Optical flow evaluation results |
Statistics:
Average
SD
R0.5
R1.0
R2.0
A90
A95
A99
Error type: endpoint angle interpolation normalized interpolation |
A90 normalized interpolation error |
avg. |
Mequon (Hidden texture) im0 GT im1 |
Schefflera (Hidden texture) im0 GT im1 |
Urban (Synthetic) im0 GT im1 |
Teddy (Stereo) im0 GT im1 |
Backyard (High-speed camera) im0 GT im1 |
Basketball (High-speed camera) im0 GT im1 |
Dumptruck (High-speed camera) im0 GT im1 |
Evergreen (High-speed camera) im0 GT im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
MDP-Flow2 [70] | 4.4 | 0.88 1 | 0.99 1 | 0.95 1 | 0.82 6 | 1.09 8 | 0.87 5 | 0.86 1 | 0.98 3 | 0.84 1 | 1.41 1 | 1.38 2 | 1.83 3 | 1.45 1 | 1.40 1 | 1.67 14 | 1.41 5 | 1.41 14 | 1.50 16 | 0.86 1 | 1.14 2 | 1.01 3 | 0.93 3 | 1.24 9 | 0.93 3 |
ComplexFlow [81] | 6.4 | 0.88 1 | 1.00 2 | 0.95 1 | 0.80 1 | 1.02 2 | 0.86 1 | 0.86 1 | 0.98 3 | 0.84 1 | 1.43 14 | 1.46 39 | 1.83 3 | 1.45 1 | 1.40 1 | 1.66 5 | 1.41 5 | 1.50 38 | 1.50 16 | 0.86 1 | 1.14 2 | 1.01 3 | 0.93 3 | 1.23 6 | 0.93 3 |
IROF++ [58] | 7.5 | 0.89 7 | 1.06 15 | 0.96 11 | 0.83 11 | 1.12 12 | 0.87 5 | 0.87 3 | 1.04 13 | 0.84 1 | 1.41 1 | 1.37 1 | 1.84 13 | 1.46 5 | 1.42 7 | 1.66 5 | 1.41 5 | 1.39 6 | 1.49 8 | 0.87 14 | 1.18 16 | 1.01 3 | 0.93 3 | 1.25 13 | 0.93 3 |
NN-field [73] | 8.1 | 0.89 7 | 1.04 9 | 0.95 1 | 0.80 1 | 1.02 2 | 0.86 1 | 0.88 26 | 0.97 2 | 0.84 1 | 1.44 26 | 1.49 53 | 1.83 3 | 1.45 1 | 1.40 1 | 1.66 5 | 1.41 5 | 1.44 21 | 1.50 16 | 0.86 1 | 1.14 2 | 1.01 3 | 0.93 3 | 1.22 1 | 0.93 3 |
Layers++ [37] | 9.5 | 0.89 7 | 1.05 13 | 0.96 11 | 0.81 4 | 1.02 2 | 0.87 5 | 0.87 3 | 1.02 6 | 0.84 1 | 1.41 1 | 1.39 7 | 1.83 3 | 1.47 24 | 1.43 20 | 1.67 14 | 1.42 36 | 1.53 42 | 1.50 16 | 0.86 1 | 1.14 2 | 1.01 3 | 0.93 3 | 1.22 1 | 0.93 3 |
nLayers [57] | 9.5 | 0.89 7 | 1.02 6 | 0.96 11 | 0.82 6 | 1.08 7 | 0.87 5 | 0.87 3 | 0.96 1 | 0.84 1 | 1.41 1 | 1.39 7 | 1.84 13 | 1.47 24 | 1.43 20 | 1.67 14 | 1.42 36 | 1.51 41 | 1.50 16 | 0.86 1 | 1.13 1 | 1.01 3 | 0.93 3 | 1.22 1 | 0.92 1 |
TV-L1-MCT [64] | 11.0 | 0.91 34 | 1.12 43 | 0.96 11 | 0.85 23 | 1.22 26 | 0.87 5 | 0.87 3 | 1.04 13 | 0.84 1 | 1.41 1 | 1.39 7 | 1.83 3 | 1.46 5 | 1.43 20 | 1.66 5 | 1.41 5 | 1.39 6 | 1.50 16 | 0.87 14 | 1.18 16 | 1.01 3 | 0.92 1 | 1.22 1 | 0.93 3 |
Sparse-NonSparse [56] | 12.8 | 0.89 7 | 1.06 15 | 0.96 11 | 0.82 6 | 1.11 9 | 0.87 5 | 0.87 3 | 1.03 8 | 0.84 1 | 1.43 14 | 1.40 11 | 1.84 13 | 1.46 5 | 1.42 7 | 1.67 14 | 1.43 43 | 1.55 50 | 1.51 46 | 0.86 1 | 1.17 11 | 1.01 3 | 0.93 3 | 1.26 18 | 0.93 3 |
Epistemic [84] | 14.3 | 0.89 7 | 1.04 9 | 0.96 11 | 0.82 6 | 1.12 12 | 0.86 1 | 0.87 3 | 1.07 27 | 0.84 1 | 1.41 1 | 1.40 11 | 1.83 3 | 1.47 24 | 1.43 20 | 1.68 42 | 1.41 5 | 1.42 19 | 1.50 16 | 0.87 14 | 1.25 59 | 1.01 3 | 0.94 21 | 1.27 25 | 0.93 3 |
SCR [74] | 15.9 | 0.89 7 | 1.08 21 | 0.96 11 | 0.83 11 | 1.11 9 | 0.87 5 | 0.87 3 | 1.02 6 | 0.84 1 | 1.43 14 | 1.40 11 | 1.84 13 | 1.47 24 | 1.43 20 | 1.67 14 | 1.43 43 | 1.57 55 | 1.50 16 | 0.87 14 | 1.20 39 | 1.01 3 | 0.94 21 | 1.26 18 | 0.93 3 |
COFM [59] | 16.0 | 0.89 7 | 1.04 9 | 0.96 11 | 0.83 11 | 1.11 9 | 0.87 5 | 0.87 3 | 1.00 5 | 0.84 1 | 1.41 1 | 1.38 2 | 1.82 1 | 1.46 5 | 1.42 7 | 1.65 1 | 1.41 5 | 1.66 72 | 1.47 2 | 0.87 14 | 1.18 16 | 1.03 70 | 0.95 47 | 1.25 13 | 0.94 66 |
ADF [67] | 16.2 | 0.88 1 | 1.00 2 | 0.96 11 | 0.84 20 | 1.20 24 | 0.87 5 | 0.87 3 | 1.06 23 | 0.84 1 | 1.41 1 | 1.38 2 | 1.83 3 | 1.47 24 | 1.44 46 | 1.68 42 | 1.41 5 | 1.47 29 | 1.48 4 | 0.87 14 | 1.19 28 | 1.01 3 | 0.95 47 | 1.30 49 | 0.93 3 |
LSM [39] | 16.8 | 0.89 7 | 1.09 28 | 0.96 11 | 0.83 11 | 1.13 14 | 0.87 5 | 0.87 3 | 1.07 27 | 0.84 1 | 1.43 14 | 1.41 17 | 1.84 13 | 1.47 24 | 1.43 20 | 1.67 14 | 1.43 43 | 1.57 55 | 1.50 16 | 0.87 14 | 1.18 16 | 1.00 1 | 0.94 21 | 1.27 25 | 0.93 3 |
Levin3 [90] | 18.1 | 0.90 27 | 1.09 28 | 0.96 11 | 0.83 11 | 1.15 17 | 0.87 5 | 0.87 3 | 1.03 8 | 0.84 1 | 1.43 14 | 1.38 2 | 1.86 46 | 1.46 5 | 1.42 7 | 1.66 5 | 1.43 43 | 1.55 50 | 1.51 46 | 0.87 14 | 1.20 39 | 1.01 3 | 0.94 21 | 1.27 25 | 0.93 3 |
LME [72] | 18.2 | 0.88 1 | 1.00 2 | 0.95 1 | 0.85 23 | 1.15 17 | 0.91 56 | 0.87 3 | 1.12 36 | 0.84 1 | 1.41 1 | 1.40 11 | 1.84 13 | 1.48 63 | 1.45 63 | 1.71 78 | 1.41 5 | 1.47 29 | 1.50 16 | 0.86 1 | 1.14 2 | 1.00 1 | 0.93 3 | 1.24 9 | 0.93 3 |
Ramp [62] | 19.3 | 0.90 27 | 1.10 33 | 0.96 11 | 0.83 11 | 1.13 14 | 0.87 5 | 0.87 3 | 1.03 8 | 0.84 1 | 1.41 1 | 1.39 7 | 1.84 13 | 1.47 24 | 1.43 20 | 1.67 14 | 1.45 64 | 1.65 71 | 1.51 46 | 0.87 14 | 1.18 16 | 1.01 3 | 0.94 21 | 1.28 34 | 0.93 3 |
Classic+NL [31] | 20.6 | 0.91 34 | 1.11 37 | 0.96 11 | 0.83 11 | 1.14 16 | 0.87 5 | 0.87 3 | 1.03 8 | 0.84 1 | 1.43 14 | 1.41 17 | 1.85 33 | 1.47 24 | 1.43 20 | 1.67 14 | 1.44 53 | 1.58 57 | 1.51 46 | 0.87 14 | 1.18 16 | 1.01 3 | 0.94 21 | 1.28 34 | 0.93 3 |
Second-order prior [8] | 20.9 | 0.90 27 | 1.07 18 | 0.96 11 | 0.92 50 | 1.39 50 | 0.88 28 | 0.90 57 | 1.26 68 | 0.87 40 | 1.44 26 | 1.44 25 | 1.83 3 | 1.46 5 | 1.41 4 | 1.67 14 | 1.40 3 | 1.39 6 | 1.49 8 | 0.87 14 | 1.17 11 | 1.01 3 | 0.93 3 | 1.27 25 | 0.93 3 |
Aniso. Huber-L1 [22] | 21.1 | 0.91 34 | 1.12 43 | 0.98 48 | 0.94 54 | 1.42 57 | 0.89 45 | 0.88 26 | 1.07 27 | 0.84 1 | 1.44 26 | 1.43 24 | 1.84 13 | 1.46 5 | 1.41 4 | 1.67 14 | 1.40 3 | 1.41 14 | 1.48 4 | 0.87 14 | 1.17 11 | 1.01 3 | 0.94 21 | 1.25 13 | 0.93 3 |
MDP-Flow [26] | 21.4 | 0.89 7 | 1.04 9 | 0.96 11 | 0.83 11 | 1.15 17 | 0.88 28 | 0.87 3 | 1.04 13 | 0.84 1 | 1.46 42 | 1.48 47 | 1.85 33 | 1.46 5 | 1.42 7 | 1.68 42 | 1.44 53 | 1.75 81 | 1.51 46 | 0.87 14 | 1.18 16 | 1.01 3 | 0.93 3 | 1.26 18 | 0.93 3 |
OFLADF [82] | 21.4 | 0.88 1 | 1.01 5 | 0.95 1 | 0.81 4 | 1.04 5 | 0.87 5 | 0.87 3 | 1.04 13 | 0.84 1 | 1.41 1 | 1.38 2 | 1.83 3 | 1.47 24 | 1.44 46 | 1.68 42 | 1.43 43 | 1.68 74 | 1.50 16 | 0.88 51 | 1.26 61 | 1.01 3 | 0.96 57 | 1.30 49 | 0.93 3 |
IROF-TV [53] | 21.9 | 0.91 34 | 1.12 43 | 0.96 11 | 0.83 11 | 1.15 17 | 0.87 5 | 0.88 26 | 1.21 56 | 0.84 1 | 1.43 14 | 1.42 22 | 1.86 46 | 1.47 24 | 1.44 46 | 1.69 64 | 1.41 5 | 1.48 32 | 1.48 4 | 0.87 14 | 1.19 28 | 1.01 3 | 0.93 3 | 1.25 13 | 0.93 3 |
FESL [75] | 22.7 | 0.91 34 | 1.08 21 | 0.96 11 | 0.84 20 | 1.15 17 | 0.87 5 | 0.87 3 | 1.05 19 | 0.84 1 | 1.43 14 | 1.41 17 | 1.84 13 | 1.47 24 | 1.44 46 | 1.68 42 | 1.44 53 | 1.64 68 | 1.51 46 | 0.87 14 | 1.18 16 | 1.01 3 | 0.94 21 | 1.28 34 | 0.93 3 |
FC-2Layers-FF [77] | 23.3 | 0.90 27 | 1.09 28 | 0.96 11 | 0.80 1 | 1.01 1 | 0.88 28 | 0.87 3 | 1.04 13 | 0.84 1 | 1.42 12 | 1.40 11 | 1.85 33 | 1.47 24 | 1.44 46 | 1.68 42 | 1.45 64 | 1.68 74 | 1.51 46 | 0.87 14 | 1.19 28 | 1.01 3 | 0.94 21 | 1.27 25 | 0.93 3 |
Efficient-NL [60] | 23.3 | 0.90 27 | 1.08 21 | 0.96 11 | 0.85 23 | 1.22 26 | 0.87 5 | 0.89 40 | 1.05 19 | 0.87 40 | 1.43 14 | 1.41 17 | 1.83 3 | 1.46 5 | 1.42 7 | 1.67 14 | 1.42 36 | 1.61 65 | 1.49 8 | 0.87 14 | 1.21 47 | 1.01 3 | 0.96 57 | 1.31 55 | 0.93 3 |
Brox et al. [5] | 24.1 | 0.90 27 | 1.07 18 | 0.96 11 | 0.89 36 | 1.30 36 | 0.89 45 | 0.89 40 | 1.22 62 | 0.87 40 | 1.44 26 | 1.42 22 | 1.84 13 | 1.47 24 | 1.43 20 | 1.68 42 | 1.41 5 | 1.45 24 | 1.50 16 | 0.87 14 | 1.20 39 | 1.01 3 | 0.93 3 | 1.24 9 | 0.93 3 |
p-harmonic [29] | 24.8 | 0.89 7 | 1.07 18 | 0.96 11 | 0.93 52 | 1.41 53 | 0.89 45 | 0.88 26 | 1.22 62 | 0.87 40 | 1.46 42 | 1.48 47 | 1.85 33 | 1.47 24 | 1.43 20 | 1.67 14 | 1.41 5 | 1.40 10 | 1.50 16 | 0.87 14 | 1.19 28 | 1.01 3 | 0.93 3 | 1.26 18 | 0.93 3 |
DPOF [18] | 25.7 | 0.91 34 | 1.18 74 | 0.97 45 | 0.82 6 | 1.06 6 | 0.88 28 | 0.89 40 | 1.05 19 | 0.87 40 | 1.44 26 | 1.45 29 | 1.85 33 | 1.46 5 | 1.42 7 | 1.67 14 | 1.41 5 | 1.49 34 | 1.49 8 | 0.87 14 | 1.18 16 | 1.02 49 | 0.95 47 | 1.28 34 | 0.93 3 |
EP-PM [83] | 25.8 | 0.88 1 | 1.02 6 | 0.95 1 | 0.85 23 | 1.22 26 | 0.87 5 | 0.90 57 | 1.26 68 | 0.87 40 | 1.43 14 | 1.45 29 | 1.84 13 | 1.46 5 | 1.43 20 | 1.67 14 | 1.43 43 | 1.54 46 | 1.51 46 | 0.87 14 | 1.22 50 | 1.02 49 | 0.94 21 | 1.27 25 | 0.93 3 |
FastOF [78] | 25.9 | 0.92 59 | 1.10 33 | 0.98 48 | 0.94 54 | 1.36 44 | 0.95 62 | 0.90 57 | 1.28 74 | 0.87 40 | 1.45 38 | 1.45 29 | 1.82 1 | 1.46 5 | 1.42 7 | 1.67 14 | 1.41 5 | 1.34 3 | 1.50 16 | 0.86 1 | 1.16 10 | 1.01 3 | 0.93 3 | 1.25 13 | 0.93 3 |
Sparse Occlusion [54] | 26.3 | 0.91 34 | 1.12 43 | 0.96 11 | 0.89 36 | 1.37 45 | 0.87 5 | 0.87 3 | 1.06 23 | 0.84 1 | 1.44 26 | 1.45 29 | 1.84 13 | 1.47 24 | 1.43 20 | 1.67 14 | 1.43 43 | 1.60 61 | 1.51 46 | 0.87 14 | 1.20 39 | 1.01 3 | 0.95 47 | 1.30 49 | 0.93 3 |
ComplOF-FED-GPU [35] | 26.5 | 0.89 7 | 1.10 33 | 0.96 11 | 0.85 23 | 1.25 30 | 0.88 28 | 0.91 64 | 1.18 51 | 0.87 40 | 1.44 26 | 1.47 43 | 1.85 33 | 1.46 5 | 1.43 20 | 1.68 42 | 1.41 5 | 1.49 34 | 1.50 16 | 0.87 14 | 1.20 39 | 1.01 3 | 0.94 21 | 1.29 44 | 0.93 3 |
TC/T-Flow [80] | 27.1 | 0.91 34 | 1.09 28 | 0.96 11 | 0.86 32 | 1.26 32 | 0.87 5 | 0.87 3 | 1.08 31 | 0.84 1 | 1.44 26 | 1.45 29 | 1.85 33 | 1.47 24 | 1.44 46 | 1.68 42 | 1.41 5 | 1.46 27 | 1.50 16 | 0.88 51 | 1.24 57 | 1.02 49 | 0.94 21 | 1.29 44 | 0.93 3 |
Deep-Matching [85] | 27.5 | 0.91 34 | 1.06 15 | 0.97 45 | 0.90 43 | 1.32 39 | 0.93 58 | 0.88 26 | 1.18 51 | 0.84 1 | 1.46 42 | 1.45 29 | 1.86 46 | 1.47 24 | 1.42 7 | 1.69 64 | 1.43 43 | 1.32 1 | 1.53 71 | 0.86 1 | 1.15 7 | 1.01 3 | 0.92 1 | 1.23 6 | 0.93 3 |
ALD-Flow [68] | 27.8 | 0.91 34 | 1.11 37 | 0.98 48 | 0.86 32 | 1.28 34 | 0.89 45 | 0.88 26 | 1.17 48 | 0.84 1 | 1.43 14 | 1.45 29 | 1.86 46 | 1.47 24 | 1.43 20 | 1.69 64 | 1.41 5 | 1.40 10 | 1.51 46 | 0.86 1 | 1.15 7 | 1.01 3 | 0.95 47 | 1.29 44 | 0.93 3 |
SIOF [69] | 28.0 | 0.91 34 | 1.13 53 | 0.97 45 | 0.97 65 | 1.47 63 | 0.94 61 | 0.88 26 | 1.12 36 | 0.85 32 | 1.44 26 | 1.46 39 | 1.85 33 | 1.45 1 | 1.41 4 | 1.66 5 | 1.41 5 | 1.41 14 | 1.50 16 | 0.86 1 | 1.17 11 | 1.01 3 | 0.95 47 | 1.30 49 | 0.93 3 |
PMF [76] | 28.2 | 0.89 7 | 1.02 6 | 0.95 1 | 0.85 23 | 1.18 23 | 0.86 1 | 0.89 40 | 1.21 56 | 0.86 36 | 1.42 12 | 1.40 11 | 1.84 13 | 1.47 24 | 1.44 46 | 1.67 14 | 1.44 53 | 1.45 24 | 1.54 75 | 0.87 14 | 1.19 28 | 1.02 49 | 0.96 57 | 1.32 62 | 0.93 3 |
CLG-TV [48] | 28.4 | 0.91 34 | 1.12 43 | 0.98 48 | 0.93 52 | 1.40 51 | 0.89 45 | 0.89 40 | 1.19 54 | 0.87 40 | 1.45 38 | 1.45 29 | 1.86 46 | 1.46 5 | 1.42 7 | 1.68 42 | 1.41 5 | 1.37 4 | 1.50 16 | 0.87 14 | 1.18 16 | 1.01 3 | 0.94 21 | 1.27 25 | 0.93 3 |
SuperFlow [89] | 30.7 | 0.91 34 | 1.08 21 | 0.98 48 | 0.92 50 | 1.32 39 | 0.97 67 | 0.89 40 | 1.14 40 | 0.87 40 | 1.46 42 | 1.44 25 | 1.86 46 | 1.47 24 | 1.43 20 | 1.69 64 | 1.39 1 | 1.33 2 | 1.49 8 | 0.87 14 | 1.21 47 | 1.02 49 | 0.93 3 | 1.24 9 | 0.93 3 |
TC-Flow [46] | 31.4 | 0.89 7 | 1.09 28 | 0.96 11 | 0.86 32 | 1.31 38 | 0.88 28 | 0.89 40 | 1.17 48 | 0.84 1 | 1.45 38 | 1.47 43 | 1.87 57 | 1.48 63 | 1.44 46 | 1.68 42 | 1.43 43 | 1.53 42 | 1.51 46 | 0.87 14 | 1.18 16 | 1.01 3 | 0.94 21 | 1.29 44 | 0.93 3 |
TCOF [71] | 33.7 | 0.91 34 | 1.11 37 | 0.96 11 | 0.96 60 | 1.48 64 | 0.89 45 | 0.87 3 | 1.05 19 | 0.84 1 | 1.44 26 | 1.45 29 | 1.86 46 | 1.47 24 | 1.43 20 | 1.67 14 | 1.42 36 | 1.59 58 | 1.49 8 | 0.87 14 | 1.22 50 | 1.01 3 | 0.97 70 | 1.34 70 | 0.94 66 |
OFH [38] | 35.2 | 0.91 34 | 1.11 37 | 0.96 11 | 0.89 36 | 1.34 42 | 0.88 28 | 0.89 40 | 1.26 68 | 0.85 32 | 1.44 26 | 1.48 47 | 1.84 13 | 1.47 24 | 1.44 46 | 1.67 14 | 1.42 36 | 1.54 46 | 1.50 16 | 0.88 51 | 1.27 62 | 1.02 49 | 0.94 21 | 1.32 62 | 0.93 3 |
LDOF [28] | 35.5 | 0.93 62 | 1.12 43 | 1.00 61 | 0.94 54 | 1.30 36 | 0.97 67 | 0.90 57 | 1.24 67 | 0.87 40 | 1.46 42 | 1.50 62 | 1.87 57 | 1.47 24 | 1.42 7 | 1.68 42 | 1.41 5 | 1.38 5 | 1.50 16 | 0.87 14 | 1.20 39 | 1.01 3 | 0.94 21 | 1.27 25 | 0.93 3 |
IAOF [50] | 35.6 | 0.95 75 | 1.15 61 | 1.01 74 | 1.16 84 | 1.70 89 | 1.00 72 | 0.88 26 | 1.14 40 | 0.87 40 | 1.48 60 | 1.45 29 | 1.85 33 | 1.46 5 | 1.42 7 | 1.67 14 | 1.41 5 | 1.47 29 | 1.49 8 | 0.87 14 | 1.19 28 | 1.01 3 | 0.94 21 | 1.28 34 | 0.93 3 |
Modified CLG [34] | 36.5 | 0.91 34 | 1.08 21 | 1.00 61 | 1.04 73 | 1.49 67 | 1.03 76 | 0.90 57 | 1.33 77 | 0.87 40 | 1.46 42 | 1.49 53 | 1.85 33 | 1.47 24 | 1.43 20 | 1.68 42 | 1.41 5 | 1.48 32 | 1.50 16 | 0.87 14 | 1.19 28 | 1.01 3 | 0.94 21 | 1.28 34 | 0.93 3 |
Fusion [6] | 37.4 | 0.89 7 | 1.14 57 | 0.96 11 | 0.85 23 | 1.20 24 | 0.88 28 | 0.88 26 | 1.06 23 | 0.87 40 | 1.47 56 | 1.50 62 | 1.84 13 | 1.47 24 | 1.46 75 | 1.65 1 | 1.41 5 | 1.71 78 | 1.47 2 | 0.89 68 | 1.29 67 | 1.02 49 | 0.99 80 | 1.35 75 | 0.93 3 |
Classic++ [32] | 37.6 | 0.91 34 | 1.13 53 | 0.98 48 | 0.89 36 | 1.35 43 | 0.88 28 | 0.89 40 | 1.18 51 | 0.86 36 | 1.47 56 | 1.49 53 | 1.87 57 | 1.47 24 | 1.43 20 | 1.67 14 | 1.46 70 | 1.55 50 | 1.54 75 | 0.87 14 | 1.20 39 | 1.01 3 | 0.94 21 | 1.28 34 | 0.93 3 |
CostFilter [40] | 37.7 | 0.89 7 | 1.05 13 | 0.95 1 | 0.84 20 | 1.17 22 | 0.87 5 | 0.89 40 | 1.27 72 | 0.87 40 | 1.44 26 | 1.44 25 | 1.84 13 | 1.48 63 | 1.45 63 | 1.68 42 | 1.48 77 | 1.46 27 | 1.58 84 | 0.88 51 | 1.22 50 | 1.02 49 | 0.95 47 | 1.33 65 | 0.93 3 |
Complementary OF [21] | 38.7 | 0.89 7 | 1.12 43 | 0.96 11 | 0.85 23 | 1.25 30 | 0.88 28 | 0.93 69 | 1.14 40 | 0.87 40 | 1.46 42 | 1.50 62 | 1.86 46 | 1.47 24 | 1.44 46 | 1.67 14 | 1.42 36 | 1.54 46 | 1.50 16 | 0.88 51 | 1.28 64 | 1.02 49 | 0.96 57 | 1.40 82 | 0.93 3 |
Local-TV-L1 [65] | 40.0 | 0.94 68 | 1.14 57 | 1.01 74 | 0.98 66 | 1.43 59 | 0.96 65 | 0.87 3 | 1.08 31 | 0.84 1 | 1.50 68 | 1.46 39 | 1.97 80 | 1.47 24 | 1.43 20 | 1.69 64 | 1.50 86 | 1.40 10 | 1.61 87 | 0.87 14 | 1.19 28 | 1.01 3 | 0.93 3 | 1.23 6 | 0.93 3 |
F-TV-L1 [15] | 40.5 | 0.93 62 | 1.16 68 | 1.00 61 | 0.96 60 | 1.45 62 | 0.91 56 | 0.89 40 | 1.22 62 | 0.87 40 | 1.46 42 | 1.49 53 | 1.87 57 | 1.46 5 | 1.43 20 | 1.66 5 | 1.41 5 | 1.41 14 | 1.51 46 | 0.87 14 | 1.21 47 | 1.02 49 | 0.94 21 | 1.26 18 | 0.94 66 |
SimpleFlow [49] | 41.8 | 0.91 34 | 1.12 43 | 0.96 11 | 0.88 35 | 1.29 35 | 0.88 28 | 0.92 67 | 1.10 34 | 0.87 40 | 1.43 14 | 1.41 17 | 1.85 33 | 1.47 24 | 1.43 20 | 1.67 14 | 1.45 64 | 1.79 82 | 1.51 46 | 0.89 68 | 1.58 87 | 1.03 70 | 0.96 57 | 1.36 76 | 0.93 3 |
CBF [12] | 42.9 | 0.91 34 | 1.10 33 | 0.98 48 | 0.89 36 | 1.33 41 | 0.89 45 | 0.88 26 | 1.07 27 | 0.85 32 | 1.48 60 | 1.46 39 | 1.95 77 | 1.47 24 | 1.43 20 | 1.72 80 | 1.41 5 | 1.44 21 | 1.50 16 | 0.88 51 | 1.24 57 | 1.03 70 | 0.97 70 | 1.28 34 | 0.97 84 |
Occlusion-TV-L1 [63] | 43.5 | 0.91 34 | 1.12 43 | 0.98 48 | 0.94 54 | 1.48 64 | 0.89 45 | 0.89 40 | 1.21 56 | 0.87 40 | 1.48 60 | 1.53 72 | 1.87 57 | 1.47 24 | 1.42 7 | 1.68 42 | 1.44 53 | 1.50 38 | 1.53 71 | 0.88 51 | 1.19 28 | 1.02 49 | 0.94 21 | 1.29 44 | 0.93 3 |
CRTflow [88] | 43.9 | 0.91 34 | 1.15 61 | 0.98 48 | 0.91 46 | 1.40 51 | 0.88 28 | 0.93 69 | 1.29 75 | 0.89 73 | 1.46 42 | 1.47 43 | 1.90 73 | 1.47 24 | 1.44 46 | 1.68 42 | 1.41 5 | 1.41 14 | 1.51 46 | 0.87 14 | 1.22 50 | 1.02 49 | 0.94 21 | 1.28 34 | 0.94 66 |
Black & Anandan [4] | 44.2 | 0.94 68 | 1.15 61 | 1.00 61 | 1.06 75 | 1.53 77 | 0.98 69 | 0.94 74 | 1.26 68 | 0.88 69 | 1.48 60 | 1.49 53 | 1.84 13 | 1.47 24 | 1.44 46 | 1.69 64 | 1.41 5 | 1.39 6 | 1.50 16 | 0.88 51 | 1.22 50 | 1.01 3 | 0.94 21 | 1.27 25 | 0.93 3 |
2D-CLG [1] | 44.9 | 0.94 68 | 1.11 37 | 1.02 76 | 1.11 79 | 1.52 74 | 1.08 83 | 0.94 74 | 1.27 72 | 0.89 73 | 1.50 68 | 1.51 69 | 1.84 13 | 1.47 24 | 1.43 20 | 1.68 42 | 1.41 5 | 1.50 38 | 1.50 16 | 0.88 51 | 1.30 68 | 1.01 3 | 0.93 3 | 1.26 18 | 0.93 3 |
Nguyen [33] | 46.8 | 1.00 79 | 1.14 57 | 1.07 81 | 1.15 82 | 1.59 81 | 1.04 77 | 0.90 57 | 1.37 78 | 0.87 40 | 1.51 72 | 1.52 71 | 1.85 33 | 1.47 24 | 1.43 20 | 1.67 14 | 1.41 5 | 1.49 34 | 1.48 4 | 0.88 51 | 1.36 74 | 1.02 49 | 0.93 3 | 1.28 34 | 0.93 3 |
Adaptive [20] | 47.0 | 0.92 59 | 1.16 68 | 0.98 48 | 0.96 60 | 1.49 67 | 0.89 45 | 0.89 40 | 1.17 48 | 0.87 40 | 1.45 38 | 1.47 43 | 1.86 46 | 1.48 63 | 1.44 46 | 1.68 42 | 1.44 53 | 1.54 46 | 1.52 62 | 0.88 51 | 1.23 55 | 1.01 3 | 0.95 47 | 1.31 55 | 0.93 3 |
Shiralkar [42] | 47.7 | 0.91 34 | 1.14 57 | 0.96 11 | 0.94 54 | 1.41 53 | 0.88 28 | 0.91 64 | 1.48 81 | 0.88 69 | 1.52 73 | 1.59 78 | 1.84 13 | 1.46 5 | 1.44 46 | 1.65 1 | 1.45 64 | 1.60 61 | 1.52 62 | 0.89 68 | 1.38 79 | 1.02 49 | 0.94 21 | 1.34 70 | 0.93 3 |
IAOF2 [51] | 48.5 | 0.94 68 | 1.19 75 | 1.00 61 | 0.99 68 | 1.55 78 | 0.95 62 | 0.88 26 | 1.15 43 | 0.87 40 | 1.49 64 | 1.50 62 | 1.87 57 | 1.49 72 | 1.47 79 | 1.67 14 | 1.43 43 | 1.61 65 | 1.50 16 | 0.87 14 | 1.19 28 | 1.01 3 | 0.96 57 | 1.33 65 | 0.93 3 |
Correlation Flow [79] | 48.6 | 0.89 7 | 1.08 21 | 0.95 1 | 0.90 43 | 1.41 53 | 0.88 28 | 0.88 26 | 1.06 23 | 0.84 1 | 1.46 42 | 1.44 25 | 1.89 70 | 1.50 77 | 1.45 63 | 1.77 87 | 1.48 77 | 1.85 84 | 1.53 71 | 0.90 78 | 1.37 76 | 1.03 70 | 0.97 70 | 1.34 70 | 0.93 3 |
GraphCuts [14] | 50.1 | 0.95 75 | 1.23 78 | 1.00 61 | 0.91 46 | 1.26 32 | 0.98 69 | 1.00 83 | 1.04 13 | 0.89 73 | 1.49 64 | 1.50 62 | 1.88 66 | 1.46 5 | 1.43 20 | 1.65 1 | 1.39 1 | 1.53 42 | 1.46 1 | 0.89 68 | 1.31 71 | 1.03 70 | 0.97 70 | 1.33 65 | 0.94 66 |
TriangleFlow [30] | 50.2 | 0.92 59 | 1.15 61 | 0.98 48 | 0.91 46 | 1.37 45 | 0.88 28 | 0.90 57 | 1.13 39 | 0.87 40 | 1.47 56 | 1.49 53 | 1.88 66 | 1.46 5 | 1.43 20 | 1.66 5 | 1.44 53 | 1.64 68 | 1.50 16 | 0.89 68 | 1.36 74 | 1.03 70 | 0.98 76 | 1.41 85 | 0.94 66 |
HBpMotionGpu [43] | 50.6 | 0.98 78 | 1.25 80 | 1.04 78 | 1.10 77 | 1.61 83 | 1.05 80 | 0.87 3 | 1.08 31 | 0.86 36 | 1.50 68 | 1.56 74 | 1.90 73 | 1.47 24 | 1.44 46 | 1.67 14 | 1.44 53 | 1.56 54 | 1.52 62 | 0.86 1 | 1.15 7 | 1.01 3 | 0.96 57 | 1.31 55 | 0.95 78 |
Direct ZNCC [66] | 52.0 | 0.89 7 | 1.11 37 | 0.95 1 | 0.90 43 | 1.41 53 | 0.87 5 | 0.89 40 | 1.12 36 | 0.87 40 | 1.47 56 | 1.50 62 | 1.89 70 | 1.49 72 | 1.45 63 | 1.74 85 | 1.47 73 | 1.86 85 | 1.52 62 | 0.90 78 | 1.39 81 | 1.03 70 | 0.96 57 | 1.34 70 | 0.93 3 |
LocallyOriented [52] | 53.3 | 0.93 62 | 1.15 61 | 1.00 61 | 0.98 66 | 1.50 70 | 0.93 58 | 0.91 64 | 1.20 55 | 0.87 40 | 1.49 64 | 1.54 73 | 1.88 66 | 1.47 24 | 1.44 46 | 1.67 14 | 1.49 81 | 1.60 61 | 1.57 82 | 0.88 51 | 1.23 55 | 1.01 3 | 0.96 57 | 1.32 62 | 0.93 3 |
Ad-TV-NDC [36] | 55.6 | 1.03 82 | 1.20 76 | 1.11 82 | 1.10 77 | 1.52 74 | 1.04 77 | 0.88 26 | 1.15 43 | 0.86 36 | 1.53 77 | 1.49 53 | 1.93 75 | 1.49 72 | 1.45 63 | 1.70 75 | 1.46 70 | 1.40 10 | 1.55 79 | 0.87 14 | 1.20 39 | 1.01 3 | 0.95 47 | 1.26 18 | 0.94 66 |
ACK-Prior [27] | 55.9 | 0.89 7 | 1.08 21 | 0.96 11 | 0.85 23 | 1.24 29 | 0.87 5 | 0.93 69 | 1.11 35 | 0.87 40 | 1.46 42 | 1.48 47 | 1.86 46 | 1.51 80 | 1.47 79 | 1.73 83 | 1.49 81 | 1.70 77 | 1.55 79 | 0.91 83 | 1.30 68 | 1.06 86 | 1.03 88 | 1.40 82 | 0.96 81 |
BlockOverlap [61] | 56.8 | 0.96 77 | 1.13 53 | 1.03 77 | 1.00 70 | 1.42 57 | 1.02 75 | 0.89 40 | 1.03 8 | 0.87 40 | 1.52 73 | 1.48 47 | 2.02 84 | 1.50 77 | 1.45 63 | 1.74 85 | 1.49 81 | 1.45 24 | 1.59 85 | 0.88 51 | 1.17 11 | 1.05 83 | 0.94 21 | 1.22 1 | 0.96 81 |
TV-L1-improved [17] | 57.4 | 0.91 34 | 1.15 61 | 0.98 48 | 0.96 60 | 1.50 70 | 0.89 45 | 0.93 69 | 1.15 43 | 0.88 69 | 1.46 42 | 1.50 62 | 1.87 57 | 1.48 63 | 1.45 63 | 1.68 42 | 1.44 53 | 1.59 58 | 1.52 62 | 0.89 68 | 1.39 81 | 1.02 49 | 0.96 57 | 1.31 55 | 0.94 66 |
Dynamic MRF [7] | 57.6 | 0.90 27 | 1.16 68 | 0.96 11 | 0.89 36 | 1.44 60 | 0.88 28 | 0.95 77 | 1.53 85 | 0.89 73 | 1.59 82 | 1.68 85 | 1.96 78 | 1.47 24 | 1.45 63 | 1.67 14 | 1.47 73 | 1.97 87 | 1.53 71 | 0.90 78 | 1.47 84 | 1.02 49 | 0.96 57 | 1.34 70 | 0.93 3 |
SegOF [10] | 57.7 | 0.93 62 | 1.12 43 | 1.00 61 | 0.95 59 | 1.37 45 | 0.96 65 | 0.97 80 | 1.30 76 | 0.89 73 | 1.49 64 | 1.63 82 | 1.85 33 | 1.48 63 | 1.44 46 | 1.68 42 | 1.44 53 | 1.74 80 | 1.51 46 | 0.91 83 | 1.57 85 | 1.03 70 | 0.94 21 | 1.30 49 | 0.93 3 |
StereoFlow [44] | 58.5 | 1.14 87 | 1.49 89 | 1.12 83 | 1.22 85 | 1.67 85 | 1.07 82 | 0.88 26 | 1.23 66 | 0.85 32 | 1.46 42 | 1.49 53 | 1.86 46 | 1.59 89 | 1.67 88 | 1.70 75 | 1.49 81 | 2.18 90 | 1.50 16 | 0.86 1 | 1.18 16 | 1.01 3 | 1.00 81 | 1.45 86 | 0.93 3 |
Rannacher [23] | 60.4 | 0.91 34 | 1.17 72 | 0.98 48 | 0.96 60 | 1.51 72 | 0.89 45 | 0.93 69 | 1.22 62 | 0.88 69 | 1.46 42 | 1.51 69 | 1.88 66 | 1.48 63 | 1.45 63 | 1.68 42 | 1.45 64 | 1.62 67 | 1.52 62 | 0.89 68 | 1.37 76 | 1.02 49 | 0.96 57 | 1.33 65 | 0.94 66 |
SPSA-learn [13] | 61.5 | 0.94 68 | 1.16 68 | 1.00 61 | 1.00 70 | 1.44 60 | 0.98 69 | 0.95 77 | 1.21 56 | 0.89 73 | 1.50 68 | 1.48 47 | 1.84 13 | 1.48 63 | 1.46 75 | 1.69 64 | 1.42 36 | 1.59 58 | 1.50 16 | 0.94 89 | 2.17 90 | 1.05 83 | 1.00 81 | 1.66 88 | 0.93 3 |
Filter Flow [19] | 61.8 | 0.94 68 | 1.15 61 | 1.00 61 | 1.05 74 | 1.49 67 | 1.06 81 | 0.89 40 | 1.15 43 | 0.87 40 | 1.52 73 | 1.49 53 | 1.93 75 | 1.49 72 | 1.45 63 | 1.71 78 | 1.44 53 | 1.49 34 | 1.52 62 | 0.88 51 | 1.27 62 | 1.02 49 | 0.98 76 | 1.33 65 | 0.96 81 |
Horn & Schunck [3] | 61.8 | 0.94 68 | 1.17 72 | 1.00 61 | 1.08 76 | 1.57 80 | 1.00 72 | 0.98 81 | 1.46 80 | 0.91 82 | 1.55 80 | 1.58 77 | 1.87 57 | 1.48 63 | 1.45 63 | 1.69 64 | 1.41 5 | 1.44 21 | 1.50 16 | 0.89 68 | 1.31 71 | 1.02 49 | 0.96 57 | 1.31 55 | 0.94 66 |
TI-DOFE [24] | 62.0 | 1.07 84 | 1.24 79 | 1.14 85 | 1.25 86 | 1.67 85 | 1.13 86 | 0.96 79 | 1.50 83 | 0.89 73 | 1.59 82 | 1.59 78 | 1.89 70 | 1.47 24 | 1.45 63 | 1.68 42 | 1.41 5 | 1.43 20 | 1.49 8 | 0.88 51 | 1.28 64 | 1.02 49 | 0.97 70 | 1.31 55 | 0.94 66 |
NL-TV-NCC [25] | 64.8 | 0.91 34 | 1.13 53 | 0.96 11 | 0.89 36 | 1.37 45 | 0.88 28 | 0.92 67 | 1.21 56 | 0.87 40 | 1.53 77 | 1.59 78 | 1.96 78 | 1.53 85 | 1.47 79 | 1.83 89 | 1.46 70 | 1.72 79 | 1.52 62 | 0.91 83 | 1.30 68 | 1.07 89 | 1.01 86 | 1.37 77 | 0.97 84 |
Bartels [41] | 68.1 | 0.93 62 | 1.20 76 | 1.00 61 | 0.91 46 | 1.38 49 | 0.95 62 | 0.89 40 | 1.15 43 | 0.89 73 | 1.54 79 | 1.57 75 | 2.06 86 | 1.53 85 | 1.46 75 | 1.83 89 | 1.67 89 | 1.67 73 | 1.79 90 | 0.88 51 | 1.19 28 | 1.07 89 | 0.98 76 | 1.30 49 | 1.00 89 |
SILK [87] | 70.7 | 1.00 79 | 1.27 83 | 1.05 80 | 1.14 80 | 1.60 82 | 1.04 77 | 1.02 84 | 1.52 84 | 0.93 83 | 1.60 84 | 1.61 81 | 1.98 82 | 1.49 72 | 1.46 75 | 1.69 64 | 1.52 87 | 1.53 42 | 1.62 88 | 0.88 51 | 1.28 64 | 1.03 70 | 0.95 47 | 1.31 55 | 0.93 3 |
GroupFlow [9] | 72.6 | 1.00 79 | 1.37 86 | 1.04 78 | 1.02 72 | 1.48 64 | 1.00 72 | 1.05 86 | 1.60 86 | 0.96 86 | 1.52 73 | 1.63 82 | 1.87 57 | 1.52 83 | 1.53 87 | 1.69 64 | 1.48 77 | 2.05 88 | 1.52 62 | 0.89 68 | 1.38 79 | 1.02 49 | 0.98 76 | 1.47 87 | 0.92 1 |
Learning Flow [11] | 75.2 | 0.93 62 | 1.25 80 | 1.00 61 | 0.99 68 | 1.52 74 | 0.93 58 | 0.98 81 | 1.48 81 | 0.89 73 | 1.58 81 | 1.65 84 | 1.97 80 | 1.52 83 | 1.50 82 | 1.73 83 | 1.47 73 | 1.64 68 | 1.54 75 | 0.89 68 | 1.34 73 | 1.03 70 | 1.01 86 | 1.40 82 | 0.95 78 |
SLK [47] | 75.8 | 1.05 83 | 1.26 82 | 1.13 84 | 1.15 82 | 1.51 72 | 1.10 84 | 1.07 87 | 1.62 87 | 0.94 85 | 1.73 86 | 1.79 86 | 2.01 83 | 1.50 77 | 1.50 82 | 1.66 5 | 1.45 64 | 1.69 76 | 1.51 46 | 0.93 87 | 1.57 85 | 1.04 80 | 0.97 70 | 1.39 80 | 0.94 66 |
Adaptive flow [45] | 80.5 | 1.12 86 | 1.32 84 | 1.19 87 | 1.26 87 | 1.66 84 | 1.25 88 | 0.94 74 | 1.21 56 | 0.93 83 | 1.61 85 | 1.57 75 | 2.04 85 | 1.53 85 | 1.51 85 | 1.72 80 | 1.49 81 | 1.91 86 | 1.54 75 | 0.90 78 | 1.25 59 | 1.06 86 | 1.00 81 | 1.37 77 | 0.97 84 |
FOLKI [16] | 83.0 | 1.20 88 | 1.37 86 | 1.32 89 | 1.27 88 | 1.69 88 | 1.18 87 | 1.04 85 | 1.76 89 | 1.00 88 | 1.81 88 | 1.79 86 | 2.23 89 | 1.51 80 | 1.51 85 | 1.70 75 | 1.48 77 | 1.55 50 | 1.57 82 | 0.91 83 | 1.42 83 | 1.05 83 | 1.00 81 | 1.37 77 | 0.97 84 |
PGAM+LK [55] | 83.5 | 1.11 85 | 1.44 88 | 1.17 86 | 1.14 80 | 1.55 78 | 1.12 85 | 1.07 87 | 1.65 88 | 0.96 86 | 1.79 87 | 1.84 88 | 2.20 88 | 1.51 80 | 1.50 82 | 1.72 80 | 1.53 88 | 1.80 83 | 1.60 86 | 0.90 78 | 1.37 76 | 1.04 80 | 1.00 81 | 1.39 80 | 0.97 84 |
Pyramid LK [2] | 84.2 | 1.25 90 | 1.32 84 | 1.38 90 | 1.39 89 | 1.68 87 | 1.35 89 | 1.49 89 | 1.38 79 | 1.22 89 | 2.22 90 | 3.01 90 | 2.39 90 | 1.58 88 | 1.67 88 | 1.69 64 | 1.47 73 | 1.60 61 | 1.55 79 | 0.93 87 | 1.60 88 | 1.04 80 | 1.09 89 | 1.90 90 | 0.95 78 |
Periodicity [86] | 89.2 | 1.21 89 | 1.59 90 | 1.29 88 | 1.65 90 | 1.80 90 | 1.47 90 | 1.61 90 | 2.64 90 | 1.37 90 | 1.90 89 | 3.00 89 | 2.16 87 | 1.68 90 | 1.80 90 | 1.80 88 | 1.71 90 | 2.09 89 | 1.78 89 | 0.94 89 | 1.72 89 | 1.06 86 | 1.15 90 | 1.71 89 | 1.04 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |