Optical flow evaluation results |
Statistics:
Average
SD
R2.5
R5.0
R10.0
A50
A75
A95
Error type: endpoint angle interpolation normalized interpolation |
R5.0 angle error |
avg. |
Army (Hidden texture) GT im0 im1 |
Mequon (Hidden texture) GT im0 im1 |
Schefflera (Hidden texture) GT im0 im1 |
Wooden (Hidden texture) GT im0 im1 |
Grove (Synthetic) GT im0 im1 |
Urban (Synthetic) GT im0 im1 |
Yosemite (Synthetic) GT im0 im1 |
Teddy (Stereo) GT im0 im1 | ||||||||||||||||
rank | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | all | disc | untext | |
ComplexFlow [81] | 7.3 | 7.69 1 | 26.2 3 | 3.54 1 | 7.19 13 | 30.7 19 | 6.11 16 | 5.88 4 | 19.3 6 | 4.53 12 | 4.01 5 | 23.9 8 | 2.00 7 | 11.7 1 | 16.4 3 | 5.52 2 | 10.4 7 | 29.7 7 | 9.30 7 | 5.25 8 | 20.0 13 | 2.61 6 | 1.88 3 | 6.47 22 | 0.19 1 |
MDP-Flow2 [70] | 8.3 | 10.3 18 | 30.4 15 | 6.57 15 | 5.28 1 | 23.9 2 | 4.13 2 | 5.46 2 | 17.6 2 | 3.58 7 | 4.49 12 | 25.3 12 | 2.11 10 | 15.8 15 | 21.4 14 | 10.2 17 | 10.6 8 | 29.9 8 | 9.87 12 | 4.44 6 | 19.3 9 | 2.81 7 | 1.39 1 | 4.82 2 | 1.11 3 |
OFLADF [82] | 8.8 | 8.96 7 | 27.9 6 | 4.57 7 | 7.36 14 | 26.4 5 | 6.68 18 | 4.80 1 | 14.9 1 | 3.37 6 | 4.43 11 | 21.2 5 | 2.81 17 | 13.4 6 | 19.0 8 | 7.08 5 | 11.4 13 | 28.0 2 | 9.28 6 | 5.35 10 | 19.1 8 | 3.15 9 | 2.47 13 | 5.73 13 | 5.50 21 |
NN-field [73] | 9.8 | 8.65 3 | 28.3 7 | 4.00 3 | 8.38 20 | 33.1 27 | 7.44 21 | 5.86 3 | 19.0 5 | 4.53 12 | 3.15 1 | 21.4 6 | 1.25 1 | 12.0 3 | 16.9 4 | 5.41 1 | 6.58 2 | 20.2 1 | 3.45 1 | 8.64 30 | 23.6 34 | 2.88 8 | 2.47 13 | 8.48 27 | 0.20 2 |
Epistemic [84] | 14.2 | 8.86 6 | 28.7 8 | 5.91 12 | 6.30 4 | 24.2 3 | 5.98 12 | 6.79 7 | 21.6 7 | 4.99 15 | 4.11 6 | 24.4 9 | 2.04 9 | 16.2 22 | 22.0 19 | 11.3 25 | 13.4 23 | 40.4 33 | 12.4 36 | 7.66 23 | 21.3 21 | 5.22 22 | 2.05 4 | 5.21 5 | 3.61 9 |
ALD-Flow [68] | 15.1 | 8.44 2 | 27.6 5 | 4.09 4 | 6.49 6 | 27.2 6 | 5.04 8 | 7.66 12 | 24.1 16 | 3.72 9 | 4.58 13 | 27.1 18 | 2.01 8 | 16.0 19 | 22.7 24 | 8.55 8 | 9.39 5 | 33.3 12 | 8.46 5 | 7.21 20 | 18.5 7 | 17.3 62 | 4.06 31 | 11.1 34 | 5.94 28 |
nLayers [57] | 15.4 | 8.66 4 | 25.4 1 | 4.54 5 | 13.0 52 | 32.1 22 | 13.7 56 | 7.74 13 | 21.8 8 | 8.85 43 | 3.29 2 | 18.2 1 | 1.89 6 | 11.8 2 | 16.2 2 | 6.65 4 | 12.2 17 | 28.4 3 | 10.3 13 | 8.59 29 | 21.5 24 | 4.98 20 | 2.36 11 | 5.74 14 | 5.08 17 |
LME [72] | 16.2 | 9.71 11 | 29.0 11 | 6.46 14 | 5.49 3 | 22.8 1 | 4.79 6 | 8.62 28 | 22.4 9 | 11.2 50 | 4.73 14 | 28.3 29 | 2.35 12 | 16.5 24 | 21.9 17 | 12.6 35 | 10.7 9 | 34.0 15 | 9.81 11 | 5.57 11 | 21.3 21 | 3.87 16 | 2.40 12 | 6.32 19 | 4.52 12 |
TC/T-Flow [80] | 16.6 | 9.15 8 | 32.1 21 | 3.69 2 | 6.89 9 | 31.2 21 | 4.32 3 | 7.32 10 | 23.1 10 | 4.08 10 | 5.14 19 | 27.2 19 | 2.80 16 | 15.6 13 | 21.9 17 | 9.71 15 | 8.63 3 | 29.2 5 | 8.40 4 | 6.72 17 | 20.2 14 | 19.7 72 | 3.86 30 | 9.43 28 | 6.28 32 |
ADF [67] | 18.0 | 10.9 23 | 34.5 28 | 6.94 18 | 6.94 10 | 27.9 8 | 5.99 13 | 8.27 23 | 25.4 23 | 5.94 21 | 4.40 10 | 26.6 16 | 1.79 5 | 15.7 14 | 22.5 23 | 8.53 7 | 13.1 21 | 36.0 22 | 11.1 20 | 8.89 31 | 22.7 29 | 7.39 31 | 2.29 8 | 5.54 11 | 4.99 16 |
FC-2Layers-FF [77] | 18.4 | 9.97 14 | 28.7 8 | 7.96 22 | 10.4 30 | 35.3 33 | 9.95 30 | 6.11 6 | 18.1 4 | 6.82 25 | 4.12 7 | 20.9 4 | 2.48 14 | 13.3 5 | 17.7 5 | 9.47 11 | 13.5 24 | 32.6 10 | 11.3 24 | 14.0 51 | 26.0 49 | 12.5 50 | 1.84 2 | 4.18 1 | 4.53 13 |
Layers++ [37] | 19.2 | 10.2 16 | 29.1 12 | 8.58 33 | 10.8 34 | 30.6 17 | 11.0 42 | 5.90 5 | 17.7 3 | 6.34 22 | 3.40 3 | 18.2 1 | 1.66 4 | 12.2 4 | 16.0 1 | 9.69 14 | 13.9 28 | 33.6 14 | 11.9 32 | 13.9 50 | 27.9 52 | 8.74 35 | 2.33 10 | 4.94 3 | 5.70 26 |
FESL [75] | 19.5 | 8.67 5 | 25.6 2 | 4.73 8 | 13.6 54 | 39.4 55 | 12.9 52 | 8.22 21 | 24.3 19 | 7.10 29 | 3.76 4 | 20.3 3 | 2.12 11 | 14.1 9 | 20.1 9 | 9.08 9 | 11.2 12 | 31.0 9 | 9.80 10 | 11.3 39 | 30.4 59 | 7.66 32 | 2.10 5 | 5.40 8 | 2.40 5 |
TC-Flow [46] | 20.5 | 9.24 9 | 30.9 17 | 5.24 10 | 5.48 2 | 25.7 4 | 4.01 1 | 7.25 9 | 23.3 12 | 2.66 3 | 5.52 27 | 28.4 30 | 3.26 25 | 16.7 25 | 23.9 29 | 9.52 12 | 11.7 15 | 36.8 25 | 11.5 28 | 6.69 16 | 21.4 23 | 19.0 69 | 4.21 32 | 10.6 31 | 6.91 39 |
Efficient-NL [60] | 22.1 | 9.31 10 | 27.5 4 | 5.65 11 | 12.1 45 | 38.1 47 | 11.2 45 | 8.07 20 | 24.1 16 | 6.69 24 | 5.39 25 | 25.9 15 | 3.51 32 | 14.9 10 | 21.1 11 | 9.39 10 | 14.0 32 | 35.2 18 | 11.1 20 | 11.5 40 | 25.7 47 | 6.90 28 | 2.19 7 | 5.45 10 | 1.94 4 |
IROF++ [58] | 22.7 | 10.2 16 | 30.9 17 | 7.02 19 | 11.1 39 | 38.1 47 | 10.7 37 | 8.32 25 | 25.1 22 | 7.61 35 | 5.83 33 | 28.0 27 | 4.08 40 | 15.4 11 | 21.3 12 | 9.83 16 | 13.6 25 | 38.0 29 | 11.3 24 | 5.83 12 | 20.8 17 | 1.97 5 | 2.32 9 | 5.71 12 | 4.87 15 |
SCR [74] | 22.9 | 9.91 13 | 28.9 10 | 7.17 20 | 11.5 43 | 38.6 51 | 11.1 44 | 7.51 11 | 23.2 11 | 7.16 30 | 4.76 15 | 25.2 11 | 2.91 18 | 15.8 15 | 21.3 12 | 10.9 21 | 12.7 19 | 33.3 12 | 9.59 9 | 12.9 46 | 24.8 43 | 9.66 37 | 2.77 21 | 5.79 16 | 5.59 22 |
PMF [76] | 23.4 | 11.6 27 | 29.9 13 | 4.55 6 | 7.81 16 | 30.2 15 | 6.00 14 | 7.17 8 | 23.3 12 | 3.21 5 | 4.88 18 | 23.1 7 | 2.42 13 | 13.6 7 | 18.5 6 | 6.49 3 | 16.1 44 | 42.7 40 | 15.4 48 | 27.2 77 | 43.5 82 | 28.9 77 | 2.15 6 | 4.96 4 | 4.81 14 |
COFM [59] | 25.1 | 10.1 15 | 32.0 20 | 7.63 21 | 8.06 18 | 30.4 16 | 7.17 19 | 8.93 31 | 25.9 27 | 8.04 40 | 4.17 8 | 24.9 10 | 1.63 3 | 18.8 32 | 24.0 30 | 18.6 59 | 14.4 35 | 33.0 11 | 11.7 30 | 8.15 25 | 20.4 15 | 14.7 58 | 3.16 25 | 5.36 7 | 8.09 47 |
Ramp [62] | 25.2 | 10.9 23 | 32.7 24 | 7.96 22 | 10.9 36 | 37.1 38 | 10.6 35 | 7.85 15 | 24.2 18 | 7.41 33 | 5.29 21 | 27.0 17 | 3.44 29 | 16.1 20 | 22.3 22 | 10.8 19 | 13.8 27 | 35.4 19 | 11.0 19 | 11.6 41 | 21.1 19 | 18.2 66 | 2.52 15 | 5.44 9 | 5.23 18 |
Correlation Flow [79] | 25.6 | 11.9 30 | 35.3 29 | 6.03 13 | 6.85 8 | 28.0 9 | 4.77 5 | 8.29 24 | 25.8 25 | 2.17 1 | 4.84 17 | 27.2 19 | 2.77 15 | 18.5 31 | 25.9 35 | 11.7 26 | 16.9 50 | 39.5 31 | 16.7 53 | 12.1 43 | 24.6 41 | 17.8 64 | 2.59 16 | 7.33 24 | 3.08 6 |
Sparse-NonSparse [56] | 25.9 | 10.7 21 | 32.5 22 | 8.38 29 | 10.9 36 | 36.8 36 | 10.7 37 | 7.95 19 | 24.5 21 | 7.30 32 | 5.42 26 | 27.6 21 | 3.49 31 | 16.1 20 | 22.1 20 | 11.0 22 | 13.3 22 | 36.0 22 | 10.6 15 | 10.6 37 | 21.1 19 | 10.9 43 | 2.91 22 | 5.93 17 | 6.18 31 |
LSM [39] | 26.2 | 10.4 19 | 32.6 23 | 8.24 25 | 10.8 34 | 37.4 41 | 10.4 33 | 7.85 15 | 24.3 19 | 7.05 27 | 5.32 22 | 27.6 21 | 3.41 28 | 15.8 15 | 21.5 15 | 11.1 23 | 13.7 26 | 35.6 20 | 10.9 18 | 13.0 47 | 23.2 32 | 12.5 50 | 2.99 24 | 6.43 21 | 6.14 30 |
Levin3 [90] | 26.8 | 9.75 12 | 30.0 14 | 6.63 16 | 11.5 43 | 39.5 56 | 10.8 40 | 7.77 14 | 23.5 14 | 6.84 26 | 5.57 29 | 27.6 21 | 3.63 36 | 15.4 11 | 21.0 10 | 10.5 18 | 13.9 28 | 35.6 20 | 11.1 20 | 16.3 59 | 25.1 44 | 17.1 61 | 2.70 18 | 5.77 15 | 5.26 19 |
Classic+NL [31] | 28.4 | 10.5 20 | 31.4 19 | 8.38 29 | 11.1 39 | 37.9 46 | 10.6 35 | 7.87 17 | 24.0 15 | 7.48 34 | 5.57 29 | 27.6 21 | 3.62 34 | 15.8 15 | 21.5 15 | 10.8 19 | 14.1 33 | 37.4 26 | 11.4 27 | 14.8 54 | 25.9 48 | 13.4 55 | 2.61 17 | 5.29 6 | 6.10 29 |
TV-L1-MCT [64] | 30.5 | 10.9 23 | 30.5 16 | 8.56 32 | 13.8 56 | 40.9 62 | 13.2 54 | 8.68 29 | 25.8 25 | 7.98 39 | 4.83 16 | 25.7 13 | 3.26 25 | 17.4 28 | 23.5 28 | 13.7 41 | 14.8 38 | 36.7 24 | 12.7 38 | 5.84 13 | 19.4 10 | 10.1 41 | 3.53 27 | 6.42 20 | 6.63 34 |
IROF-TV [53] | 30.8 | 11.6 27 | 35.3 29 | 9.03 36 | 11.2 41 | 38.2 49 | 10.9 41 | 8.85 30 | 26.5 28 | 7.73 37 | 6.04 38 | 33.0 47 | 3.62 34 | 17.1 26 | 23.1 25 | 13.5 40 | 16.3 45 | 44.8 48 | 13.5 41 | 3.41 4 | 16.9 4 | 1.13 3 | 2.71 19 | 6.80 23 | 5.67 25 |
SimpleFlow [49] | 31.5 | 11.6 27 | 33.7 26 | 8.98 35 | 12.5 48 | 38.9 52 | 12.6 50 | 10.4 36 | 29.3 34 | 9.20 44 | 5.99 35 | 27.6 21 | 4.08 40 | 16.3 23 | 22.2 21 | 11.1 23 | 16.7 48 | 37.4 26 | 12.7 38 | 8.29 26 | 19.9 12 | 6.11 27 | 2.74 20 | 6.28 18 | 5.86 27 |
Direct ZNCC [66] | 32.0 | 12.7 33 | 37.8 35 | 6.80 17 | 7.12 12 | 29.8 13 | 5.34 9 | 8.43 26 | 26.6 29 | 2.21 2 | 5.35 23 | 28.5 31 | 3.18 23 | 20.7 49 | 28.4 54 | 14.8 45 | 17.9 53 | 41.4 38 | 17.5 57 | 12.7 45 | 24.4 40 | 18.6 68 | 3.57 28 | 10.6 31 | 3.37 8 |
Adaptive [20] | 32.4 | 10.9 23 | 33.8 27 | 4.92 9 | 10.5 31 | 35.0 32 | 9.53 29 | 12.2 45 | 33.7 39 | 7.68 36 | 5.57 29 | 30.3 37 | 2.95 20 | 21.7 57 | 26.7 43 | 20.6 64 | 10.8 10 | 34.9 17 | 7.26 3 | 14.0 51 | 28.8 54 | 4.88 19 | 4.50 36 | 10.2 30 | 6.84 37 |
MDP-Flow [26] | 32.4 | 12.2 32 | 40.6 40 | 8.88 34 | 9.32 23 | 28.3 11 | 10.5 34 | 9.09 32 | 28.1 32 | 9.37 45 | 6.03 37 | 30.6 38 | 3.99 38 | 17.2 27 | 23.1 25 | 12.4 31 | 13.9 28 | 42.7 40 | 12.5 37 | 7.10 19 | 23.6 34 | 4.09 18 | 5.35 40 | 13.2 41 | 7.09 42 |
CostFilter [40] | 32.6 | 14.1 37 | 36.2 33 | 8.48 31 | 8.61 22 | 30.6 17 | 7.43 20 | 8.26 22 | 26.9 31 | 4.40 11 | 5.72 32 | 28.1 28 | 3.24 24 | 13.7 8 | 18.5 6 | 7.81 6 | 16.6 47 | 45.0 50 | 16.0 50 | 26.8 75 | 48.6 85 | 32.7 79 | 2.93 23 | 7.59 25 | 5.38 20 |
Occlusion-TV-L1 [63] | 32.9 | 12.9 35 | 36.1 32 | 8.26 28 | 9.51 26 | 32.7 24 | 8.99 27 | 12.3 46 | 34.4 43 | 8.27 41 | 5.53 28 | 29.8 36 | 3.04 22 | 20.5 47 | 28.5 56 | 13.8 42 | 9.95 6 | 37.9 28 | 11.6 29 | 7.64 22 | 21.8 28 | 3.47 10 | 5.69 45 | 13.9 45 | 7.59 44 |
OFH [38] | 33.7 | 15.0 38 | 40.9 41 | 14.4 53 | 7.06 11 | 29.9 14 | 5.37 10 | 10.8 37 | 33.1 38 | 4.86 14 | 5.84 34 | 30.6 38 | 3.46 30 | 19.5 37 | 26.1 37 | 15.3 47 | 15.6 41 | 46.5 55 | 16.6 52 | 4.19 5 | 21.7 26 | 3.74 15 | 5.39 42 | 15.4 51 | 7.23 43 |
Classic++ [32] | 38.4 | 10.8 22 | 32.7 24 | 8.25 27 | 10.5 31 | 32.9 25 | 10.7 37 | 10.8 37 | 31.6 37 | 8.46 42 | 5.25 20 | 29.7 35 | 2.99 21 | 20.0 40 | 28.0 51 | 13.9 43 | 15.2 39 | 44.1 46 | 11.9 32 | 17.3 62 | 26.2 50 | 18.3 67 | 5.82 47 | 12.7 38 | 8.14 48 |
Sparse Occlusion [54] | 38.6 | 12.7 33 | 35.8 31 | 8.24 25 | 12.4 46 | 33.4 28 | 13.4 55 | 9.67 34 | 29.1 33 | 6.55 23 | 5.99 35 | 28.5 31 | 3.56 33 | 19.4 36 | 26.4 41 | 12.4 31 | 14.7 37 | 39.4 30 | 11.7 30 | 37.7 85 | 48.6 85 | 17.8 64 | 3.66 29 | 9.43 28 | 5.64 24 |
ACK-Prior [27] | 39.6 | 19.5 58 | 41.5 42 | 14.3 52 | 6.57 7 | 27.6 7 | 4.53 4 | 7.87 17 | 25.7 24 | 3.70 8 | 4.33 9 | 25.7 13 | 1.53 2 | 20.5 47 | 25.6 33 | 18.3 58 | 23.1 69 | 44.0 45 | 18.5 60 | 29.9 79 | 33.1 65 | 45.6 87 | 7.91 56 | 14.8 49 | 11.7 59 |
Complementary OF [21] | 40.1 | 20.9 60 | 51.7 62 | 21.5 63 | 6.41 5 | 28.3 11 | 4.86 7 | 9.56 33 | 30.2 36 | 5.62 17 | 8.21 53 | 31.4 41 | 6.20 55 | 19.2 34 | 25.6 33 | 15.5 48 | 21.5 64 | 49.3 58 | 17.4 56 | 6.34 14 | 19.8 11 | 11.5 45 | 6.44 51 | 16.1 54 | 10.2 52 |
NL-TV-NCC [25] | 40.7 | 16.5 46 | 40.4 38 | 9.10 37 | 10.7 33 | 37.0 37 | 8.07 23 | 8.59 27 | 26.8 30 | 3.17 4 | 6.24 39 | 33.4 48 | 3.26 25 | 21.4 55 | 29.7 66 | 12.7 37 | 21.2 62 | 48.2 57 | 17.3 55 | 13.4 49 | 35.6 71 | 13.0 54 | 4.73 37 | 12.8 39 | 3.24 7 |
TCOF [71] | 43.2 | 17.2 51 | 45.4 49 | 15.3 54 | 12.6 49 | 37.6 42 | 12.3 48 | 15.7 53 | 39.5 54 | 16.6 59 | 6.72 42 | 27.7 26 | 4.48 46 | 22.5 61 | 30.9 73 | 11.9 27 | 9.21 4 | 28.4 3 | 10.8 17 | 22.9 69 | 35.0 70 | 9.29 36 | 4.22 33 | 11.3 35 | 6.79 36 |
ComplOF-FED-GPU [35] | 43.4 | 17.9 52 | 52.0 64 | 15.4 55 | 7.90 17 | 33.9 30 | 5.82 11 | 10.8 37 | 34.2 41 | 5.67 18 | 6.99 46 | 31.5 42 | 4.51 47 | 19.2 34 | 26.3 40 | 12.9 39 | 18.2 55 | 50.5 63 | 18.6 61 | 15.1 56 | 23.6 34 | 22.3 73 | 5.37 41 | 15.4 51 | 6.76 35 |
TV-L1-improved [17] | 43.8 | 11.9 30 | 36.8 34 | 8.23 24 | 8.49 21 | 31.0 20 | 7.83 22 | 11.9 43 | 33.7 39 | 7.19 31 | 5.35 23 | 28.9 33 | 2.91 18 | 20.3 45 | 28.0 51 | 12.0 29 | 27.2 78 | 55.4 73 | 30.4 80 | 23.1 71 | 38.0 76 | 22.9 74 | 5.61 44 | 14.0 46 | 7.74 46 |
EP-PM [83] | 44.5 | 19.4 57 | 53.2 66 | 11.2 44 | 8.23 19 | 34.8 31 | 6.07 15 | 11.1 40 | 35.1 46 | 5.89 20 | 7.31 49 | 33.4 48 | 4.76 48 | 18.9 33 | 23.2 27 | 17.1 54 | 21.3 63 | 50.3 62 | 20.1 64 | 20.7 65 | 30.3 58 | 40.9 85 | 3.20 26 | 8.13 26 | 5.59 22 |
F-TV-L1 [15] | 45.1 | 31.8 68 | 60.6 71 | 43.6 78 | 13.7 55 | 38.4 50 | 13.1 53 | 15.6 52 | 39.4 53 | 10.1 47 | 10.9 64 | 37.3 59 | 8.78 65 | 20.0 40 | 26.5 42 | 16.0 51 | 12.9 20 | 40.7 34 | 10.7 16 | 9.68 34 | 23.7 37 | 3.52 12 | 4.49 35 | 12.0 36 | 4.19 11 |
SIOF [69] | 45.2 | 16.5 46 | 40.1 37 | 10.8 42 | 10.3 29 | 37.1 38 | 9.10 28 | 16.4 56 | 38.3 48 | 18.4 62 | 8.56 54 | 35.1 54 | 5.87 54 | 21.3 54 | 28.5 56 | 16.5 52 | 17.6 52 | 43.6 43 | 19.7 63 | 7.08 18 | 21.6 25 | 3.65 13 | 6.65 52 | 16.1 54 | 10.9 56 |
Aniso. Huber-L1 [22] | 45.7 | 13.6 36 | 40.4 38 | 9.77 38 | 19.4 62 | 40.1 58 | 22.0 62 | 16.4 56 | 38.4 49 | 18.3 61 | 7.56 50 | 33.4 48 | 5.00 51 | 20.1 43 | 27.7 49 | 12.5 33 | 14.5 36 | 39.7 32 | 10.4 14 | 20.8 66 | 32.0 62 | 12.9 53 | 4.35 34 | 10.8 33 | 6.56 33 |
Rannacher [23] | 46.9 | 15.5 40 | 43.5 46 | 10.7 41 | 11.4 42 | 35.8 34 | 11.5 46 | 14.2 51 | 39.0 52 | 10.8 48 | 6.59 41 | 30.8 40 | 4.20 42 | 21.0 52 | 29.6 65 | 12.6 35 | 19.1 57 | 50.8 64 | 15.2 46 | 14.7 53 | 26.8 51 | 16.7 60 | 4.86 38 | 12.9 40 | 7.03 41 |
Deep-Matching [85] | 47.0 | 22.8 64 | 50.4 58 | 28.7 68 | 14.6 59 | 37.8 44 | 14.8 60 | 18.8 64 | 43.2 61 | 21.5 63 | 9.91 62 | 34.0 51 | 7.62 62 | 17.7 29 | 25.4 32 | 9.65 13 | 11.6 14 | 43.7 44 | 11.1 20 | 5.18 7 | 17.0 5 | 10.2 42 | 12.5 70 | 19.7 66 | 22.3 70 |
Brox et al. [5] | 47.6 | 18.5 54 | 51.2 60 | 20.8 62 | 14.0 57 | 37.8 44 | 15.1 61 | 13.6 50 | 38.8 50 | 11.7 51 | 7.20 48 | 36.8 57 | 4.02 39 | 23.0 65 | 28.5 56 | 24.3 72 | 10.8 10 | 45.3 52 | 9.57 8 | 7.81 24 | 22.7 29 | 1.58 4 | 9.61 62 | 19.2 64 | 15.0 64 |
DPOF [18] | 48.4 | 20.5 59 | 50.2 57 | 10.5 39 | 12.6 49 | 41.8 65 | 11.0 42 | 11.8 42 | 34.3 42 | 10.8 48 | 8.61 56 | 38.9 62 | 5.43 52 | 19.5 37 | 26.1 37 | 15.1 46 | 16.8 49 | 41.5 39 | 15.2 46 | 23.3 72 | 23.9 39 | 50.1 88 | 5.05 39 | 14.1 47 | 4.13 10 |
LocallyOriented [52] | 48.4 | 15.8 43 | 41.5 42 | 10.9 43 | 15.0 60 | 44.5 68 | 13.7 56 | 17.6 60 | 43.4 62 | 14.2 55 | 7.16 47 | 31.5 42 | 4.82 49 | 21.0 52 | 29.0 61 | 12.5 33 | 11.7 15 | 34.5 16 | 12.9 40 | 11.6 41 | 29.6 55 | 12.0 48 | 7.94 57 | 18.4 60 | 11.1 57 |
CRTflow [88] | 49.8 | 16.5 46 | 49.5 55 | 10.6 40 | 9.63 27 | 33.8 29 | 8.65 26 | 13.1 48 | 38.8 50 | 7.80 38 | 6.86 44 | 34.3 52 | 4.44 45 | 20.0 40 | 27.8 50 | 12.2 30 | 31.4 82 | 59.0 79 | 36.7 83 | 10.3 35 | 30.4 59 | 12.0 48 | 8.56 59 | 20.4 69 | 12.9 62 |
Bartels [41] | 50.1 | 19.3 56 | 39.6 36 | 22.4 65 | 9.47 25 | 28.2 10 | 10.0 31 | 9.91 35 | 29.7 35 | 7.09 28 | 9.18 57 | 29.3 34 | 7.40 61 | 21.7 57 | 27.6 46 | 21.1 66 | 19.1 57 | 44.4 47 | 24.2 71 | 23.0 70 | 36.3 72 | 36.2 80 | 7.46 55 | 14.9 50 | 11.5 58 |
Dynamic MRF [7] | 50.8 | 22.0 62 | 52.3 65 | 25.2 67 | 7.67 15 | 33.0 26 | 6.18 17 | 12.4 47 | 39.8 56 | 5.34 16 | 6.49 40 | 35.4 55 | 3.86 37 | 22.9 63 | 29.2 62 | 20.7 65 | 22.2 66 | 57.8 76 | 22.9 69 | 7.42 21 | 18.1 6 | 25.1 75 | 13.2 71 | 21.3 72 | 20.5 69 |
Local-TV-L1 [65] | 51.2 | 24.6 65 | 51.2 60 | 30.0 69 | 22.5 65 | 40.6 60 | 25.2 65 | 23.5 67 | 46.1 65 | 28.3 66 | 9.73 60 | 37.4 60 | 6.92 59 | 18.3 30 | 25.2 31 | 12.7 37 | 13.9 28 | 43.2 42 | 12.0 34 | 5.25 8 | 20.6 16 | 5.15 21 | 15.8 73 | 21.0 70 | 32.1 77 |
LDOF [28] | 51.8 | 17.1 49 | 48.0 52 | 12.9 49 | 13.3 53 | 40.6 60 | 12.2 47 | 15.8 54 | 42.4 59 | 12.7 54 | 9.70 59 | 44.0 67 | 6.27 56 | 20.7 49 | 28.0 51 | 16.8 53 | 14.3 34 | 45.9 54 | 13.8 42 | 8.36 27 | 23.3 33 | 7.98 33 | 11.2 68 | 21.2 71 | 18.3 68 |
CBF [12] | 52.3 | 15.2 39 | 44.8 48 | 12.1 47 | 23.7 66 | 37.7 43 | 30.9 69 | 13.2 49 | 34.6 44 | 14.5 56 | 6.86 44 | 32.8 46 | 4.32 43 | 22.6 62 | 28.4 54 | 20.2 62 | 15.6 41 | 41.0 36 | 12.1 35 | 32.9 82 | 39.7 78 | 29.8 78 | 5.49 43 | 13.2 41 | 8.30 49 |
SuperFlow [89] | 53.0 | 16.2 44 | 42.7 45 | 13.0 50 | 20.9 63 | 39.6 57 | 25.0 64 | 19.7 65 | 40.6 57 | 31.8 67 | 9.89 61 | 41.2 65 | 7.16 60 | 20.9 51 | 27.1 45 | 20.3 63 | 12.2 17 | 41.1 37 | 11.3 24 | 19.0 63 | 32.1 64 | 3.87 16 | 10.1 64 | 19.3 65 | 16.4 65 |
TriangleFlow [30] | 53.3 | 18.7 55 | 43.9 47 | 18.0 56 | 10.1 28 | 37.2 40 | 8.18 24 | 11.9 43 | 35.5 47 | 5.81 19 | 6.72 42 | 34.6 53 | 4.37 44 | 26.7 78 | 34.7 79 | 23.4 70 | 23.1 69 | 49.6 59 | 23.5 70 | 16.7 60 | 37.2 73 | 16.3 59 | 6.85 53 | 17.3 58 | 10.3 53 |
CLG-TV [48] | 53.9 | 15.7 42 | 42.2 44 | 11.7 46 | 20.9 63 | 39.2 54 | 24.8 63 | 16.4 56 | 39.5 54 | 18.0 60 | 9.23 58 | 37.9 61 | 6.54 57 | 22.9 63 | 30.0 69 | 17.9 57 | 16.5 46 | 47.2 56 | 14.2 43 | 19.9 64 | 30.4 59 | 11.5 45 | 5.79 46 | 14.1 47 | 6.98 40 |
p-harmonic [29] | 54.1 | 21.2 61 | 63.8 75 | 20.6 61 | 12.4 46 | 35.9 35 | 12.7 51 | 17.7 61 | 47.5 67 | 14.9 57 | 10.9 64 | 42.1 66 | 8.85 66 | 20.4 46 | 26.1 37 | 17.1 54 | 17.9 53 | 52.5 67 | 18.4 59 | 15.6 58 | 28.6 53 | 5.86 25 | 5.89 48 | 13.5 43 | 7.67 45 |
FastOF [78] | 55.4 | 17.1 49 | 47.0 50 | 19.4 58 | 15.3 61 | 41.4 63 | 14.7 59 | 18.7 63 | 42.7 60 | 23.8 64 | 11.1 66 | 32.5 45 | 9.73 67 | 19.6 39 | 25.9 35 | 17.4 56 | 21.0 61 | 55.2 72 | 20.3 65 | 14.9 55 | 23.7 37 | 10.0 39 | 8.52 58 | 16.6 57 | 9.71 50 |
Second-order prior [8] | 56.9 | 15.6 41 | 48.2 53 | 12.1 47 | 12.6 49 | 39.1 53 | 12.3 48 | 16.2 55 | 44.6 63 | 12.2 53 | 7.57 51 | 31.6 44 | 5.45 53 | 22.2 59 | 30.6 71 | 14.3 44 | 20.8 60 | 56.8 75 | 17.7 58 | 28.0 78 | 33.8 66 | 27.1 76 | 7.43 54 | 17.4 59 | 10.4 55 |
Learning Flow [11] | 59.2 | 16.4 45 | 47.3 51 | 11.5 45 | 14.0 57 | 40.3 59 | 14.4 58 | 16.4 56 | 41.7 58 | 15.6 58 | 8.05 52 | 40.7 64 | 4.87 50 | 27.1 80 | 35.0 81 | 22.5 69 | 17.2 51 | 50.0 61 | 16.0 50 | 15.5 57 | 34.1 68 | 13.9 57 | 10.1 64 | 20.2 68 | 12.5 61 |
Fusion [6] | 59.4 | 17.9 52 | 57.7 68 | 18.6 57 | 9.42 24 | 32.3 23 | 10.2 32 | 11.4 41 | 34.8 45 | 11.7 51 | 8.57 55 | 40.2 63 | 6.89 58 | 25.0 75 | 30.8 72 | 24.9 75 | 23.9 72 | 52.3 66 | 25.0 74 | 33.3 84 | 43.4 81 | 19.3 71 | 9.01 60 | 18.8 63 | 13.4 63 |
StereoFlow [44] | 59.7 | 85.4 90 | 89.0 90 | 87.9 89 | 73.1 90 | 88.5 90 | 68.8 86 | 66.8 90 | 87.5 89 | 52.4 86 | 81.5 90 | 91.1 90 | 78.5 90 | 25.9 77 | 27.6 46 | 29.7 81 | 6.38 1 | 29.4 6 | 6.60 2 | 1.39 1 | 10.9 1 | 0.20 1 | 6.34 50 | 13.8 44 | 10.3 53 |
SegOF [10] | 61.0 | 28.8 67 | 51.1 59 | 13.2 51 | 37.3 78 | 51.8 78 | 44.6 78 | 30.0 72 | 53.0 71 | 43.3 76 | 27.0 76 | 49.6 72 | 22.4 73 | 24.0 72 | 27.6 46 | 28.4 80 | 24.9 75 | 58.5 77 | 24.4 72 | 2.04 2 | 16.2 3 | 0.47 2 | 10.0 63 | 16.5 56 | 16.7 66 |
Ad-TV-NDC [36] | 61.8 | 44.8 82 | 63.0 73 | 69.1 84 | 40.3 80 | 48.4 74 | 48.3 80 | 34.8 76 | 58.5 74 | 39.9 72 | 26.5 75 | 47.8 71 | 27.7 76 | 20.2 44 | 28.5 56 | 11.9 27 | 15.2 39 | 40.9 35 | 14.7 44 | 8.46 28 | 21.0 18 | 5.69 24 | 23.9 82 | 28.3 82 | 41.9 86 |
Shiralkar [42] | 63.1 | 22.0 62 | 69.5 80 | 19.6 59 | 10.9 36 | 42.6 66 | 8.48 25 | 18.4 62 | 54.0 72 | 9.43 46 | 10.1 63 | 45.4 68 | 7.72 63 | 21.5 56 | 28.9 60 | 15.9 50 | 26.8 77 | 60.7 80 | 25.4 76 | 24.3 74 | 29.9 57 | 39.4 82 | 11.0 67 | 23.8 74 | 12.2 60 |
HBpMotionGpu [43] | 66.4 | 32.0 69 | 50.0 56 | 22.9 66 | 36.1 77 | 47.0 71 | 43.9 77 | 29.2 71 | 51.9 70 | 38.6 71 | 13.0 67 | 37.1 58 | 10.2 68 | 23.5 68 | 29.5 64 | 24.2 71 | 18.9 56 | 44.9 49 | 15.9 49 | 33.2 83 | 41.2 79 | 12.6 52 | 11.8 69 | 18.5 61 | 22.7 71 |
Modified CLG [34] | 66.9 | 34.8 73 | 61.1 72 | 35.3 71 | 33.3 75 | 46.5 70 | 41.7 76 | 36.8 78 | 63.0 77 | 45.1 80 | 22.1 72 | 55.4 76 | 18.7 72 | 23.9 70 | 31.2 75 | 21.7 68 | 15.8 43 | 51.5 65 | 14.8 45 | 9.01 32 | 24.6 41 | 11.1 44 | 17.6 77 | 25.7 78 | 29.6 76 |
IAOF2 [51] | 67.0 | 25.3 66 | 49.2 54 | 22.2 64 | 24.6 67 | 44.3 67 | 28.6 68 | 20.0 66 | 45.4 64 | 25.5 65 | 49.8 82 | 57.5 80 | 60.5 84 | 23.2 67 | 31.0 74 | 15.7 49 | 23.2 71 | 49.6 59 | 19.3 62 | 30.5 80 | 39.0 77 | 19.0 69 | 9.25 61 | 18.6 62 | 9.82 51 |
Filter Flow [19] | 68.3 | 33.3 70 | 51.7 62 | 20.1 60 | 25.0 68 | 47.2 73 | 27.7 67 | 27.7 69 | 50.0 68 | 37.9 70 | 31.7 78 | 54.1 75 | 29.9 77 | 25.8 76 | 31.2 75 | 28.3 79 | 26.4 76 | 52.9 68 | 24.7 73 | 42.3 87 | 61.5 89 | 13.6 56 | 6.09 49 | 12.1 37 | 6.88 38 |
BlockOverlap [61] | 68.6 | 41.4 76 | 54.1 67 | 36.2 73 | 27.3 70 | 41.4 63 | 32.6 71 | 26.2 68 | 46.5 66 | 31.8 67 | 20.0 70 | 36.6 56 | 18.1 71 | 22.4 60 | 26.8 44 | 25.7 76 | 24.5 73 | 45.6 53 | 21.1 66 | 39.3 86 | 47.0 84 | 43.5 86 | 13.8 72 | 16.0 53 | 28.7 75 |
SPSA-learn [13] | 68.8 | 35.8 74 | 71.2 82 | 43.1 77 | 28.4 71 | 47.0 71 | 32.8 72 | 31.4 74 | 57.7 73 | 42.2 75 | 22.2 73 | 51.0 73 | 22.9 75 | 23.9 70 | 29.4 63 | 24.6 74 | 24.8 74 | 56.5 74 | 25.1 75 | 10.7 38 | 25.1 44 | 3.72 14 | 21.7 79 | 24.9 77 | 35.5 79 |
2D-CLG [1] | 68.9 | 44.0 80 | 63.3 74 | 36.1 72 | 44.3 81 | 52.3 79 | 55.1 83 | 49.1 86 | 75.4 83 | 50.5 84 | 64.3 87 | 76.4 86 | 67.8 87 | 24.8 74 | 29.7 66 | 27.4 78 | 20.5 59 | 53.6 69 | 22.4 67 | 2.52 3 | 13.0 2 | 3.50 11 | 22.8 81 | 27.9 81 | 36.9 80 |
IAOF [50] | 69.8 | 33.8 71 | 58.3 69 | 40.6 74 | 33.0 74 | 44.5 68 | 39.5 75 | 30.6 73 | 58.7 75 | 33.8 69 | 34.1 80 | 52.4 74 | 40.8 80 | 23.1 66 | 29.9 68 | 19.7 61 | 22.5 67 | 53.7 70 | 16.8 54 | 22.3 67 | 34.0 67 | 10.0 39 | 19.5 78 | 23.9 75 | 37.1 82 |
GraphCuts [14] | 70.6 | 34.5 72 | 59.0 70 | 32.1 70 | 26.2 69 | 51.1 77 | 26.4 66 | 28.1 70 | 51.7 69 | 40.4 74 | 13.0 67 | 47.5 70 | 7.98 64 | 23.7 69 | 30.0 69 | 24.3 72 | 33.4 83 | 45.2 51 | 25.7 77 | 31.2 81 | 37.7 75 | 36.8 81 | 10.7 66 | 19.7 66 | 17.7 67 |
GroupFlow [9] | 70.9 | 42.7 77 | 67.1 78 | 53.4 79 | 44.8 82 | 63.8 86 | 50.2 81 | 36.7 77 | 69.4 80 | 43.9 77 | 17.2 69 | 46.0 69 | 16.7 69 | 27.8 81 | 34.9 80 | 21.2 67 | 36.7 86 | 67.0 82 | 43.6 86 | 6.40 15 | 21.7 26 | 7.17 29 | 16.6 74 | 25.9 79 | 25.0 72 |
Black & Anandan [4] | 71.2 | 38.5 75 | 69.5 80 | 53.4 79 | 28.5 72 | 49.6 76 | 32.0 70 | 33.4 75 | 60.5 76 | 40.2 73 | 22.6 74 | 55.9 77 | 22.8 74 | 24.5 73 | 32.2 78 | 19.6 60 | 21.7 65 | 58.9 78 | 22.7 68 | 22.6 68 | 37.6 74 | 5.27 23 | 16.7 75 | 22.6 73 | 25.4 73 |
Nguyen [33] | 74.6 | 43.9 79 | 66.0 77 | 42.8 76 | 54.0 85 | 49.4 75 | 70.1 87 | 42.9 81 | 67.4 78 | 47.3 82 | 55.4 85 | 65.7 83 | 64.4 85 | 27.0 79 | 31.8 77 | 31.0 82 | 22.8 68 | 54.8 71 | 27.3 78 | 13.1 48 | 25.2 46 | 6.08 26 | 22.2 80 | 26.9 80 | 38.9 83 |
SILK [87] | 76.4 | 49.5 85 | 69.2 79 | 69.3 85 | 39.9 79 | 60.6 82 | 47.0 79 | 40.4 80 | 70.7 81 | 45.6 81 | 32.0 79 | 56.5 78 | 31.2 78 | 31.4 83 | 36.9 84 | 33.3 83 | 31.1 81 | 63.2 81 | 32.3 81 | 10.3 35 | 23.0 31 | 17.3 62 | 25.0 83 | 31.9 83 | 36.9 80 |
Horn & Schunck [3] | 77.8 | 43.3 78 | 80.7 85 | 58.6 81 | 32.5 73 | 59.7 80 | 35.1 73 | 40.2 79 | 76.3 86 | 44.7 79 | 31.5 77 | 64.8 81 | 32.6 79 | 29.3 82 | 36.4 83 | 27.0 77 | 27.5 79 | 68.7 83 | 29.7 79 | 27.0 76 | 43.3 80 | 7.32 30 | 25.9 84 | 36.5 85 | 34.6 78 |
Periodicity [86] | 78.1 | 48.9 84 | 63.9 76 | 41.0 75 | 34.5 76 | 60.0 81 | 37.5 74 | 55.4 88 | 67.4 78 | 56.6 88 | 20.4 71 | 56.9 79 | 17.5 70 | 53.2 89 | 66.7 90 | 46.5 89 | 48.3 89 | 76.0 90 | 46.4 88 | 9.14 33 | 34.4 69 | 9.98 38 | 28.3 86 | 48.2 89 | 40.6 85 |
SLK [47] | 81.2 | 44.7 81 | 78.9 84 | 59.1 82 | 58.2 87 | 71.2 89 | 70.9 88 | 47.5 84 | 83.5 88 | 50.6 85 | 65.0 88 | 69.5 84 | 73.4 88 | 34.7 86 | 38.9 87 | 42.9 88 | 34.8 84 | 70.9 87 | 39.4 84 | 12.1 43 | 29.8 56 | 11.5 45 | 34.4 87 | 40.1 86 | 48.8 87 |
TI-DOFE [24] | 82.8 | 73.1 88 | 84.6 89 | 89.6 90 | 61.2 89 | 64.7 88 | 74.8 90 | 58.6 89 | 88.7 90 | 58.0 89 | 70.9 89 | 81.6 88 | 76.1 89 | 31.7 84 | 38.0 85 | 35.4 84 | 29.7 80 | 68.7 83 | 36.3 82 | 17.1 61 | 32.0 62 | 8.67 34 | 35.5 88 | 42.8 87 | 49.8 88 |
FOLKI [16] | 84.0 | 48.0 83 | 71.5 83 | 68.8 83 | 48.6 84 | 63.2 83 | 59.5 84 | 43.0 82 | 75.6 84 | 44.0 78 | 40.4 81 | 65.6 82 | 45.8 81 | 35.3 87 | 40.6 88 | 41.6 86 | 36.3 85 | 71.6 89 | 44.4 87 | 23.6 73 | 44.7 83 | 40.4 84 | 36.9 89 | 43.4 88 | 54.5 89 |
PGAM+LK [55] | 85.1 | 58.6 86 | 80.9 86 | 69.8 86 | 45.1 83 | 63.7 85 | 51.9 82 | 43.2 83 | 76.2 85 | 47.5 83 | 50.3 83 | 82.2 89 | 51.4 82 | 32.7 85 | 36.0 82 | 42.3 87 | 41.4 87 | 70.1 85 | 41.2 85 | 56.3 89 | 58.0 88 | 55.0 89 | 25.9 84 | 32.4 84 | 40.3 84 |
Adaptive flow [45] | 85.1 | 76.7 89 | 83.7 88 | 86.4 87 | 57.9 86 | 63.6 84 | 67.3 85 | 48.7 85 | 73.2 82 | 52.9 87 | 52.7 84 | 69.9 85 | 56.0 83 | 35.4 88 | 38.4 86 | 39.4 85 | 46.1 88 | 70.6 86 | 47.6 89 | 73.1 90 | 75.2 90 | 88.1 90 | 17.2 76 | 24.6 76 | 25.6 74 |
Pyramid LK [2] | 88.0 | 68.1 87 | 83.5 87 | 86.8 88 | 59.4 88 | 64.5 87 | 73.1 89 | 52.8 87 | 76.3 86 | 61.4 90 | 60.2 86 | 79.0 87 | 65.9 86 | 53.8 90 | 61.8 89 | 64.5 90 | 59.4 90 | 71.1 88 | 63.0 90 | 43.9 88 | 49.4 87 | 39.5 83 | 50.2 90 | 60.2 90 | 70.8 90 |
Method | time* | frames | color | Reference and notes | |
[1] 2D-CLG | 844 | 2 | gray | The 2D-CLG method by Bruhn et al. as implemented by Stefan Roth. [A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. IJCV 63(3), 2005.] Parameters were set to match the published performance on Yosemite sequence, which may not be optimal for other sequences. | |
[2] Pyramid LK | 12 | 2 | color | A modification of Bouguet's pyramidal implementation of Lucas-Kanade. | |
[3] Horn & Schunck | 49 | 2 | gray | A modern Matlab implementation of the Horn & Schunck method by Deqing Sun. Parameters set to optimize AAE on all training data. | |
[4] Black & Anandan | 328 | 2 | gray | A modern Matlab implementation of the Black & Anandan method by Deqing Sun. | |
[5] Brox et al. | 18 | 2 | color | T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. ECCV 2004. (Improved using separate robust functions as proposed in A. Bruhn and J. Weickert, Towards ultimate motion estimation, ICCV 2005; improved by training on the training set.) | |
[6] Fusion | 2,666 | 2 | color | V. Lempitsky, S. Roth, and C. Rother. Discrete-continuous optimization for optical flow estimation. CVPR 2008. | |
[7] Dynamic MRF | 366 | 2 | gray | B. Glocker, N. Paragios, N. Komodakis, G. Tziritas, and N. Navab. Optical flow estimation with uncertainties through dynamic MRFs. CVPR 2008. (Method improved since publication.) | |
[8] Second-order prior | 14 | 2 | gray | W. Trobin, T. Pock, D. Cremers, and H. Bischof. An unbiased second-order prior for high-accuracy motion estimation. DAGM 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[9] GroupFlow | 600 | 2 | gray | X. Ren. Local Grouping for Optical Flow. CVPR 2008. | |
[10] SegOF | 60 | 2 | color | L. Xu, J. Chen, and J. Jia. Segmentation based variational model for accurate optical flow estimation. ECCV 2008. Code available. | |
[11] Learning Flow | 825 | 2 | gray | D. Sun, S. Roth, J.P. Lewis, and M. Black. Learning optical flow (SRF-LFC). ECCV 2008. | |
[12] CBF | 69 | 2 | color | W. Trobin, T. Pock, D. Cremers, and H. Bischof. Continuous energy minimization via repeated binary fusion. ECCV 2008. (Method improved since publication; for details see W. Trobin, Ph.D. thesis, 2009.) | |
[13] SPSA-learn | 200 | 2 | color | Y. Li and D. Huttenlocher. Learning for optical flow using stochastic optimization. ECCV 2008. | |
[14] GraphCuts | 1,200 | 2 | color | T. Cooke. Two applications of graph-cuts to image processing. DICTA 2008. | |
[15] F-TV-L1 | 8 | 2 | gray | A. Wedel, T. Pock, J. Braun, U. Franke, and D. Cremers. Duality TV-L1 flow with fundamental matrix prior. IVCNZ 2008. | |
[16] FOLKI | 1.4 | 2 | gray | G. Le Besnerais and F. Champagnat. Dense optical flow by iterative local window registration. ICIP 2005. | |
[17] TV-L1-improved | 2.9 | 2 | gray | A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical flow computation. Proceedings of the Dagstuhl Visual Motion Analysis Workshop 2008. Code at GPU4Vision. | |
[18] DPOF | 287 | 2 | color | C. Lei and Y.-H. Yang. Optical flow estimation on coarse-to-fine region-trees using discrete optimization. ICCV 2009. (Method improved since publication). | |
[19] Filter Flow | 34,000 | 2 | color | S. Seitz and S. Baker. Filter flow. ICCV 2009. | |
[20] Adaptive | 9.2 | 2 | gray | A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure- and motion-adaptive regularization for high accuracy optic flow. ICCV 2009. | |
[21] Complementary OF | 44 | 2 | color | H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. EMMCVPR 2009. | |
[22] Aniso. Huber-L1 | 2 | 2 | gray | M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1 optical flow. BMVC 2009. Code at GPU4Vision. | |
[23] Rannacher | 0.12 | 2 | gray | J. Rannacher. Realtime 3D motion estimation on graphics hardware. Bachelor thesis, Heidelberg University, 2009. | |
[24] TI-DOFE | 260 | 2 | gray | C. Cassisa, S. Simoens, and V. Prinet. Two-frame optical flow formulation in an unwarped multiresolution scheme. CIARP 2009. | |
[25] NL-TV-NCC | 20 | 2 | color | M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation regularization. CVPR 2010. | |
[26] MDP-Flow | 188 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. CVPR 2010. | |
[27] ACK-Prior | 5872 | 2 | color | K. Lee, D. Kwon, I. Yun, and S. Lee. Optical flow estimation with adaptive convolution kernel prior on discrete framework. CVPR 2010. | |
[28] LDOF | 122 | 2 | color | T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI 33(3):500-513, 2011. | |
[29] p-harmonic | 565 | 2 | gray | J. Gai and R. Stevenson. Optical flow estimation with p-harmonic regularization. ICIP 2010. | |
[30] TriangleFlow | 4200 | 2 | gray | B. Glocker, H. Heibel, N. Navab, P. Kohli, and C. Rother. TriangleFlow: Optical flow with triangulation-based higher-order likelihoods. ECCV 2010. | |
[31] Classic+NL | 972 | 2 | color | D. Sun, S. Roth, and M. Black. Secrets of optical flow estimation and their principles. CVPR 2010. Matlab code. | |
[32] Classic++ | 486 | 2 | gray | A modern implementation of the classical formulation descended from Horn & Schunck and Black & Anandan; see D. Sun, S. Roth, and M. Black, Secrets of optical flow estimation and their principles, CVPR 2010. | |
[33] Nguyen | 33 | 2 | gray | D. Nguyen. Tuning optical flow estimation with image-driven functions. ICRA 2011. | |
[34] Modified CLG | 133 | 2 | gray | R. Fezzani, F. Champagnat, and G. Le Besnerais. Combined local global method for optic flow computation. EUSIPCO 2010. | |
[35] ComplOF-FED-GPU | 0.97 | 2 | color | P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A highly efficient GPU implementation for variational optic flow based on the Euler-Lagrange framework. CVGPU Workshop 2010. | |
[36] Ad-TV-NDC | 35 | 2 | gray | M. Nawaz. Motion estimation with adaptive regularization and neighborhood dependent constraint. DICTA 2010. | |
[37] Layers++ | 18206 | 2 | color | D. Sun, E. Sudderth, and M. Black. Layered image motion with explicit occlusions, temporal consistency, and depth ordering. NIPS 2010. | |
[38] OFH | 620 | 3 | color | H. Zimmer, A. Bruhn, J. Weickert. Optic flow in harmony. IJCV 93(3) 2011. | |
[39] LSM | 1615 | 2 | color | K. Jia, X. Wang, and X. Tang. Optical flow estimation using learned sparse model. ICCV 2011. | |
[40] CostFilter | 55 | 2 | color | C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. CVPR 2011. | |
[41] Bartels | 0.15 | 2 | gray | C. Bartels and G. de Haan. Smoothness constraints in recursive search motion estimation for picture rate conversion. IEEE TCSVT 2010. Version improved since publication: mapped on GPU. | |
[42] Shiralkar | 600 | 2 | gray | M. Shiralkar and R. Schalkoff. A self organization-based optical flow estimator with GPU implementation. MVA 23(6):1229-1242. | |
[43] HBpMotionGpu | 1000 | 5 | gray | S. Grauer-Gray and C. Kambhamettu. Hierarchical belief propagation to reduce search space using CUDA for stereo and motion estimation. WACV 2009. (Method improved since publication). | |
[44] StereoFlow | 7200 | 2 | color | G. Rosman, S. Shem-Tov, D. Bitton, T. Nir, G. Adiv, R. Kimmel, A. Feuer, and A. Bruckstein. Over-parameterized optical flow using a stereoscopic constraint. SSVM 2011:761-772. | |
[45] Adaptive flow | 121 | 2 | gray | T. Arici. Energy minimization based motion estimation using adaptive smoothness priors. Submitted to IEEE TIP 2011. | |
[46] TC-Flow | 2500 | 5 | color | S. Volz, A. Bruhn, L. Valgaerts, and H. Zimmer. Modeling temporal coherence for optical flow. ICCV 2011. | |
[47] SLK | 300 | 2 | gray | T. Corpetti and E. Mémin. Stochastic uncertainty models for the luminance consistency assumption. IEEE TIP 2011. | |
[48] CLG-TV | 29 | 2 | gray | M. Drulea. Total variation regularization of local-global optical flow. ITSC 2011. Matlab code. | |
[49] SimpleFlow | 1.7 | 2 | color | M. Tao, J. Bai, P. Kohli, S. Paris. SimpleFlow: a non-iterative, sublinear optical flow algorithm. EUROGRAPHICS 2012. | |
[50] IAOF | 57 | 2 | gray | D. Nguyen. Improving motion estimation using image-driven functions and hybrid scheme. PSIVT 2011. | |
[51] IAOF2 | 56 | 2 | gray | D. Nguyen. Enhancing the sharpness of flow field using image-driven functions with occlusion-aware filter. Submitted to TIP 2011. | |
[52] LocallyOriented | 9541 | 2 | gray | Y.Niu, A. Dick, and M. Brooks. Locally oriented optical flow computation. To appear in TIP 2012. | |
[53] IROF-TV | 261 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. On improving the robustness of differential optical flow. ICCV 2011 Artemis workshop. | |
[54] Sparse Occlusion | 2312 | 2 | color | A. Ayvaci, M. Raptis, and S. Soatto. Sparse occlusion detection with optical flow. Submitted to IJCV 2011. | |
[55] PGAM+LK | 0.37 | 2 | gray | A. Alba, E. Arce-Santana, and M. Rivera. Optical flow estimation with prior models obtained from phase correlation. ISVC 2010. | |
[56] Sparse-NonSparse | 713 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. CVPR 2012. | |
[57] nLayers | 36150 | 4 | color | D. Sun, E. Sudderth, and M. Black. Layered segmentation and optical flow estimation over time. CVPR 2012. | |
[58] IROF++ | 187 | 2 | color | H. Rashwan, D. Puig, and M. Garcia. Variational optical flow estimation based on stick tensor voting. IEEE TIP 2013. | |
[59] COFM | 600 | 3 | color | M. Mozerov. Constrained optical flow estimation as a matching problem. IEEE TIP 2013. | |
[60] Efficient-NL | 400 | 2 | color | P. Krähenbühl and V. Koltun. Efficient nonlocal regularization for optical flow. ECCV 2012. | |
[61] BlockOverlap | 2 | 2 | gray | M. Santoro, G. AlRegib, and Y. Altunbasak. Motion estimation using block overlap minimization. Submitted to MMSP 2012. | |
[62] Ramp | 1200 | 2 | color | A. Singh and N. Ahuja. Exploiting ramp structures for improving optical flow estimation. ICPR 2012. | |
[63] Occlusion-TV-L1 | 538 | 3 | gray | C. Ballester, L. Garrido, V. Lazcano, and V. Caselles. A TV-L1 optical flow method with occlusion detection. DAGM-OAGM 2012. | |
[64] TV-L1-MCT | 90 | 2 | color | M. Mohamed and B. Mertsching. TV-L1 optical flow estimation with image details recovering based on modified census transform. ISVC 2012. | |
[65] Local-TV-L1 | 500 | 2 | gray | L. Raket. Local smoothness for global optical flow. ICIP 2012. | |
[66] Direct ZNCC | 260 | 2 | color | M. Drulea, C. Pantilie, and S. Nedevschi. A direct approach for correlation-based matching in variational optical flow. Submitted to TIP 2012. | |
[67] ADF | 1535 | 2 | color | Anonymous. Optical flow estimation by adaptive data fusion. NIPS 2012 submission 601. | |
[68] ALD-Flow | 61 | 2 | color | M. Stoll, A. Bruhn, and S. Volz. Adaptive integration of feature matches into variational optic flow methods. ACCV 2012. | |
[69] SIOF | 234 | 2 | color | L. Xu, Z. Dai, and J. Jia. Scale invariant optical flow. ECCV 2012. | |
[70] MDP-Flow2 | 342 | 2 | color | L. Xu, J. Jia, and Y. Matsushita. Motion detail preserving optical flow estimation. PAMI 34(9):1744-1757, 2012. Code available. | |
[71] TCOF | 1421 | all | gray | Anonymous. Optical flow estimation with consistent spatio-temporal coherence models. VISAPP 2013 submission 20. | |
[72] LME | 476 | 2 | color | Anonymous. Optical flow estimation using Laplacian mesh energy. CVPR 2013 submission 11. | |
[73] NN-field | 362 | 2 | color | L. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu. Large displacement optical flow from nearest neighbor fields. CVPR 2013. | |
[74] SCR | 257 | 2 | color | Anonymous. Segmentation constrained regularization for optical flow estimation. CVPR 2013 submission 297. | |
[75] FESL | 3310 | 2 | color | W. Dong, G. Shi, X. Hu, and Y. Ma. Nonlocal sparse and low-rank regularization for optical flow estimation. Submitted to IEEE TIP 2013. | |
[76] PMF | 35 | 2 | color | Anonymous. PatchMatch filter: efficient edge-aware filtering meets randomized search for fast correspondence field estimation. CVPR 2013 submission 573. | |
[77] FC-2Layers-FF | 2662 | 4 | color | D. Sun, J. Wulff, E. Sudderth, H. Pfister, and M. Black. A fully-connected layered model of foreground and background flow. CVPR 2013. | |
[78] FastOF | 0.18 | 2 | color | Anonymous. Quasi-realtime variational optical flow computation. CVPR 2013 submission 792. | |
[79] Correlation Flow | 290 | 2 | color | M. Drulea and S. Nedevschi. Motion estimation using the correlation transform. Submitted to TIP 2013. | |
[80] TC/T-Flow | 341 | 5 | color | Anonymous. Joint trilateral filtering for multiframe optical flow. ICIP 2013 submission 2685. | |
[81] ComplexFlow | 673 | 2 | color | Anonymous. Constructing dense correspondence for complex motion. ICCV 2013 submission 353. | |
[82] OFLADF | 1530 | 2 | color | Anonymous. Optical flow via locally adaptive fusion of complementary data costs. ICCV 2013 submission 423. | |
[83] EP-PM | 2.7 | 2 | color | Anonymous. Fast edge-preserving PatchMatch for large displacement optical flow. ICCV 2013 submission 575. | |
[84] Epistemic | 6.5 | 2 | color | Anonymous. Epistemic optical flow. ICCV 2013 submission 804. | |
[85] Deep-Matching | 13 | 2 | color | Anonymous. Large displacement optical flow with deep matching. ICCV 2013 submission 1095. | |
[86] Periodicity | 8000 | 4 | color | Anonymous. A periodicity-based computation of optical flow. BMVC 2013 submission 133. | |
[87] SILK | 572 | 2 | gray | P. Zille, C. Xu, T. Corpetti, L. Shao. Observation models based on scale interactions for optical flow estimation. Submitted to IEEE TIP. | |
[88] CRTflow | 13 | 3 | color | Anonymous. The complete rank transform: a tool for accurate and morphologically invariant matching of structures. BMVC 2013 submission 488. | |
[89] SuperFlow | 178 | 2 | color | Anonymous. Superpixel based optical flow estimation. ICCV 2013 submission 507. | |
[90] Levin3 | 247 | 2 | color | L. Chen, J. Wang, and Y. Wu. Decomposing and regularizing sparse/non-sparse components for motion field estimation. Submitted to PAMI 2013. |