77.3 59 | 38.9 79 | 93.9 84 | 99.9 49 | 74.9 83 | 53.6 79 | 99.9 26 | 51.0 81 | 13.9 61 | 15.9 43 | 13.5 70 | 24.0 70 | 99.9 67 | 21.2 68 | 4.28 3 | 7.24 1 | 4.50 14 | 12.7 67 | 99.9 61 | 11.6 63 |
HBpMotionGpu [43] | 61.0 | 19.5 69 | 63.6 82 | 13.5 69 | 31.0 72 | 99.9 74 | 27.4 74 | 99.9 87 | 99.9 49 | 59.3 71 | 18.2 59 | 99.9 26 | 6.69 59 | 13.6 56 | 16.0 50 | 12.4 64 | 16.2 35 | 91.5 59 | 11.1 18 | 11.1 72 | 13.0 71 | 6.73 39 | 21.3 74 | 99.9 61 | 21.6 73 |
SPSA-learn [13] | 61.4 | 23.6 75 | 55.7 70 | 20.1 76 | 32.9 73 | 99.9 74 | 25.2 71 | 91.2 81 | 99.9 49 | 64.5 75 | 49.6 76 | 99.9 26 | 31.2 75 | 14.0 64 | 16.0 50 | 13.0 68 | 19.9 61 | 99.9 67 | 23.3 73 | 6.53 36 | 9.13 18 | 4.40 12 | 15.8 71 | 99.9 61 | 16.5 71 |
IAOF2 [51] | 61.5 | 16.8 63 | 59.5 78 | 10.5 60 | 20.1 65 | 69.0 55 | 18.1 66 | 53.3 67 | 99.9 49 | 56.8 70 | 55.3 81 | 95.0 23 | 54.7 82 | 14.2 65 | 17.2 69 | 11.0 54 | 19.2 59 | 81.1 48 | 14.3 39 | 11.8 79 | 13.2 72 | 13.0 76 | 13.5 68 | 45.0 46 | 9.00 42 |
Modified CLG [34] | 62.8 | 27.9 78 | 58.6 77 | 23.4 78 | 26.5 69 | 71.1 56 | 26.2 73 | 93.4 83 | 99.9 49 | 73.1 81 | 49.2 75 | 99.9 26 | 22.6 72 | 15.2 74 | 18.1 77 | 13.7 71 | 16.3 36 | 99.9 67 | 12.8 32 | 6.43 34 | 10.2 40 | 11.7 73 | 11.3 64 | 99.9 61 | 11.3 60 |
IAOF [50] | 64.1 | 20.6 70 | 55.0 67 | 17.4 73 | 36.6 74 | 99.9 74 | 27.6 76 | 99.9 87 | 99.9 49 | 75.5 84 | 32.7 69 | 93.3 22 | 25.5 73 | 13.9 61 | 16.6 66 | 12.1 60 | 36.5 77 | 92.3 60 | 12.3 26 | 9.40 65 | 11.7 60 | 7.13 44 | 26.2 78 | 47.4 47 | 28.8 77 |
GroupFlow [9] | 65.1 | 27.3 77 | 66.8 85 | 21.6 77 | 41.1 78 | 99.9 74 | 35.1 78 | 71.4 73 | 99.9 49 | 61.8 72 | 25.1 64 | 99.9 26 | 14.4 69 | 14.7 69 | 17.9 74 | 11.7 58 | 40.6 83 | 97.2 64 | 40.6 84 | 5.72 19 | 11.7 60 | 6.48 35 | 16.4 72 | 53.8 49 | 23.0 74 |
Black & Anandan [4] | 65.7 | 21.5 71 | 51.7 59 | 19.8 75 | 38.6 75 | 99.9 74 | 25.8 72 | 81.3 76 | 99.9 49 | 65.5 76 | 50.4 77 | 99.9 26 | 31.6 76 | 15.5 76 | 19.1 83 | 12.8 67 | 22.4 67 | 96.8 63 | 18.2 64 | 10.1 68 | 12.4 65 | 5.16 23 | 13.9 69 | 99.9 61 | 12.9 64 |
Nguyen [33] | 65.8 | 27.2 76 | 56.2 72 | 18.7 74 | 46.7 81 | 99.9 74 | 44.1 81 | 97.7 86 | 99.9 49 | 74.1 82 | 45.7 74 | 99.9 26 | 38.0 77 | 16.4 80 | 17.7 73 | 21.8 83 | 20.8 62 | 99.9 67 | 21.2 68 | 7.21 48 | 9.42 23 | 5.61 27 | 14.6 70 | 99.9 61 | 14.2 66 |
BlockOverlap [61] | 69.8 | 17.6 67 | 56.5 73 | 13.1 66 | 24.0 67 | 66.9 53 | 21.5 68 | 67.6 71 | 99.9 49 | 49.0 65 | 28.2 66 | 99.9 26 | 15.2 70 | 17.6 86 | 18.3 78 | 32.7 87 | 38.1 80 | 81.6 49 | 26.6 78 | 14.5 85 | 15.5 81 | 67.6 89 | 39.8 80 | 82.5 56 | 84.7 85 |
SILK [87] | 72.0 | 33.3 81 | 64.6 83 | 29.2 82 | 46.3 80 | 99.9 74 | 39.4 80 | 95.0 85 | 99.9 49 | 66.5 78 | 56.7 82 | 99.9 26 | 50.2 80 | 16.1 78 | 18.7 81 | 17.2 81 | 48.7 85 | 99.9 67 | 37.3 82 | 7.26 49 | 9.22 19 | 14.5 78 | 70.9 85 | 99.9 61 | 51.7 82 |
Horn & Schunck [3] | 72.3 | 28.8 79 | 57.7 75 | 25.3 79 | 41.1 78 | 99.9 74 | 28.2 77 | 80.0 75 | 99.9 49 | 75.9 85 | 75.5 84 | 99.9 26 | 66.3 84 | 15.7 77 | 18.5 79 | 13.9 73 | 41.9 84 | 99.9 67 | 41.4 85 | 11.6 76 | 13.6 75 | 6.16 32 | 45.4 81 | 99.9 61 | 39.5 80 |
TI-DOFE [24] | 73.4 | 40.2 83 | 61.2 81 | 38.6 86 | 60.2 82 | 99.9 74 | 53.7 84 | 90.4 80 | 99.9 49 | 78.2 87 | 83.9 88 | 99.9 26 | 82.8 88 | 16.6 81 | 19.4 84 | 16.4 80 | 38.1 80 | 99.9 67 | 38.7 83 | 8.51 60 | 10.3 42 | 7.75 51 | 56.3 83 | 99.9 61 | 49.7 81 |
SLK [47] | 76.3 | 53.1 89 | 66.3 84 | 59.5 90 | 60.9 83 | 98.1 71 | 58.6 85 | 89.7 78 | 99.9 49 | 67.7 79 | 99.9 90 | 99.9 26 | 95.1 90 | 17.0 82 | 18.8 82 | 23.5 85 | 56.6 86 | 99.9 67 | 51.2 86 | 8.43 59 | 11.9 63 | 12.2 75 | 99.9 86 | 99.9 61 | 99.9 86 |
Adaptive flow [45] | 77.2 | 34.4 82 | 59.7 79 | 29.7 83 | 84.5 87 | 99.9 74 | 77.7 87 | 87.6 77 | 99.9 49 | 92.8 89 | 54.9 80 | 99.9 26 | 39.3 78 | 20.6 87 | 23.8 88 | 20.9 82 | 37.5 78 | 96.7 61 | 29.2 79 | 35.2 90 | 30.1 90 | 58.6 88 | 38.1 79 | 99.9 61 | 33.0 79 |
PGAM+LK [55] | 77.4 | 43.6 84 | 67.1 86 | 43.7 88 | 73.8 86 | 99.9 74 | 77.5 86 | 61.9 70 | 82.9 39 | 63.9 73 | 76.6 85 | 99.9 26 | 72.5 85 | 17.1 84 | 17.1 68 | 31.6 86 | 66.2 87 | 99.9 67 | 64.8 88 | 18.9 89 | 20.3 88 | 22.1 85 | 99.9 86 | 99.9 61 | 99.9 86 |
Periodicity [86] | 78.3 | 54.4 90 | 84.3 90 | 26.5 80 | 99.9 89 | 99.9 74 | 99.9 89 | 99.9 87 | 99.9 49 | 99.9 90 | 81.4 86 | 99.9 26 | 76.3 86 | 99.9 90 | 99.9 89 | 99.9 90 | 99.9 90 | 99.9 67 | 99.9 90 | 6.06 26 | 14.8 78 | 70.6 90 | 99.9 86 | 99.9 61 | 99.9 86 |
FOLKI [16] | 80.1 | 43.8 85 | 74.4 88 | 38.0 85 | 99.9 89 | 99.9 74 | 99.9 89 | 89.7 78 | 99.9 49 | 76.2 86 | 85.0 89 | 99.9 26 | 81.0 87 | 23.2 88 | 22.5 87 | 38.8 88 | 66.2 87 | 99.9 67 | 62.7 87 | 17.0 88 | 17.6 86 | 42.6 86 | 99.9 86 | 99.9 61 | 99.9 86 |
Pyramid LK [2] | 80.7 | 47.7 87 | 60.7 80 | 56.1 89 | 88.6 88 | 99.9 74 | 91.9 88 | 99.9 87 | 99.9 49 | 89.4 88 | 83.0 87 | 99.9 26 | 83.2 89 | 98.4 89 | 99.9 89 | 87.9 89 | 87.4 89 | 99.9 67 | 81.4 89 | 16.9 87 | 16.6 85 | 57.0 87 | 99.9 86 | 99.9 61 | 99.9 86 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |