Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
R2.5 angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 9.2 | 20.0 2 | 43.3 2 | 13.0 2 | 15.9 8 | 45.3 18 | 16.1 12 | 12.5 3 | 34.1 7 | 12.8 8 | 9.68 13 | 32.0 7 | 7.01 15 | 23.3 3 | 30.0 3 | 16.2 3 | 22.0 17 | 45.4 6 | 23.8 37 | 25.8 11 | 44.8 4 | 17.6 14 | 4.37 6 | 14.4 20 | 0.48 1 |
NN-field [73] | 10.0 | 22.1 5 | 44.0 3 | 14.6 3 | 18.4 19 | 47.3 25 | 19.2 21 | 12.5 3 | 32.9 5 | 14.0 11 | 6.57 1 | 28.2 3 | 3.57 1 | 23.4 4 | 30.1 4 | 15.9 2 | 17.9 6 | 36.8 1 | 15.8 3 | 35.9 34 | 51.5 21 | 27.4 32 | 4.58 9 | 15.3 23 | 0.55 2 |
TC/T-Flow [80] | 13.3 | 19.9 1 | 46.9 9 | 10.2 1 | 16.0 9 | 47.8 27 | 13.9 4 | 13.0 6 | 36.6 13 | 11.1 3 | 8.90 9 | 35.0 22 | 6.10 8 | 27.2 11 | 35.7 13 | 21.0 10 | 15.7 2 | 47.2 11 | 15.8 3 | 21.0 4 | 39.2 1 | 42.1 56 | 7.86 30 | 19.5 30 | 10.9 37 |
Epistemic [84] | 13.3 | 20.0 2 | 46.3 6 | 14.8 4 | 16.6 11 | 40.3 4 | 18.5 19 | 11.7 2 | 33.6 6 | 10.9 2 | 7.09 3 | 35.2 23 | 4.45 4 | 27.6 12 | 36.0 16 | 21.4 12 | 21.5 14 | 54.1 30 | 20.2 17 | 31.8 27 | 56.8 43 | 16.2 8 | 5.46 18 | 12.8 15 | 7.47 22 |
ALD-Flow [68] | 13.7 | 21.6 4 | 46.0 5 | 15.9 5 | 15.5 7 | 41.3 6 | 15.6 9 | 13.1 7 | 35.2 8 | 12.2 4 | 8.17 8 | 33.4 12 | 5.35 6 | 28.1 16 | 37.3 22 | 20.3 7 | 16.4 3 | 47.4 12 | 16.0 5 | 26.5 13 | 45.4 5 | 41.8 54 | 8.39 34 | 22.3 38 | 11.3 39 |
nLayers [57] | 14.4 | 22.7 7 | 40.3 1 | 18.4 8 | 27.2 58 | 45.9 20 | 30.4 59 | 15.7 19 | 35.4 10 | 21.4 43 | 8.12 7 | 26.6 2 | 6.21 9 | 22.5 1 | 29.0 2 | 15.5 1 | 19.9 10 | 40.8 3 | 17.8 7 | 31.3 24 | 52.6 28 | 16.9 12 | 4.26 4 | 11.2 6 | 5.84 5 |
ADF [67] | 14.9 | 25.2 10 | 56.2 29 | 20.2 10 | 17.4 14 | 42.2 8 | 17.8 15 | 14.8 11 | 38.1 19 | 16.8 17 | 7.32 4 | 37.2 26 | 4.06 2 | 28.5 17 | 37.4 23 | 20.4 9 | 19.7 9 | 48.6 15 | 16.2 6 | 33.0 28 | 51.1 19 | 29.2 34 | 4.65 11 | 12.3 12 | 6.38 10 |
OFLADF [82] | 15.0 | 29.6 26 | 47.4 11 | 24.8 15 | 17.8 16 | 40.9 5 | 18.3 17 | 11.6 1 | 26.9 1 | 13.2 10 | 11.5 28 | 29.3 5 | 8.97 35 | 23.7 5 | 30.9 5 | 16.5 4 | 22.2 21 | 41.5 4 | 19.3 10 | 30.2 19 | 50.6 17 | 32.9 37 | 5.94 21 | 13.8 17 | 8.44 29 |
MDP-Flow2 [70] | 16.0 | 35.3 32 | 55.4 28 | 30.2 28 | 14.2 2 | 39.7 3 | 14.2 6 | 13.6 8 | 31.4 2 | 12.9 9 | 12.2 30 | 34.1 19 | 8.19 28 | 27.7 13 | 35.0 11 | 22.1 13 | 22.4 24 | 45.4 6 | 21.5 26 | 27.1 14 | 54.1 31 | 16.5 9 | 5.87 20 | 14.0 18 | 4.25 3 |
TC-Flow [46] | 17.4 | 24.4 9 | 52.2 23 | 22.6 13 | 11.8 1 | 38.8 2 | 11.2 1 | 12.7 5 | 35.7 11 | 9.84 1 | 9.88 14 | 34.9 21 | 7.49 22 | 28.9 23 | 38.6 27 | 21.2 11 | 20.6 12 | 52.1 22 | 21.6 27 | 22.6 7 | 47.1 9 | 36.3 43 | 9.05 36 | 21.5 36 | 12.4 42 |
Layers++ [37] | 17.5 | 28.0 24 | 48.8 14 | 30.9 29 | 23.3 42 | 45.6 19 | 25.5 45 | 13.7 9 | 31.4 2 | 18.1 22 | 8.08 6 | 24.9 1 | 5.87 7 | 22.9 2 | 28.1 1 | 19.6 6 | 22.2 21 | 46.3 9 | 20.7 18 | 39.6 45 | 55.9 40 | 35.0 40 | 4.16 3 | 9.78 2 | 6.81 14 |
LME [72] | 19.0 | 31.5 28 | 51.4 20 | 21.0 12 | 14.7 4 | 36.9 1 | 15.7 10 | 16.0 22 | 35.2 8 | 19.8 35 | 11.8 29 | 36.6 25 | 8.08 27 | 28.6 20 | 36.0 16 | 25.5 27 | 21.1 13 | 49.0 16 | 19.8 13 | 29.8 18 | 50.0 15 | 21.5 26 | 6.61 24 | 15.1 21 | 7.95 25 |
FC-2Layers-FF [77] | 20.2 | 26.9 15 | 48.6 13 | 28.3 24 | 22.1 33 | 48.8 30 | 23.8 32 | 14.1 10 | 32.4 4 | 19.6 31 | 9.10 10 | 28.3 4 | 6.47 11 | 25.5 6 | 31.7 6 | 23.0 18 | 23.3 28 | 47.7 13 | 21.8 28 | 44.1 56 | 56.3 42 | 46.0 64 | 3.54 1 | 9.08 1 | 5.44 4 |
IROF++ [58] | 20.7 | 27.4 20 | 50.7 17 | 26.7 18 | 22.1 33 | 50.1 39 | 24.1 33 | 16.3 24 | 40.0 25 | 19.6 31 | 10.6 24 | 34.3 20 | 7.72 24 | 27.9 15 | 35.7 13 | 22.5 15 | 22.3 23 | 54.1 30 | 19.9 14 | 25.5 10 | 49.6 14 | 11.5 5 | 5.49 19 | 14.1 19 | 6.54 12 |
Sparse-NonSparse [56] | 20.8 | 26.8 13 | 51.9 22 | 26.8 19 | 22.2 36 | 49.0 32 | 24.6 38 | 15.6 16 | 39.4 23 | 19.0 24 | 9.46 12 | 33.6 14 | 7.07 17 | 29.0 24 | 37.2 21 | 24.3 22 | 21.7 16 | 50.4 19 | 19.5 12 | 34.0 30 | 45.8 7 | 41.6 53 | 4.44 8 | 10.9 4 | 6.96 18 |
COFM [59] | 21.2 | 22.1 5 | 49.1 15 | 16.6 6 | 18.2 17 | 43.5 11 | 19.2 21 | 15.9 21 | 38.3 21 | 21.5 44 | 7.02 2 | 32.6 8 | 4.40 3 | 31.4 29 | 37.9 24 | 35.0 50 | 22.1 18 | 46.4 10 | 18.3 8 | 28.7 17 | 45.9 8 | 45.5 61 | 9.25 37 | 15.5 25 | 15.7 47 |
FESL [75] | 21.8 | 27.0 16 | 46.3 6 | 31.2 30 | 26.0 50 | 51.8 48 | 26.9 48 | 15.8 20 | 37.0 14 | 19.5 30 | 7.89 5 | 30.7 6 | 5.17 5 | 26.6 9 | 33.8 9 | 22.6 16 | 20.3 11 | 45.8 8 | 19.3 10 | 39.9 47 | 61.2 54 | 35.6 41 | 5.04 16 | 12.5 14 | 6.48 11 |
Efficient-NL [60] | 22.3 | 23.3 8 | 44.7 4 | 17.6 7 | 24.6 46 | 51.6 47 | 25.4 43 | 15.0 12 | 36.2 12 | 17.5 20 | 9.92 15 | 33.1 11 | 6.94 14 | 26.4 8 | 34.0 10 | 20.3 7 | 27.2 42 | 49.4 18 | 22.6 33 | 37.6 39 | 50.5 16 | 37.1 44 | 6.98 27 | 16.2 27 | 8.16 26 |
SCR [74] | 22.6 | 26.8 13 | 46.9 9 | 26.8 19 | 23.1 41 | 51.1 42 | 25.4 43 | 15.5 13 | 37.0 14 | 21.0 42 | 9.36 11 | 32.9 9 | 6.55 12 | 28.5 17 | 35.9 15 | 25.0 24 | 22.1 18 | 49.0 16 | 19.9 14 | 41.9 50 | 55.1 36 | 45.4 60 | 4.38 7 | 10.9 4 | 6.68 13 |
LSM [39] | 23.1 | 26.5 12 | 50.8 18 | 27.0 21 | 22.1 33 | 49.4 34 | 24.4 36 | 15.6 16 | 38.2 20 | 19.4 29 | 10.1 16 | 33.0 10 | 7.43 20 | 28.6 20 | 36.3 18 | 24.7 23 | 22.8 26 | 50.5 20 | 20.9 20 | 40.3 48 | 49.3 13 | 45.8 63 | 4.76 13 | 12.0 9 | 6.93 17 |
Levin3 [90] | 24.0 | 25.3 11 | 46.4 8 | 22.6 13 | 22.8 39 | 51.3 44 | 24.7 41 | 15.5 13 | 37.0 14 | 19.0 24 | 10.5 22 | 33.9 18 | 7.43 20 | 27.8 14 | 35.3 12 | 23.6 19 | 23.3 28 | 52.1 22 | 21.2 23 | 45.9 59 | 54.3 33 | 47.0 67 | 4.77 14 | 12.1 10 | 6.23 9 |
Classic+NL [31] | 24.1 | 27.2 19 | 47.8 12 | 28.4 25 | 22.0 32 | 49.4 34 | 24.1 33 | 15.5 13 | 37.4 17 | 19.8 35 | 10.4 21 | 33.8 16 | 7.40 19 | 28.5 17 | 36.4 19 | 24.2 21 | 23.3 28 | 52.2 24 | 21.1 21 | 43.9 53 | 52.5 25 | 44.6 59 | 4.60 10 | 11.2 6 | 7.04 19 |
Ramp [62] | 24.4 | 27.0 16 | 52.3 24 | 26.1 17 | 22.3 37 | 49.1 33 | 24.6 38 | 15.6 16 | 37.8 18 | 19.8 35 | 10.5 22 | 33.6 14 | 7.61 23 | 28.6 20 | 36.6 20 | 24.0 20 | 23.6 31 | 51.2 21 | 21.8 28 | 38.2 40 | 44.5 3 | 46.1 65 | 4.86 15 | 12.1 10 | 7.13 20 |
SimpleFlow [49] | 28.3 | 28.6 25 | 51.6 21 | 29.5 27 | 25.0 47 | 51.3 44 | 28.2 52 | 18.6 33 | 43.0 29 | 23.3 48 | 10.1 16 | 33.5 13 | 7.04 16 | 29.9 25 | 37.9 24 | 26.2 29 | 27.8 47 | 52.2 24 | 24.0 38 | 35.1 33 | 47.9 11 | 29.7 36 | 4.66 12 | 12.4 13 | 6.92 16 |
PMF [76] | 29.0 | 37.7 36 | 58.3 32 | 27.3 23 | 19.4 21 | 45.0 17 | 18.3 17 | 16.2 23 | 39.9 24 | 14.0 11 | 13.6 35 | 35.7 24 | 8.03 26 | 25.8 7 | 32.5 7 | 17.1 5 | 30.2 51 | 57.0 38 | 31.6 53 | 58.9 77 | 74.7 79 | 55.9 78 | 3.95 2 | 10.3 3 | 6.15 8 |
Correlation Flow [79] | 29.4 | 36.6 34 | 55.3 27 | 34.4 35 | 16.6 11 | 44.4 15 | 14.8 8 | 18.3 31 | 42.9 28 | 12.7 7 | 12.4 31 | 39.7 33 | 8.46 31 | 32.2 31 | 40.6 31 | 25.2 25 | 29.0 48 | 54.2 32 | 29.7 50 | 39.1 42 | 52.1 24 | 47.4 68 | 6.53 23 | 16.1 26 | 6.88 15 |
IROF-TV [53] | 29.7 | 30.9 27 | 54.8 26 | 31.6 31 | 22.8 39 | 50.5 40 | 25.1 42 | 16.9 26 | 40.8 26 | 20.8 41 | 14.0 37 | 43.7 45 | 10.1 37 | 31.2 28 | 39.5 28 | 28.6 36 | 26.8 41 | 58.7 45 | 25.6 41 | 18.8 3 | 48.4 12 | 8.08 4 | 5.28 17 | 13.6 16 | 7.77 24 |
TV-L1-MCT [64] | 29.7 | 27.5 21 | 49.4 16 | 27.0 21 | 26.5 53 | 52.8 53 | 27.8 51 | 16.8 25 | 39.1 22 | 21.8 45 | 10.6 24 | 33.8 16 | 7.82 25 | 30.3 26 | 38.1 26 | 28.7 37 | 24.7 36 | 53.4 29 | 23.4 36 | 27.4 15 | 52.5 25 | 19.4 19 | 7.28 28 | 15.3 23 | 11.4 40 |
Occlusion-TV-L1 [63] | 30.2 | 34.3 30 | 58.5 33 | 25.1 16 | 20.0 24 | 46.5 23 | 20.8 25 | 22.3 46 | 49.9 41 | 20.6 40 | 12.6 32 | 41.7 40 | 8.41 30 | 35.2 39 | 44.9 46 | 32.3 45 | 17.7 5 | 52.6 28 | 21.1 21 | 28.2 16 | 52.5 25 | 13.0 6 | 9.66 38 | 23.7 41 | 10.6 35 |
Adaptive [20] | 30.3 | 27.0 16 | 52.6 25 | 19.8 9 | 21.9 31 | 47.8 27 | 22.6 29 | 20.5 38 | 47.8 40 | 19.7 33 | 10.3 19 | 39.9 34 | 6.31 10 | 45.6 78 | 52.6 77 | 51.3 76 | 17.4 4 | 48.2 14 | 13.9 2 | 34.8 32 | 56.9 45 | 19.8 22 | 6.04 22 | 15.2 22 | 7.54 23 |
Direct ZNCC [66] | 33.1 | 37.7 36 | 58.1 31 | 35.3 37 | 16.3 10 | 44.2 14 | 14.6 7 | 18.4 32 | 44.1 31 | 12.6 5 | 12.7 33 | 38.0 28 | 8.93 34 | 35.1 38 | 44.0 42 | 29.5 41 | 29.8 50 | 57.5 41 | 30.9 52 | 39.6 45 | 52.0 23 | 49.0 70 | 8.28 33 | 21.0 34 | 8.34 27 |
MDP-Flow [26] | 33.2 | 35.5 33 | 65.0 40 | 32.4 32 | 20.6 26 | 43.8 12 | 24.4 36 | 18.0 29 | 43.4 30 | 19.9 38 | 14.9 44 | 41.8 41 | 11.5 44 | 30.8 27 | 39.6 29 | 25.3 26 | 23.8 32 | 57.4 40 | 22.2 30 | 31.0 22 | 59.3 50 | 16.8 11 | 10.8 44 | 26.5 44 | 10.9 37 |
Classic++ [32] | 33.4 | 27.7 22 | 51.0 19 | 28.7 26 | 21.5 30 | 45.9 20 | 24.3 35 | 18.1 30 | 44.3 32 | 19.9 38 | 10.3 19 | 37.7 27 | 7.14 18 | 33.4 34 | 44.1 43 | 27.9 34 | 24.0 34 | 57.9 42 | 21.4 25 | 46.3 63 | 55.6 38 | 49.7 71 | 8.45 35 | 20.7 32 | 9.69 34 |
OFH [38] | 33.4 | 41.9 46 | 61.6 36 | 48.5 53 | 14.7 4 | 42.7 9 | 14.1 5 | 17.4 27 | 47.6 38 | 12.6 5 | 10.6 24 | 38.5 30 | 8.39 29 | 34.8 37 | 43.7 41 | 34.5 48 | 27.2 42 | 61.9 55 | 29.5 49 | 21.3 5 | 57.6 46 | 21.4 25 | 12.2 48 | 29.8 51 | 16.2 48 |
CostFilter [40] | 37.2 | 43.6 50 | 65.7 42 | 40.8 44 | 20.8 27 | 45.9 20 | 21.0 26 | 18.8 34 | 44.9 34 | 18.3 23 | 17.3 51 | 39.5 32 | 13.9 53 | 26.7 10 | 32.8 8 | 22.7 17 | 30.9 54 | 60.0 50 | 31.6 53 | 59.7 78 | 81.5 87 | 59.3 80 | 4.31 5 | 11.9 8 | 5.93 6 |
TV-L1-improved [17] | 39.5 | 27.7 22 | 57.9 30 | 20.5 11 | 18.2 17 | 44.9 16 | 19.1 20 | 19.4 35 | 47.7 39 | 17.0 19 | 10.1 16 | 38.5 30 | 6.75 13 | 35.9 45 | 46.0 51 | 27.3 31 | 43.7 79 | 70.2 76 | 47.5 80 | 51.4 70 | 60.5 52 | 50.3 73 | 10.3 41 | 26.8 47 | 10.8 36 |
Sparse Occlusion [54] | 40.2 | 38.6 38 | 61.8 37 | 32.5 33 | 26.0 50 | 48.8 30 | 29.5 57 | 20.0 36 | 45.2 35 | 19.2 27 | 14.3 40 | 38.4 29 | 9.67 36 | 34.4 36 | 42.6 36 | 26.7 30 | 25.4 38 | 52.4 26 | 22.4 32 | 67.3 85 | 75.9 83 | 48.3 69 | 8.07 31 | 19.9 31 | 7.36 21 |
Complementary OF [21] | 43.5 | 51.9 62 | 74.9 61 | 59.3 63 | 14.2 2 | 41.6 7 | 13.7 2 | 20.4 37 | 46.6 36 | 19.7 33 | 22.2 60 | 40.8 36 | 21.0 62 | 36.0 46 | 43.4 39 | 38.5 58 | 33.9 60 | 63.8 57 | 31.6 53 | 31.1 23 | 51.9 22 | 36.2 42 | 18.9 59 | 34.4 63 | 29.4 62 |
EP-PM [83] | 44.5 | 43.1 48 | 72.4 53 | 38.1 43 | 18.7 20 | 52.5 51 | 16.9 14 | 21.3 41 | 56.2 52 | 17.5 20 | 16.2 47 | 45.3 50 | 12.7 50 | 33.4 34 | 39.6 29 | 30.0 42 | 33.5 58 | 65.4 62 | 33.8 58 | 45.5 57 | 66.1 68 | 65.5 84 | 6.88 26 | 18.1 28 | 9.16 32 |
Aniso. Huber-L1 [22] | 44.7 | 33.9 29 | 65.1 41 | 32.8 34 | 34.0 62 | 54.0 59 | 40.0 62 | 27.9 57 | 55.0 49 | 38.4 62 | 15.2 45 | 49.9 55 | 12.0 46 | 35.3 40 | 44.6 44 | 28.5 35 | 23.9 33 | 55.9 36 | 20.7 18 | 50.6 68 | 62.1 57 | 39.7 49 | 8.15 32 | 20.7 32 | 8.39 28 |
Deep-Matching [85] | 45.6 | 52.7 63 | 75.7 63 | 73.2 70 | 26.1 52 | 50.6 41 | 28.6 54 | 32.8 64 | 63.0 64 | 38.6 63 | 21.4 58 | 45.6 51 | 18.3 57 | 31.5 30 | 42.1 35 | 22.4 14 | 18.9 8 | 55.5 35 | 18.4 9 | 25.3 9 | 45.7 6 | 34.1 39 | 25.2 71 | 38.8 70 | 35.0 69 |
TCOF [71] | 46.3 | 45.0 53 | 70.0 47 | 51.5 56 | 25.5 49 | 53.7 56 | 26.7 47 | 26.7 53 | 56.2 52 | 32.0 58 | 21.9 59 | 43.1 44 | 22.2 64 | 37.8 54 | 48.9 64 | 25.7 28 | 18.8 7 | 44.7 5 | 20.0 16 | 52.1 72 | 67.5 70 | 25.8 29 | 10.7 43 | 26.7 45 | 11.4 40 |
Rannacher [23] | 46.4 | 43.1 48 | 71.0 51 | 45.2 49 | 24.1 45 | 49.4 34 | 26.4 46 | 26.0 52 | 56.9 55 | 26.0 53 | 14.2 39 | 42.7 42 | 10.5 41 | 37.1 52 | 47.9 59 | 30.7 44 | 32.3 55 | 65.2 61 | 27.0 45 | 44.0 55 | 56.0 41 | 39.7 49 | 7.83 29 | 21.2 35 | 9.19 33 |
ACK-Prior [27] | 46.4 | 55.9 65 | 72.7 55 | 59.3 63 | 17.5 15 | 43.3 10 | 16.0 11 | 17.8 28 | 42.3 27 | 16.3 16 | 17.6 52 | 41.3 38 | 12.0 46 | 35.3 40 | 41.1 32 | 35.9 51 | 37.4 71 | 59.6 48 | 34.3 59 | 59.8 80 | 61.1 53 | 74.7 87 | 17.7 57 | 29.2 49 | 27.4 60 |
LDOF [28] | 46.5 | 41.7 45 | 70.7 48 | 47.2 52 | 24.0 44 | 53.9 58 | 24.6 38 | 26.7 53 | 58.4 60 | 25.5 52 | 15.8 46 | 57.4 63 | 10.2 39 | 36.0 46 | 45.3 49 | 34.8 49 | 22.1 18 | 58.1 43 | 21.3 24 | 30.6 20 | 56.8 43 | 23.4 27 | 22.5 66 | 38.6 69 | 30.2 63 |
ComplOF-FED-GPU [35] | 46.5 | 49.5 58 | 75.7 63 | 55.3 59 | 15.3 6 | 47.0 24 | 13.8 3 | 21.1 40 | 52.7 44 | 16.1 13 | 17.1 50 | 40.6 35 | 14.2 54 | 35.7 44 | 45.1 48 | 32.5 46 | 35.3 62 | 67.5 68 | 34.4 61 | 46.5 64 | 59.0 49 | 50.8 74 | 12.8 50 | 29.6 50 | 16.6 51 |
F-TV-L1 [15] | 48.1 | 66.8 73 | 84.2 72 | 77.3 74 | 27.1 56 | 52.0 49 | 29.1 56 | 27.2 55 | 57.3 56 | 24.2 51 | 24.1 63 | 52.0 57 | 19.5 60 | 39.3 60 | 47.7 58 | 39.3 60 | 24.2 35 | 56.5 37 | 24.9 39 | 33.2 29 | 53.7 30 | 20.1 24 | 6.69 25 | 18.6 29 | 5.94 7 |
LocallyOriented [52] | 48.2 | 39.4 39 | 60.5 34 | 35.7 38 | 27.9 59 | 57.8 68 | 28.5 53 | 28.1 59 | 58.3 59 | 30.6 57 | 13.9 36 | 41.3 38 | 10.1 37 | 37.8 54 | 47.3 56 | 33.0 47 | 24.8 37 | 52.5 27 | 28.1 47 | 39.4 44 | 62.4 58 | 37.5 45 | 15.7 54 | 33.0 56 | 18.2 54 |
SIOF [69] | 48.3 | 50.3 60 | 66.0 43 | 47.1 51 | 19.8 23 | 48.4 29 | 20.7 24 | 29.8 62 | 55.1 50 | 32.6 60 | 25.9 64 | 48.3 54 | 25.0 65 | 37.7 53 | 46.4 53 | 36.8 54 | 32.9 56 | 58.6 44 | 35.6 64 | 37.2 38 | 53.1 29 | 18.6 16 | 16.8 56 | 33.0 56 | 21.3 55 |
Brox et al. [5] | 48.7 | 43.7 51 | 74.4 59 | 56.4 61 | 27.0 55 | 52.5 51 | 30.5 60 | 23.4 49 | 54.5 47 | 23.3 48 | 13.4 34 | 50.0 56 | 8.66 33 | 39.8 63 | 46.5 54 | 47.6 72 | 21.6 15 | 59.8 49 | 22.8 35 | 30.9 21 | 59.3 50 | 7.61 3 | 23.1 69 | 37.0 67 | 33.4 67 |
CRTflow [88] | 49.8 | 40.9 41 | 72.5 54 | 36.2 39 | 21.3 28 | 49.4 34 | 21.8 27 | 22.9 47 | 57.5 57 | 19.0 24 | 14.0 37 | 44.7 48 | 10.3 40 | 35.4 43 | 45.0 47 | 30.4 43 | 46.6 83 | 73.4 78 | 53.8 83 | 38.8 41 | 65.5 65 | 38.2 46 | 19.5 61 | 38.5 68 | 27.6 61 |
Second-order prior [8] | 50.0 | 37.6 35 | 70.9 50 | 37.2 41 | 22.4 38 | 51.2 43 | 23.7 31 | 24.5 51 | 59.1 62 | 22.6 46 | 11.2 27 | 41.2 37 | 8.48 32 | 37.9 56 | 49.6 70 | 28.8 38 | 29.0 48 | 68.8 72 | 26.0 42 | 55.5 76 | 64.7 63 | 52.7 76 | 14.7 52 | 34.1 62 | 17.3 52 |
NL-TV-NCC [25] | 50.4 | 46.1 55 | 68.3 45 | 43.4 47 | 25.2 48 | 55.3 62 | 23.5 30 | 21.8 45 | 47.2 37 | 16.9 18 | 16.9 49 | 44.1 46 | 11.9 45 | 38.5 58 | 49.1 68 | 27.3 31 | 36.5 68 | 65.7 63 | 34.9 63 | 46.2 60 | 75.7 82 | 45.7 62 | 12.6 49 | 28.8 48 | 9.10 30 |
DPOF [18] | 50.8 | 45.3 54 | 68.9 46 | 37.6 42 | 26.7 54 | 56.9 65 | 26.9 48 | 24.3 50 | 54.6 48 | 26.2 54 | 18.6 54 | 54.6 61 | 13.6 52 | 33.3 33 | 43.1 37 | 28.9 39 | 27.6 46 | 60.8 52 | 26.3 43 | 47.2 66 | 55.3 37 | 76.0 88 | 14.3 51 | 31.0 53 | 15.3 46 |
TriangleFlow [30] | 51.1 | 41.5 44 | 63.2 38 | 42.6 46 | 21.4 29 | 52.4 50 | 20.2 23 | 21.7 44 | 53.6 46 | 16.2 14 | 14.8 42 | 44.4 47 | 10.9 42 | 43.2 72 | 52.9 79 | 43.4 65 | 36.8 70 | 65.9 64 | 38.8 68 | 42.2 51 | 65.4 64 | 41.8 54 | 15.8 55 | 35.2 64 | 22.5 56 |
SuperFlow [89] | 51.5 | 35.2 31 | 61.1 35 | 34.4 35 | 35.2 63 | 53.5 55 | 42.5 63 | 27.7 56 | 52.5 43 | 43.5 67 | 27.5 66 | 60.5 67 | 27.6 67 | 36.0 46 | 43.3 38 | 42.2 64 | 22.6 25 | 59.2 47 | 22.2 30 | 46.2 60 | 62.0 56 | 23.4 27 | 21.8 65 | 36.0 65 | 32.5 66 |
Local-TV-L1 [65] | 51.9 | 56.8 67 | 79.1 66 | 74.5 71 | 39.5 65 | 53.8 57 | 46.1 65 | 38.1 67 | 66.2 66 | 43.1 66 | 23.9 62 | 52.9 59 | 21.1 63 | 32.3 32 | 41.4 34 | 27.5 33 | 23.2 27 | 54.8 33 | 22.7 34 | 25.8 11 | 47.5 10 | 33.4 38 | 26.9 72 | 40.5 71 | 40.5 76 |
Dynamic MRF [7] | 52.0 | 49.5 58 | 78.0 65 | 55.8 60 | 17.2 13 | 47.4 26 | 16.5 13 | 21.6 43 | 56.3 54 | 16.2 14 | 14.8 42 | 46.4 52 | 12.5 48 | 41.2 66 | 49.0 66 | 45.1 68 | 35.3 62 | 70.7 77 | 38.5 67 | 37.1 37 | 57.7 47 | 55.1 77 | 21.3 64 | 36.7 66 | 31.2 64 |
CBF [12] | 52.0 | 41.4 42 | 74.0 57 | 48.5 53 | 40.2 66 | 51.5 46 | 51.7 69 | 22.9 47 | 50.8 42 | 28.5 55 | 14.3 40 | 44.7 48 | 11.2 43 | 38.3 57 | 46.1 52 | 36.1 52 | 26.3 40 | 55.1 34 | 24.9 39 | 61.5 81 | 71.0 74 | 52.0 75 | 11.6 47 | 26.7 45 | 14.8 45 |
CLG-TV [48] | 52.5 | 41.4 42 | 68.0 44 | 40.8 44 | 37.0 64 | 53.1 54 | 45.3 64 | 30.9 63 | 58.7 61 | 40.2 64 | 22.8 61 | 62.0 68 | 19.3 59 | 39.0 59 | 47.6 57 | 38.2 57 | 27.2 42 | 61.0 54 | 27.1 46 | 46.2 60 | 57.8 48 | 29.3 35 | 9.74 39 | 24.6 43 | 9.11 31 |
Bartels [41] | 52.6 | 48.6 57 | 63.2 38 | 61.4 66 | 23.4 43 | 44.0 13 | 27.1 50 | 21.4 42 | 44.6 33 | 23.8 50 | 26.2 65 | 43.0 43 | 25.4 66 | 36.8 50 | 44.7 45 | 41.7 63 | 33.7 59 | 60.0 50 | 41.7 74 | 52.6 73 | 67.2 69 | 61.1 81 | 11.2 45 | 23.4 39 | 16.3 49 |
FastOF [78] | 55.3 | 44.0 52 | 74.2 58 | 50.5 55 | 27.9 59 | 56.5 64 | 29.8 58 | 27.9 57 | 57.6 58 | 34.3 61 | 18.9 55 | 46.4 52 | 16.5 56 | 36.1 49 | 43.6 40 | 39.2 59 | 33.0 57 | 69.0 73 | 34.3 59 | 43.9 53 | 54.1 31 | 38.7 47 | 18.5 58 | 33.3 59 | 22.7 57 |
p-harmonic [29] | 57.4 | 50.4 61 | 86.6 80 | 56.5 62 | 27.1 56 | 54.5 60 | 28.9 55 | 32.9 65 | 69.3 71 | 30.4 56 | 19.8 56 | 65.1 71 | 16.2 55 | 39.6 62 | 47.2 55 | 40.3 62 | 30.4 52 | 66.5 65 | 32.2 56 | 45.6 58 | 64.4 61 | 28.9 33 | 10.2 40 | 24.1 42 | 13.2 44 |
Learning Flow [11] | 57.7 | 42.9 47 | 70.7 48 | 44.8 48 | 30.2 61 | 54.7 61 | 34.7 61 | 28.2 60 | 55.9 51 | 32.3 59 | 17.6 52 | 57.1 62 | 12.6 49 | 44.0 75 | 52.6 77 | 47.8 73 | 30.5 53 | 64.6 59 | 30.3 51 | 46.9 65 | 63.3 59 | 42.8 58 | 14.7 52 | 31.6 54 | 16.3 49 |
Fusion [6] | 59.6 | 40.5 40 | 75.6 62 | 45.9 50 | 20.0 24 | 50.0 38 | 22.5 28 | 20.8 39 | 52.8 45 | 22.8 47 | 16.2 47 | 52.8 58 | 13.5 51 | 43.1 71 | 49.0 66 | 47.5 70 | 39.6 74 | 67.8 70 | 43.8 78 | 63.9 83 | 75.0 80 | 46.3 66 | 35.5 81 | 42.6 76 | 53.3 86 |
Shiralkar [42] | 61.0 | 46.1 55 | 85.6 78 | 54.3 58 | 19.7 22 | 57.7 67 | 18.2 16 | 28.2 60 | 70.8 72 | 19.3 28 | 20.5 57 | 59.0 65 | 18.4 58 | 39.5 61 | 49.7 71 | 36.3 53 | 40.4 75 | 76.1 80 | 41.2 73 | 51.9 71 | 65.8 66 | 64.2 82 | 21.0 63 | 42.4 75 | 25.3 59 |
StereoFlow [44] | 61.2 | 95.9 90 | 96.0 90 | 97.4 90 | 88.3 90 | 96.2 90 | 86.2 87 | 82.6 90 | 94.8 89 | 73.7 87 | 91.4 90 | 96.3 90 | 90.3 90 | 53.0 84 | 61.6 88 | 52.8 77 | 11.2 1 | 39.3 2 | 11.7 1 | 10.5 1 | 42.5 2 | 1.70 1 | 11.5 46 | 23.6 40 | 18.0 53 |
SegOF [10] | 62.8 | 56.3 66 | 71.9 52 | 37.1 40 | 57.3 79 | 62.9 77 | 68.3 79 | 46.0 73 | 69.0 70 | 57.2 78 | 41.0 70 | 59.5 66 | 37.2 69 | 43.5 73 | 48.3 62 | 56.4 81 | 38.2 72 | 69.6 75 | 39.1 69 | 17.9 2 | 64.5 62 | 3.40 2 | 22.7 68 | 33.0 56 | 32.0 65 |
Ad-TV-NDC [36] | 63.3 | 73.7 81 | 85.4 76 | 89.5 86 | 56.9 78 | 60.4 73 | 67.5 78 | 51.0 76 | 75.9 75 | 57.6 79 | 45.7 73 | 65.7 72 | 47.9 75 | 35.3 40 | 45.3 49 | 28.9 39 | 27.3 45 | 57.2 39 | 28.2 48 | 34.6 31 | 55.0 35 | 27.3 31 | 34.0 78 | 48.7 82 | 47.5 80 |
Modified CLG [34] | 65.0 | 68.7 76 | 80.5 67 | 76.1 73 | 52.0 75 | 61.0 74 | 63.6 76 | 51.9 77 | 79.4 77 | 55.6 76 | 47.4 75 | 72.1 77 | 46.7 74 | 41.2 66 | 49.7 71 | 46.0 69 | 26.0 39 | 64.7 60 | 26.7 44 | 31.4 26 | 55.6 38 | 19.9 23 | 29.0 75 | 43.8 78 | 39.9 75 |
IAOF2 [51] | 66.0 | 54.9 64 | 73.7 56 | 53.9 57 | 42.6 67 | 58.3 69 | 50.7 68 | 33.9 66 | 61.9 63 | 42.1 65 | 64.4 82 | 75.7 79 | 74.3 82 | 41.5 68 | 49.9 74 | 37.1 55 | 36.4 67 | 64.0 58 | 34.4 61 | 59.7 78 | 69.6 73 | 41.3 52 | 19.4 60 | 33.4 61 | 23.0 58 |
Filter Flow [19] | 68.1 | 62.9 68 | 74.4 59 | 60.8 65 | 42.8 68 | 60.1 72 | 49.4 67 | 42.5 69 | 66.0 65 | 51.2 69 | 52.1 79 | 69.5 74 | 50.2 76 | 44.8 77 | 49.7 71 | 54.4 79 | 41.9 78 | 66.7 66 | 43.6 77 | 74.3 88 | 88.9 89 | 42.6 57 | 10.6 42 | 21.6 37 | 12.6 43 |
GroupFlow [9] | 68.5 | 66.4 71 | 85.2 75 | 80.8 77 | 61.6 81 | 75.4 84 | 69.0 80 | 51.9 77 | 83.6 80 | 57.0 77 | 33.5 68 | 63.9 69 | 32.5 68 | 49.6 80 | 61.0 83 | 39.9 61 | 51.3 86 | 81.7 83 | 59.4 86 | 22.8 8 | 51.1 19 | 16.5 9 | 28.0 74 | 41.9 74 | 37.9 73 |
SPSA-learn [13] | 69.0 | 65.1 69 | 87.4 82 | 72.7 69 | 45.7 71 | 59.3 71 | 53.4 71 | 45.2 72 | 74.7 74 | 52.2 71 | 41.6 71 | 69.9 76 | 42.5 71 | 42.7 70 | 48.9 64 | 48.7 75 | 38.8 73 | 69.0 73 | 42.5 76 | 39.1 42 | 61.9 55 | 19.3 18 | 36.0 82 | 45.6 79 | 48.3 81 |
BlockOverlap [61] | 69.1 | 77.2 84 | 86.0 79 | 82.8 79 | 48.2 72 | 55.8 63 | 57.6 74 | 46.9 74 | 66.9 67 | 51.9 70 | 49.1 76 | 54.1 60 | 51.2 77 | 36.8 50 | 41.3 33 | 47.5 70 | 40.5 76 | 59.0 46 | 39.6 71 | 68.9 86 | 80.2 86 | 65.1 83 | 20.8 62 | 30.8 52 | 34.9 68 |
HBpMotionGpu [43] | 69.2 | 67.0 74 | 80.7 68 | 72.3 68 | 55.3 77 | 57.3 66 | 66.7 77 | 44.7 70 | 67.2 69 | 54.1 74 | 39.5 69 | 57.8 64 | 38.4 70 | 42.0 69 | 48.2 61 | 48.3 74 | 35.9 64 | 60.9 53 | 39.2 70 | 65.1 84 | 72.0 76 | 50.1 72 | 22.6 67 | 32.5 55 | 36.9 70 |
IAOF [50] | 69.3 | 66.3 70 | 81.3 69 | 77.8 75 | 50.1 74 | 58.4 70 | 59.7 75 | 45.0 71 | 74.1 73 | 49.6 68 | 50.8 77 | 68.2 73 | 58.0 80 | 40.2 64 | 48.7 63 | 37.8 56 | 36.7 69 | 66.9 67 | 33.5 57 | 54.9 74 | 63.5 60 | 40.8 51 | 30.1 77 | 41.3 73 | 43.5 77 |
2D-CLG [1] | 69.5 | 77.2 84 | 82.3 70 | 75.4 72 | 61.5 80 | 65.9 79 | 73.7 82 | 63.2 85 | 89.6 86 | 60.8 83 | 82.8 88 | 88.3 86 | 86.8 88 | 43.5 73 | 49.3 69 | 54.8 80 | 35.1 61 | 67.5 68 | 36.1 65 | 21.3 5 | 50.8 18 | 15.5 7 | 34.4 80 | 46.3 81 | 46.0 78 |
GraphCuts [14] | 70.8 | 66.6 72 | 87.0 81 | 80.0 76 | 43.1 69 | 63.0 78 | 46.1 65 | 41.8 68 | 67.0 68 | 53.4 73 | 28.5 67 | 64.0 70 | 20.8 61 | 40.2 64 | 48.1 60 | 43.5 66 | 46.5 81 | 63.4 56 | 40.5 72 | 62.7 82 | 75.4 81 | 69.5 86 | 23.8 70 | 33.3 59 | 38.5 74 |
Black & Anandan [4] | 71.4 | 70.3 78 | 88.0 83 | 84.1 80 | 45.5 70 | 61.4 75 | 52.0 70 | 47.4 75 | 77.3 76 | 52.9 72 | 42.3 72 | 77.5 80 | 42.8 72 | 44.0 75 | 51.8 75 | 45.0 67 | 35.9 64 | 75.9 79 | 38.3 66 | 50.8 69 | 71.3 75 | 17.8 15 | 29.8 76 | 42.7 77 | 37.6 72 |
SILK [87] | 75.0 | 72.5 79 | 85.1 74 | 88.3 84 | 61.9 82 | 71.8 81 | 73.7 82 | 54.9 80 | 85.3 81 | 58.0 81 | 53.6 80 | 69.8 75 | 54.6 79 | 52.8 82 | 57.9 80 | 61.8 84 | 46.5 81 | 77.6 81 | 48.9 81 | 31.3 24 | 54.3 33 | 38.9 48 | 37.8 83 | 50.6 83 | 49.7 83 |
Nguyen [33] | 75.1 | 75.6 83 | 85.4 76 | 85.8 81 | 67.0 85 | 61.6 76 | 83.0 85 | 57.1 82 | 80.2 78 | 64.1 85 | 70.8 83 | 80.2 82 | 77.4 84 | 45.9 79 | 52.2 76 | 56.4 81 | 36.3 66 | 68.1 71 | 42.0 75 | 41.4 49 | 66.0 67 | 19.7 21 | 34.1 79 | 45.6 79 | 46.1 79 |
Periodicity [86] | 77.3 | 68.9 77 | 83.5 71 | 65.5 67 | 52.2 76 | 69.8 80 | 57.0 73 | 78.4 89 | 82.5 79 | 87.2 90 | 47.2 74 | 74.7 78 | 45.5 73 | 69.7 90 | 81.9 90 | 65.6 88 | 59.5 88 | 84.9 89 | 60.7 87 | 36.3 36 | 79.8 85 | 19.2 17 | 40.7 85 | 66.5 89 | 53.1 85 |
Horn & Schunck [3] | 77.5 | 74.1 82 | 93.2 86 | 86.9 82 | 49.1 73 | 73.8 82 | 53.9 72 | 53.1 79 | 89.0 85 | 54.6 75 | 50.9 78 | 81.4 83 | 52.4 78 | 51.3 81 | 58.8 81 | 54.3 78 | 41.2 77 | 82.3 84 | 44.6 79 | 55.0 75 | 74.3 78 | 19.6 20 | 40.7 85 | 56.8 85 | 48.8 82 |
SLK [47] | 80.2 | 67.5 75 | 90.3 84 | 82.1 78 | 72.2 86 | 84.7 89 | 84.8 86 | 58.4 83 | 94.0 88 | 58.1 82 | 78.1 85 | 82.5 84 | 84.6 87 | 55.4 87 | 61.5 86 | 68.1 89 | 49.4 84 | 83.7 87 | 57.7 84 | 36.2 35 | 68.1 72 | 26.2 30 | 50.3 88 | 60.0 86 | 65.2 89 |
TI-DOFE [24] | 81.8 | 90.7 88 | 94.6 88 | 97.1 89 | 76.9 89 | 79.5 88 | 89.4 90 | 73.1 88 | 96.1 90 | 74.4 88 | 84.6 89 | 93.6 89 | 88.3 89 | 52.9 83 | 59.9 82 | 63.9 86 | 44.5 80 | 83.6 86 | 53.5 82 | 42.9 52 | 68.0 71 | 17.0 13 | 50.5 89 | 65.5 88 | 62.4 87 |
FOLKI [16] | 82.0 | 72.5 79 | 84.5 73 | 87.5 83 | 62.3 83 | 74.9 83 | 74.0 84 | 56.9 81 | 87.2 83 | 57.7 80 | 59.8 81 | 78.1 81 | 65.4 81 | 53.3 85 | 61.2 85 | 62.7 85 | 50.9 85 | 81.0 82 | 62.7 88 | 47.3 67 | 73.3 77 | 56.8 79 | 49.0 87 | 62.9 87 | 64.3 88 |
Adaptive flow [45] | 85.2 | 91.3 89 | 95.7 89 | 96.2 87 | 75.8 88 | 75.9 85 | 86.2 87 | 68.9 86 | 85.6 82 | 72.4 86 | 80.6 87 | 85.2 85 | 83.9 86 | 57.3 88 | 61.5 86 | 60.2 83 | 66.7 89 | 84.1 88 | 70.4 89 | 90.2 90 | 92.7 90 | 95.0 90 | 27.7 73 | 40.5 71 | 37.0 71 |
PGAM+LK [55] | 85.2 | 79.4 86 | 92.7 85 | 88.7 85 | 62.9 84 | 76.8 87 | 71.9 81 | 59.9 84 | 88.3 84 | 62.8 84 | 74.9 84 | 90.6 88 | 75.6 83 | 54.4 86 | 61.0 83 | 64.6 87 | 58.1 87 | 82.7 85 | 58.6 85 | 77.6 89 | 85.6 88 | 78.1 89 | 38.8 84 | 52.7 84 | 50.7 84 |
Pyramid LK [2] | 87.8 | 86.7 87 | 94.5 87 | 96.2 87 | 73.1 87 | 76.5 86 | 86.4 89 | 70.8 87 | 89.6 86 | 78.5 89 | 78.1 85 | 88.6 87 | 82.7 85 | 68.8 89 | 76.4 89 | 80.4 90 | 75.7 90 | 85.1 90 | 78.1 90 | 73.1 87 | 79.6 84 | 69.3 85 | 60.8 90 | 74.5 90 | 79.9 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |