Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
SD angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 4.9 | 6.84 10 | 15.1 15 | 4.48 7 | 6.28 4 | 15.5 4 | 3.00 4 | 7.42 2 | 13.5 3 | 2.39 2 | 7.71 2 | 22.7 2 | 2.48 2 | 4.26 1 | 5.09 1 | 2.83 1 | 6.52 2 | 14.9 2 | 4.55 3 | 1.74 9 | 3.32 33 | 1.23 5 | 5.63 1 | 10.7 1 | 2.48 1 |
NN-field [73] | 7.3 | 7.29 23 | 16.0 30 | 4.74 14 | 6.15 1 | 15.2 3 | 3.02 5 | 7.77 6 | 14.1 7 | 2.71 4 | 7.56 1 | 22.8 3 | 1.96 1 | 4.49 2 | 5.36 2 | 3.09 2 | 5.72 1 | 14.1 1 | 1.96 1 | 1.96 19 | 3.34 35 | 1.32 8 | 5.70 2 | 10.8 2 | 2.49 2 |
OFLADF [82] | 9.1 | 6.75 8 | 14.9 11 | 4.44 5 | 7.07 8 | 17.5 9 | 3.10 6 | 8.45 8 | 15.5 9 | 2.50 3 | 13.0 26 | 35.0 47 | 6.38 11 | 4.57 3 | 5.57 5 | 3.12 3 | 7.63 5 | 15.9 4 | 5.90 8 | 1.68 8 | 2.86 9 | 1.43 13 | 5.83 3 | 11.0 3 | 2.79 3 |
MDP-Flow2 [70] | 13.7 | 6.66 4 | 14.7 10 | 4.53 9 | 6.79 7 | 17.0 7 | 3.23 7 | 8.68 9 | 15.8 10 | 2.90 5 | 13.4 33 | 33.7 38 | 6.89 27 | 4.95 17 | 5.84 15 | 4.15 29 | 8.49 11 | 18.7 17 | 7.72 23 | 1.64 6 | 3.08 16 | 1.27 7 | 6.77 6 | 12.8 8 | 3.33 7 |
FC-2Layers-FF [77] | 15.1 | 7.07 16 | 15.5 22 | 4.91 18 | 8.30 18 | 19.7 18 | 4.30 16 | 7.61 4 | 13.6 4 | 4.29 16 | 11.8 10 | 30.2 16 | 6.20 9 | 4.60 4 | 5.54 4 | 3.52 6 | 9.20 20 | 18.3 13 | 6.27 14 | 2.20 35 | 3.42 42 | 1.85 24 | 7.54 11 | 14.3 12 | 4.12 11 |
nLayers [57] | 15.4 | 7.20 18 | 16.0 30 | 4.66 13 | 6.25 3 | 14.7 1 | 3.70 13 | 7.72 5 | 13.7 5 | 4.81 23 | 13.1 29 | 34.8 45 | 6.69 17 | 4.76 9 | 5.75 9 | 4.12 27 | 7.19 4 | 14.9 2 | 4.40 2 | 1.99 20 | 3.10 20 | 1.80 23 | 8.22 16 | 15.6 18 | 6.10 17 |
Epistemic [84] | 17.3 | 7.22 19 | 15.9 29 | 4.61 12 | 7.60 10 | 19.2 16 | 3.30 8 | 9.70 11 | 17.6 12 | 3.77 10 | 11.1 6 | 31.0 18 | 4.45 3 | 4.96 18 | 5.88 19 | 4.25 34 | 10.9 27 | 23.7 33 | 9.40 37 | 1.90 17 | 3.08 16 | 1.69 19 | 8.00 14 | 15.1 15 | 4.57 13 |
ADF [67] | 17.9 | 6.78 9 | 14.3 5 | 4.99 21 | 7.71 12 | 18.9 15 | 4.12 15 | 12.8 24 | 22.5 25 | 5.51 33 | 15.1 47 | 35.2 48 | 7.64 41 | 4.61 5 | 5.53 3 | 3.35 5 | 8.79 13 | 18.9 19 | 5.99 12 | 1.94 18 | 2.86 9 | 1.65 18 | 7.64 13 | 14.4 14 | 3.09 6 |
Correlation Flow [79] | 19.0 | 6.66 4 | 14.5 7 | 3.81 1 | 7.78 15 | 17.5 9 | 2.85 2 | 18.0 44 | 29.0 50 | 4.31 18 | 9.28 3 | 22.1 1 | 5.57 5 | 5.12 31 | 6.13 38 | 3.98 20 | 11.0 28 | 23.3 28 | 10.5 46 | 2.07 25 | 3.08 16 | 2.32 39 | 6.79 7 | 12.5 6 | 4.83 14 |
FESL [75] | 20.3 | 6.97 13 | 15.3 20 | 4.47 6 | 9.74 36 | 21.4 31 | 5.49 35 | 11.4 15 | 20.2 16 | 4.25 15 | 12.5 14 | 31.5 23 | 6.81 20 | 4.72 7 | 5.71 8 | 3.72 15 | 7.03 3 | 16.0 5 | 4.81 4 | 2.21 37 | 3.49 48 | 1.94 27 | 11.1 32 | 17.6 26 | 10.1 31 |
Layers++ [37] | 21.1 | 7.19 17 | 15.7 24 | 5.08 24 | 6.15 1 | 14.8 2 | 3.42 10 | 7.83 7 | 14.0 6 | 4.84 24 | 10.9 5 | 26.9 7 | 6.19 8 | 4.83 12 | 5.84 15 | 4.36 37 | 12.4 41 | 25.2 36 | 10.5 46 | 2.43 41 | 3.56 53 | 1.92 26 | 8.66 19 | 16.1 20 | 7.77 25 |
LME [72] | 21.2 | 7.04 14 | 15.6 23 | 4.53 9 | 6.68 5 | 16.9 6 | 2.85 2 | 13.6 30 | 22.6 26 | 12.0 61 | 11.5 9 | 27.8 8 | 6.39 12 | 5.03 26 | 5.93 25 | 4.52 41 | 12.4 41 | 27.0 44 | 10.9 51 | 1.76 11 | 3.38 38 | 1.43 13 | 6.62 5 | 12.5 6 | 2.86 4 |
Efficient-NL [60] | 21.9 | 7.43 32 | 16.2 38 | 4.85 15 | 7.73 13 | 18.1 11 | 4.58 17 | 14.0 31 | 23.6 32 | 4.47 20 | 13.1 29 | 32.9 33 | 7.50 39 | 4.77 10 | 5.77 12 | 3.65 10 | 8.08 9 | 16.1 6 | 5.25 6 | 2.48 44 | 3.37 37 | 3.12 55 | 6.91 8 | 12.1 4 | 5.78 15 |
NL-TV-NCC [25] | 22.0 | 6.92 12 | 14.6 9 | 3.96 3 | 8.32 19 | 19.8 21 | 2.84 1 | 15.4 37 | 26.0 38 | 3.92 12 | 10.8 4 | 26.6 5 | 5.58 6 | 5.09 30 | 6.00 29 | 4.07 21 | 11.1 30 | 23.5 29 | 10.5 46 | 2.09 26 | 3.06 15 | 2.27 37 | 11.6 34 | 20.4 34 | 9.14 30 |
IROF++ [58] | 22.9 | 7.44 33 | 16.1 34 | 5.11 25 | 8.61 24 | 19.4 17 | 5.12 27 | 12.3 21 | 21.0 22 | 5.12 26 | 12.8 21 | 32.1 27 | 7.13 34 | 4.88 13 | 5.76 11 | 3.89 18 | 9.01 15 | 18.9 19 | 6.76 17 | 1.78 12 | 3.22 29 | 1.23 5 | 10.4 28 | 18.5 29 | 13.3 43 |
TC/T-Flow [80] | 23.1 | 6.31 1 | 13.3 1 | 4.85 15 | 11.5 50 | 23.6 45 | 6.67 45 | 13.4 29 | 23.2 31 | 3.00 6 | 14.2 39 | 36.9 57 | 6.33 10 | 4.72 7 | 5.64 6 | 3.64 9 | 7.70 6 | 17.1 8 | 5.61 7 | 2.00 21 | 3.45 46 | 2.86 49 | 10.9 31 | 18.2 28 | 3.59 8 |
LSM [39] | 23.5 | 7.06 15 | 15.2 18 | 5.21 29 | 9.65 34 | 21.2 30 | 5.48 34 | 11.9 19 | 20.2 16 | 5.33 29 | 12.0 12 | 30.0 14 | 6.84 22 | 5.14 33 | 6.13 38 | 4.62 45 | 9.12 18 | 18.1 12 | 6.53 15 | 2.13 32 | 3.11 22 | 2.11 30 | 8.09 15 | 14.3 12 | 6.76 20 |
Sparse-NonSparse [56] | 23.7 | 7.26 22 | 15.7 24 | 5.22 30 | 9.83 37 | 21.6 33 | 5.45 33 | 12.2 20 | 20.8 19 | 5.35 30 | 12.1 13 | 30.0 14 | 6.86 24 | 5.14 33 | 6.13 38 | 4.58 43 | 9.16 19 | 18.5 16 | 6.58 16 | 2.05 24 | 3.03 12 | 2.06 29 | 7.62 12 | 13.8 11 | 5.98 16 |
SCR [74] | 25.2 | 7.49 35 | 16.4 45 | 5.03 23 | 9.60 33 | 21.6 33 | 5.13 28 | 11.3 14 | 19.3 14 | 5.65 35 | 12.5 14 | 32.1 27 | 6.62 15 | 5.06 29 | 6.01 31 | 4.17 30 | 8.25 10 | 16.8 7 | 5.17 5 | 2.47 43 | 3.32 33 | 3.25 57 | 7.50 10 | 13.5 10 | 7.75 24 |
Ramp [62] | 25.5 | 7.32 24 | 15.8 27 | 5.20 28 | 8.74 25 | 19.8 21 | 5.27 30 | 11.4 15 | 19.7 15 | 5.40 31 | 12.5 14 | 31.6 25 | 6.86 24 | 4.97 20 | 5.88 19 | 4.08 23 | 9.04 16 | 18.3 13 | 7.00 21 | 2.65 46 | 3.36 36 | 4.00 67 | 8.65 18 | 15.3 17 | 11.7 37 |
PMF [76] | 25.6 | 7.59 39 | 16.5 47 | 4.94 19 | 7.64 11 | 18.3 13 | 3.66 12 | 7.48 3 | 13.2 2 | 2.31 1 | 14.7 44 | 36.3 55 | 6.84 22 | 4.66 6 | 5.64 6 | 3.18 4 | 9.85 22 | 21.3 23 | 9.22 35 | 3.62 66 | 5.25 82 | 3.70 63 | 7.12 9 | 13.2 9 | 6.82 21 |
Levin3 [90] | 25.6 | 7.33 25 | 16.0 30 | 4.88 17 | 10.3 42 | 22.2 38 | 4.98 25 | 12.7 23 | 21.6 23 | 5.05 25 | 11.8 10 | 28.7 9 | 6.89 27 | 4.92 15 | 5.86 17 | 3.88 17 | 8.05 8 | 17.2 9 | 5.90 8 | 3.00 56 | 3.59 55 | 4.00 67 | 8.73 20 | 15.2 16 | 11.4 33 |
Classic+NL [31] | 26.6 | 7.40 30 | 16.1 34 | 5.36 36 | 9.49 32 | 20.9 27 | 5.44 32 | 12.3 21 | 20.8 19 | 5.20 27 | 12.5 14 | 31.3 22 | 6.82 21 | 5.03 26 | 5.98 28 | 4.18 32 | 8.94 14 | 17.5 10 | 5.91 10 | 2.29 39 | 3.44 45 | 2.17 32 | 9.88 25 | 17.0 24 | 11.9 39 |
CostFilter [40] | 27.0 | 7.36 27 | 15.7 24 | 4.96 20 | 7.76 14 | 18.1 11 | 3.83 14 | 7.07 1 | 12.4 1 | 3.12 7 | 14.6 43 | 36.3 55 | 6.57 14 | 4.82 11 | 5.81 13 | 3.54 7 | 12.4 41 | 20.5 21 | 10.3 44 | 3.86 71 | 5.96 85 | 4.36 70 | 8.86 22 | 16.7 22 | 3.72 9 |
Complementary OF [21] | 28.5 | 7.37 28 | 15.1 15 | 5.30 34 | 9.46 29 | 22.5 40 | 4.63 18 | 13.0 25 | 22.8 28 | 4.04 14 | 14.8 45 | 37.9 61 | 6.87 26 | 4.97 20 | 5.86 17 | 4.39 38 | 11.0 28 | 24.4 34 | 8.06 27 | 1.79 13 | 2.79 7 | 2.22 34 | 12.2 35 | 22.0 37 | 11.2 32 |
Direct ZNCC [66] | 28.8 | 6.90 11 | 14.9 11 | 3.94 2 | 8.49 22 | 20.0 24 | 4.84 23 | 18.6 48 | 29.0 50 | 4.57 21 | 11.2 7 | 24.9 4 | 6.63 16 | 5.23 41 | 6.23 49 | 4.18 32 | 13.6 52 | 29.3 56 | 11.7 57 | 2.11 28 | 3.10 20 | 2.44 43 | 10.0 26 | 18.6 30 | 6.40 18 |
TV-L1-MCT [64] | 28.8 | 7.42 31 | 16.1 34 | 5.22 30 | 9.84 38 | 21.6 33 | 5.20 29 | 14.3 32 | 24.7 33 | 5.27 28 | 12.5 14 | 31.2 21 | 7.21 36 | 5.01 23 | 5.90 22 | 4.41 39 | 9.10 17 | 18.8 18 | 7.14 22 | 2.17 34 | 2.78 6 | 4.69 71 | 9.81 24 | 16.8 23 | 11.5 34 |
ALD-Flow [68] | 29.2 | 6.69 6 | 14.4 6 | 4.54 11 | 12.5 58 | 25.7 54 | 6.93 48 | 14.3 32 | 24.9 34 | 4.29 16 | 14.8 45 | 35.3 50 | 7.04 32 | 4.98 22 | 5.92 23 | 3.66 11 | 10.1 25 | 23.6 31 | 6.92 20 | 2.02 22 | 3.23 30 | 2.86 49 | 10.2 27 | 18.9 31 | 6.45 19 |
TC-Flow [46] | 29.8 | 6.56 3 | 14.1 3 | 4.48 7 | 9.25 28 | 21.4 31 | 5.03 26 | 14.9 35 | 25.8 37 | 3.93 13 | 14.5 42 | 35.9 52 | 6.97 30 | 5.01 23 | 5.97 26 | 3.63 8 | 9.98 24 | 22.8 27 | 6.83 19 | 2.11 28 | 3.25 31 | 3.61 62 | 16.7 44 | 26.8 44 | 20.0 73 |
EP-PM [83] | 30.0 | 7.33 25 | 14.5 7 | 5.00 22 | 7.20 9 | 17.2 8 | 3.41 9 | 11.8 18 | 20.8 19 | 3.20 8 | 12.6 20 | 31.1 20 | 7.00 31 | 5.14 33 | 6.08 36 | 4.67 48 | 12.0 38 | 22.7 26 | 9.97 41 | 4.48 80 | 3.69 57 | 6.02 77 | 10.4 28 | 17.6 26 | 11.5 34 |
MDP-Flow [26] | 30.2 | 6.73 7 | 14.1 3 | 5.59 42 | 6.70 6 | 16.0 5 | 4.65 19 | 9.78 12 | 17.2 11 | 6.61 39 | 13.0 26 | 34.7 44 | 6.48 13 | 5.54 57 | 6.17 44 | 5.84 63 | 10.5 26 | 23.6 31 | 7.81 24 | 1.89 15 | 3.42 42 | 1.37 11 | 20.0 56 | 32.5 60 | 19.1 68 |
IROF-TV [53] | 32.3 | 7.55 37 | 16.1 34 | 5.46 39 | 9.23 27 | 21.8 36 | 5.88 37 | 13.3 28 | 22.2 24 | 5.50 32 | 12.8 21 | 31.6 25 | 7.28 37 | 5.12 31 | 6.09 37 | 4.67 48 | 13.3 50 | 29.6 57 | 9.97 41 | 1.60 4 | 3.12 25 | 1.06 3 | 11.5 33 | 21.3 35 | 11.5 34 |
SimpleFlow [49] | 32.5 | 7.56 38 | 16.2 38 | 5.59 42 | 9.48 30 | 21.0 28 | 5.68 36 | 17.1 42 | 27.0 43 | 6.29 37 | 13.0 26 | 32.8 31 | 7.09 33 | 5.18 39 | 6.16 42 | 4.62 45 | 8.75 12 | 17.6 11 | 6.81 18 | 2.13 32 | 3.50 49 | 2.30 38 | 9.78 23 | 17.4 25 | 7.10 23 |
ACK-Prior [27] | 33.0 | 6.39 2 | 13.4 2 | 4.38 4 | 8.58 23 | 19.7 18 | 3.63 11 | 11.4 15 | 20.3 18 | 3.82 11 | 12.5 14 | 33.7 38 | 5.09 4 | 5.53 55 | 6.42 58 | 4.76 50 | 15.0 61 | 28.4 49 | 11.4 53 | 3.54 64 | 4.36 68 | 4.84 73 | 13.2 39 | 20.2 33 | 8.94 28 |
OFH [38] | 34.6 | 7.25 21 | 15.0 14 | 5.29 33 | 11.1 46 | 25.0 51 | 7.19 51 | 18.6 48 | 29.1 53 | 5.56 34 | 16.0 50 | 40.8 74 | 7.44 38 | 5.05 28 | 5.92 23 | 4.28 35 | 11.4 32 | 26.0 39 | 8.73 32 | 1.64 6 | 3.04 13 | 1.36 10 | 12.5 36 | 23.3 38 | 7.79 26 |
Sparse Occlusion [54] | 34.9 | 7.38 29 | 15.8 27 | 5.28 32 | 8.25 17 | 19.9 23 | 4.71 20 | 15.5 38 | 26.3 41 | 4.63 22 | 13.5 34 | 33.3 37 | 6.92 29 | 5.25 42 | 6.26 50 | 4.11 25 | 9.70 21 | 21.1 22 | 5.94 11 | 4.85 81 | 5.95 84 | 3.71 64 | 10.8 30 | 20.0 32 | 8.01 27 |
COFM [59] | 35.0 | 8.49 59 | 18.5 67 | 5.95 50 | 8.44 20 | 18.7 14 | 4.71 20 | 13.0 25 | 22.9 29 | 5.84 36 | 13.8 36 | 35.2 48 | 6.78 19 | 5.63 60 | 6.58 63 | 5.94 64 | 11.7 35 | 23.5 29 | 9.80 40 | 2.29 39 | 3.20 27 | 2.72 46 | 6.42 4 | 12.1 4 | 3.07 5 |
DPOF [18] | 35.7 | 8.43 57 | 16.8 49 | 6.36 58 | 10.7 45 | 20.7 26 | 9.52 61 | 8.72 10 | 15.4 8 | 3.63 9 | 11.3 8 | 29.1 11 | 6.09 7 | 5.34 47 | 6.18 45 | 5.38 59 | 12.2 39 | 22.4 25 | 8.06 27 | 5.27 82 | 3.55 50 | 6.79 80 | 8.85 21 | 16.5 21 | 4.24 12 |
ComplOF-FED-GPU [35] | 36.6 | 7.49 35 | 15.4 21 | 5.37 38 | 12.1 55 | 26.5 60 | 7.51 52 | 13.1 27 | 22.7 27 | 4.33 19 | 15.6 48 | 37.7 60 | 7.55 40 | 4.94 16 | 5.82 14 | 4.13 28 | 12.3 40 | 27.7 46 | 8.48 30 | 2.49 45 | 3.04 13 | 3.56 60 | 12.9 37 | 23.9 39 | 9.01 29 |
TCOF [71] | 37.3 | 7.46 34 | 15.1 15 | 5.70 45 | 9.13 26 | 21.1 29 | 5.43 31 | 19.6 53 | 29.8 56 | 8.31 53 | 12.9 24 | 31.0 18 | 7.17 35 | 6.02 70 | 7.00 72 | 4.59 44 | 7.92 7 | 18.4 15 | 6.11 13 | 3.78 69 | 4.09 65 | 5.18 75 | 8.51 17 | 15.9 19 | 3.80 10 |
Occlusion-TV-L1 [63] | 42.0 | 7.73 41 | 16.4 45 | 5.36 36 | 9.48 30 | 22.4 39 | 6.18 38 | 19.2 50 | 30.0 58 | 7.14 42 | 14.4 41 | 33.8 40 | 7.91 45 | 5.31 46 | 6.27 52 | 4.47 40 | 11.9 36 | 27.9 47 | 8.04 25 | 2.09 26 | 3.08 16 | 1.50 16 | 21.9 64 | 35.3 74 | 17.5 61 |
Adaptive [20] | 43.3 | 7.94 44 | 17.0 52 | 5.33 35 | 10.2 41 | 23.9 47 | 6.28 39 | 21.2 61 | 31.7 71 | 7.69 48 | 13.6 35 | 29.8 13 | 7.87 44 | 4.88 13 | 5.75 9 | 3.71 14 | 13.2 48 | 28.9 53 | 9.72 39 | 3.21 60 | 4.71 72 | 2.91 51 | 19.3 53 | 30.5 50 | 15.6 48 |
Aniso. Huber-L1 [22] | 45.8 | 7.96 46 | 16.3 43 | 6.10 54 | 11.4 48 | 24.7 49 | 6.77 46 | 20.6 59 | 29.6 55 | 7.26 44 | 13.2 31 | 29.2 12 | 7.77 43 | 5.52 54 | 6.58 63 | 4.29 36 | 12.4 41 | 26.7 42 | 8.83 34 | 2.93 55 | 3.68 56 | 3.10 54 | 16.5 43 | 27.4 45 | 13.9 45 |
SIOF [69] | 46.6 | 8.21 52 | 17.0 52 | 5.49 40 | 13.0 62 | 27.4 64 | 8.63 56 | 20.1 58 | 29.0 50 | 16.3 65 | 16.8 57 | 37.3 58 | 10.0 57 | 5.40 52 | 6.34 56 | 4.88 52 | 11.6 33 | 25.4 37 | 10.1 43 | 1.81 14 | 3.27 32 | 1.34 9 | 15.1 40 | 25.1 40 | 11.9 39 |
LocallyOriented [52] | 46.8 | 9.89 68 | 19.9 76 | 6.55 60 | 14.7 65 | 27.7 65 | 11.0 65 | 21.7 65 | 31.9 73 | 7.32 46 | 13.3 32 | 30.5 17 | 8.32 46 | 5.16 37 | 6.04 32 | 4.11 25 | 9.90 23 | 21.6 24 | 8.75 33 | 2.20 35 | 3.43 44 | 2.17 32 | 18.3 47 | 26.0 42 | 19.6 70 |
Deep-Matching [85] | 48.2 | 9.41 64 | 17.5 60 | 6.69 63 | 16.8 69 | 27.2 63 | 13.5 70 | 18.5 47 | 27.6 46 | 15.9 64 | 19.0 68 | 42.7 83 | 11.8 66 | 4.96 18 | 5.88 19 | 3.69 12 | 11.3 31 | 26.5 40 | 8.38 29 | 1.74 9 | 2.67 4 | 2.24 35 | 22.7 69 | 33.1 65 | 18.0 64 |
SegOF [10] | 48.4 | 9.43 65 | 17.7 61 | 8.06 71 | 12.0 54 | 22.9 43 | 10.4 63 | 17.0 41 | 26.1 40 | 12.6 62 | 13.8 36 | 26.8 6 | 11.2 61 | 5.53 55 | 6.26 50 | 6.06 66 | 19.0 79 | 35.6 86 | 18.8 81 | 1.37 2 | 2.60 2 | 0.83 2 | 16.4 42 | 30.0 48 | 14.0 46 |
CRTflow [88] | 48.8 | 7.92 42 | 16.0 30 | 5.91 49 | 11.4 48 | 23.7 46 | 6.55 43 | 19.8 55 | 30.1 59 | 7.77 49 | 17.2 60 | 41.3 77 | 9.76 53 | 5.34 47 | 6.30 53 | 3.69 12 | 15.8 67 | 31.0 67 | 14.3 70 | 2.12 31 | 2.92 11 | 2.35 40 | 19.2 52 | 32.9 63 | 15.3 47 |
TriangleFlow [30] | 50.0 | 8.08 50 | 17.0 52 | 5.12 26 | 11.7 52 | 26.1 57 | 6.98 50 | 19.5 52 | 30.3 60 | 6.34 38 | 12.9 24 | 33.0 34 | 6.71 18 | 7.00 81 | 8.16 84 | 6.63 77 | 12.8 47 | 24.5 35 | 10.5 46 | 3.59 65 | 5.17 80 | 3.27 58 | 12.9 37 | 21.9 36 | 12.1 41 |
Brox et al. [5] | 50.5 | 8.46 58 | 16.7 48 | 6.56 61 | 11.3 47 | 26.2 58 | 6.94 49 | 15.0 36 | 25.4 36 | 6.89 41 | 17.4 61 | 38.8 65 | 9.80 54 | 5.99 68 | 6.88 70 | 6.26 70 | 14.1 54 | 31.1 69 | 12.0 59 | 2.03 23 | 3.41 41 | 1.14 4 | 19.1 51 | 30.3 49 | 12.1 41 |
CBF [12] | 51.7 | 7.23 20 | 14.9 11 | 5.16 27 | 9.95 39 | 21.9 37 | 7.69 53 | 17.6 43 | 27.0 43 | 7.28 45 | 16.4 55 | 39.3 69 | 9.18 49 | 6.34 78 | 7.35 80 | 6.11 68 | 13.4 51 | 28.4 49 | 8.52 31 | 5.54 84 | 5.11 77 | 6.41 78 | 18.7 48 | 30.8 51 | 16.4 55 |
p-harmonic [29] | 51.7 | 8.15 51 | 16.2 38 | 6.50 59 | 9.66 35 | 22.6 41 | 6.57 44 | 21.2 61 | 31.2 65 | 9.65 56 | 15.7 49 | 33.9 41 | 10.0 57 | 5.18 39 | 6.04 32 | 5.31 57 | 14.3 56 | 30.3 61 | 12.2 62 | 3.10 57 | 3.55 50 | 1.91 25 | 23.1 71 | 34.8 72 | 17.8 62 |
SuperFlow [89] | 52.7 | 9.27 63 | 17.3 57 | 6.63 62 | 11.7 52 | 22.8 42 | 8.84 58 | 19.3 51 | 28.0 47 | 18.4 67 | 16.9 58 | 38.2 62 | 9.89 55 | 5.44 53 | 6.32 54 | 5.61 61 | 11.9 36 | 26.6 41 | 9.56 38 | 2.92 54 | 4.08 64 | 1.79 21 | 20.1 57 | 32.4 59 | 15.8 52 |
TV-L1-improved [17] | 52.7 | 7.64 40 | 16.2 38 | 5.67 44 | 10.1 40 | 23.4 44 | 6.38 40 | 21.3 63 | 32.0 76 | 9.27 55 | 17.5 62 | 42.1 79 | 9.54 51 | 5.25 42 | 6.13 38 | 4.07 21 | 14.5 57 | 30.4 63 | 11.4 53 | 3.38 61 | 5.02 75 | 2.99 53 | 19.6 55 | 32.1 58 | 16.6 57 |
Fusion [6] | 53.0 | 8.76 60 | 17.7 61 | 7.01 65 | 7.82 16 | 19.7 18 | 4.78 22 | 10.9 13 | 18.4 13 | 7.23 43 | 12.8 21 | 32.6 30 | 8.32 46 | 7.04 82 | 8.11 83 | 6.57 75 | 14.9 59 | 28.3 48 | 13.2 64 | 4.37 79 | 5.18 81 | 2.77 47 | 26.2 81 | 38.6 82 | 26.4 83 |
Local-TV-L1 [65] | 53.1 | 9.74 67 | 17.9 64 | 6.89 64 | 18.4 73 | 29.4 70 | 14.9 73 | 24.4 73 | 30.8 63 | 20.2 70 | 19.4 72 | 42.4 82 | 12.7 69 | 5.35 50 | 6.00 29 | 4.10 24 | 13.6 52 | 28.9 53 | 9.26 36 | 1.62 5 | 2.58 1 | 1.48 15 | 20.3 58 | 32.0 57 | 16.4 55 |
FastOF [78] | 53.5 | 9.15 61 | 18.2 66 | 6.30 56 | 17.2 70 | 28.8 68 | 12.8 67 | 21.9 67 | 29.3 54 | 19.9 68 | 16.6 56 | 34.9 46 | 11.8 66 | 5.15 36 | 6.05 35 | 5.06 54 | 15.1 63 | 30.7 65 | 14.5 71 | 2.68 47 | 3.20 27 | 2.12 31 | 17.9 46 | 25.6 41 | 6.85 22 |
CLG-TV [48] | 53.7 | 7.94 44 | 16.2 38 | 5.80 48 | 10.5 43 | 24.0 48 | 6.44 41 | 19.9 56 | 29.8 56 | 6.83 40 | 14.1 38 | 31.5 23 | 7.73 42 | 5.98 66 | 7.01 73 | 5.15 56 | 14.8 58 | 31.0 67 | 12.2 62 | 4.20 77 | 4.80 73 | 5.22 76 | 19.3 53 | 32.6 61 | 15.7 50 |
Classic++ [32] | 54.2 | 8.05 48 | 17.4 59 | 6.09 53 | 11.5 50 | 26.3 59 | 6.91 47 | 18.1 45 | 28.7 48 | 8.18 51 | 16.2 51 | 39.0 67 | 8.57 48 | 5.36 51 | 6.33 55 | 4.54 42 | 15.0 61 | 30.4 63 | 11.6 56 | 2.70 49 | 3.55 50 | 2.94 52 | 21.9 64 | 34.0 68 | 17.9 63 |
Rannacher [23] | 55.0 | 8.07 49 | 16.8 49 | 6.15 55 | 10.6 44 | 24.8 50 | 6.51 42 | 21.9 67 | 32.6 79 | 10.9 59 | 18.4 65 | 43.3 86 | 10.5 59 | 5.27 45 | 6.18 45 | 4.17 30 | 15.5 65 | 32.3 74 | 12.0 59 | 2.69 48 | 3.57 54 | 2.68 45 | 17.8 45 | 31.0 52 | 16.1 54 |
F-TV-L1 [15] | 55.2 | 8.41 56 | 16.8 49 | 6.31 57 | 18.0 72 | 29.7 71 | 12.8 67 | 21.6 64 | 30.5 61 | 10.1 58 | 18.2 63 | 42.3 81 | 9.65 52 | 5.02 25 | 5.97 26 | 3.91 19 | 14.1 54 | 30.8 66 | 10.6 50 | 2.79 50 | 4.90 74 | 2.35 40 | 20.5 59 | 32.7 62 | 15.6 48 |
Dynamic MRF [7] | 59.1 | 8.32 55 | 17.3 57 | 5.95 50 | 12.3 56 | 28.5 66 | 7.75 54 | 19.6 53 | 31.8 72 | 7.56 47 | 18.4 65 | 42.2 80 | 11.6 64 | 5.25 42 | 6.16 42 | 4.80 51 | 17.7 73 | 34.4 83 | 16.6 77 | 1.89 15 | 2.63 3 | 3.21 56 | 30.3 85 | 43.6 87 | 29.0 85 |
Bartels [41] | 59.2 | 8.31 54 | 17.7 61 | 5.51 41 | 8.46 21 | 20.6 25 | 4.89 24 | 14.8 34 | 26.0 38 | 7.89 50 | 18.5 67 | 43.6 87 | 11.1 60 | 6.18 73 | 6.51 62 | 8.63 84 | 15.6 66 | 32.6 76 | 13.9 68 | 3.86 71 | 4.56 70 | 7.09 81 | 22.5 68 | 36.5 76 | 18.4 65 |
GraphCuts [14] | 59.3 | 9.24 62 | 17.2 56 | 7.53 67 | 22.1 81 | 33.0 84 | 16.8 79 | 15.9 40 | 23.1 30 | 15.6 63 | 14.2 39 | 28.9 10 | 9.34 50 | 5.83 65 | 6.82 66 | 6.25 69 | 18.5 78 | 29.7 58 | 12.0 59 | 2.85 52 | 3.39 39 | 3.52 59 | 23.8 75 | 36.1 75 | 19.1 68 |
StereoFlow [44] | 59.8 | 16.2 86 | 22.6 85 | 13.9 87 | 22.1 81 | 31.6 76 | 18.8 82 | 24.7 74 | 30.6 62 | 21.2 73 | 23.3 83 | 39.9 70 | 19.6 83 | 5.98 66 | 6.22 48 | 7.11 80 | 11.6 33 | 27.6 45 | 8.05 26 | 1.36 1 | 2.85 8 | 0.65 1 | 20.7 60 | 33.7 66 | 17.0 60 |
Filter Flow [19] | 60.0 | 10.5 72 | 19.4 73 | 8.33 73 | 12.5 58 | 25.8 55 | 8.69 57 | 19.9 56 | 27.0 43 | 21.7 74 | 19.0 68 | 33.1 36 | 15.9 75 | 5.34 47 | 6.21 47 | 5.37 58 | 16.2 69 | 26.7 42 | 15.5 73 | 3.46 63 | 4.48 69 | 2.26 36 | 23.3 74 | 31.5 55 | 18.5 66 |
Shiralkar [42] | 60.2 | 7.92 42 | 15.2 18 | 5.73 46 | 14.6 64 | 30.3 72 | 9.04 59 | 21.7 65 | 31.2 65 | 9.77 57 | 19.6 74 | 41.5 78 | 13.2 71 | 5.17 38 | 6.04 32 | 4.63 47 | 18.0 76 | 31.1 69 | 14.7 72 | 3.67 67 | 3.40 40 | 4.74 72 | 23.9 76 | 36.6 77 | 18.9 67 |
Second-order prior [8] | 61.1 | 8.04 47 | 16.3 43 | 6.01 52 | 12.5 58 | 26.5 60 | 9.10 60 | 21.0 60 | 31.1 64 | 9.23 54 | 16.2 51 | 36.2 54 | 9.93 56 | 5.70 62 | 6.67 65 | 5.09 55 | 20.7 84 | 34.1 81 | 21.0 85 | 3.76 68 | 3.89 61 | 4.25 69 | 18.9 49 | 31.8 56 | 19.9 72 |
IAOF2 [51] | 61.7 | 10.0 69 | 19.9 76 | 7.91 70 | 14.4 63 | 26.7 62 | 10.9 64 | 22.0 70 | 32.2 77 | 17.6 66 | 19.1 70 | 33.0 34 | 17.1 78 | 5.81 64 | 6.86 68 | 4.94 53 | 12.6 45 | 25.9 38 | 11.9 58 | 4.26 78 | 4.11 66 | 7.75 83 | 16.2 41 | 26.5 43 | 13.5 44 |
Ad-TV-NDC [36] | 63.7 | 12.1 79 | 18.6 68 | 10.7 82 | 25.5 85 | 32.0 80 | 22.2 85 | 29.3 85 | 34.3 83 | 22.8 78 | 16.9 58 | 32.8 31 | 12.2 68 | 5.99 68 | 7.20 78 | 3.83 16 | 12.6 45 | 28.5 51 | 10.3 44 | 2.79 50 | 4.07 63 | 1.78 20 | 24.1 77 | 31.4 54 | 25.1 81 |
2D-CLG [1] | 64.8 | 15.2 85 | 24.5 88 | 11.2 83 | 15.1 66 | 25.9 56 | 13.5 70 | 27.5 79 | 33.9 80 | 24.7 85 | 22.2 80 | 38.3 63 | 19.0 82 | 5.67 61 | 6.44 59 | 6.29 72 | 17.5 71 | 34.3 82 | 16.4 76 | 1.47 3 | 2.68 5 | 1.54 17 | 21.7 63 | 34.6 71 | 16.9 59 |
LDOF [28] | 65.8 | 9.66 66 | 18.9 70 | 7.13 66 | 15.1 66 | 29.1 69 | 11.3 66 | 15.6 39 | 25.1 35 | 10.9 59 | 20.9 77 | 43.1 85 | 14.9 73 | 6.12 71 | 7.01 73 | 6.26 70 | 16.0 68 | 31.2 71 | 13.2 64 | 3.89 73 | 5.61 83 | 8.96 84 | 19.0 50 | 33.0 64 | 11.7 37 |
Nguyen [33] | 66.4 | 11.4 75 | 19.6 75 | 8.44 75 | 21.0 78 | 31.7 78 | 17.7 80 | 29.8 87 | 36.3 87 | 24.1 84 | 18.2 63 | 34.6 43 | 13.9 72 | 6.28 75 | 6.85 67 | 7.51 82 | 15.4 64 | 33.0 77 | 14.0 69 | 2.24 38 | 3.11 22 | 1.79 21 | 21.6 62 | 33.9 67 | 15.8 52 |
IAOF [50] | 66.9 | 10.1 70 | 18.6 68 | 7.89 69 | 22.2 83 | 33.7 87 | 15.9 76 | 33.0 89 | 39.2 90 | 23.7 81 | 16.2 51 | 32.1 27 | 11.6 64 | 5.80 63 | 6.87 69 | 5.39 60 | 17.8 74 | 30.1 60 | 11.4 53 | 3.13 59 | 3.69 57 | 3.88 66 | 22.4 67 | 29.3 47 | 21.6 76 |
SPSA-learn [13] | 67.6 | 11.3 74 | 19.4 73 | 8.52 76 | 20.9 77 | 34.2 88 | 16.2 78 | 26.5 77 | 33.9 80 | 22.4 77 | 22.5 82 | 39.9 70 | 18.9 81 | 5.59 58 | 6.41 57 | 5.94 64 | 17.8 74 | 31.4 73 | 18.3 80 | 2.11 28 | 3.11 22 | 1.37 11 | 24.3 78 | 35.1 73 | 19.7 71 |
HBpMotionGpu [43] | 67.7 | 12.2 80 | 22.1 83 | 8.34 74 | 17.9 71 | 31.4 75 | 14.7 72 | 29.2 84 | 37.8 89 | 20.6 71 | 19.1 70 | 44.6 89 | 11.5 63 | 5.60 59 | 6.45 60 | 6.06 66 | 13.2 48 | 28.8 52 | 11.1 52 | 3.45 62 | 3.97 62 | 2.04 28 | 23.1 71 | 34.1 69 | 20.7 74 |
Learning Flow [11] | 68.0 | 8.28 53 | 17.0 52 | 5.75 47 | 12.3 56 | 28.5 66 | 7.79 55 | 18.4 46 | 28.7 48 | 8.29 52 | 22.2 80 | 40.6 73 | 17.3 79 | 8.52 83 | 10.3 87 | 7.04 79 | 19.9 82 | 35.1 85 | 16.8 78 | 3.11 58 | 4.59 71 | 3.59 61 | 26.9 83 | 40.0 83 | 20.9 75 |
Modified CLG [34] | 70.3 | 11.6 77 | 20.5 80 | 9.14 79 | 12.6 61 | 25.4 53 | 10.3 62 | 27.4 78 | 34.4 84 | 23.8 82 | 21.8 78 | 42.7 83 | 16.7 77 | 6.18 73 | 7.06 76 | 6.57 75 | 14.9 59 | 33.0 77 | 13.4 66 | 2.45 42 | 3.80 60 | 3.81 65 | 22.0 66 | 36.6 77 | 16.8 58 |
GroupFlow [9] | 71.0 | 11.5 76 | 21.2 82 | 8.71 77 | 20.5 75 | 33.0 84 | 15.7 75 | 23.6 71 | 31.6 69 | 20.1 69 | 16.2 51 | 34.5 42 | 11.3 62 | 8.86 84 | 9.84 86 | 6.50 74 | 18.2 77 | 30.3 61 | 17.4 79 | 3.82 70 | 5.05 76 | 6.55 79 | 21.1 61 | 28.8 46 | 22.4 79 |
Black & Anandan [4] | 71.2 | 10.5 72 | 18.0 65 | 8.14 72 | 21.4 80 | 32.8 83 | 16.1 77 | 26.1 76 | 32.3 78 | 21.8 75 | 20.8 76 | 38.9 66 | 16.1 76 | 6.29 77 | 7.41 81 | 5.62 62 | 17.1 70 | 31.2 71 | 13.7 67 | 4.06 76 | 5.11 77 | 2.37 42 | 23.1 71 | 34.1 69 | 15.7 50 |
BlockOverlap [61] | 74.2 | 10.3 71 | 19.1 71 | 7.74 68 | 15.4 68 | 25.3 52 | 13.0 69 | 24.3 72 | 31.9 73 | 21.0 72 | 19.5 73 | 43.8 88 | 13.1 70 | 9.14 85 | 7.60 82 | 13.9 87 | 19.0 79 | 29.0 55 | 15.7 74 | 11.0 89 | 8.77 89 | 24.8 90 | 23.0 70 | 31.3 53 | 25.9 82 |
TI-DOFE [24] | 74.5 | 14.6 83 | 21.1 81 | 11.7 84 | 22.4 84 | 31.6 76 | 19.6 83 | 28.6 82 | 31.2 65 | 26.3 86 | 26.3 86 | 36.0 53 | 25.1 86 | 6.43 79 | 7.34 79 | 6.67 78 | 19.1 81 | 33.8 79 | 18.9 82 | 2.88 53 | 3.15 26 | 2.82 48 | 25.7 80 | 36.6 77 | 22.3 78 |
Horn & Schunck [3] | 75.0 | 11.8 78 | 19.3 72 | 8.85 78 | 20.1 74 | 33.5 86 | 15.3 74 | 25.5 75 | 31.2 65 | 24.0 83 | 26.1 85 | 38.6 64 | 23.5 84 | 6.12 71 | 6.99 71 | 6.34 73 | 19.9 82 | 33.9 80 | 19.6 83 | 3.95 75 | 4.28 67 | 2.46 44 | 25.3 79 | 37.5 81 | 22.0 77 |
Adaptive flow [45] | 79.8 | 13.2 81 | 20.2 78 | 9.78 80 | 27.3 87 | 31.9 79 | 25.4 86 | 28.3 81 | 31.6 69 | 30.5 89 | 19.7 75 | 37.6 59 | 15.3 74 | 11.2 88 | 12.6 88 | 8.93 85 | 17.6 72 | 29.8 59 | 15.8 75 | 13.1 90 | 11.0 90 | 18.3 87 | 26.4 82 | 36.8 80 | 22.7 80 |
SILK [87] | 79.8 | 13.2 81 | 22.4 84 | 10.2 81 | 20.5 75 | 32.2 82 | 17.7 80 | 29.0 83 | 34.1 82 | 23.4 80 | 22.0 79 | 40.8 74 | 17.3 79 | 6.28 75 | 7.17 77 | 7.12 81 | 21.7 85 | 35.8 87 | 19.6 83 | 5.44 83 | 3.45 46 | 10.8 85 | 29.3 84 | 40.6 85 | 26.7 84 |
PGAM+LK [55] | 80.7 | 14.9 84 | 22.8 86 | 14.1 88 | 25.5 85 | 31.3 74 | 26.6 87 | 21.9 67 | 26.4 42 | 22.2 76 | 26.0 84 | 39.1 68 | 24.0 85 | 9.61 87 | 6.49 61 | 14.1 88 | 24.3 87 | 35.0 84 | 23.0 87 | 6.19 86 | 6.24 87 | 7.26 82 | 34.3 87 | 40.4 84 | 40.8 90 |
SLK [47] | 81.1 | 17.2 89 | 24.0 87 | 18.2 89 | 21.3 79 | 30.4 73 | 20.1 84 | 27.9 80 | 31.9 73 | 23.3 79 | 31.4 90 | 39.9 70 | 30.0 90 | 6.60 80 | 7.04 75 | 8.37 83 | 22.8 86 | 36.4 88 | 21.6 86 | 3.90 74 | 3.75 59 | 5.02 74 | 33.3 86 | 41.7 86 | 35.2 86 |
Pyramid LK [2] | 85.5 | 17.0 88 | 20.4 79 | 19.4 90 | 31.7 88 | 32.1 81 | 32.5 88 | 32.9 88 | 34.8 85 | 29.9 88 | 29.4 88 | 35.3 50 | 29.9 89 | 31.7 89 | 35.5 89 | 29.8 89 | 29.9 89 | 32.3 74 | 28.0 89 | 9.01 88 | 7.93 88 | 18.9 88 | 39.9 89 | 45.4 89 | 39.0 88 |
FOLKI [16] | 86.5 | 16.2 86 | 25.9 89 | 12.7 86 | 32.5 89 | 35.6 89 | 34.7 89 | 29.4 86 | 35.1 86 | 26.9 87 | 29.1 87 | 41.0 76 | 27.9 88 | 9.58 86 | 8.90 85 | 13.5 86 | 25.7 88 | 38.3 89 | 24.5 88 | 7.71 87 | 5.13 79 | 14.5 86 | 36.5 88 | 44.4 88 | 36.1 87 |
Periodicity [86] | 89.1 | 18.0 90 | 30.5 90 | 12.3 85 | 34.0 90 | 41.4 90 | 35.6 90 | 36.5 90 | 36.5 88 | 35.2 90 | 29.7 89 | 46.6 90 | 26.8 87 | 51.8 90 | 56.5 90 | 45.5 90 | 36.7 90 | 42.4 90 | 37.1 90 | 5.99 85 | 6.16 86 | 19.3 89 | 40.1 90 | 51.1 90 | 40.4 89 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |